
GLASNIK MATEMATIČKI
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ON EXCESSES OF FRAMES

Damir Bakić and Tomislav Berić

University of Zagreb, Croatia

Abstract. We show that any two frames in a separable Hilbert space
that are dual to each other have the same excess. Some new relations for
the analysis resp. synthesis operators of dual frames are also derived. Then
we prove that pseudo-dual frames and, in particular, approximately dual
frames have the same excess. We also discuss various results on frames in
which excesses of frames play an important role.

1. Introduction and preliminaries

Let H be a separable Hilbert space with the inner product 〈·, ·〉. A se-
quence (fn)

∞
n=1 in H is a frame if there exist positive constants A and B, that

are called frame bounds, such that

(1.1) A‖x‖2 ≤

∞
∑

n=1

|〈x, fn〉|
2 ≤ B‖x‖2, ∀x ∈ H.

Frame bounds are not unique. The optimal upper frame bound is the infi-
mum over all upper frame bounds, and the optimal lower frame bound is the
supremum over all lower frame bounds. If A = B we say that the frame is
tight and, in particular, if A = B = 1 so that

(1.2)

∞
∑

n=1

|〈x, fn〉|
2 = ‖x‖2, ∀x ∈ H,

we say that (fn)
∞
n=1 is a Parseval frame.
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Frames were first introduced by Duffin and Schaeffer ([14]). Today frames
play important roles in many applications in mathematics, science and engi-
neering. For general information and basic facts about frames we refer the
reader to [7, 10, 13, 17].

If only the second inequality in (1.1) is satisfied, we say that (fn)
∞
n=1 is

a Bessel sequence. For each Bessel sequence (fn)
∞
n=1 in H one defines the

analysis operator U : H → l2 by Ux = (〈x, fn〉)
∞
n=1, x ∈ H . It is evident that

U is bounded; moreover, if (fn)
∞
n=1 is a frame, then U is also bounded from

below. Its adjoint operator U∗, which is called the synthesis operator, is given
by U∗((cn)

∞
n=1) =

∑∞
n=1 cnfn, (cn)

∞
n=1 ∈ l2. The synthesis operator U∗ is a

surjection and the composition U∗U (sometimes called the frame operator) is
an invertible operator on H . It turns out that the sequence ((U∗U)−1fn)

∞
n=1

is also a frame for H that satisfies

(1.3) x =

∞
∑

n=1

〈x, fn〉(U
∗U)−1fn =

∞
∑

n=1

〈x, (U∗U)−1fn〉fn, ∀x ∈ H.

In the light of this reconstruction formula we say that ((U∗U)−1fn)
∞
n=1 is the

canonical dual frame of (fn)
∞
n=1. The above equalities show that each frame is

complete in H . However, a frame need not be a basis and the representations
in (1.3) need not be unique. In general, a frame (gn)

∞
n=1 for H is called a dual

frame (or an alternate dual) for (fn)
∞
n=1 if we have

(1.4) x =

∞
∑

n=1

〈x, fn〉gn =

∞
∑

n=1

〈x, gn〉fn, ∀x ∈ H.

If we denote by U and V the analysis operators of (fn)
∞
n=1 and (gn)

∞
n=1,

respectively, then the above duality relations are simply described by the
equality V ∗U = I (or, equivalently, U∗V = I). Each frame (fn)

∞
n=1 for H

that is not a basis for H has infinitely many dual frames.
Frames that are not bases are overcomplete, i.e. there exist their proper

subsets which are complete. The excess e((fn)
∞
n=1) of the frame (fn)

∞
n=1 is

defined in [6] as the greatest integer k such that k elements can be deleted
from the frame and still leave a complete set, or +∞ if there is no upper
bound to the number of elements that can be removed. By [6, Lemma 4.1] we
have e((fn)

∞
n=1) = dim(KerU∗), where U is the analysis operator of (fn)

∞
n=1.

