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ABSTRACT 

An integral equation method has been developed to solve the three-dimensional Stokes flow 
using a quadrilateral Hermite based function approach to the boundary integral method. The 
numerical solutions are obtained by utilizing the boundary collocation method as well as the 
continuous distribution of Stokeslets, which are the fundamental solutions of the steady 
Stokes equations. The quadrilateral surface elements are based on the bi-cubic hermite 
functions that allows the continuous variation of the surface normal vectors between 
neighboring elements. The singular integrations are evaluated numerically using the tanh-sinh 
quadrature rule meanwhile non-singular integrals are evaluated using the Gauss-Legendre 
quadrature rule. The numerical algorithm is initially validated for the three-dimensional 
unbounded Stokes flow around a sphere. Then the algorithm is applied to the sedimentation of 
spherical particles. 

Keywords: Integral equation method, Stokes flow, Hermite functions, singular integrals, 
sedimentation. 

ÖZET 

Üç boyutlu Stokes akışını çözmek amacıyla sınır integral yöntemiyle beraber dörtgen Hermit 
yüzeyler kullanılarak bir integral denklem yöntemi geliştirilmiştir. Sayısal sonuçlar, sınır 
sıralama yönteminden ve daimi Stokes denkleminin temel çözümleri olan Stokesletlerin 
sürekli dağılımından yararlanılarak elde edilmiştir. Dörtgen yüzey elemanları, komşu 
elemanlar arasındaki yüzey normal vektörünün sürekliliğini sağlayan hermite fonksiyonları 
kullanılarak tanımlanmıştır. Tekil integraller tanh-sinh tümlev yöntemi, tekil olmayan 
integraller ise Gauss-Legendre yöntemi kullanılarak sayısal olarak hesaplanmıştır. Sayısal 
algoritma ilk olarak küre etrafindaki üç boyutlu Stokes akışında doğrulanmıştır. Sonrasında 
algoritma küresel parçacıkların sedimantasyonu problemi için uygulanmıştır. 
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Anahtar kelimeler: İntegral denklem yöntemi, Stokes akışı, Hermite fonksiyonları, tekil 
integraller, sedimantasyon. 

1 INTRODUCTION 

Over the past decades, the boundary integral methods have emerged to be a very powerful 
technique for studying the flow behavior at vanishingly small Reynolds numbers, i.e. under 
Stokes flow conditions. The application of the present method to the three-dimensional Stokes 
flow was first formulated by Youngren and Acrivos [1] for an unbounded fluid past a single 
solid particle as a distribution of Stokeslets over the particle surface. Then the method was 
quickly adopted for several other flow problems at very low Reynolds numbers including the 
flow past deformable drops and bubbles [2], the flows of suspensions of rigid particles [3], the 
microscopic flow in porous media [4], the deformation of red blood cells [5], the swimming 
of microscopic organisms [6], etc. The main advantages of the boundary integral equation 
method is that it reduces the solution of full three-dimensional fluid flow problem into the 
two-dimensional problem of determining source distributions on the bounding surfaces, 
which does not require the construction of volume mesh. In addition, the far-field boundary 
conditions are satisfied exactly for exterior fluid flow problems. However, the numerical 
approach has also several disadvantages. The first one is that the numerical algorithm does 
lead to a dense system of algebraic equations and it is very difficult to implement efficiently 
on highly parallel machines. The second one is that the integral equation formulation leads to 
singular integrals which requires special treatment. 

