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INVERSE METABOLIC ENGINEERING OF PROPOLIS-RESISTANT 

Saccharomyces cerevisiae 

SUMMARY 

Propolis is a resinous, sticky and dark colored substance that bees produce by mixing 

their own waxes with resins obtained from plants. Propolis is a resiny compound that 

bees collect and use as a building material and to protect their hives against fungi and 

bacteria. Propolis has been used at least to 300 BC and its use continues today in 

natural medicine and personal products. Chemical content of propolis is quite 

complex due to more than 300 ingredients such as polyphenols, phenolic aldehydes, 

sesquiterpene quinines, coumarins, amino acids, steroids and inorganic compounds, 

which have been identified in propolis samples.  

Propolis has various biological activities such as antimicrobial activity, antitumor 

activity, antioxidant activity, antiinflammatory activity, immunomodulator, cytotoxic  

and therapeutic activity. The antimicrobial activity of propolis originates from 

flavonoids, aromatic acids and esters present in resin. Ferulic and caffeic acids also 

provide antibacterial effect to propolis. Antimicrobial effect of propolis is expressed 

with synergism between flavonoids, hydroxy acids and sesquiterpenes. Propolis 

mainly includes flavonoids and phenolic compounds and these compounds have 

antioxidant properties. 

In propolis-exposed yeast cells, intracellular oxygen levels decrease. Changes also 

occur at mitochondrial proteome level, including antioxidant proteins. Therefore, 

increase in antioxidant protein levels ensures decreasing intracellular oxidation. 

Propolis is a significant antioxidant in the yeast Saccharomyces cerevisiae  due to 

three important findings : (1) it promotes  protection of membrane lipids from H2O2 

stress, (2) O2 stress provides menadione, and propolis resumes redox status by 

scavenging ROS. (3) it activates Cu/Zn-superoxide dismutase, one of the most 

important antioxidant enzymes. 

S. cerevisiae is a eukaryotic organism, also named as baker’s yeast or budding yeast. 

S. cerevisiae cells are mainly oval-shaped but cell size varies between 10 µm long 

and 5 µm wide, according to environmental conditions. 

Culturing S. cerevisiae cells is easy and inexpensive. Basic nutritional sources are 

enough for cell growth. They can grow almost as rapid as bacteria in solid and liquid 

media, if the growth media have basic nutritional sources. S. cerevisiae is the first 

eukaryote  the genome of which has been sequenced. It can be found in  haploid or 

diploid form. Cells can proliferate when they are haploid and can then be easily 

isolated. Therefore, S. cerevisiae provides a highly suitable system to study basic 

biological processes that are relevant to many  higher organisms, including human.  

In the present study, propolis-resistant S.cerevisiae population was obtained under 

gradually increasing propolis stress levels, by using an inverse metabolic engineering 

strategy. Reference strain(905) and its mutagenised form (906) were screened under 
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increasing propolis stress levels to determine the initial stress level for selection. 150 

µg/ml propolis was chosen as the initial propolis level and it was increased by 10 

µg/ml at each step during selection. Totally, 57 mutant populations were obtained 

and their survival rates decreased, when propolis levels were increased. EMS 

mutagenised population (906) gained resistance and showed growth even at 710 

µg/ml propolis concentration. 

The final population was incubated on solid YMM plates and twelve individual 

mutant colonies were chosen randomly. These propolis-resistant colonies were tested 

for their propolis-resistance, using spot assay and MPN method. According to spot 

assay results, more resistant colonies were determined among twelve individual 

mutants. Colonies were named as FD7, FD8, FD10, FD11 and FD12. MPN method 

was used for quantification of propolis stress resistance of mutant colonies. MPN 

tests showed that FD10 and FD11 were the most resistant colonies to propolis. 

Cross-resistance tests were applied to propolis-resistant mutants to determine their 

potential resistance against other stress types. S.cerevisiae mutants were grown on 

solid YMM containing ; 0.1-0.3-0.5-0.8 mM NiCl2 , 1-2-2.2 mM CoCl2, 0.1-0.3-0.4-

0.5-0.8 mM CuSO4 , 0.5-1-1.5 mM H2O2 , 2-2.5-3 mM CrCl3, 10 mM ZnCl2, 0.5-1-

1.5 M MgCl2, 15-25-30-35-40 mM NH4FeSO4, 15-20 mM MnCl2, 8-12 % (v/v) 

ethanol , 12 mM AlCl3, 0.5-1 M NaCl, 150 µg/ml geneticin, 10 mM caffeine, to 

determine their potential cross-resistances. 

The genetic stability analyses were performed using FD10 and FD11 mutants, to test 

if their resistance is permanent or not. It was shown that the mutants tested were 

genetically stable. At last, growth curves and cell dry weight measurements of FD11 

mutant and the reference strain were obtained and compared to each other. HPLC 

analysis was used to determine concentrations of important metabolites, such as 

residual glucose, glycerol, acetate and ethanol.Trehalose and glycogen levels were 

measured by an enzymatic assay. Finally, reactive oxygen species were detected by 

ROS assay for both reference strain and FD11, with and without propolis stress.  

To conclude, a highly propolis-resistant and genetically stable S. cerevisiae mutant 

was obtained in this study. Physiological analyses revealed that the mutant was 

cross-resistant against caffeine and NiCl2 stress and has lower levels of ROS 

generation. Future genomic, transcriptomic and proteomic analyses may help 

understand the molecular basis of propolis resistance and response in S. cerevisiae. 
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TERSİNE METABOLİK MÜHENDİSLİK YAKLAŞIMIYLA PROPOLİSE 

DİRENÇLİ Saccharomyces cerevisiae ELDESİ 

ÖZET 

Propolis, bal arılarının kovanlarını inşa etmek ve funguslar ile bakterilere karşı 

kovanlarını korumak için bitki ve ağaçlardan toplayarak oluşturdukları reçineli bir 

bileşiktir. Propolis eski zamanlardan beri yerel tıp alanında kullanılmaktadır.  

Propolis, yapısında bulunan üçyüzden fazla bileşen ile karmaşık bir kimyasal içeriğe 

sahiptir. Bu bileşenler polifenoller, fenolik aldehitler, kumarinler, aminoasitler, 

steroid ve inorganik bileşenler olarak sıralanabilir. Propolis içeriği hangi bölgede 

üretildiğine göre değişir. Sıcaklık ve mevsimsel etki gibi doğal faktörler propolis 

bileşimini etkiler. Bitki türlerindeki çeşitlilik propolis içeriğini yüksek oranda 

değişken kılar. Örneğin, coğrafi bölgedeki farklılığa göre propolis içerisindeki 

antibakteriyel bileşikler değişebilir. Avrupa örneklerinde flavonoidler ve sinnamik 

asit bulunurken, Brezilya örneklerinde diterpenik asit ve kumarik asit bulunur. 

Propolisin antimikrobiyal aktivite, antitümör aktivitesi, antioksidant aktivite, 

antiinflamatuar aktivite, sitotoksik aktivite ve terapötik aktivite gibi biyolojik 

aktivitelere sahip olması, onu ilgi çekici bir bileşik haline getirmiştir. Propolisin 

antimikrobiyal aktivitesi flavonodiler, aromatik asitler ve aromatik asit esterlerinden 

kaynaklanmaktadır. Flavonoidler antimikrobiyal etkilerini hidrolaz ve alkalin 

fosfataz gibi enzimleri inhibe ederek gerçekleştirirler. Propolisin antibakteriyel etkisi 

ferulik asit ve kafeik asitten kaynaklanmaktadır. Propolisin Trichophyton ve 

Mycosporum gibi türler üzerinde önemli bir antifungal etkisi bulunmaktadır ve 

antifungal ilaçlarla birlikte kullanılması ilaçların etkinliğini arttırmaktadır. Ayrıca 

propolis, çeşitli DNA ve RNA virüsleri üzerinde de etkilidir. 

Propolis, bileşimindeki flavonoidler ve fenolik bileşikler sayesinde antioksidant 

özelliklere sahiptir. Propolis, hücreleri oksidatif stresin zararlarından korur. Oksidatif 

stress, serbest radikallerin oluşmasıyla gerçekleşir ve propolis yapısındaki 

dicaffeoylquinic asit türevleri, serbest radikalleri güçlü bir şekilde uzaklaştırır. 

Ayrıca propolis yapısında bulunan kafeik asit fenil ester bileşiği de serbest radikal 

oluşumunu durdurur. Propolis maya hücrelerine verildiğinde hücre içi oksijen 

seviyeleri düşer ve böylece serbest radikal oluşumu azalır. Ayrıca propolis, 

antioksidatif proteinlerin üretimini arttırarak hücre içi oksidasyonu da azaltır. 

Propolis, membran lipidlerini hidrojen peroksit stresinden korur ve bir antioksidant 

enzim olan Cu/Zn süperoksit dismutaz enzimini aktive eder. 

Propolis lenfosit üretimini arttırarak memelilerde bağışıklık sisteminin korunmasına 

yardımcı olur. Brezilya propolisinden izole edilen artepilin C, kafeik asit ve quercetin 

bileşikleri, tümör hücreleri üzerinde sitotoksik etkiye sahiptir. Ayrıca propolis, akut 

ve kronik inflamasyona karşı antiinflamatuar etkiye sahiptir. Kafeik asit fenil ester 

bileşiği, inflamasyon oluşumunu engeller. Biyolojik aktivitelerine nazaran propolis, 
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toksik ve allerjen etkiye de sahiptir. Propolis bileşiği çeşitli ağır metaller 

içerebileceğinden hücreler üzerinde toksik etki yaratabilir. 

Saccharomyces cerevisiae ökaryotik bir maya hücresidir ve fungus alemine aittir. 

Hücre yapısı yuvarlak ve hücre büyüklüğü 10 µm ile 5µm arasında değişmektedir. S. 

cerevisiae oksijen varlığında glukozu karbondioksit ve suya kadar parçalarken,  

oksijen olmadığında glukozu etanole çevirerek oksijensiz solunum yapar. Maya 

hücreleri tomurcuklanma ile aseksüel üreme gerçekleştirirler. S. cerevisiae genom 

dizisi belirlenen ilk ökaryotik organizmadır ve diploid veya haploid formda 

bulunabilir. 

S.cerevisiae hücrelerinin kültivasyonu ucuz ve kolaydır. Temel besin kaynakları 

hücre üremesi için yeterlidir. Gelişme ortamı temel besin kaynaklarını içeriyorsa, 

bakteri kadar hızlı gelişebilirler. Hücre yapıları hayvan ve bitki hücresi gibi 

kompleks yapılara benzerdir. Tüm bu sebeplerden dolayı S.cerevisiae bilimsel 

çalışmalarda ökaryotik model organizma olarak kullanılmaktadır.  

Bu tez çalışmasında tersine metabolik mühendislik yaklaşımıyla, propolise dirençli S. 

cerevisiae mayası elde edilerek fizyolojik açıdan incelenmiştir. Bu amaçla,  öncelikle 

referans suş ve EMS ile rastgele kimyasal mutasyona uğratılmış S.cerevisiae suşu 

farklı konsantrasyonlarda propolis içeren ortamlarda büyümeye bırakılarak inhibe 

edici propolis konsantrasyonu ve seleksiyon deneylerinde kullanılacak propolis 

konsantrasyonu belirlenmiştir. 

Başlangıçta uygulanan propolis konsantrasyonu 150 µg/mL iken, propolis 

konsantrasyonu yavaş yavaş arttırılarak 57 mutant popülasyon elde edilmiştir ve 57. 

popülasyonda 710 µg/mL propolis stresi uygulanmıştır. Böylelikle propolise yüksek 

dirençli bir popülasyon elde edilmiştir. Son popülasyon seyreltilip katı YMM 

besiyerine ekilerek bu besiyerinden 12 farklı koloni rastgele seçilmiştir. Seçilen bu 

kolonilerin propolis direnci çeşitli fizyolojik analizlerle belirlenmiştir. 

Seçilen 12 mutant koloni, son popülasyon ve referans suşun propolis direncini 

belirlemek için öncelikle damlatma (spot) testleri gerçekleştirilmiştir. Hücreler farklı 

konsantrasyonlarda propolis içeren katı YMM ortamında üretilerek, üreme miktarları 

karşılaştırılmıştır. Damlatma test sonuçlarına göre, 12 mutant koloni arasından, en 

dirençli gözlenen 5 farklı koloni (FD7, FD8, FD10, FD11, FD12) seçilmiştir. Ayrıca 

710 µg/mL propolis içeren katı besiyerinde mutant koloniler üreme güçlüğü 

çekmişlerdir. Bu durum, propolis stresinin katı ve sıvı ortamlardaki etkisinin farklı 

olabileceğini göstermektedir. 

Seçilen beş mutant bireyin propolis stresine olan direncini gözlemlemek amacıyla 

Most Probable Number (MPN) testi uygulanmıştır. Mutant koloniler 200 µg/mL, 500 

µg/mL ve 710 µg/mL propolis stresi içeren MPN platelerine ekilerek, oluşan 

bulanıklık miktarlarından yola çıkılıp canlı hücre sayısı MPN tablosu yardımıyla 

hesaplanmıştır. MPN sonuçlarına göre ; mutant koloniler en iyi üremeyi 200 µg/mL 

propolis konsantrasyonunda göstermiş olup, en iyi üreyen mutant birey de FD11 

mutant bireyidir. 