If e((fn)
∞
n=1) < ∞ it can be shown (see [18]) that the frame is simply

a Riesz basis to which finitely many elements (in fact, precisely e((fn)
∞
n=1)

elements) have been adjoined. Such frames are called ”near-Riesz bases”.
The present paper is concerned with excesses of frames. In Theorem 2.2

we prove that dual frames have the same excess. Surprisingly, it seems that
this fact has been overlooked by now, although its proof uses only basic tools.
This also leads to some new relations for the analysis, resp. synthesis oper-
ators of dual frames; see Corollaries 2.3 and 2.4. We then prove that also
pseudo-dual and approximately dual frames have the same excess. (Notions
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of pseudo-duals and approximate duals are explained in Section 2.) In ad-
dition, we include some results on frame perturbations, Parseval duals and
the fundamental identity for Parseval frames (those that are known from the
literature are presented with new proofs) in which excesses of frames play an
important role.

It is worth noting here that the excess is a rather crude way of measuring
the redundancy of frames. One can use a more refined measure as in [5],
or restrict attention to a broad class of frames which are well behaved with
regards to redundancy, e.g. localized frames (see [4]). The present paper,
however, is concerned exclusively with excesses of frames.

We end this introductory section by fixing our notation. Throughout the
paper, H denotes an infinite-dimensional Hilbert space. We shall also tacitly
assume that sequences in H are indexed by the set N of natural numbers; so
in the sequel we shall write (fn), (gn), . . . instead of (fn)

∞
n=1, (gn)

∞
n=1, . . ..

If X and Y are subspaces of H with trivial intersection we denote by

X
.
+ Y their direct sum.
The identity operator is denoted by I. We denote by B(H,K) the space

of all bounded operators of Hilbert spaces H and K. The range and the kernel
of an operator T ∈ B(H,K) are denoted by ImT and KerT , respectively. If
T ∈ B(H,K) has closed range, its pseudo-inverse is denoted by T †. For basic
facts concerning pseudo-inverses we refer to [10, appendix A7]. Finally, we
denote by σ(T ) the spectrum of an operator T ∈ B(H).

2. Results

The following elementary lemma is probably well-known, but we never-
theless give the proof for the reader’s convenience. Here and in the rest of the
paper we will use the term oblique projection to denote a projection which
need not be orthogonal.

Lemma 2.1. Let H and K be Hilbert spaces. Suppose that T ∈ B(H,K)
and S ∈ B(K,H) satisfy ST = I. Then

(i) KerS = (I − TS)(KerT ∗),

(ii) K = ImT
.
+ KerS,

(iii) TS is the oblique projection onto ImT parallel to KerS.

Proof. Let us first prove

(2.1) KerS = Im (I − TS).

Indeed, from ST = I we get STS = S and S(I − TS) = 0. This immediately
implies Im (I−TS) ⊆ KerS. Conversely, for y ∈ KerS we have (I−TS)y = y

which gives us y ∈ Im (I − TS).
Next we claim

(2.2) Im (I − TS) = (I − TS)(KerT ∗).
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Observe that (i) follows directly from (2.1) and (2.2).
To prove (2.2), we first note that the assumed equality ST = I implies

that T has closed range. This may be argued by noting that T is bounded
from bellow. Alternatively, a more direct argument is as follows: if (Txn)
is a convergent sequence, it suffices to show that (xn) converges and this is
immediate from S(Txn) = xn.

Now take any (I − TS)y ∈ Im (I − TS). Since the range of T is closed,
we may write y = Tx + z for some Tx ∈ ImT and z ∈ KerT ∗. Next we
observe that (I − TS)(Tx) = Tx − T (ST )x = Tx − Tx = 0. From this we
conclude (I − TS)y = (I − TS)(Tx+ z) = (I − TS)z. Thus, Im (I − TS) ⊆
(I − TS)(KerT ∗). Since the reverse inclusion is obvious, this completes the
proof of (2.2) and hence of (i).