The exact integration of the singular functions can be calculated either analytically or by 
using special numerical techniques. The numerical integration techniques are mostly based on 
the variable mappings which cluster quadrature points close to the position of the singularity. 
Muldowney and Higdon [7] showed that the transformed quadrature methods for singular and 
nearly singular integrals can be constructed for the requirements of the spectral element. Chan 
et al. [8] proposed an adaptive subdomain integration scheme that dramatically improved the 
integration accuracy and provided convergent solutions for problems of very small gaps. 
Duffy [9] suggested the transformation of integration over a triangular surface having a 
singular vertex into an integration over a unit square. The transformation cancels the 
singularity. However, this approach is accurate only for sufficiently regular triangles. In 
addition, there is another type of approach which replaces singular kernel by a regularized 
kernel [10]. Another approach is to employ the tanh-sinh quadrature rule proposed by 
Takahasi and Mori [11]. As far as the author knowledge goes, the tanh-sinh quadrature rule is 
not employed for the integral equation formulation of the Stokes flow. This approach uses 
change of variables to transform an integral on the interval [-1,1] to an integral between [-
∞,∞]. After the transformation, the integrand decays with a double exponential rate. Although 
tanh-sinh quadrature is less efficient than Gaussian quadrature for smooth integrands, but 
unlike Gaussian quadrature tends to work equally well with integrands having singularities or 
infinite derivatives at one or both endpoints of the integration interval. 

Although the singular kernel could be evaluated using the transformed quadrature methods, 
the discontinuities in the normal vector around the collocation/singularity point may cause 
irregularities in the numerical solution. One possible approach to remedy the numerical 
solution is to employ more smooth variation of boundary surface. A cubic Hermite 
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polynomial which yields smoothly blended surface elements can be employed over 
unstructured quadrilateral elements. The Hermite polynomial interpolation requires the 
function value and its derivatives at the vertices. Although the coordinate of vertices are 
known, the tangent values at vertices has to be computed. The tangent values can be 
calculated from the unique normal vector at vertices. 

The purpose of the present work is to combine the bi-cubic Hermite polynomial with the 
tanh-sinh quadrature rule in order to develop a sufficiently robust Stokes solver based on the 
integral equation formulation. The numerical algorithm uses unstructured quadrilateral 
elements over the domain boundaries and the unknown function values are distributed over 
the vertices of quadrilateral elements. The singular integrations are evaluated numerically 
using the tanh-sinh quadrature rule meanwhile non-singular integrals are evaluated using the 
Gauss-Legendre quadrature rule. The numerical algorithm is initially validated for the three-
dimensional unbounded Stokes flow around a sphere. Then the algorithm is applied to the 
sedimentation of spherical particles. 

2 MATHEMATICAL AND NUMERICAL FORMULATION 

2.1 The Stokes Flow Equation 

Incompressible fluid flow problems where viscous forces are dominant, can be described by 
the divergence-free condition and the Stokes equation 

0 u              (1) 

    2 0P      u g              (2) 

Here u is the fluid velocity, µ the viscosity of the fluid, P is the pressure and g is the body 
force. 

2.2 The Boundary Integral Formulation 

The fundamental solution to the Stokes equation S, called the Stokeslet, and its associated 
stress T, the Stokes-stresslet, are 
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where ˆ   0x x x  and ˆr  x . The velocity at a point 0x  on the boundary of the fluid domain 

SB may be expressed in the integral form 
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In here, t = n is traction vector and the normal vector n points into the fluid domain. For 
boundary value problems with velocity boundary conditions, the integral equation leads to 
Fredholm integral equations of the first kind 
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and the pressure field can be evaluated as follows: 
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2.3 Quadrilateral Hermite Surfaces 

Hermite interpolation problem requires a construction of a suitable planar curve fitting for a 
set of data, which consists of 4 vertex points, 8 tangent vectors and 4 second derivative 
vectors. The mixed second partial derivative vectors are often called the twist, because large 
values can cause a corkscrew-like twist at the corners. In here, the twist values are set to zero, 
which corresponds to a Ferguson surface. The parametric bi-cubic hermite surface is given by 
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are the Hermite polynomials. In here, the tangent vectors at vertices are calculated from 
unique normal vectors at vertices. In order to obtain the normal vectors, we employed the 
Mean Weighted by Sine and Edge Length Reciprocal (MWSELR) proposed by Max [12]. The 
six vertex normal calculation algorithms are compared with each other in [13] and the 
MWSELR algorithm turns out to be the best approach. In this approach, the normal vector is 
given by 

1 1

sinn
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 n
n      (15) 

where αi is the angle between the two edge vectors Ei and Ei+1 of the ith facet sharing the 
vertex. 