Çapraz direnç testinde ise propolise direnç geliştirmiş olan mutant bireylerin başka 

hangi stress türlerine de direnç kazandığı incelenerek karşılaştırma yapılmıştır. Bu 

amaç doğrultusunda 0.1-0.3-0.5-0.8 mM NiCl2 , 1-2-2.2 mM CoCl2, 0.1-0.3-0.4-0.5-

0.8  
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mM CuSO4 , 0.5-1-1.5 mM H2O2 , 2-2.5-3 mM CrCl3, 10 mM ZnCl2, 0.5-1-1.5 M 

MgCl2, 15-25-30-35-40 mM NH4FeSO4, 15-20 mM MnCl2, 8-12 % (v/v) etanol , 12 

mM AlCl3, 0.5-1 M NaCl, 150 µg/mL genetisin, 10 mM kafein içeren katı YMM  

besiyerinde damlatma testi uygulanmıştır. Test sonucuna göre mutant koloniler 

NiCl2, NH4FeSO4, genetisin ve kafein bileşiklerine dirençlilik fakat etanol ve H2O2 

bileşiklerine karşı ise duyarlılık göstermiştir. Damlatma sonuçlarını desteklemek 

amacıyla mutant bireylerin direnç ve duyarlılık gösterdiği stress koşullarında MPN 

testi de uygulanmıştır. 

Genetik kararlılık testinde propolise karşı yüksek direnç gösteren FD10 ve FD11 

mutant kolonilerinin propolise olan dirençlerinin kalıcı olup olmadığı araştırılmıştır. 

FD10 ve FD11 ardarda beş pasajlama boyunca propolis içermeyen taze besiyerinde 

üretilmiş ve bu suşlardan -80 
o
C stok kültürleri yapılmıştır. Daha sonra bu kültürler 

canlandırılarak YMM ve 250 µg/mL propolis içeren YMM ortamlarında MPN testi 

uygulanmıştır. MPN sonuçlarına göre FD10 ve FD11 kolonilerinin genetik olarak 

kararlı olduğu gözlenmiştir. FD11’in FD10’a göre daha yüksek bir üreme oranına 

sahip olduğu da  görülmüştür. 

FD11 suşunun üreme eğrilerinin eldesi için öncelikle doz tarama deneyi uygulanmış 

ve deney sonuçlarına göre 200  µg/mL propolis konsantrasyonu referans suş ve FD11 

mutantı için uygun propolis konsantrasyonu olarak belirlenmiştir. Üreme eğrisi 

deneyleri 200  µg/mL propolis içeren ve içermeyen (kontrol) besiyeri ortamlarında 

gerçekleştirilmiştir. 

Referans suş ve FD11’in 200  µg/mL propolis varlığında ve propolissiz ortamdaki 

optik yoğunluklarının 600 nanometre dalgaboyunda düzenli aralıklarla ölçümü ile 

üreme eğrileri elde edilip, birbiriyle kıyaslanmıştır. Üreme analizi sonunda, hücre 

kuru ağırlıkları da ölçülüp kıyaslanmıştır. Ayrıca; tüketilen glukoz, üretilen gliserol, 

asetat ve etanol gibi metabolitlerin miktarı yüksek basınçlı sıvı kromotografisi 

(HPLC) cihazı ile belirlenmiştir. Depo karbonhidratlarından trehaloz ve glikojen 

miktarları, enzimatik bir yöntem yardımıyla hesaplanmıştır. Son olarak, hücre 

içindeki oksidasyon düzeyleri reaktif oksijen deneyi ile saptanmıştır. Tüm bu 

çalışmalar referans suş ile propolise dirençli mutant suşun fizyolojik farklılıklarını 

belirlemek amacıyla yapılmıştır. 

Sonuç olarak, bu çalışmada propolise yüksek düzeyde direnç gösteren ve genetik 

açıdan kararlı bir S. cerevisiae mutant suşu elde edilmiştir. Yapılan fizyolojik 

analizler, mutant suşun kafein ve NiCl2 streslerine karşı çapraz direnç gösterdiğini ve 

hücre içi ROS düzeylerinin referans suşa kıyasla daha düşük olduğunu göstermiştir. 

Yapılacak genomik, transkriptomik ve proteomik analizler, S. cerevisiae’de propolis 

direnç ve tepkisinin moleküler altyapısının anlaşılmasına katkı sağlayabilecektir. 
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1. INTRODUCTION 

1.1 The Yeast  Saccharomyces cerevisiae  

Saccharomyces cerevisiae is a eukaryotic organism also named as baker’s yeast or 

budding yeast. As seen in table 1.1 it belongs to fungi kingdom, under ascomycota 

phylum, saccharomycetes class (Kurtzman et al., 1998). 

Table 1.1:  Taxonomic classification of Saccharomyces cerevisiae. 

Kingdom Phylum Class Order Genus Species 

Fungi Ascomycata Saccharomycetes Saccharomycetales Saccharomyces S. cerevisiae 

 

S. cerevisiae cells are mainly oval shaped and their size varies according to 

environmental conditions. They have thick cell wall like other fungi (Alberts et al., 

1991). Transmission electron microscopy images of a yeast show cell wall, nucleus, 

mitochondria, endoplasmic reticulum (ER), Golgi apparatus, vacuoles, microbodies 

and secretory vesicles. These organelles are not exactly free from each other and 

come into existence from an intramembranous structure (Walker, 2009). 

S. cerevisiae requires macronutrients (sources of carbon, nitrogen, oxygen, sulfur, 

phosphorus, potassium and magnessium) and trace elements (e.g., Cu, Cu, Fe, Mn, 

and Zn) for growth. Malt extract or yeast extract with peptone and glucose are 

commonly used for cell growth.Yeast nitrogen base is a chemically defined medium 

component that includes ammonium sulphate and asparagine as a nitrogen sources, 

together with mineral salts, vitamins and trace elements. S.cerevisiae can thrive best 

from 20 
o
C to 50 

o
C and requires water at high concentration for its growth and 

metabolism. Additionally, it can grow optimally at pH values between 4.5 and 6.5 

(Walker, 2009). 

S. cerevisiae converts a large fraction of glucose to ethanol and carbon dioxide under 

anaerobic conditions. However, in the presence of oxygen glucose is used to generate  

new biomass, carbon dioxide and water. Aerobic degradation of glucose is  
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energetically more favorable (Krull et al., 2015). However, when glucose 

concentration exceeds a critical threshold level, alcoholic fermentation may occur 

even under aerobic conditions. This circumstance is called as Crabtree effect ( Erik et 

al., 1989). 

Asexual reproduction, also named vegetative reproduction, exists in S. cerevisiae by 

budding. Vegetative cells are diploid or polyploid and vegetative reproduction 

overrides in the life cycle of the yeast (Joseph, 2014). Budding begins by the 

emergence of outpouching at some point on the surface of the cell. Parent cell 

remains constant in size, while the bud develops in size to emerge as a new cell. 

After a particular time, the new cell separates from the parent cell (Kurtzman et al., 

1998). Figure 1.1 shows scanning electron micrographs of budding cells of 

S.cerevisiae. 

 

 

 

 

 

 

 

Figure 1.1: Scannig electron micrographs of budding yeast (a) 

Individual cell (b) Cluster of cells (Walker, 2009). 

Parent and daughter cell walls are adjacent during bud development. Multilateral 

budding is prevalent in which daughter buds occur at different locations on the 

mother cell wall surface. In S. cerevisiae, cell size is asymmetrical at division and 

buds are smaller than mother cell when they leave. Figure 1.2 shows multilateral 

budding in S.cerevisiae (Walker, 2009).  

Sexual reproduction occurs by the generation of the asci. Ascospores form directly 

following meiosis of the diploid nucleus. Acetate-containing media, such as acetate 

agar triggers sporulation of S.cerevisiae (Joseph, 2014). Figure 1.3 shows the sexual 

reproduction. 

Mating of S. cerevisiae occurs by the conjugation of two haploid cells of opposite 

mating types. These mating types are called a and α factor. Pairing occurs by peptide 

mating pheromones known as a factor  and α factor, depending on the allele (MATa 

and MATα ) at the MAT locus (Esslinger, 2009). 
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Figure 1.2 : Bud scars in a single cell of S. cerevisiae. The micrograph shows 

multilateral budding on the surface of an aged cell of S.cerevisiae 

 ( Walker, 2009). 

 

 

 

 

 

 

  

 

 

Figure 1.3: Sexual life cycle of S. cerevisiae (Madhani, 2007). 

 

The conjugation of mating cells starts with touching of cell wall surfaces, and then 

plasma membrane fusion occurs to form a mutual cytoplasm. Diploid nucleus occurs 

as a result of nuclear fusion. Mitoic cell cycle proceeds by this diploid zygote in rich 

media, but if deprived of nitrogen, diploid cells sporulate to produce four haploid 

spores. Figure 1.4 shows mating and sporulation in S.cerevisiae. 

Although laboratory strains of S.cerevisiae can exist in diploid or haploid form, 

industrial strains are usually diploid or aneuploid and can sporulate poorly (Johnson 

and Erasun, 2014). 
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Figure 1.4: Meiosis and sporulation in S. cerevisiae. Diploid cells (a/α) can    go 

through meiosis or sporulation to constitute spores. These spores can 

germinate a and α haploid cells (Madhani, 2007). 

S. cerevisiae is the first eukaryote whose genome was sequenced. Haploid yeast 

genome includes 16 chromosomes. The total size of chromosomal DNA is 13,392 

kb. S.cerevisiae genome is highly compact and its size is less than 1% that of a 

mammal and 3.5-fold the genome size of E.coli (Madigan et al., 2003). 

1.2 Advantages of S. cerevisiae  in Research and in Industry 

S. cerevisiae has been chosen as a model organism in research due to its important 

properties. For example ;  

 S. cerevisiae is a small single cell and it has a short doubling time  of 1.25-2 h 

at 30 
o
C. Cultivation of  S.cerevisiae is also very easy. Therefore, these 

properties ensure rapid production at low cost. 

 S. cerevisiae can be manipulated genetically by addition or deletion of genes 

using modern recombination techniques. The genome sequence of S. 

cerevisiae was published in 1996 and has been updated routinely as 

Saccharomyces Genome Database. The genome includes 6275 genes. 

Cultivation of yeast species in haploid form allows easy isolation of mutants 

and haploid-diploid hybrids. 
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 Intracellular structure of S.cerevisiae is similar to those of animals and plants 

(Stewart, 2014). 

 Using S.cerevisiae as a simple eukaryotic model organism is also important 

for medicine and human genetics, because of the ethical limits on 

experimenting with humans. Therefore, experiments with S.cerevisiae can 

provide valuable information on complex eukaryotic organisms like human 

(Karathina et al., 2011). 

Moreover, its physiological properties and convenience for genetic manipulation 

make S. cerevisiae a desirable organism for many industrial applications. 

S.cerevisiae is classified as “Generally Recognized as Safe” (GRAS) in food 

industry, because of its long history of safe use and consumption and the absence of 

toxin production. S.cerevisiae is used as a production organism of innate and 

recombinant products (Stewart, 2014). 

Yeasts have been used in traditional fermentation processes to produce beer, bread 

and wine. Owing to improvements in modern biotechnology, yeasts have also been 

used in important industrial areas like food, beverages, chemicals, industrial 

enzymes, pharmaceuticals, and environment. S. cerevisiae is very important for 

several fermentation and biomass conversion processes due to its ability to convert 

sugars and other carbon sources into ethanol in the absence of oxygen or into CO2 

and water in the presence of oxygen. Yeast is also a good food supplement and 

unusual source for vitamin B and low meat/vegeterian diets (Ratledge and 

Kristiansen, 2001). S. cerevisiae  has also been used in agriculture. S.cerevisiae 

secures rumen of ruminant animals and enhances animal growth and milk yields by 

increasing nutrient availability (Walker, 2009). 

Due to some advantages of S. cerevisiae,  it has also been chosen as a model 

organism for medical research. So far, S .cerevisiae has continued its role as a model 

organism for studying disease mechanisms and mammalian cell biology. S.cerevisiae 

improves our knowledge about regulation of eukaryotic cell division. Also, yeast 

provides a cellular environment to investigate disease-related proteins that have no 

homologous copies in yeast (Mager, 2005). Table 1.2 shows that examples of human 

diseases where S. cerevisiae has been used as a model organism. 
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Table 1.2: Examples of human diseases where S. cerevisiae has been used as a 

model organism (Stewart, 2014). 

Disease Reference 

Prion Related Disease Nakayashiki et al. 2005 

Alzheimer's Amyloid Disease Von der Haar et al. 2007 

Parkinson's Disease Doostzadeh et al. 2007 

Cancer Botstein et al. 2003 

Channelopathies Wolfe and Pearce, 2006 

Aging Piper et al. 2006 

1.3 Propolis  

Propolis is a resinous, sticky and dark-colored substance that bees produce by mixing 

their own waxes with resins obtained from plants. The meaning of  the word propolis  

is “defence of the city”. The United States Department of Agriculture’s ‘United State 

Standards for Grades of Extracted Honey, effective May 23, 1985’ (adapted from 7 

CFR, 521394) defines propolis as follows (USDA, 1985) : 

“Propolis means a gum that is gathered by bees from various plants it may vary in 

color from light yellow to dark brown. It may cause staining of the comb or frame 

and may be found in extracted honey” (Burdock, 1997). 