Let us prove (ii). Take any y ∈ ImT ∩ KerS. This means that y = Tx

for some x and Sy = 0. Thus, x = STx = Sy = 0 which implies y = Tx = 0.
Next, take an arbitrary y ∈ K. As in the first part of the proof we have
y = Tx+ z with some Tx ∈ ImT , z ∈ KerT ∗ and

(2.3) (I − TS)y = (I − TS)z.

Put u = TSy ∈ ImT and v = (I − TS)z. Using (i), we have v = (I − TS)z ∈
(I − TS)(KerT ∗) = KerS. Hence, we may rewrite (2.3) in the form

y = TSy + (I − TS)z = u+ v ∈ ImT
.
+ KerS

which completes the proof of (ii).
To prove (iii), first note that (TS)2 = TSTS = T (ST )S = TS which

shows that TS is an oblique projection. Obviously, TS acts as the identity
on ImT and trivially on KerS.

We are now ready for our main results.

Theorem 2.2. Let (fn) and (gn) be frames in H dual to each other. Then

e(fn) = e(gn).

Proof. Let us denote the analysis operators of (fn) and (gn) by U and
V , respectively. We must prove that dim(KerU∗) = dim(KerV ∗). By the
assumed duality we have V ∗U = I. Lemma 2.1 (i) (with S = V ∗ and T = U)
gives us

(2.4) KerV ∗ = (I − UV ∗)(KerU∗).

This implies

dim(KerV ∗) = dim((I − UV ∗)(KerU∗)) ≤ dim(KerU∗).

The opposite inequality follows by symmetry, since V ∗U = I is equivalent
to U∗V = I.

Corollary 2.3. Let (fn) and (gn) be frames in H dual to each other. Let

U and V denote the analysis operators of (fn) and (gn), respectively. Then
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(a) l2 = ImU
.
+ KerV ∗,

(b) UV ∗ is the oblique projection onto ImU parallel to KerV ∗,

(c) l2 = ImV
.
+ KerU∗,

(d) V U∗ is the oblique projection onto ImV parallel to KerU∗.

Proof. (a) and (b) are immediate from Lemma 2.1 (ii) and (iii) with
S = V ∗ and T = U . Since V ∗U = I is equivalent to U∗V = I, (c) and (d)
follow from (a) and (b) by symmetry.

One should observe that, if we take the canonical dual ((U∗U)−1fn) of
(fn) and its analysis operator V = U(U∗U)−1, then the projection UV ∗ from
the above statement (b) becomes UV ∗ = U(U∗U)−1U∗ which is precisely the
orthogonal projection onto ImU .

As a consequence of the preceding discussion, we obtain for an arbitrary
frame (fn) in H a general form of the synthesis operator of any frame that
is dual to (fn). Denote by U the analysis operator of (fn). Then, by [10,
Proposition 5.6.4], V ∈ B(H, l2) is the analysis operator of a frame (gn) dual
to (fn) if and only if its adjoint V ∗ (i.e., the corresponding synthesis operator)
is given by V ∗ = (U∗U)−1U∗ + W ∗Q, where Q ∈ B(l2) is the orthogonal
projection to (ImU)⊥ and W ∈ B(H, l2) is arbitrary. (It is useful to note that
U(U∗U)−1 is in fact the pseudo-inverse (U∗)† of U∗.)

In our next corollary we provide another general form of V ∗.

Corollary 2.4. Let (fn) be a frame in H with the analysis operator U .

Then V ∈ B(H, l2) is the analysis operator of a frame (gn) in H dual to (fn)
if and only if its adjoint V ∗ is given by V ∗ = (U∗U)−1U∗F , where F ∈ B(l2)
is an oblique projection onto ImU .

Proof. Consider V ∈ B(H, l2) whose adjoint operator V ∗ is given by
V ∗ = (U∗U)−1U∗F , where F ∈ B(l2) is an oblique projection onto ImU .
Then FU = U and hence V ∗U = (U∗U)−1U∗FU = (U∗U)−1U∗U = I.