2.4 Numerical Integration 

The integral equation formulation requires the evaluation of integrals in the following form: 
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where the Jacobian of the transformation is given by 
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In here, the unknown traction vector components are represented using the bilinear 
interpolations over the quadrilateral elements. 
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and the shape functions are given by 
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The numerical evaluation of the surface integrals is split into the singular and non-singular 
integrals. The non-singular integrals are evaluated using the Gauss-Legendre quadrature rule 
with N = 4. Meanwhile, the singular integrals are evaluated using the tanh-sinh quadrature 
rule. The quadrature points, xj, and the weights, wj, are computed to be: 
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where h = 1/2M with M = 4. 

 

3 NUMERICAL RESULTS 

In this section, the numerical algorithm is initially validated for the three-dimensional 
unbounded Stokes flow around a sphere. Then the algorithm is applied to the sedimentation of 
spherical particles. 

3.1 Unbounded Stokes Flow around a Sphere 

The first numerical test case corresponds to the unbounded steady Stokes flow around a 
sphere. The analytical solution for the velocity field past around a sphere with a radius R is 
given by 
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In here, r is the distance from the point x to the center of the sphere. Hydrodynamic traction 
vector on the sphere surface is given by 

3

2R


t U        (26) 

Although the computed total drag is not good measure of solution accuracy, we will use it to 
validate our integral equation flow solver. For the present benchmark problem we employed 
three meshes: the coarse mesh with 1410 nodes and 1408 elements, the medium mesh with 
2402 nodes and 2400 elements and the fine mesh 5402 nodes and 5400 elements. The 
computational quadrilateral surface mesh is shown in Figure 1 for the coarse mesh. The 
computed total drag values are tabulated in Table 3.1 and compared with the analytical exact 
value. The convergence analysis of the error indicates an algebraic convergence rate of O 
(∆h3). 

 

Figure 1: The computational coarse mesh with 2402 nodes and 2400 elements. 

3.2 Sedimentation of Spherical Particles 

In this section, initially a single sphere falling in an unbounded domain is numerically 
investigated. For the present problem, the radius of the sphere R is 1m, the sphere density ρ is 
0.4587kg/m3 and gravitational acceleration g is 9.81m/s2. The calculations are started from the 
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rest with a time step of 0.005s. The time variation of the sphere free fall velocity is shown in 
Figure 2 and the sphere reaches the terminal velocity of 1m/s approximately after 0.8s.  

Table 1: The convergence of the total drag for the Stokes flow past sphere. 

Number of Elements Total Drag (Numerical) Exact Total Drag Error 

5400 18.849552908422041 18.849555921538 3.013116 e-06 

2400 18.849545680592303 18.849555921538 1.024094 e-05 

1408 18.849533161883699 18.849555921538 2.275965 e-05 

 

 

Figure 2: The time variation of the sphere velocity falling in an unbounded domain. 

In the second case the trajectories of the multiple spheres are calculated. For the present case 
the same spheres are left for free fall starting from the rest. The spheres are 2.5R apart from 
each other. The computed final location of the spheres are shown in Figure 3. As the time 
evolves, the distance between the spheres are not changed significantly. The time variation of 
the sphere free fall velocity is shown in Figure 4 and the sphere reaches the terminal velocity 
higher than the single case. 
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Figure 3: The computed locations of the spheres at t = 1s. 

 

Figure 4: The time variation of the fall velocity for two spheres in an unbounded domain. 

4 CONCLUSIONS 

An integral equation method has been developed to solve the three-dimensional Stokes flow. 
The numerical algorithm based on the continuous representation of the surfaces with the 
parametric bi-cubic hermite polynomials combined with the tanh-sinh quadrature rule. The 
numerical algorithm is initially validated for the three-dimensional unbounded Stokes flow 
around a sphere. Then the algorithm is applied to the sedimentation of spherical particles. The 
numerical results indicate that the numerical method is sufficiently accurate for the Stokes 
fluid flow problems. 
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