Propolis is used as a building material and bees protect their hives against fungi and 

bacteria. Propolis has been used in folk medicine since ancient times because of its 

biological advantages (Cuesta et al., 2005). Propolis is shown at figure 1.5. 

 

 

 

 

 

 

              Figure 1.5: Samples of propolis (Krell, 1996). 

  

1.3.1 Historical uses of propolis 

Anti-digester  property of propolis was known very well by Egyptians and they used 

it to embalm cadavers. Greek and Roman physicians discovered medicinal properties 
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of propolis; Aristoteles, Dioscrodies, Pliny and Galen. Incas used propolis as an anti-

pyretic agent and London pharmacopoeias of the seventeenth century showed 

propolis as an approved drug. The drug was very popular in European countries 

between the seventeenth and twentieth century, especially due to its anti-bacterial 

activity (Castaldo and Capasso, 2002). 

Propolis was used in Italy in the seventeeth century as an antiquarian non-personal 

product or medicinal agent. Stradivari used propolis to wax  the stringed instruments. 

Today, propolis is applied to musical instruments to repair accordions (Burdock, 

1997). 

Propolis has been used at least since 300 BC and its use goes on today in natural 

medicine and personal products. Propolis has antiseptic, antimycotic, bacteriostatic, 

astringent, choleric, spasmolytic, anti-inflammatory, anaesthetic and antioxidant 

properties. Implementations of these properties require no prescription. 

Dermatological ointments are accepted useful in wound healing, tissue regeneration, 

cure of burns, neurodermatitis, leg ulcers, psoriasis, morphoea, herpes simplex, 

genitalis and pruritus (Burdock, 1997). Propolis also plays a role in drug industry in 

some European countries as a medication against prostate hyperplasia (Popova, 

2005). 

Propolis is commercialised for remedy of rheumatism and sprains and it has been 

used in dental medicine. Propolis is also used in toothpaste and mouthwash 

applications to heal gingivitis, cheilitis, and stomatitis. It is marketed as tablets, 

powders, and chewing gum. Propolis is also important in cosmetic industry, it is 

applied in face creams, oinments, lotions and solutions (Burdock, 1997). 

1.3.2 Chemistry of propolis  

Chemical content of propolis is quite complex due to more than 300 ingredients,  

such as polyphenols, phenolic aldehydes, sequiterpene quinines, coumarins, amino 

acids, steroids and inorganic compounds, which have been identified in propolis 

samples (de Castro, 2012). 

The constituents of propolis are derived from three sources: plant exudate collected 

by bees; secreted substances from bee metabolism; and materials which are 

introduced during propolis elaboration. The plant origin of propolis has been 

searched by scientists. Bankova et al. discovered that propolis constitution is very 



8 

 

similar to bud exudates Marcucci et al., 1995). Surely, propolis is obtained from 

propolis sources like Populus spp. (Populus alba, Populus pyrimidalis, and Populus 

tremulodies) and Salix spp. (Salix alba, Salix fragilis) trees. In Populus alba, the 

basic components are chyrisin, ferulic acid and octadecanoic acid and if in Salix alba 

basic components, are glycosides, vanillin, ferulic acid and sesquiterpene (Silici and 

Kutluca, 2005). 

Table 1.3: Main compounds from different sources which were found in propolis 

(Krell, 1996). 

Components Main substances Abundance (%) 

Resins 

 

 

 

 

 

 

Waxes and fatty acids 

Essential oils 

 

 

Pollens 

 

Other substances 

 Flavonoids 

 Terpenes 

 Cumarins 

 Phenolic acids and esters  

 Polyunsaturated fatty acids and 

waxes from bees and plants 

 Volatiles  

 Proteins  

 Free amino acids 

 Vitamins (A, B, C, E, PP, etc.) 

 Trace elements (Cu, Mn, Fe, Zn, 

Al, Ag, Ca, Mg, Co, etc.) 

 Ketones  

 Lactones 

 Quinones 

 Steroids 

 Sugars 

45-55 

 

 

 

 

 

 

25-35 

 

10 

 

5 

 

5 

Composition of propolis varies depending on where it is produced by bees. Natural 

factors such as type of vegetation, zone of temperature, and seasonality affect its 

composition (Rafael, 2012). Because of the diversity of plant sources, the chemical 

composition of propolis is highly variable and due to differences between geographic 

regions, antibacterial compounds in propolis also vary. For example; flavonoids and 

cinnamic acid derivatives are found in European samples, and diterpenic acids and 

prenylated coumaric acids are found in Brazilian, etc. (Popova, 2005). 
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Regarding propolis species in Turkey, the major source is poplar bud exudate. It 

includes pentenly and aromatic caffates, pinocembrin, pinobanksin 3-O-acetate, and 

galangin, which are regarded as taxonomic markers for poplars of region Aigeiros 

(Popova,  2005). 

Honeybees modify some flavones by an enzyme in the bee saliva. The propolis used 

to mend the honeycomb contains large amount of wax. Therefore, propolis ensures 

durability to honeycomb. However, if there is a thin layer of propolis on honeycomb, 

it comprises little or no wax. Propolis obtained from hives in Ohio includes lower 

concentration of methanol-insoluble wax compared to those in South Georgia. 

Simple fractionation of propolis is hard because of its complex composition. 

Therefore, alcohol and other solvents are used for fractionation of propolis. Fraction 

is soluble in alcohol and leaves the alcohol-insoluble and wax fraction. This alcohol-

soluble form is called as ‘propolis balsam’ (Burdock, 1997). 

1.3.3 Biological activities of propolis  

Propolis has several biological activities such as antimicrobial and hepatoprotective 

effect, antitumor activity, antioxidative activity, antiinflamatory activity, 

immunomodulator, cytotoxic activity and therapeutical activity (Rafael, 2012). 

1.3.3.1 Antimicrobial activity  

Bees produce propolis to protect their hives and avoid accumulation of creatures 

killed by bees as a result of their hive invasion. Therefore, propolis is evaluated to 

have antimicrobial properties (Banskota et al., 2001). The antimicrobial activity of 

propolis reputedly stems from flavonoids, aromatic acids and esters present in resin. 

Galangin, pinocembrin and pinostrobin are most effective flavonoids against 

bacteria. Ferulic and caffeic acids also ensure antibacterial effect to propolis. 

Antimicrobial effect of propolis is expressed with synergism between flavonoids, 

hydroxy acids and sesquiterpenes ( Marcucci, 1995). 

Biochemical effects of flavonoids are divided into four sections : (1) binding affinity 

to biological polymers ; (2) binding of heavy metal ions; (3) catalysis of electron 

transport and (4) ability to scavenge free radicals. There are various instances about 

inhibition of a series of enzymes by flavonoids such as hyrolases and alkaline 

phosphatase (de Castro, 2011).  Propolis possesses same effects by inhibiting 



10 

 

glycosyltransferases of Streptococci, myeloperoxidase activity of inflamation, 

ornithine decarboxtlase, lipooxygenase, tyrosine protein kinase and arachidonic acid 

metabolism (Burdock, 1997). 

A minimum of 60-80 µg/ml propolis concentration was required for inhibition of 

Bacillus subtilis and Staphylococcus aureus, but a minimum of 600-800 µg/ml 

propolis concentration was required for inhibition of Escherichia coli ( Serra and 

Escola, 1995). 

Propolis samples have antimicrobial effect on some gram positive bacteria including 

S.aureus, P.aeruginosa, B.subtilis, S.epidermidis and Streptococcus sp. However,  

gram negative bacteria were not affected by propolis. The ethanol extract of propolis 

concentrate exactly inhibited the growth of Pseudomonas aeruginosa and 

Escherichia coli, but it posed no inhibition to Klebsiella pneumoniae. Extracts of 

propolis have exhibited similar effects to those of major antibiotics. The antibiotic 

effect was increased by the presence of propolis in medium (Fuantes and Hernandez, 

1990). 

Effect of crude propolis and fractions on Helicobacter pylori,  considered to be 

related to gastric ulcer, was investigated. Propolis has anti-H.pylori activity and p-

coumaric acid, 3-prenyl-4-dihydrocinnamoyloxycinnamic acid and artepilin 

compounds ensure the activity (Banskota et al., 2001).  Scheller et al.(1999) studied 

synergism between the ethanol extract of propolis and antituberculosis drugs on the 

mycobacteria (Banskota, 2001). 

Amaros et al.  (1992a, 1992b) examined in vitro effect of propolis on several DNA 

and RNA viruses such as herpex simplex type 1, an acyclovir-resistant mutant, 

herpex simplex type 2, adenovirus type 2, vesicular stomatitis virus and poliovirus 

type 2. Flavonoids and aromatic acid derivatives ensure antiviral activity. The 

luteolin is more effective than quercetin, but less than caffeic acid. Caffeic acid poses 

weak antiviral activity against influenza, although vaccinia and adenovirus are more 

sensitive  than polio and parainfluenza virus ( Marcucci, 1995). 

Antiviral activity of components of propolis, such as esters of substituted cinnamic 

acids, have been investigated in vitro. One of them, isopentyl ferulate exhibits 

antiviral activity against influenza virus. Similar results were obtained with 3-

methyl-2enyl caffeate against herpex simplex virus (HSV-1) ( Marcucci, 1995). 
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In Turkey, amount of phenolic compounds, flavones and flavanones in poplar 

propolis is important in terms of antimicrobial activity. Figure 1.6 shows that 

primary chemical components of Turkish propolis. 

Figure 1.6: Primary chemical components of Turkish propolis from different areas 

(1) pinocembrin, (2) pinobanksin, (3) pinobanksin-3-O-acetate, (4) 

chrysin, (5) galangin, (6) coumaric acid, (7) ferulic acid, (8) benzyl-p-

coumarete, (9) benzyl ferulate, (10) phenylethylcaffeate, (11) cinnamyl 

cinnamate (Popova, 2005). 

Propolis showed significant antifungal avtivity against Trichophyton and 

Mycosporum in the presence of propylene glycol. Use of propolis together with some 

antimycotic drugs enhanced drug activity against Candida albicans yeasts. The 

important synergistic effect was achieved when propolis was added to antifungal 

drugs. Antifungal activity of ethanol extract of propolis was considered against C. 

albicans, C. paraplisosis, C. tropicalis and C. guilliermondii ; 98% of fungi samples 

were sensitive. Antifungal activity of propolis was also studied on some plant fungi 

in vitro ( Marcucci, 1995). Despite differences in chemical contents of propolis  

collected from different geographic locations, all propolis samples showed important 

antimicrobial activity. According to propolis studies, antimicrobial activity of 

propolis is not derived from one particular substance. Combination of different 

chemical compounds ensure this activity (Kujumgiev et al., 1990). 

1.3.3.2 Antioxidant activity  

Aerobic organisms cope with toxic effects of reactive oxygen species (ROS). ROS 

can be formed during stress conditions  like heat shock, dehydration, toxic chemicals, 

UV and ionizing radiation. Aerobic respiration causes generation of ROS because  
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oxygen can be reduced during respiration. ROS represses the cellular antioxidant 

species and oxidative stress occurs. Oxidative stress enhances damages to cell 

structure such as proteins, lipids and nucleic acids. Changes in such molecules are 

associated with several diseases such as cancer, Alzheimer’s disease, Amyotrophic 

Lateral Sclerosis (ALS) and process of aging (Rafael, 2012). 

There are a variety of  enzymatic and non-enzymatic factors that act as defence 

mechanisms against ROS-induced oxidative stress. Enzymatic factors include 

ezymes such as superoxide dismutases, glutathione transferases, catalase and other 

factors relevant to removal, repair or detoxification of damaged intracellular  

compounds. Moreover, non-enzymatic ones such as ascorbic acid (Vitamin C), α-

tocopherol (Vitamin E), glutathione (GSH), carotenoids, flavonoids ensure removal 

of ROS and detoxification of constituents damaged by ROS. Therefore, components 

derived from  the beehive such as honey, propolis and royal jelly become important 

(Rafael, 2012). 

Propolis mainly includes flavonoids and phenolic compounds. These compounds 

have antioxidant properties. Therefore, propolis may protect humans against 

oxidative stress damages. Antioxidant properties of propolis and its active 

compounds have been studied by many research groups. Five different propolis 

samples from Brazil were studied regarding 1,1-diphenyl-2-picrylhyrazyl (DPPH) 

free radical  and superoxide anion radical in the xanthine / xanthine oxidase (XOD) 

and α-nicotinamide adenin dinucleotide (NADH) / phenazyne  (PMS) reactions. Four 

dicaffeoylquinic acid derivatives were isolated from water extract of propolis. These 

derivatives exhibited a stronger free radical scavenging activity than the most 

common antioxidants such as vitamin C, vitamin E, and caffeic acid. Moreover, 

dicaffeoylquinic acid derivatives have an inhibitory activity on nitrite formation in 

lipopolysaccharide-induced murine macrophages ( Matsushige et al., 1996). 