Conversely, suppose that V ∈ B(H, l2) has the property V ∗U = I. Then

we know from the preceding corollary that l2 = ImU
.
+ KerV ∗ and that UV ∗

is the oblique projection onto ImU parallel to KerV ∗. Put F = UV ∗. Then
(U∗U)−1U∗F = (U∗U)−1U∗UV ∗ = V ∗.

Observe that in the statement of the corollary and in the first part of the

proof we have tacitly assumed that l2 = ImU
.
+ X and that F projects onto

ImU parallel to X , for some direct complement X of ImU . The subspace X

played no other role in the proof. However, X has to be closed in l2 in order
to ensure boundedness of F .

Remark 2.5. Let (fn) be an arbitrary frame in H with the analysis
operator U . The preceding two corrolaries establish a 1 − 1 correspondence
between its dual frames and bounded oblique projections to ImU (i.e. closed
direct complements of ImU in l2).
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Remark 2.6. Theorem 2.2 is also true for finite frames in finite-
dimensional Hilbert spaces. The same proof applies after observing that the
analysis operators U and V take values in Cm (or Rm), provided that frames
under consideration are sequences with m elements.

If we have a frame (fn) in H and a surjection T ∈ B(H,K), then it is
well known that (Tfn) is a frame in K. Observe that for each y ∈ K and
n ∈ N we have 〈y, T fn〉 = 〈T ∗y, fn〉. From this we conclude: if U denotes
the analysis operator of the original frame (fn), then the analysis operator
V of (Tfn) is given by V = UT ∗. Thus, V ∗ = TU∗ which obviously implies
KerU∗ ⊆ KerV ∗ and hence e(fn) ≤ e(Tfn).

We say that frames (fn) and (gn) forH andK, respectively, are equivalent
if there exists an invertible operator T ∈ B(H,K) such that gn = Tfn, ∀n ∈ N.
Since we then also have fn = T−1gn, ∀n ∈ N, the preceding discussion shows
that equivalent frames have the same excess.

Recall now the concept of pseudo-duality for frames. Suppose that (fn)
and (gn) are frames in H with the analysis operators U and V , respectively.
We say that (fn) and (gn) are pseudo-dual to each other if V ∗U is an invertible
operator. Note that V ∗Ux =

∑∞
n=1〈x, fn〉gn, ∀x ∈ H . This gives us, for each

x ∈ H ,

x = (V ∗U)((V ∗U)−1x) =

∞
∑

n=1

〈(V ∗U)−1x, fn〉gn =

∞
∑

n=1

〈x, (U∗V )−1fn〉gn.

This shows that frames ((U∗V )−1fn) and (gn) are dual to each other. Since
(fn) and ((U∗V )−1fn) are equivalent, the preceding discussion and Theorem
2.2 give us e(gn) = e((U∗V )−1fn) = e(fn).

Finally, recall from [12] that frames (fn) and (gn) in H are called ap-

proximately dual to each other if the corresponding analysis operators U and
V satisfy ‖V ∗U − I‖ < 1. Clearly, approximate duality of frames implies
pseudo-duality.

After all, we have proved the following corollary.

Corollary 2.7. Pseudo-dual frames have the same excess. In particular,

approximately dual frames have the same excess.

Let us now make a comment on frame perturbations.

Remark 2.8. There is a number of results on frame perturbations. Typ-
ically, such results tell us that a sequence which is in a certain sense close to a
frame must be a frame itself, in most cases sharing the same properties with
the given one. We refer the reader to [10, Chapter 15] for a nice exposition of
that part of the theory of frames.

Here we mention [11, Theorem 1] and [9, Theorem 2] as important ex-
amples of perturbation results. Basically, the proofs of these results consist
of two steps. First, one shows that the sequence (gn) obtained by perturbing
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a frame (fn) is Bessel, so that its analysis operator V is well defined and
bounded and, secondly, that V ∗U is an invertible operator (where U is the
analysis operator of (fn)). From that, one easily concludes that (gn) is indeed
a frame.