Propol is an antioxidant compound, obtained from water extract of Brazilian propolis 

and propol has stronger antioxidant activity than vitamin  C and vitamin E. Propolis 

and propol inhibited Cu
+2

-initiated low density lipoprotein (LDL) oxidation 

(Banskota et al., 2001). Another component obtained from propolis is caffeic acid 

phenyl ester (CAPE). CAPE has antitumor activity and inhibited 5-lipoxygenase and 

soybean 15-lipoxygenase at micromolar concentrations. Also, CAPE exactly stopped 

the production of ROS in human neutrophils and in the cell free xanthine/XOD 

system (Mirzoeva et al., 1997). 
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When propolis was applied to yeast cells, their intracellular oxygen levels decreased. 

Changes also occured at mitochondrial proteome level, including antioxidant 

proteins and proteins involved in ATP synthesis. Therefore, increase in antioxidant 

protein levels ensured decreasing levels of intracellular oxidation (Cigut et al., 2011). 

According to propolis studies with the yeast  S. cerevisiae, propolis is the up and 

coming antioxidant due to three important findings: (1) it promotes  protection of  

membrane lipids from H2O2 stress, (2) O2 stress  provides menadione, and propolis 

resumes redox status by scavenging ROS. (3) it activates Cu / Zn-superoxide 

dismutase, one of the most substantial antioxidant enzymes (Rafael,  2012). 

1.3.3.3 Antitumor activity  

Propolis extracts have been investigated for in-vitro cytotoxic activity in different 

cell lines. Propolis cannot be used in untreated form and it should be extracted to 

remove ineffective part and protect the polyphenolic fraction. The etheral propolis 

fraction (DEEP) have most effective cytotoxic activity and secondary fractions of 

etheral propolis fraction also have good activity (Marcucci, 1995). Also ethanolic 

extract of propolis (EEP) excited attention of scientists due to its biological and 

pharmacological properties like immunomodulatory and anticancer effects. Cancer 

cell proliferation and tumor growth are prevented by EEP due to increase in cell-

cycle halt and apaptosis (Szliszka, 2011). 

13E-symhyoreticulic acid, 13Z-symhyoreticulic acid and 3-(2,2-dimethyl-8-

prenylbenzopyran-6-yl) prepenoic acid, isolated from Brazilian propolis, possess 

cytotoxic effect. Also artepilin C has cytotoxic effect on tumor cells. It is  isolated 

from Brazilian propolis. The cytotoxicity is ensured by the induction of apoptosis-

like DNA fragmentation. The component have more cytotoxic activity than 5-FU 

against transplantable tumor cells. Artepilin C induces immune system and shows 

direct anti-tumor activity. Propolis provides decrease by 0.1 % and 0.01% on 

incidence and multiplicity of mammary carcinomas (Banskota, 2001). 

Caffeic acid phenyl ester (CAPE), an active compound of Israeli propolis has 

important cytotoxic effect on various tumor cell lines. It was synthesized and used to 

prevent the growth of human leukaemia HL-60 cells. Tumor inhibition by CAPE was 

relevant to increased enterocyte apoptosis and proliferation ( Huang et al., 1996). 
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The ethereal propolis fraction (DEEP) showed the strongest cytotoxic activity. The 

secondary fractions of ethylacetate and butanol DEEP exhibited a good activity. 

Flavonoids were tested to investigate the killing action of propolis. Hela cells were 

more sensitive to quercetin and rhamnetin, but less sensitive to galangin. KB and 

Hela cell line studies showed that the cytotoxic effect was derived from quercetin 

and caffeic acid phenyl ester components of propolis (Marucci, 1995). 

1.3.3.4 Anti-inflammatory effect  

Characteristics of inflammation divides it into groups such as acute, chronic, 

irritability- and immunity-related inflammation. There are three major factors that 

trigger inflammation; such as physical factors (bruises, burns, frostbite, radical 

damage), chemical factors (acid, alkali, allergens, mineral oil) and biochemical 

factors (microorganisms, parasites, endotoxins and animal toxins). Inflammatory 

media also contain histamine, bradykinin, prostaglandin, platelet activation factor, 

neutrophile hydrolase, inflammation prestimulation factors (TNF-α, IL-1, IL-6, cell 

chemotaxis factors), adherence cell, acute reaction protein (C reaction protein, LPS- 

combined protein, serum starched protein A) etc. (Hu et al., 2005). 

Propolis is generally used to cure some skin inflammation diseases. According to 

studies, ethanol extract of propolis (EEP) and water soluble derivatives (WSD) 

possess inhibitory activity on leakage, oedema, conglomeration and increase of 

WBC. Therefore EEP and WSD have anti-inflammatory effect and reduce a broad 

spectrum of inflammatory reactions (Schmidt and Walter, 1994). 

Exposing mice to water soluble derivative (WSD) of propolis avoided the 

cyclophasmide effects and increased survival rates of animals. Propolis induced 

cytokines production such as IL-1β and TNF-α by peritoneal macrophages. Six 

isolated compounds of propolis such as caffeoylquinic acid derivatives increased 

motility and spreading of macrophages. Applying propolis to rats enhanced antibody 

production. Propolis can regulate antibody synthesis as a part of adjuvant activity. 

Therefore, propolis has an important effect on different cells of congenital immune 

response. Propolis induced cytotoxic activity of natural killer cells against murine 

lymphoma. Natural killer cells are lymphocyte subpopulation and cytotoxic activity 

of natural killer cells ensures resistance against tumor development (Sforcin, 2007). 

In conclusion, propolis is an anti-inflammatory agent against acute and chronic 

inflammation. Galangin and CAPE are the two phenolic compounds considered as 
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major constituents of propolis to prevent development of inflammation. Especially, 

CAPE is required for the anti-inflammatory effect of honeybee propolis (Borelli et 

al., 2002). Figure 1.7 indicates the chemical structure of CAPE. 

 

 

 

 

 

Figure 1.7: Chemical structure of caffeic acid phenyl ester (CAPE) 

1.3.3.5 Toxic effect of propolis  

Besides its various advantages, propolis also has toxic and allergenic effects. 

Propolis includes some constituents that cause toxicity. The bees may also collect 

hazardous materials when forming propolis: e.g. Cuban propolis contains metals 

such as iron (Fe), zinc (Zn), copper (Cu), and magnessium (Mg). Also, Brazilian 

propolis includes  some heavy metals such as lead (Pb) (Banskota, 2001). 

 

Propolis extracts have low toxicity, and flavonoids themselves are also of low 

toxicity. For instance, pinocembrin is the prevalent flavonoid in several extracts. It 

exhibited no toxicity when applied orally to mice at 1000 mg/ml (Banskota, 2001). A 

constituent of propolis, 1,1-dimethylallycaffeic acid, is responsible for allergy. The 

flavonoid tectochrysin was evaluated as a second allergen. Also, allergenic effects of 

prenylethyl and phenyl esters of caffeic acid were also investigated (Marucci, 1995).  

1.4 Inverse Metabolic Engineering 

Metabolic engineering is the improvement of  cellular activities by modification of 

enzymatic, transport and regulatory functions of the cell by using recombinant DNA 

technology. Metabolic engineering is the multidisciplinary area between molecular 

biology, biochemical reaction engineering, applied microbiology and biomedical 

research ( Bailey, 1991). 

Classical or rational metabolic engineering has some limitations such as the need for 

extensive biochemical, enzymatic and genetic information on the metabolic system 

of interest, and the need for a high number of sitimulus-response experiments. 
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Because of these limitations of  rational metabolic engineering, an alternative 

strategy, named as ‘inverse metabolic engineering’, is used. Bailey divided “inverse 

metabolic engineering” strategy into three steps ; the first step is identifying,  

building or calculating the requested phenotype ;  the second step is identifying the 

genetic or environmental factors related to this phenotype ; and the third step is 

transferring this phenotype to another organism by genetic or environmental 

manipulation techniques (Bailey, 1991). Inverse metabolic engineering starts with a 

known and desired phenotype. Therefore, detailed information about metabolic 

pathways of desired organism is not required in contrast to rational metabolic 

engineering (Çakar, 2009). 

As an inverse metabolic engineering strategy, evolutionary engineering is the 

application of continuous evolution procedures to obtain a desired phenotype (Butler 

et al., 1996). In nature, environmental effects such as mutagens cause changes in the 

gene pool of an organism. Nature performs selective pressure on this gene pool and 

some genes undergo changes with the changing conditions. Finally, environmently 

adapted organisms are obtained (Barton, 2007). 

Under laboratory condintions, evolutionary engineering strategy begins with the 

application of mutagens for random mutagenesis of the gene pool of the organism of 

interest. UV light or chemicals are used for the random mutagenesis. Selective 

pressure is then applied to obtain a desired phenotype (Hahn Hagerdal et al., 2007). 

Thus, evolutionary engineering is a useful inverse metabolic engineering strategy to 

obtain desired phenotypes. Basic evolutionary engineering strategy were shown in 

Figure 1.8. 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Basis of evolutionary engineering strategy (Hahn Hagerdal et al., 2007). 
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1.5 The Aim of the Study  

The aim of the present study was to obtain propolis-resistant Saccharomyces 

cerevisiae strains by using an inverse metabolic engineering strategy, evolutionary 

engineering. Because propolis has a variety of biologically important effects, it was 

chosen as the selection factor. Turkish propolis was applied to a chemically 

mutagenized  S.cerevisiae culture initially at low doses, and by increasing propolis 

concentration stepwise at each repetitive batch culture. The physiological analyses 

were then performed to compare the propolis-resistant yeast mutants to the reference 

strain.  

The propolis-resistance of the mutants and the reference strain were determined 

semi-quantitatively by Most Probable Number (MPN) Method-based assay. The 

genetic stability of mutant strains were also determined. Additionally, cross-

resistance of the propolis-resistant mutants to other stress types were also determined 

to identify the relationship between propolis-resistance and resistance to other stress 

factors. 
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2. MATERIALS AND METHODS  

2.1. Materials  

2.1.1 Strains and propolis 

The reference strain CEN.PK 113-7D (MATa, MAL2-8
c
, SUC2) Saccharomyces 

cerevisiae was kindly provided by Dr. Laurent Benbadis, University of Toulouse, 

France, and named as 905. 905 was then randomly mutagenized with a chemical 

mutagen (ethyl methane sulfonate) as described previously (Lawrence, 1991), and 

the resulting population was named as 906. Propolis was kindly provided by Prof.Dr. 

Oğuz Öztürk, Istanbul University. Ethanol extract of propolis was used in this study. 

Propolis was diluted with ethanol: water (60:40 v/v).  

2.1.2 Culture media and preservation conditions 

Yeast cultures were incubated at 30 
o
C and 150 rpm, using yeast minimal medium 

(YMM) or nutrient rich medium (YPD). After cultivation, 1000 µL of culture were 

placed in 1.5 mL microcentrifuge tubes and centrifuged at 10,000 rpm for 3 min. The 

culture was then washed with yeast minimal medium (YMM) and the supernatant 

was removed. 1000 µl of 30% glycerol (v/v) was added onto the cell pellet. This 

suspension was stored at   ̵ 80 
o
C deep-freezer. For reviving and growing cultures 

after extended storage at  ̵ 80 
o
C, 50 µL of cell suspension was placed to 50 mL 

culture tubes containing 10 mL YMM or YPD. The cultures were then incubated 

overnight at 30
o
C and 150 rpm.  The next day, cultures were inoculated into fresh 

medium to an initial OD600 value of 0.25. 

2.1.3 Yeast culture media  

2.1.3.1   Yeast minimal medium  

Chemicals indicated in Table 2.1 were dissolved in deionized water to prepare yeast 

minimal medium (YMM) and autoclaved at 121 
o
C, for 15 min.  
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Table 2.1: Contents of yeast minimal medium (YMM). 

Chemicals Amount 

Yeast nitrogen base without amino 

acids 
6.7 g 

Dextrose 20 g 

Agar (for solid media) 20 g 

Water  to 1 lt 

 

2.1.3.2    Yeast extract peptone dextrose medium (YPD)  

Chemicals indicated in Table 2.2 were dissolved in deionized water and autoclaved 

at 121 
o
C, for 15 min. 

Table 2.2: Contents of yeast extract peptone dextrose medium (YPD) 

Chemicals Amount 

Yeast nitrogen base without amino 

acids 
10 g 

Dextrose 20 g 

Peptone  10 g 

Agar (for solid media) 20 g  

Water to 1 lt 

 

2.1.4 Laboratory Equipment   

Laboratory equipment used during experiments are shown in Table 2.3. 

Table  2.3: Laboratory instruments that are used in this study. 

Equipment Supplier 

UV Visible Spectrophotometer Shimadzu UV-1700 (Japan) 

Vortex Mixer Nüve NM 100 (Turkey) 

Autoclaves 

Tommy SX700E (China) 

Tuttnauer Systec Autoclave 2540 ml 

2870ELCV (Switzerland) 
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Table 2.3 (continued): Laboratory instruments that are used in this study. 

Equipment Supplier 

Light Microscope Olympus CH30 (Japan) 

Microfuge 
Eppendorf Microcentrifuge-5424 

(Germany) 

Micropipettes 

Balance 

Eppendorf (Germany) 

Precisa BJ 610 C (Switzerland) 

Microbalance Precisa 620C SCS 

Laminar Flow Hood Biolab Faster BH-EU 2003 

Magnetic Stirrer Labworld (Germany) 

Benchtop Centrifuge Eppendorf 5424 (Germany) 

pH-Meter Mettler Toledo MP220 (Switzerland) 

  

Deep-freezer 
-80 

o
C Sanyo Ultra Low MDT-U40865 

(Japan) 

Refrigerators and Deep-freezers -20 
o
C Arçelik 3011 NY (Turkey) 

 +4 
o
C Arçelik (Turkey) 

Shaker  Thermo Scientific Orbital Shaker (USA) 

Orbital Shaker Incubators  Certomat S-2 Sartorius (Germany) 

Ultrapure Water System  TKA(Germany) 

HPLC System Shimadzu (Japan) 

HPLC Column 
Bio-Rad HPX-87H Aminex Ion-

exclusion column, 300x7.8mm (USA) 

UV-Visible Spectrophotometer 
Bio-Rad Benchmark Plus

TM
Microplate 

Reader Spectrometer (USA) 

2.1.5 Chemicals 

The chemicals used during this study are shown in Table 2.4.  
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Table 2.4: The chemicals used in this study. 

Chemicals Supplier 

Propolis  Region of Kartal, Istanbul, Turkey 

Nickel chloride hexahydrate 

(NiCl2.6H2O) 
MERCK (Germany) 

Cobalt chloride hexahydrate 

(CoCl2.6H2O) 
Fluka (USA) 

Copper (II) sulphate pentahydrate 

(CuSO4.5H2O) 
Sigma ALDRICH (USA) 

Hydrogen peroxide (H2O2) MERCK(Germany) 

Chrome chloride (CrCl3) Acros Organics (USA) 

Zinc chloride (ZnCl2) Carlo Erba (Italy) 

Magnesium chloride hexahydrate      

MgCl2.6H2O 
MERCK (Germany) 

Ammonium iron (II) sulphate 

hexahydrate (NH4)2Fe(SO4)2.6H2O 
MERCK (Germany) 

Manganese (II) chloride tetrahydrate   

MnCl2.6H2O 
MERCK (Germany) 

Ethanol (C2H6O) J.T Baker (The Netherlands) 

Aluminium chloride hexahydrate 

(AlCl3 .6H2O) 
MERCK (Germany) 

Sodium chloride (NaCl) MERCK (Germany) 

Geneticin Thermo Fisher (USA) 

Caffeine MERCK (Germany) 

Acetic acid MERCK (Germany) 

Acetone (C3H6O) MERCK KGaA (Germany) 

Agar BDDifco
TM 

(USA) 

Glycerol (C3H8O3) Duchefa Biochemie (The Netherlands) 

Yeast Extract MERCK (Germany) 

Ethyl methane sulfonate (EMS) Alpha-Aeasar (Germany) 

Peptone Riedel-de Haen (Germany) 

Dextrose Riedel-de Haen (Germany) 

Sulphuric acid Riedel-de Haen (Germany) 
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2.2. Methods  

2.2.1 Screening at varying propolis concentrations 

The Saccharomyces cerevisiae reference strain CEN.PK 113-7D (MATa, MAL2-8
c
, 

SUC2), named as 905, was randomly mutagenized using ethyl methane sulfonate 

(Lawrence, 1991), and named as 906. 

In order to obtain propolis-resistant S.cerevisiae mutants, an evolutionary 

engineering selection strategy was planned. For this purpose, it was necessary to 

determine the initial propolis concentration to be applied during selection 

experiments. Thus, 905 and 906 were screened under varying propolis levels:  60, 

100, 150, 200, 250, 500, 550, 600, and 650 µg/ml. The propolis stress was applied 

continuously throughout the cultivation of 905 and 906, which lasted for 48h. 

The initial optical density (OD600) of the cultures was adjusted to 0.250 during 

inoculation with overnight fresh cultures,  and the cultures were grown in 50mL 

culture tubes containing 10 mL of YMM at 30ºC and 150 rpm. After 24 and 48 h of 

incubation, OD600 values of the cultures were measured and survival rates were 

calculated by dividing “OD600 of the strain under propolis stress” by “ OD600 of the  

strain under control conditions”. 

2.2.2 Obtaining propolis-resistant yeast populations 

Previously, the chemically mutagenized yeast (906) culture frozen stock was 

cultivated in 10 mL yeast minimal medium (YMM) at 30˚C. After cultivation,  a new 

pre-culture was prepared and incubated overnight for continous stress selection 

procedure. Two 50 mL-culture tubes that contained 10 mL YMM with and without 

propolis were inoculated with the same amount of precultures which were defined as 

the first population of propolis stress selection and its control. According to 

screening results, the initial propolis concentration for selection was determined as 

150 µg/ml propolis and it was increased by 10 µg/ml at each successive cultivation,  

up to the final propolis concentration. 

By this continuously applied selection strategy, several populations were obtained, 

which resisted against increasing levels of propolis stress. After 24 h of cultivation,  

the OD600 values were measured by using a UV-visible spectrophotometer and the 

survival rates were calculated by dividing OD600 population by OD600 control. 
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The propolis-resistant last population was diluted and plated on solid YMM media 

and twelve individual colonies were selected randomly  to determine their propolis 

resistance. 

2.2.3 Estimation of stress resistance 

2.2.3.1 Spot assay  

Individual twelve mutant colonies were selected from the final resistant population. 

Propolis-resistance levels of these colonies were determined by spot assay and MPN 

method, and compared to those of the reference strain. 

Stock cultures of twelve individual mutants, the last population and the reference 

strain were inoculated into 10 mL of YMM medium and incubated overnight at 30
o
C 

and 150 rpm. During exponential growth phase of the cultures, which were 

inoculated an initial OD600 of 2, OD600 units of 4 were measured,  and the cultures 

were centrifuged at 13,000 rpm for 3 min. Pellets were diluted from 10
-1 

to 10
-8  

in 

YMM and inoculated into solid YMM plates including 200 µg/mL, 300 µg/mL, 500 

µg/mL and 710 µg/mL propolis and control plates which did not contain propolis. 

 

2.2.3.2 MPN method  

MPN method is a statistical estimation of cell numbers using positive/negative 

turbidity data of microbial growth. Individual mutants with high propolis-resistance 

based on spot assay results were chosen for MPN assay to quantify their resistance to 

different propolis concentrations.  

Viable cell numbers were estimated by serial dilutions in 96-well plates including 

180 µL of YMM medium. Dilutions were made in the range of 10
-1 

to 10
-8 

for five 

parallel samples. Number of surviving cells was determined by statistical analysis of 

the presence/absence of growth in these dilutions. Quantification was made by using 

an MPN table which is based on Poisson regression (Russek and Colwell, 1983). 

Twenty µL of individual mutants, the last population and reference strain cultures 

were inoculated into YMM with 200 µg/mL, 500 µg/mL, 710 µg/mL propolis 

concentration and YMM without propolis in 96-well plates with five replicates and 

were serially diluted in the range of 10
-1 

to 10
-8

. After 96 h incubation, 

presence/absence of growth in the wells was monitored and viable cell numbers were 

estimated by using the MPN table.  
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2.2.4 Cross resistance tests 

Strains that are resistant to a specific stress factor (e.g. propolis) may have cross-

resistance against other stress factors. Thus, stress responses of mutant individuals, 

the last population and the reference strain were investigated against various stress 

factors, using spot assay and MPN method. 

Cross resistance tests by spot assay were performed as follows: stock cultures of 12 

individual mutants, the last population and the reference strain were inoculated into 

10 mL of YMM medium and cultivated overnight at 30
o
C and 150 rpm. During 

exponential growth phase of the cultures which were inoculated at an initial OD600 of 

2, OD600 units of 4 were measured and the cultures were centrifuged at 13,000 rpm 

for 3 min. The cultures were then serially diluted up to 10
-7 

level by adding 20 µL of 

culture to 180 µL YMM. All dilutions were inoculated on YMM plates containing 

different stress factors : 0.1-0.3-0.5-0.8 mM NiCl , 1-2-2.2 mM CoCl2, 0.1-0.3-0.4-

0.5-0.8 mM CuSO4 , 0.5-1-1.5 mM H2O2 , 2-2.5-3 mM CrCl3, 10 mM ZnCl2, 0.5-1-

1.5 M MgCl2, 15-25-30-35-40 mM NH4FeSO4, 15-20 mM MnCl2, 8-12% (v/v) 

ethanol, 12 mM AlCl3, 0.5-1 M NaCl, 150 µg/ml geneticin, 10 mM caffeine. 

Spot assay results revealed resistances and sensitivities of mutant colonies to other 

stress factors. Based on those results, MPN method was applied to the mutants for 

quantification of their cross resistance levels. 

2.2.5 Genetic stability test  

Genetic stability test was taken applied to verify the genetic stability of propolis 

resistance of the mutants obtained by evolutionary engineering strategy. Two mutant 

individuals with the highest propolis resistance according to spot assay and MPN 

method results were tested for their genetic stability. The frozen stock cultures of the 

mutants were inoculated into 10 mL YMM medium. After overnight incubation at 

30
o
C and 150 rpm, cultures were inoculated to fresh YMM again. This procedure 

was repeated five times, and at the end of each cultivation, culture samples were 

taken and stored at  -80
o
C.  

At the end of the fifth cultivation, all frozen stocks from the previous and final 

cultures were inoculated into fresh YMM medium. After overnight incubation, the 

cultures were inoculated into MPN plates as five replicates and were serially diluted 

up to 10
-8

. MPN test was performed in fresh YMM, with and without 250 µg/ml 
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propolis. 72
nd

 hour MPN scores of cultures under 250 µg/ml propolis stress condition 

were read and the number of cells/ml were estimated from the MPN tables to 

quantify propolis stress resistance of each mutant culture, when grown in the absence 

of propolis stress for five successive passages.  

2.2.6 Obtaining growth curves  

Initially, the reference strain and the highest propolis-resistant mutant strain were 

grown in YMM medium with 50 µg/ml, 100 µg/ml, 150 µg/ml and 200 µg/ml 

propolis concentration and without propolis. OD600 values of cultures were measured 

for 10 h. Four different propolis concentrations were chosen to determine the 

optimum one for growth curve experiments with the mutant and the reference strain. 

100 µL of stock culture of the mutant and reference strain were inoculated into 10 

mL of YMM medium. After overnight incubation at 30
o
C and 150 rpm, cultures 

were inoculated into 500 mL flasks containing 100 ml YMM with 200 µg/ml 

propolis and without propolis, at an initial OD600 value of 0.25. OD600 values were 

measured regularly during 30 h and particular times and growth curves were 

obtained. 

2.2.7 Cell dry weight (CDW) analysis 

Cell dry weight measurements were taken during growth curve experiments. Firstly, 

empty microfuge tubes were weighed after drying at 80
o
C for 48 h. Two mL of 

samples were taken and centrifuged at 14’000 g for 5 min. Supernatants were 

removed and pellets were dried in an oven at 80
o
C for 48 h. Microfuge tubes 

containing the pellets were placed into a desiccator and kept there for 30 min. After 

48 h, tubes were weighed again and compared with their first measurements when 

empty. Finally, cell dry weight was calculated as mg per ml of cell culture, based on 

the weight differences between empty tubes and tubes with dried pellets. 

2.2.8 High performance liquid chromatography (HPLC) analysis of the 

reference strain and mutant individual F11 

HPLC analysis was applied to determine the amount of various metabolites in culture 

samples obtained from the mutant and the reference strains. Samples were 

centrifuged at 14000 rpm for 5 min and the supernatants were filtered through 0.22 

µm pore-size filter. HPX-87H Aminex ion-exclusion column (300 x 7.8 mm; Bio-
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Rad, USA) was used for HPLC analysis at 60°C. 5 mM sulphuric acid was used as 

the mobile phase, at a flow rate of 0.6 ml/min. Sample volume was 20 µl. Shimadzu 

RID-10A refractive-index detector was used. 

For quantification of metabolites, a standard curve was formed. Standard solutions 

were prepared for selected metabolites of interest, at particular concentrations. Stock 

solutions A and B were used to obtain the standard curve. 

Table 2.5: The preparation of stock solutions A and B. 

Stock Solution A Stock Solution B 

Content Amount Content Amount 

Glucose 120 g Acetate 4 g 

adjust final volume to 1 L with 

ddH2O 

Glycerol 2 g 

Ethanol 30 g 

adjust final volume to 1 L with ddH2O 

Table 2.6: The preparation of standard solutions. 

Standard 

Solutions 
Mixing Volumes 

Volume of 

Eluent 

(ml) 

Final Volume 

(ml) 

Std 1 
1 mL Solution A 

3 mL Solution B 
2.000 6 

Std 2 0.750 mL Std 1 0.250 1 

Std 3 0.500 mL Std 1 0.500 1 

Std 4 0.250 mL Std 1 0.750 1 

Std 5 0.125 mL Std 1 0.875 1 

Std 6 0.063 mL Std 1 0.937 1 

Sulfuric acid (5 mM) was used as the eluent for preparation of the standards. 

Table 2.7: Various metabolite concentrations of HPLC standards. 

Metabolite Std 1 Std 2 Std 3 Std 4 Std 5 Std 6 
Retention 

Time(min) 

Glucose(g/L) 20 15 10 5 2.5 1.25 8.84 

Glycerol(g/L) 1 0.750 0.500 0.250 0.1250 0.06250 13.53 

Acetate(g/L) 2 1.500 1.000 0.500 0.2500 0.12500 15.13 

Ethanol(g/L) 15 11.25 7.500 3.750 1.8750 0.93750 22.65 
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Standard solutions were prepared as shown in Table 2.5, Table 2.6 and Table 2.7 and 

1 mL of each standard solution and samples were taken into the HPLC tubes. HPLC 

measurements were taken by using refractive index detector. 