Since V ∗U is invertible, this frame is pseudo-dual to (fn). By the preced-
ing corollary, this implies that (fn) and (gn) have the same excess. This last
conclusion is already known in both cases; see [8, Theorem 3.6] and [9, The-
orem 2], but the preceding discussion provides another (common) viewpoint
for understanding the reason for the equality of excesses in these and similar
situations.

We now turn to another question in frame theory where the excess of a
frame under consideration plays an important role. Suppose we are given a
frame (fn) in H . One may ask if there exists a Parseval dual for (fn); i.e., a
Parseval frame (gn) in H such that x =

∑∞
n=1〈x, fn〉gn, ∀x ∈ H . A necessary

and sufficient condition is obtained in [16]: (fn) does possess a Parseval dual
if and only if (fn) can be obtained by applying an oblique projection to an
orthonormal basis of a larger Hilbert space K that contains H as a subspace.
Conveniently enough, this property of frames is characterized in [1]. So, by
combining the results from these two papers, one obtains as a corollary the
desired description of frames possessing Parseval duals. This is already noted
in [16]. It turns out that the key property is ”sufficiently large excess”. For
reader’s convenience here we state the characterization theorem and provide
another, more direct proof.

Theorem 2.9. Let (fn) be a frame in H with frame bounds A and B and

the analysis operator U . Then (fn) possesses a Parseval dual if and only if

the following two conditions are satisfied:

(a) A ≥ 1,
(b) dim(Im (U∗U − I)) ≤ e(fn).

Proof. Suppose first that (gn) is a Parseval dual for (fn); denote its
analysis operator by V . As we have already mentioned in the discussion
preceding Corollary 2.4, V must be of the form V = U(U∗U)−1+QW , where
Q ∈ B(l2) is the orthogonal projection to (ImU)⊥ and W ∈ B(H, l2) is
arbitrary.

Since (gn) is a Parseval frame, we have V ∗V = I i.e.,

((U∗U)−1U∗ +W ∗Q)(U(U∗U)−1 +QW ) = I.

Since QU = 0 and U∗Q = 0, this gives us

(2.5) (U∗U)−1 +W ∗QW = I.

In particular, this implies (U∗U)−1 ≤ I. Therefore, the upper bound of the
spectrum of (U∗U)−1 is less than or equal to 1; in other words, 1

A
≤ 1. Thus,

we have proved A ≥ 1.
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Consider the orthogonal decompositionH = Ker (U∗U−I)⊕Im (U∗U − I)

and write, accordingly, U∗U = I⊕T (where T ∈ B(Im (U∗U − I)) denotes the

operator induced by U∗U on the invariant subspace Im (U∗U − I)). Observe
that T ≥ 0 and σ(T ) ⊆ [1, B].

We also claim that I − T−1 is an injection. To see this, assume that
(I−T−1)x = 0 for some x ∈ Im (U∗U − I). This means that T−1x = x which
implies Tx = x; in other words, U∗Ux = x. Hence x ∈ Ker (U∗U − I). Thus,
x = 0.

By (2.5), we have W ∗QW = I − (U∗U)−1 = 0 ⊕ (I − T−1). Observe
that σ(T−1) ⊆ [ 1

B
, 1]. We now claim that the range of I − T−1 is a dense

subspace of Im (U∗U − I). This is obvious if I−T−1 is invertible. If I−T−1 is
not an invertible operator then, since it is self-adjoint and, by the preceding
paragraph, injective, −1 has to be in the continuous part of its spectrum.
Thus, we have proved that the range ofW ∗QW = I−(U∗U)−1 = 0⊕(I−T−1)

is dense in Im (U∗U − I). This gives us

dim(Im (U∗U − I)) = dim(Im (U∗U − I)) = dim(ImW ∗QW ) ≤ dim(ImQ)

= dim((ImU)⊥) = e(fn).