2.2.9 Estimation of trehalose and glycogen content through enzymatic reaction 

Trehalose and glycogen contents were determined by using glucose 

oxidase/peroxidase asay (Parrou and François, 1997). At the end of the growth curve 

experiment (at 30
th

 hour) 25 OD600 unit cells were collected and centrifuged at 14000 

rpm for 5 min. Supernatants were discarded and pellets were stored at -20ºC. Pellets 

were resuspended in 250 μl 0.25 M sodium carbonate and incubated at 95°C for 2-4 

h. Then 150 μl 1 M acetic acid and 600 μl 0.2 M sodium acetate (pH 5.2) were added 

into samples and they were vortexed. Following that, 500μl of each sample were 

taken to new microfuge tubes. Consequently, each sample was divided into two 

microfuge tubes, one for trehalose and the other for glycogen analyses. 

For trehalose analysis, 10μl trehalase enzyme was added onto half of the samples and 

they were incubated overnight at 37°C. 

For glycogen determination, 20 μl alpha-glycosidase enzyme was pipetted into the 

second set samples and they were incubated at 57 °C,  for overnight. 

For both trehalose and glycogen measurements, glucose standards were prepared. 

Twenty μl of standards and samples were added to different wells of 96-well plates. 

Then, 200 μl of glucose oxidase/peroxidase reagent was pipetted onto the samples in 

wells. The glucose released was determined using the glucose oxidase/peroxidase 

method. After 30 min incubation at 37°C, absorbances of the samples and standards 

were  measured at 490 nm, using a microplate reader. 

2.2.10 Determination of reactive oxygen species (ROS) content 

Five mM stock solution of dichlorofluorescein diacetate (DCF-DA) dissolved in 

ethanol was prepared and stored at -20°C. The solution was protected from light. 

Reference strain and the mutant were incubated overnight and then inoculated into 

fresh YMM and YMM containing propolis at 150 µg/ml concentration. Pre-cultures 

of reference strain and the mutant were cultivated until their mid-exponential phase 

of growth (OD600 1-1.2). About 2x10
8
 cells were harvested by centrifugation. 

Harvested cells were pre-incubated for 10 min at 30ºC. DCF-DA was then added to 
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the medium at a final concentration of 10 µM or 15 µM, and it was incubated at 

28°C for 30 min,  in the dark,  to allow probe uptake. After probe penetration, the 

cultures were centrifuged and the pellets were washed twice with sodium phosphate 

buffer or PBS. The pellet was re-suspended in 1000 µl buffer. Cells were vigorously 

vortexed for 1 min with glass beads and then kept on ice for 1 min. This cycle was 

repeated 10 times. After cell lysis, the solution was centrifuged at 13000 rpm for 5 

min. The supernatant was then collected into fresh microfuge tubes.  The supernatant 

was diluted six times for fluorescence measurements. Fluorescence was measured at 

an excitation wavelength of 488 or 504 nm and an emission wavelength of 520 or 

524 nm. 
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3. RESULTS  

3.1 Screening at Varying Propolis Concentrations 

To determine the initial propolis stress level for selection, mutagenised yeast culture 

(906) and the reference strain (905) were cultured in 10 mL YMM including 60 

µg/ml, 100 µg/ml, 150 µg/ml, 200 µg/ml, 250 µg/ml and 500 µg/ml propolis. 

Incubation was performed at 30
o
C and 150 rpm. After 24 and 48 h of incubation, 

OD600 values were measured. The OD600  results are shown in Table 3.1 and survival 

rate values are shown in Table 3.2 and Figure 3.1. 

Table 3.1: OD600 results of 905 and 906 grown in YMM at different propolis levels 

(0-500 µg/ml) after 48 h of incubation. 

 

Propolis 

levels 

(µg/ml) 

 

OD600 of 905 

 

OD600 of 906 

Control (0) 6.58 5.72 

60 5.82 4.92 

100 4.69 5.05 

150 4.49 4.51 

200 4.87 4.04 

250 3.84 3.99 

500 0.80 0.68 

To determine the initial propolis level for selection experiments, 905 and 906 were  

screened under various propolis levels: 200 µg/ml, 300 µg/ml, 400 µg/ml, 450 µg/ml, 

500 µg/ml, 550 µg/ml, 600 µg/ml and 650 µg/ml. The stress levels were applied 

continuously for 24 and 48h. OD600 values and survival rates of the reference strain 

(905)  and 906 are given in Table 3.3, Table 3.4. and Figure 3.2. 
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Table 3.2: Survival rate values (normalized to those of the reference strain) and fold 

of reference strain values after 48 h of incubation, when grown in the presence of 60-

500 µg/ml propolis. 

 

Propolis levels 

(µg/ml) 

 

Survival Rate of 

905 

 

Survival Rate 

of 906 

 

Survival Rate of 906  

(Normalized to 

reference strain 

value) 

60 0.88 0.86 0.97 

100 0.71 1.03 1.44 

150 0.68 0.89 1.31 

200 0.74 0.89 1.21 

250 0.58 0.99 1.69 

500 0.12 0.17 1.39 

 

 

   Figure 3.1: Survival Rate of 905 and 906 after 48 h of incubation, when grown in 

the presence of 60-500 µg/ml propolis. 
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Table 3.3: OD600 results of 905 and 906 grown in YMM at different propolis 

levels (200-650 µg/ml ) after 48 h of  incubation. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4: Survival rate values after 48 h of  incubation, when grown in the 

presence of 200-650 µg/ml propolis. 

 

Propolis levels 

(µg/ml) 

 

Survival Rate of 905 

 

Survival Rate of 906 

200 0.67 0.67 

300 0.12 0.49 

400 0.02 0.04 

450 0.00 0.11 

500 0.07 0.03 

550 0.00 0.00 

600 0.00 0.00 

650 0.00 0.00 

Propolis 

levels 

(µg/ml) 

 

OD600 of 905 

 

OD600 of 906 

Control (0) 5.60 6.03 

200 3.76 4.05 

300 0.66 2.97 

400 0.13 0.16 

450 0.00 0.67 

500 0.39 0.16 

550 0.00 0.00 

600 0.00 0.00 

650 0.00 0.00 
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Figure 3.2: Survival Rate of 905 and 906 after 48 h of incubation, when grown in 

the presence of 200-650 µg/ml propolis. 

3.2 Selection for Propolis Resistance 

According to screening results, 150 µg/ml propolis concentration was chosen as the 

initial propolis stress level for selection. Propolis concentration was gradually 

increased from 150 µg/ml to 710 µg/ml, where the survival rates of successive 

populations decreased. By continuous selection strategy, 57 generations were 

obtained, which resisted against increasing levels of propolis stress up to 710 µg/ml.  

After 24 h of cultivation, the OD600 values were measured and the survival rates were 

calculated (OD600 population / OD600 control). These results are shown in Table 3.5 

and survival rates upon increasing population numbers are given in Figure 3.3. 

Table 3.5: Population data of propolis selection. 

Population 

Number 

Propolis 

(µg/ml) 

OD600 

control 

OD600 

stress 

Survival 

rate 

Incubation 

time (h) 

1 150 4.02 1.53 0.38 24 

2 160 4.77 3.15 0.72 24 

3 170 4.89 3.55 0.73 24 

4 180 4.75 1.84 0.39 24 

5 190 4.39 3.55 0.81 24 

6 200 5.12 4.18 0.82 24 

7 210 5.12 3.51 0.69 24 

8 220 5.23 4.09 0.78 24 

9 230 5.21 2.15 0.41 24 
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Table 3.5 (continued):  Population data of propolis selection. 

Population 

Number 

Propolis 

(µg/ml) 

OD600 

control 

OD600 

stress 

Survival 

rate 

Incubation 

time (h) 

10 240 4.75 2.56 0.54 24 

11 250 4.63 2.58 0.56 24 

12 260 4.59 2.26 0.49 24 

13 270 4.49 2.02 0.45 24 

14 280 4.94 2.14 0.43 24 

15 290 4.33 2.72 0.63 24 

16 300 4.94 1.93 0.39 24 

17 310 4.49 1.77 0.39 24 

18 320 4.76 1.61 0.34 24 

19 330 4.72 1.49 0.32 24 

20 340 4.52 1.95 0.43 24 

21 350 4.13 1.72 0.42 24 

22 360 4.26 1.46 0.34 24 

23 370 4.75 1.77 0.37 24 

24 380 3.59 1.55 0.43 24 

25 390 4.60 2.05 0.45 24 

26 400 4.34 1.51 0.35 24 

27 410 4.14 1.43 0.35 24 

28 420 5.87 1.91 0.33 48  

29 430 5.14 1.70 0.33 24 

30 440 4.47 1.40 0.31 24 

31 450 4.28 1.64 0.38 24 

32 460 4.10 1.68 0.41 24 

33 470 3.78 1.66 0.44 24 

34 480 3.63 1.39 0.38 24 

35 490 4.84 2.14 0.44 24 

36 500 4.22 2.15 0.51 24 

37 510 6.09 1.74 0.29 48 

38 520 5.72 1.44 0.25 24 

39 530 4.48 1.04 0.23 24 

40 540 3.73 0.85 0.23 24 

41 550 3.81 0.81 0.21 24 

42 560 3.16 0.70 0.22 24 

43 570 3.17 0.90 0.28 24 

44 580 3.29 1.00 0.30 24 

45 590 3.46 1.35 0.39 24 

46 600 4.06 1.37 0.34 24 

47 610 4.45 1.24 0.28 24 

48 620 4.68 0.95 0.20 24 
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Table 3.5 (continued):  Population data of propolis selection. 

Population 

Number 

Propolis 

(µg/ml) 

OD600 

control 

OD600 

stress 

Survival 

rate 

Incubation 

time (h) 

49 630 3.75 0.94 0.25 24 

50 640 4.10 1.18 0.29 24 

51 650 3.74 1.31 0.35 24 

52 660 4.37 1.25 0.29 24 

53 670 4.19 1.43 0.34 24 

54 680 4.08 1.18 0.29 24 

55 690 4.70 1.24 0.26 24 

56 700 4.73 1.15 0.24 24 

57 710 4.66 1.48 0.32 24 

 

Figure 3.3: Survival rates versus population numbers during propolis selection. 

3.3 Estimation of Stress Resistance  

Individual  colonies were randomly chosen from the final propolis-resistant 

population. These propolis-resistant colonies were compared with the reference 

strain, using spot assay and MPN method, for their propolis resistance. 

3.3.1 Determination of propolis resistance by spot assay  

Propolis-resistance of mutant colonies was determined first by spot assay.  Mutant 

colonies, last population and the reference strain were inoculated onto solid YMM 

medium at different concentrations of propolis. Cultures were spotted in the range of 

10
-1

 to 10
-8 

dilution and monitored after 72 h of  incubation at 30
o
C . The images 
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were taken at 72 h and were are shown in Figure 3.4, Figure 3.5, Figure 3.6, Figure 

3.7, and Figure 3.8. 

 

  

 

 

 

 

 

 

Figure 3.4: Spot assay results of individual mutants (FD1 to FD 12), 57
th 

population 

and the reference strain (905) after 72 h incubation on solid YMM 

medium (control plates). 

Figure 3.5: Spot assay results of individual mutants (FD1 to FD 12), 57
th 

population 

and the reference strain (905) after 72 h incubation on solid YMM medium including 

200 µg/mL propolis. 

Individual mutants, the last population and the reference strain exhibited similar 

growth on control plates (0 µg/mL propolis). However, at 200 µg/mL propolis 

concentration, growth of the reference strain was inhibited and at higher propolis 

concentrations the reference strain showed no growth. According to spot assay 

results; FD7, FD8, FD10, FD11 and FD12 seemed to have better survival compared 

to the other mutants, at various propolis concentrations. FD7, FD8, FD10, FD11 and 

FD12 were thus chosen for quantification of their propolis-resistance by MPN 

method. 
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Figure 3.6: Spot assay results of individual mutants (FD1 to FD 12), 57
th 

population 

and the reference strain (905) after 72 h incubation on solid YMM 

medium including 300 µg/mL propolis. 

 Figure 3.7: Spot assay results of individual mutants (FD1 to FD 12), 57
th 

population 

and the reference strain (905) after 72 h incubation on solid YMM 

medium including 500 µg/mL propolis. 

 

 

 

 

 

 

 

Figure 3.8: Spot assay results of individual mutants (FD1 to FD 12), 57
th 

population 

and the reference strain (905) after 72 h incubation on solid YMM 

medium including 710 µg/mL propolis. 
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3.3.2 Determination of propolis resistance by MPN method  

Individual mutants (FD7, FD8, FD10, FD11, FD12 ) were chosen according to spot 

assay results and they were compared according to their survival rates at various  

propolis concentrations, using MPN method. 

MPN method was applied for quantitative estimation of propolis resistance. Thus,   

200, 500, 710 µg/ml propolis concentrations were used for stress resistance 

estimation of individual mutants, the reference strain (905) and last population 

(Table 3.6). Survival rates of mutant individuals, reference strain and the last 

population are shown in Figure 3.9, and Table 3.7. 