To prove the converse, assume (a) and (b). Write again U∗U = I⊕T according

to the decomposition H = Ker (U∗U − I)⊕ Im(U∗U − I). Again, T ≥ 0 and,
since A ≥ 1, here we also have σ(T ) ⊆ [1, B].

Consider a continuous function g : [1,∞) → [0, 1) defined by g(t) =
√

1− 1
t
. Put G = g(T ). We now use the assumption (b) to find a partial

isometry R ∈ B(H, l2) whose initial space is Im (U∗U − I) with final space
contained in KerU∗ = (ImU)⊥. Finally, denote by P ∈ B(H) the orthogonal

projection onto Im (U∗U − I).
Let V = U(U∗U)−1 +R(0⊕G)P . Then

V ∗V =
(

(U∗U)−1U∗ + P (0⊕G)R∗
) (

U(U∗U)−1 +R(0⊕G)P
)

= (U∗U)−1 + (0⊕G2) = (I ⊕ T−1) + (0 ⊕ (I − T−1)) = I.

Let us now put gn = V ∗en, n ∈ N, where (en) is the canonical orthonormal
basis in l2. Since V ∗V = I, the sequence (gn) is a Parseval frame in H .
Obviously, we also have V ∗U = I which means that (gn) is a dual frame to
(fn).

The above condition (a) is not crucial, since it can be ensured by rescaling
the original frame (although, the construction then yields only a tight dual
frame with the frame bound different from 1.) Condition (b) is essential; it
tells us that the excess should be at least as large as d = dim(Im (U∗U−I)) =
dim((Ker (U∗U − I))⊥). Note that the number d can be interpreted as a kind
of a measure of deviation of the original frame from being Parseval. Namely,
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the characterizing Parseval property - U∗U = I - is trivially fulfilled on the
subspace Ker (U∗U − I). So, any deviation from the Parseval property has its
origin in the orthogonal complement (Ker (U∗U − I))⊥.

We also refer the reader to [2] for a discussion of some related properties
of frames with d < ∞.

Next we turn to the so called fundamental identity for Parseval frames.
Let (fn) be an arbitrary Parseval frame in H . It is proved in [3] that for each
J ⊂ N and for all x ∈ H we have

(2.6)
∑

n∈J

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

∥

∑

n∈N\J

〈x, fn〉fn

∥

∥

∥

∥

∥

∥

2

=
∑

n∈N\J

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

∑

n∈J

〈x, fn〉fn

∥

∥

∥

∥

∥

2

and

(2.7)
3

4
‖x‖2 ≤

∑

n∈J

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

∥

∑

n∈N\J

〈x, fn〉fn

∥

∥

∥

∥

∥

∥

2

≤ ‖x‖2.

Given a Parseval frame (fn) and J ⊆ N, one can define the quantities

ν−(J) = inf











1

‖x‖2







∑

n∈J

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

∥

∑

n∈N\J

〈x, fn〉fn

∥

∥

∥

∥

∥

∥

2





: x 6= 0











and

ν+(J) = sup











1

‖x‖2







∑

n∈J

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

∥

∑

n∈N\J

〈x, fn〉fn

∥

∥

∥

∥

∥

∥

2





: x 6= 0











.

Clearly, (2.7) implies

(2.8)
3

4
≤ ν−(J) ≤ ν+(J) ≤ 1, ∀J ⊂ N.

These inequalities are discussed in [15]. Here we provide a related property of
frames with finite excess. Loosely speaking, in Theorem 2.10 and Corollary
2.11 below we prove: if (fn) is a Parseval frame with finite excess then for
each ǫ > 0 we have ν−(J) ≥ (1 − ǫ) for the majority of subsets J of N.

Theorem 2.10. Let (fn) be a Parseval frame in H such that e(fn) < ∞.

Then for each ǫ > 0 there exists n0 ∈ N such that

n0
∑

n=1

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

∞
∑

n=n0+1

〈x, fn〉fn

∥

∥

∥

∥

∥

2

> (1− ǫ)‖x‖2, ∀x ∈ H,

and
∞
∑

n=n0+1

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

n0
∑

n=1

〈x, fn〉fn

∥

∥

∥

∥

∥

2

> (1− ǫ)‖x‖2, ∀x ∈ H.
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Proof. Let U be the analysis operator of the frame (fn) and let (en)
be the canonical orthonormal basis for l2. Put ImU = M and denote by
P ∈ B(l2) the orthogonal projection onto M . Clearly, (Pen) is a Parseval
frame for M , unitarily equivalent to (fn). Hence, without loss of generality,
we may assume that H = M and fn = Pen, ∀n ∈ N.

Fix ǫ > 0. Recall from Proposition 5.5 in [6] that
∑∞

n=1(1 − ‖fn‖
2) =

e(xn). Since by hypothesis we have e(xn) = k < ∞, there exists n0 ∈ N such
that

(2.9)

∞
∑

n=n0+1

(1− ‖fn‖
2) < ǫ.

Let {w1, w2, . . . , wk} be an orthonormal basis for M⊥. Then, for each x ∈ l2,
we have

∥

∥

∥

∥

∥

(I − P )

(

∞
∑

n=n0+1

〈x, en〉en

)∥

∥

∥

∥

∥

2

=

k
∑

j=1

∣

∣

∣

∣

∣

〈

∞
∑

n=n0+1

〈x, en〉en, wj

〉∣

∣

∣

∣

∣

2

=

k
∑

j=1

∣

∣

∣

∣

∣

∞
∑

n=n0+1

〈x, en〉〈en, wj〉

∣

∣

∣

∣

∣

2

≤

k
∑

j=1

(

∞
∑

n=n0+1

|〈x, en〉|
2

)(

∞
∑

n=n0+1

|〈en, wj〉|
2

)

≤ ‖x‖2
k
∑

j=1

(

∞
∑

n=n0+1

|〈en, wj〉|
2

)

= ‖x‖2
∞
∑

n=n0+1





k
∑

j=1

〈en, wj〉|
2





= ‖x‖2
∞
∑

n=n0+1

‖(I − P )en‖
2 = ‖x‖2

∞
∑

n=n0+1

(1− ‖Pen‖
2)

= ‖x‖2
∞
∑

n=n0+1

(1− ‖fn‖
2)

(2.9)
< ǫ‖x‖2.

Thus, we have proved

(2.10)

∥

∥

∥

∥

∥

(I − P )

(

∞
∑

n=n0+1

〈x, en〉en

)∥

∥

∥

∥

∥

2

< ǫ‖x‖2, ∀x ∈ l2.
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Let us now take any x ∈ M . Observe that Px = x. Then we have

n0
∑

n=1

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

∞
∑

n=n0+1

〈x, fn〉fn

∥

∥

∥

∥

∥

2

=

n0
∑

n=1

|〈x, Pen〉|
2 +

∥

∥

∥

∥

∥

∞
∑

n=n0+1

〈x, Pen〉Pen

∥

∥

∥

∥

∥

2

=

n0
∑

n=1

|〈Px, en〉|
2 +

∥

∥

∥

∥

∥

P

(

∞
∑

n=n0+1

〈Px, en〉en

)∥

∥

∥

∥

∥

2

=

n0
∑

n=1

|〈x, en〉|
2 +

∥

∥

∥

∥

∥

P

(

∞
∑

n=n0+1

〈x, en〉en

)∥

∥

∥

∥

∥

2

=

n0
∑

n=1

|〈x, en〉|
2 +

∥

∥

∥

∥

∥

∞
∑

n=n0+1

〈x, en〉en

∥

∥

∥

∥

∥

2

−

∥

∥

∥

∥

∥

(I − P )

(

∞
∑

n=n0+1

〈x, en〉en

)∥

∥

∥

∥

∥

2

= ‖x‖2 −

∥

∥

∥

∥

∥

(I − P )

(

∞
∑

n=n0+1

〈x, en〉en

)∥

∥

∥

∥

∥

2

(2.10)
> ‖x‖2 − ǫ‖x‖2 = (1 − ǫ)‖x‖2.