Table 3.6: Number of viable cells estimated by MPN Assay at 96 h of incubation, 

with and without propolis stress. 

Number of 

cells/mL 
Control 

200µg/ml 

(Propolis) 

500µg/ml 

(Propolis) 

710µg/ml 

(Propolis) 

FD7 16000000 3500000 920000 92000 

FD8 16000000 2800000 1600000 24000 

FD10 7000000 11000000 3500000 11000 

FD11 5400000 22000000 2400000 540000 

FD12 9200000 5400000 170000 350000 

RS 16000000 1700 23 0 

LP 16000000 5400000 1100000 240000 
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Table 3.7: Survival rates of mutant individuals, reference strain and the last 

population  by MPN Assay at 96 h of incubation. 

Survival Rate 200µg/ml 500µg/ml 710µg/ml 

FD7 0.2188 0.0575 0.0058 

FD8 0.1750 0.1000 0.0015 

FD10 1.5714 0.5000 0.0016 

FD11 4.0740 0.4444 0.1000 

FD12 0.5870 0.0185 0.0380 

RS 0.0001 0 0 

LP 0.3375 0.0688 0.0150 

 

 

Figure 3.9: Survival rates of mutant individuals, reference strain and the last 

population at 96h of incubation. 

According to MPN assay results, all mutants and the last population exhibited higher 

survival rates compared to the reference strain. Among all individual mutants tested, 

FD11 showed the highest survival rate at  200µg/ml propolis concentration. 

3.4. Cross Resistance Tests With Spot Assay  

Five individual S.cerevisiae mutants were grown in the presence of a wide range of 

stress conditions to determine their potential cross-resistance against other stress 

factors. Therefore, five individual S.cerevisiae mutants were grown on solid YMM 
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containing ; 0.1-0.3-0.5-0.8 mM NiCl2 , 1-2-2.2 mM CoCl2, 0.1-0.3-0.4-0.5-0.8 mM 

CuSO4 , 0.5-1-1.5 mM H2O2 , 2-2.5-3 mM CrCl3, 10 mM ZnCl2, 0.5-1-1.5 M MgCl2, 

15-25-30-35-40 mM NH4FeSO4, 15-20 mM MnCl2, 8-12 % (v/v) ethanol, 12 mM 

AlCl3, 0.5-1 M NaCl, 150 µg/ml geneticin, and 10 mM caffeine. After 72 h of 

incubation, images of colonies were taken 

3.4.1 Control plate 

The images of control plates for cross-resistance assays are shown in Figure 3.10. 

 

Figure 3.10 : Mutant colonies, the last population (LP) and the reference strain (RS) 

grown on control YMM plates, after 72 h of incubation. 

3.4.2 0.8 mM NiCl2 stress 

Figure 3.11 showed that mutant individuals and the last population were cross-

resistant against nickel stress. 

 

  Figure 3.11: Mutant colonies, the last population (LP) and the reference strain (RS) 

on YMM plates including 0.8 mM NiCl2, after 72 h of incubation.  

RS RS 
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3.4.3 2.2 mM CoCl2  stress 

Images of spot assay plates with 2.2 mM CoCl2 are shown in Figure 3.12. 

Figure 3.12: Mutant colonies, the last population (LP) and the reference strain (RS) 

grown on  YMM plates including 2.2 mM CoCl2 , after 72 h of 

incubation. 

According to spot assay results ( 1-2-2.2 mM CoCl2), mutant individuals were not 

cross-resistant against cobalt stress. 

3.4.4 0.4 mM CuSO4  stress 

Figure 3.13 shows that some of the mutant individuals seemed to be slightly cross-

resistant against CuSO4 stress. 

 

 

 

 

 

 

Figure 3.13: Mutant colonies, the last population (LP) and the reference strain (RS) 

grown on  YMM plates  including 0.4 mM CuSO4, after 72 h of 

incubation. 

According to cross-resistance tests with CuSO4, some of the mutant individuals 

seemed to be slightly cross-resistant against CuSO4 stress.  
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3.4.5 3 mM CrCl3  stress 

Figure 3.14 indicates that the mutant individuals were not cross-resistant against 

CrCl3 stress.  

 

 

 

 

 

 

Figure 3.14: Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on  YMM plates including  3 mM CrCl3,  after 72 h of 

incubation. 

3.4.6 10 mM ZnCl2 stress 

Mutant individuals and the reference strain showed almost the same growth in the 

presence of zinc stress, as it shown in Figure 3.15. 

 

 

 

 

 

 

Figure 3.15: Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on YMM plates containing 10 mM ZnCl2, after 72 h of 

incubation. 
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3.4.7 1 M MgCl2 stress 

Images of spot assay plates with 1 M MgCl2 are shown in Figure 3.16. 

 

 

 

 

 

 

Figure 3.16: Mutant colonies, the last population (LP) and the reference strain 

(RS), grown on YMM plates containing 1M MgCl2,  after 72 h of 

incubation. 

0.5 M  MgCl2, 1 M MgCl2, and 1.5 MgCl2 were applied to mutant colonies, the last 

population and the reference strain, but no cross-resistance aganist magnesium was 

observed.  

3.4.8 15 mM MnCl2  stress  

0.5 mM, 15 mM and 20 mM MnCl2 stress were applied mutant to colonies, the last 

population and the reference strain, but no cross-resistance against manganese stress 

was  observed, as shown in Figure 3.17. 

Figure 3.17: Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on YMM plates containing  15 mM MnCl2, after 72 h of incubation. 
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3.4.9 12 mM AlCl3 stress  

Figure 3.18 shows that propolis-resistant colonies did not exhibit cross-resistance to 

aluminium stress applied in YMM medium as12 mM AlCl3 . 

 

 

 

 

 

 

Figure 3.18:  Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on YMM plates containing  12 mM AlCl3, after 72 h of  

incubation. 

3.4.10 1 M NaCl stress 

Figure 3.19 shows that mutant colonies did not gain cross-resistance against NaCl. 

 

 

 

 

 

 

Figure 3.19: Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on YMM plates containing  1 M NaCl,  after 72 h of 

incubation. 

0.5 M NaCl  and 1 M NaCl stress were applied to mutant colonies, the last population 

and the reference strain.  
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3.4.11 40mM NH4FeSO4 stress  

Figure 3.20 shows that mutant colonies and the last population were cross-resistant 

against iron stress. 

 

 

 

 

 

 

 

Figure 3.20 : Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on YMM plates containing 40mM NH4FeSO4,  after 72 h of 

incubation. 

3.4.12 10mM Caffeine stress  

Figure 3.21 shows that all mutant individuals tested were cross-resistant against 

caffeine stress. 

 

 

 

 

 

 

 

 

Figure 3.21: Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on YMM plates containing  10 mM caffeine, after 72 h of 

incubation. 
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3.4.13 150 µg/ml Geneticin stress 

Figure 3.22 shows that FD10, FD11 and FD7 seem to be slightly more resistant to 

geneticin, compared to the reference strain and other mutant individuals. 

Figure 3.22: Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on YMM plates containing 150 µg/ml Geneticin, after 72 h of incubation. 

3.4.14   12 % (v/v)  ethanol  stress  

8 % (v/v) and 12 % (v/v) ethanol stresses were applied and according to the results, 

the propolis-resistant mutant individuals became sensitive to ethanol stress (Figure 

3.23). 

 

 

 

 

 

Figure 3.23: Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on YMM plates containing 12% (v/v) ethanol, after 72 h of 

incubation. 

3.4.15 0.5 mM H2O2 stress 

0.5 mM H2O2 and 1mM H2O2 were applied to mutant colonies and the reference 

strain, as oxidative stress agents. Figure 3.24 showed that propolis-resistant mutant 

individuals were sensitive to H2O2 stress. 
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Figure 3.24 : Mutant colonies, the last population (LP) and the reference strain (RS), 

grown on YMM plates containing 0.5 mM H2O2 after 72 h of 

incubation. 

3.5 Genetic Stability Test  

Genetic stability test was performed using MPN method, after cultivating propolis-

resistant mutants in propolis-free medium for five passages. The results of propolis 

mutants FD10 and FD11 after 72 h of incubation are shown in Tables 3.8 and 3.9, 

respectively. The results showed that both mutants were genetically stable. Genetic 

stability results are shown in Figure 3.25. 

Table 3.8: Survival rates and percent survival rates of FD10 after 72 h of incubation 

in 250 µg/ml propolis-YMM. 

Passage 

Number(72h) 
Number of cells/ml Survival Rates 

Percent 

Survival Rates 

FD10 Control 
250 µg/ml 

propolis 
250 µg/ml propolis 

250 µg/ml 

propolis 

1st passage 2200 2200000 1000 100000 

2nd passage 4900 920000 187.8 18780 

3rd passage 2400 1300000 541.7 54170 

4th passage 4900 1300000 265.3 26530 

5th passage 1700 1700000 1000 100000 
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Table 3.9: Survival rates and percent survival rates of FD11 after 72 h of incubation 

in 250 µg/ml propolis-YMM. 

 

Figure 3.25 :  The percent survival rate changes of FD10 and FD11 mutants along 

their five passages during genetic stability tests. 

3.6  Quantitative Estimation of Cross Resistance Levels By MPN Method 

According to spot assay, MPN and genetic stability test results, FD 11 was selected 

as the most resistant and genetically stable mutant against propolis stress. Thus, 

MPN assay was applied to FD 11 and the reference strain (RS), using 10 mM 

caffeine, 0.6 mM NiCl2, 35mM NH4FeSO4, and 10 % (v/v) ethanol stress for 

determination of its cross-resistance levels in a quantitative way (Table 3.10). 

Figure 3.26 shows that FD11 mutant individual was cross-resistant against caffeine 

and NiCl2 stresses, but sensitive to ethanol  and NH4FeSO4 stresses, although the 

cross-resistance spot test result for NH4FeSO4 stress indicated cross-resistance of 

FD11. 
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Passage Number 

(72h) 

Number of cells/ml Survival Rates 

Percent 

Survival 

Rates 

FD11 Control 
250 µg/ml 

propolis 

250 µg/ml 

propolis 

250 µg/ml 

propolis 

1st passage 1600 1700000 1062.5 106250 

2nd passage 5400 2400000 444.4 44440 

3rd passage 3500 2400000 685.7 68570 

4th passage 2400 1100000 458.3 45830 

5th passage  920 2400000 2608.7 260870 
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Table 3.10: Percent survival rates of FD11 as fold of the reference strain at various 

stress conditions, at 72 h of incubation. 

Percent Survival 

Rates ( Normalized 

to reference strain) 

 

10mM 

Caffeine  

 

0.6 mM 

NiCl2 

35 mM 

NH4FeSO4 

10% (v/v) 

Ethanol   

FD 11 50.165 7.327 0.015 0.007 

 

Figure 3.26 : Cross resistance of the individual mutant (FD11) to 10 mM caffeine, 

0.6 mM NiCl2, 35mM NH4FeSO4, and 10 % (v/v) ethanol stress, as determined by 

MPN method, upon incubation at 30
o
C for 72 h. 

3.7 Growth Behavior of FD11 and the Reference Strain 

The reference strain (RS) and FD11 were grown in YMM (control) and YMM 

containing 50 µg/ml, 100 µg/ml, 150 µg/ml and 200 µg/ml propolis and their growth 

curves were obtained. Figure 3.27, 3.28, 3.29, 3.30, and 3.31 show these growth 

curves. According to these preliminary growth curves, 200 µg/ml propolis 

concentration was chosen for the major growth experiment, as it is a stress level that 

makes a significant difference between the reference strain’s and the mutant strain’s 

growth behavior ( Figure 3.31). 
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Figure 3.27: The growth curves of FD11 and the reference strain grown in YMM. 

 

 

Figure 3.28: The growth curves of FD11 and the reference strain grown in YMM 

containing 50 µg/mL propolis. 

 

 

Figure 3.29 : The growth curves of  FD11 and the reference strain grown in YMM 

containing 100 µg/mL propolis. 
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Figure 3.30: The growth curves of  FD11 and the reference strain grown in YMM 

containing 150 µg/mL propolis. 

 

 
Figure 3.31: The growth curves of  FD11 and the reference strain grown in YMM 

medium containing 200 µg/mL propolis. 

Growth curves of FD11 and the reference strain (RS) in YMM and YMM including 

200µg/mL propolis were obtained by measuring OD600 values regularly (Table 3.11). 

Cultures were incubated at 30
o
C for 30h. Figure 3.32 indicates growth curves of the 

reference strain and FD11. 

FD 11 and the reference strain that was incubated in YMM medium, as well as FD11 

that was incubated in YMM medium containing 200 µg/mL propolis have short lag 

phase, the cells entered exponential phase rapidly at about 4.5
th

 h of cultivation. The 

reference strain that was exposed to 200 µg/mL propolis stress entered both 

exponential and stationary phases of growth later than FD 11 exposed to propolis 

stress, FD11 and the reference strain without propolis stress, indicating a strong 

growth inhibition of the reference strain by 200 µg/mL propolis levels. 
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Table 3.11: OD600 values of FD11 and the reference strain measured during growth 

experiments. 

Time 

(hour) 

FD11 OD600 

AVG 

RS OD600 

AVG 

200 µg/mL 

Propolis, FD11 

OD600 AVG 

200 µg/mL 

Propolis, RS 

OD600 AVG 

0 0.23 0.22 0.31 0.32 

1.5 0.34 0.32 0.26 0.30 

3 0.58 0.64 0.36 0.29 

4.5 1.05 1.02 0.53 0.30 

7.5 2.98 3.06 0.90 0.33 

9 4.09 4.07 1.62 0.40 

11 4.93 4.81 2.54 0.65 

16 5.86 5.86 4.72 1.16 

24 5.82 6.06 4.70 4.06 

30 6.45 6.22 4.89 4.37 

 

 

 

Figure 3.32: Growth curves of FD11 and the reference strain (RS) grown in the 

absence and presence of 200 µg/mL propolis stress. 
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3.8 Cell Dry Weight (CDW) 

Cell dry weights (CDW) of reference strain and FD11 were determined in triplicate,  

both in the presence and absence of propolis. Cell dry weight values of the reference 

strain and FD11 are shown in Figure 3.33. 

Figure 3.33: CDW values of the reference strain and FD11 with propolis stress and 

without propolis stress, at 30 h of cultivation. 

 

As shown in Figure 3.33, RS and FD 11 had higher CDW values, compared to FD11 

and RS exposed to propolis. Reference strain had slightly higher CDW values than  

FD11,  both in the absence and presence of propolis stress. 

3.9 Metabolite Production by FD11 and RS 

Metabolite concentrations (residual glucose, glycerol, ethanol, and acetate) were 

measured using HPLC analysis. During 30 h of cultivation, samples were collected 

for metabolite analysis by HPLC. Standard curves for HPLC measurements of  

metabolites are shown in Figure 3.34. 
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     Figure 3.34: HPLC standard curves for glucose, glycerol, ethanol and acetate. 

Equations and R
2 

values are shown. 

Glucose consumption profiles of FD11 and the reference strain (RS)  in YMM 

medium with and without are  shown in Figure 3.35. 

Figure 3.35: Change of glucose concentration (g/L) versus time (h) during 

cultivation of RS and FD11 with and without propolis. 

RS and FD11 consumed glucose similarly when there was no propolis stress, but 

FD11  used glucose faster than RS in the presence of 200 µg/ml propolis stress. 

Glycerol  production of FD11 and the reference strain (RS)  in YMM medium with 

and without propolis during the growth experiment is shown in Figure 3.36. 
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 While FD11 and RS produced glycerol similarly in the absence of propolis, RS 

produced more glycerol compared to  FD 11 in the presence of propolis stress. FD11 

also seems to have consumed glycerol during later phases of growth. 

Ethanol  production of FD11 and the reference strain (RS)  in the absence and 

presence of propolis  during the growth experiment is shown in Figure 3.37. 

 

Figure 3.37 : Ethanol production (g/L) versus time (h) during cultivation of RS and 

FD11 with and without propolis. 

Figure 3.37 shows  that FD11 produced more ethanol than RS in the absence of 

propolis. RS and FD11 produced more ethanol in the presence of propolis, compared 

to control conditions. Acetate production of FD11 and the reference strain (RS)  in 

YMM medium with and without propolis during the growth experiment is shown in 

Figure 3.38 
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Figure 3.36: Glycerol production (g/L) versus time (h) during 

cultivation of RS and FD11 with and without propolis. 
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 Figure 3.38: Acetate production (g/L) versus time (h) during cultivation of RS and 

FD11 with and without propolis.  

According to HPLC results, RS and FD11 produced acetate similarly, in the absence 

of propolis. In the presence of propolis, FD11 produced more acetate  compared to  

RS in exponential phase, but according to the 30
th

 hour measurement, RS had higher 

acetate levels than FD11. FD11 seems to have partially consumed acetate during 

later hours of the cultivation (Figure 3.38). 

3.10 Determination of Trehalose and Glycogen Content by Enzymatic Reaction 

Reference strain and FD11 culture samples were collected at the 30
th

 hour of 

cultivation. OD600 measurements and enzymatic assay were used to determine 

trehalose and glycogen content of the cultures. Also, cell dry weight measurements, 

were performed for calculating glycogen and trehalose concentrations. 

Table 3.12: Intracellular trehalose and glycogen contents (mg glucose equivalents 

mg
-1 

CDW) of RS and FD11 cultures. 

Storage 

carbohydrate 
RS 

RS+200µg/mL 

Propolis Stress 
FD11 

FD11+200µg/mL 

Propolis Stress 

Trehalose 

content 
0.016±0 0.022±0 0.019±0.002 0.030±0.05 

Glycogen 

content 
0.017±0.006 0.027±0.004 0.021±0.007 0.037±0.017 

FD11 that was exposed to propolis stress had the highest amounts of trehalose and 

glycogen, and FD11 strain produced more glycogen and trehalose compared to the  

reference strain, both in the presence and absence of propolis. Also, reference strain 
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had  higher trehalose and glycogen production, when propolis stress was applied 

(Figures 3.39 and 3.40 ). 

Figure 3.39: Trehalose contents (per cell dry weight) of RS and FD11 in the 

presence and absence of propolis. 

 

 

Figure 3.40: Glycogen contents (per cell dry weight) of RS and FD11 in the 

presence and absence of propolis. 

3.11 Estimation of ROS Levels 

ROS assay allows determination of the amounts of reactive oxygen species. 

Intracellular oxidation levels of RS and FD11 were determined in triplicate,  with 

and without 150 µg/ml propolis. Reference strain had higher ROS production levels, 

both in the presence and absence of propolis. When strains were treated with 

propolis,  ROS production decreased both in RS and FD11. ROS levels of FD11 

were generally lower than those of RS, both in the presence and absence of propolis 

(Figure 3.41). 
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Figure 3.41: ROS production of RS and FD11 in the presence and absence of 150 

µg/ml propolis. 
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4. DISCUSSION AND CONCLUSIONS  

Propolis-resistant S.cerevisiae mutant populations and individuals were obtained in 

this study, by using an inverse metabolic engineering approach. After propolis-

resistant mutant populations were obtained, physiological analyses were made: 

Twelve individual mutants were randomly picked from the final mutant population 

and their resistance levels were investigated firstly by spot assay. MPN method was 

then applied for quantification of propolis stress resistance levels of mutant 

individuals, and cross-resistance tests were performed to determine any potential 

cross-resistance against other stress factors. Also, genetic stability tests were applied 

to selected mutants with the highest propolis resistance, to verify the persistance of 

propolis resistance. Finally, growth profiles of the propolis-resistant mutant (FD11) 

and the reference strain were obtained in YMM with and without propolis. 

Reference strain (905) and initial mutant population (906) were screened under 

varying propolis stress levels to determine the initial stress level for selection 

experiments. Screening results showed that both 905 and 906 exhibited no growth 

after 500 µg/ml propolis concentration at 48 h of incubation. At 150  µg/ml propolis 

concentration, there was a slight difference between the OD600 values of 905 and 906. 

150 µg/ml propolis level was chosen as the initial propolis level and it was increased 

by 10 µg/ml gradually while obtaining mutant populations. Totally, 57 mutant 

populations were obtained and their survival rates decreased when propolis levels 

were increased. While 650 µg/ml propolis was inhibitory to 905 and 906 at the 

beginning, the selected final population derived from 906 gained propolis resistance 

and showed growth even at 710 µg/ml propolis concentration. 

Twelve individual mutant colonies were randomly chosen from the final population, 

upon plating on solid YMM. Colonies were named as FD1 to FD12. Spot assay was 

applied to all mutants, the reference strain and the last population to determine their 

propolis resistance levels. According to spot assay results, all mutant colonies had 

higher resistance against propolis stress, compared to the reference strain. Among 

them, FD7, FD8, FD10, FD11, and FD12 were determined as the most resistant 
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mutants. Also, for quantitative estimation of propolis-resistance levels, MPN method 

was applied to mutants, reference strain and the last population. According to MPN 

results, the reference strain could not grow at 710 µg/ml propolis concentration while 

mutant individuals could grow at that concentration. Mutant colonies could grow 

very well at 200 µg/ml propolis concentration, and FD10 and FD11 had the highest 

propolis resistance for all concentrations tested. 

Cross-resistance analyses were applied to identify possible relationships between 

propolis stress and other stress types. Cross-resistance results obtained with spot 

assay showed that mutant colonies were cross-resistant against 0.8 mM NiCl2, 40 mM 

NH4FeSO4, 10 mM caffeine and 150 µg/ml geneticin, but sensitive to 10% (v/v) 

ethanol and 0.5 mM H2O2. Additionaly, colonies were not cross-resistant against 

CuSO4, CoCl2, ZnCl2, MgCl2, MnCl2, AlCl3, NaCl and acetic acid stress. Cross-

resistance or sensitivity levels of FD11 and the reference strain to other stress factors 

were quantified by MPN assay. According to MPN results, resistance of  FD11 to 

caffeine and NiCl2 was confirmed, but unlike spot  assay results, FD11 was not found 

to be resistant against NH4FeSO4 stress. The sensitivity of FD11 to ethanol stress was 

also confirmed by MPN assay. 

Bee products may include very low concentrations of some metals like Cd, Ni, Pb, 

Fe, Mg and Zn. Honeybees collect samples away from their hives or their hives may 

be located in regions of high industrial or agricultural activity. Nickel content in 

propolis was not correlated with any of the other metals tested (Formicki et al., 

2006). The cross-resistance of individual mutants against nickel stress may result 

from low levels of nickel that may be present in propolis samples. 

Caffeine is a natural analogue of purine bases that causes pleiotrophic effects 

inducing cell death (Kuranda et al., 2006). It is also known that cell apoptosis and 

necrosis are induced by propolis (De Castro et al., 2011). The similar effects of  

propolis and caffeine and the caffeine cross-resistance of propolis-resistant mutants 

may help better understand the molecular mechanisms of propolis resistance. 

According to cross-resistance results, individual mutants were sensitive to hydrogen 

peroxide. Propolis shows its effects by three different ways: (1) it promotes 

protection of membrane lipids from H2O2 stress, (2) O2 stress provides menadione, 

and propolis resumes redox status by scavenging ROS. (3) it activates Cu/Zn-
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superoxide dismutase, one of the most important antioxidant enzymes (De Castro et 

al., 2011). Propolis may have exhibited its antioxidant property without protecting 

membrane lipids from H2O2 stress. Thus, propolis-resistant mutants became sensitive 

to H2O2 stress. 

Propolis may increase ROS generation, and it is more lethal when S. cerevisiae 

grows in the presence of  glycerol and ethanol as a carbon source (De Castro et al., 

2011). Spot assay and MPN assay results showed that propolis-resistant mutant 

(FD11) was sensitive to ethanol. 

Genetic stability test results showed that the propolis-resistance of FD11 and FD10 

did not decrease upon successive cultivation in nonselective media. Thus,  FD10 and 

FD11 are genetically stable. As FD11 is more resistant to propolis than FD10, it was 

chosen for detailed physiological analysis and growth experiments, as the propolis 

hyper-resistant mutant individual.  

Growth curves were obtained both in the presence and absence of 200 µg/mL  

propolis, and according to results, FD11 and the reference strain grown in YMM and 

FD11 grown in YMM containing 200 µg/mL propolis had short lag phases, 

compared to the reference strain incubated at 200 µg/mL propolis. Additionally, 

under propolis stress conditions FD11 had a higher growth rate than the reference 

strain. Also, the reference strain entered the exponential phase and stationary phase 

later, when grown in the presence of 200 µg/mL propolis, compared to FD11. Cell 

dry weight measurements revealed that strains grown under control conditions had 

higher CDW than strains grown under propolis stress conditions. 

HPLC analysis was performed to reveal potential metabolic differences between the 

reference strain and propolis-resistant mutant. In control medium, FD11 and RS 

consumed glucose at the same level at different hours. However, in  medium 

containing 200 µg/mL propolis, FD11 consumed glucose more rapidly, compared to 

the reference strain. Under stress conditions, the reference strain grew slowly and 

also consumed glucose slowly. FD11 and the reference strain produced other 

metabolites at similar levels in control medium. When propolis stress was present, 

FD11 produced high levels of acetate, ethanol and glycerol during exponential phase 

of growth. Also, according to HPLC results, FD11 produced higher concentrations of 
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ethanol compared to the reference strain under both control and propolis stress 

conditions. 

Trehalose and glycogen are storage carbohydrates and stress protectants. (François & 

Parrou, 2001). FD11 accumulated higher trehalose and glycogen than the reference 

strain. This increase may result from propolis stress.  

ROS assay results showed that FD11 had lower amounts of reactive oxygen species 

compared to the reference strain, under both control and propolis stress conditions. 

When yeast cells are exposed to propolis, intracellular oxygen levels decrease. 

Changes also occur at mitochondrial proteome level, including antioxidant proteins  

and propolis resumes redox status by scavenging ROS (De Castro, 2012). 

In brief, highly propolis-resistant and genetically stable mutant individuals were 

successfully obtained by inverse metabolic engineering strategy. Two mutants (FD10 

and FD11) were found to be more resistant to propolis than the others tested. 

Physiological analyses showed that mutant colonies had gained cross-resistance or 

became sensitive to other stress types. Genomic, transcriptomic and proteomic 

analyses to be performed could provide significant information to understand the 

molecular basis of propolis-resistance and response in the model eukaryote S. 

cerevisiae and more complex eukaryotes. 
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