This proves the first inequality. The second inequality now follows from (2.6).

Notice that inequality (2.10) in the above proof remains true if we replace
the summation over the set {n0+1, n0+2, . . .} by the sumation over any subset
of N disjoint from {1, 2, . . . , n0} - the same proof applies. Thus, we have the
following corollary:

Corollary 2.11. Let (fn) be a Parseval frame for H such that e(fn) <
∞. Then for each ǫ > 0 there exists n0 ∈ N such that for each subset J of N

with the property {1, 2, . . . , n0} ⊆ J we have

∑

n∈J

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

∥

∑

n∈N\J

〈x, fn〉fn

∥

∥

∥

∥

∥

∥

2

> (1 − ǫ)‖x‖2, ∀x ∈ H,

and

∑

n∈N\J

|〈x, fn〉|
2 +

∥

∥

∥

∥

∥

∑

n∈J

〈x, fn〉fn

∥

∥

∥

∥

∥

2

> (1 − ǫ)‖x‖2, ∀x ∈ H.

Example 2.12. Let a = (αn) ∈ l2 such that ‖a‖2 =
∑∞

n=1 |αn|
2 = 1,

assume additionally that |α1|
2 > 7

8 and αn 6= 0, ∀n ∈ N.
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Let M = {x ∈ l2 : 〈x, a〉 = 0} = {a}⊥. Denote by P ∈ B(l2) the
orthogonal projection onto M . Let (en) be the canonical orthonormal basis
for l2. Put xn = Pen, n ∈ N. Then (xn) is a Parseval frame for M . Its
analysis operator is the inclusion map Ux = x, x ∈ M ; thus, the synthesis
operator U∗ coincides with P regarded as a map from l2 onto M . From
KerP = span{a} we conclude e(xn) = 1. (Note in passing that here one
obtains a Riesz basis by removing just one element from (xn). In fact, since
we assumed αn 6= 0, ∀n ∈ N, any xn can be removed. We omit the details.)

Observe that

‖xn‖
2 = ‖Pen‖

2 = 1− ‖(I − P )en‖
2 = 1− |〈en, a〉|

2 = 1− |αn|
2, ∀n ∈ N.

Thus, by [6, Proposition 5.5], we have

1 = e(xn) =

∞
∑

n=1

(1− ‖xn‖
2) =

∞
∑

n=1

|αn|
2.

This gives us
∞
∑

n=2

(1− ‖xn‖
2) =

∞
∑

n=2

|αn|
2 = 1− |α1|

2 <
1

8
.

Thus, keeping notations from the proof of Theorem 2.10, here we have, for
ǫ = 1

8 , n0 = 1. Since for each subset J of N we have either 1 ∈ J or 1 ∈ N \J ,
Corollary 2.11 implies

∑

n∈J

|〈x, xn〉|
2 +

∥

∥

∥

∥

∥

∥

∑

n∈N\J

〈x, xn〉xn

∥

∥

∥

∥

∥

∥

2

> (1− ǫ)‖x‖2 =
7

8
‖x‖2, ∀x ∈ H, ∀J ⊆ N.

In particular, this implies

ν− := inf {ν−(J) : J ⊆ N} ≥
7

8
.

Notice that, by (2.8), we have for each Parseval frame ν− ≥ 3
4 . Our frame

(xn) constructed here serves as an example of a Parseval frame for which
ν− is strictly greater than 3

4 . A characterization of Parseval frames with the

property ν− > 3
4 is not known.
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Department of Mathematics
University of Zagreb
10 000 Zagreb
Croatia
E-mail : dbakic@math.hr

T. Berić
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