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Quantifying the critical thickness of electron
hybridization in spintronics materials
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M. Oura®, K. Tamasaku8, A.Y. Petrov'!, P. Graziosi?®, F. Miletto Granozio®19, M. Cavallini4, G. Vinai', R. Ciprian1,
C.H. Back", G. Rossi'2, M. Taguchi&]z, H. Daimon'?, G. van der Laan’ & G. Panaccione'

In the rapidly growing field of spintronics, simultaneous control of electronic and magnetic
properties is essential, and the perspective of building novel phases is directly linked to the
control of tuning parameters, for example, thickness and doping. Looking at the relevant
effects in interface-driven spintronics, the reduced symmetry at a surface and interface
corresponds to a severe modification of the overlap of electron orbitals, that is, to a change
of electron hybridization. Here we report a chemically and magnetically sensitive depth-
dependent analysis of two paradigmatic systems, namely La;_,Sr,MnO3 and (Ga,Mn)As.
Supported by cluster calculations, we find a crossover between surface and bulk in the
electron hybridization/correlation and we identify a spectroscopic fingerprint of bulk metallic
character and ferromagnetism versus depth. The critical thickness and the gradient of
hybridization are measured, setting an intrinsic limit of 3 and 10 unit cells from the surface,
respectively, for (Ga,Mn)As and La; _,Sr,MnQOg, for fully restoring bulk properties.
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he effectiveness of electron hybridization in solids and its

competition with Coulomb interactions plays a funda-

mental role in novel physical phenomena, often termed as
quantum propertiesl’z. In the context of spintronics, magnetic
and electronic reconstructions at interfaces have been often
reported, with their origin lying in the delicate interplay between
charge, spin and orbital degrees of freedom!~>. Looking at the
strength of electron hybridization and localization, near a surface
or interface the reduced translational symmetry breaks or severely
alters the electronic properties with important consequences
for, for example, the magnetic order parameter, transition
temperature and metallic/insulator character, thus potentially
limiting the achievement of the desired performance in interface-
based devices®8. Moreover, surface- and defect states play critical
roles in mediating ferromagnetism, due to the modified chemistry
of the first top layers.

Prototypical spintronics systems displaying such effects are
the rare-earth-doped manganites, in particular —metallic
La; _,Sr,MnO; (LSMO), and the most representative diluted
magnetic semiconductor, (Ga,Mn)As. In both systems, the
relationship between electronic reconstruction and magnetic
properties and the competition between electron localization
and hybridization are relevant ingredients in determining their
Curie temperature (Tc) and ferromagnetic state*12. In LSMO,
the mechanism and the reason for the modified electronic
properties of the surface region are still open questions; in
(Ga,Mn)As a carrier depletion zone up to 1 nm has been found in
the vicinity of the surface, with modified ferromagnetic order!!.
Moreover, a remarkable example of altered electronic properties
has been reported in the so-called magnetic ‘dead layer’ at the
surface of otherwise ferromagnetic bulk systems'>~17.

To date, bulk sensitive techniques, exploiting the combination of
aberration-corrected transmission electron microscopy and elec-
tron energy loss spectroscopy was recently able to quantify the role
of the charge-transfer screening length at the interface LSMO/PZT
(lead zirconate titanate)!’, and revealed interfacial electronic
reconstruction and a change in Tc near the metal-insulator
transition in both LSMO/STO and (Ga,Mn)As/GaAs (refs 11,18).
Furthermore, surface-sensitive tools, such as angular resolved
photoemission spectroscopy (PES) and scanning probes, gave clear
indications of a negligible coherent spectral weight at the Fermi
level in bilayer LSMO crystals, with a more fragile metallic and
magnetic character at the surface than in the bulk!®!%,

Although general agreement has been reached on the
observation that both metallicity and ferromagnetism of these
systems are reduced at the surface, the determination of the
crossover between surface and bulk properties, that is, what the
‘critical’ thickness of such an effect is, and whether the crossover
is smooth or abrupt, needs a more complete, and preferably
quantitative, description, with particular attention to the
modification of the bulk electronic properties when approaching
the surface.

Here we report results obtained on thin films of metallic LSMO
(with x=0.33 and x=0.35) and of (Ga,Mn)As (with Mn doping
between 8 and 13%) using core-level X-ray PES. The large
tuneability of the photon energy offered by synchrotron radiation
is exploited to significantly vary the information depth from the
surface region (<104, corresponding to a few atomic layers)
down to the bulk (>100 A; refs 20,21). We provide direct and
quantitative information of the evolution from metallic (bulk) to
insulating (surface) character of these materials, together with a
clear indication of the behaviour of hybridization/localization of
the bulk electronic states upon both doping and depth. Core-level
photoemission in the hard X-ray regime (hard X-ray
photoelectron  spectroscopy (HAXPES), with hv>2keV)
supported by model calculations provides an element-specific

2

spectroscopic fingerprint of the electron hybridization. Distinctly
different electron-screening channels exist at the surface and in
the bulk, with the bulk one severely suppressed near the surface,
where a stronger localization is found. Moreover, the bulk-like
metallicity gradually decreases across a thickness of almost
10 unit cells (u.c.) and more than 2u.c. (for LSMO and
(Ga,Mn)As, respectively), eventually disappearing at the surface.
Our findings not only deepen the comprehension of interface
physics but also have a direct impact on tailor-made
functionalities in new devices.

Results

Variable depth information via PES. Thin films of LSMO
(doping value x=10.33 and x=0.35, grown on LSAT(100) and
SrTi05(100)) and of (Ga,Mn)As (Mn doping between 8 and 13%,
grown on GaAs(100)) were measured. Figure 1 shows the Mn 2p
core-level spectra measured for (Ga,Mn)As (panels a and b) and
LSMO (panels f and g) epitaxial films, as a function of increasing
photon energy, that is, with increasing probing depth?*2!. The
lattice structures are sketched in Fig. 1 e,j, together with the depth
information accessible versus photon energy. Details of growth
and characterization can be found in the Methods section and
Supplementary Information. Additional low binding energy (BE)
features, labelled as well-screened satellites, are clearly observed
for both spin-orbit partners when entering the regime of
HAXPES, in agreement with previous reports’>>>. Such
features are severely reduced or absent at the lower photon
energies, that is, for enhanced surface sensitivity, as highlighted in
panels b and g, where the evolution of the intensity of the low-BE
satellites versus photon energy is quantified by a line shape
analysis (Supplementary Fig. 13). It is important to emphasize
that the critical depth at which the satellite intensity appears is
much larger for LSMO compared to (Ga,Mn)As, although results
are obtained for the same element, Mn, and minimal differences
in surface roughness are found (Supplementary Figs 10-12). We
observe that the energy separation between the well-screened
satellites and the main peak varies versus photon energy, as
highlighted by red thick marks. We further note that in both
systems the intensity increase of the low-BE satellites is gradual,
with no indication of a sharp transition.

Quantifying hybridization/localization of electronic states. The
term well-screened for the low-BE features seen in Fig. 1 is strictly
linked to the screening of electrons after a core hole is created in
the photoemission process. A sketch of the energy levels of
ground and final states is presented in panels a and c of Fig. 2 for
(Ga,Mn)As and LSMO, respectively. The BE of each possible final
state depends on how effective the core hole is screened by the
valence electrons, and taking into account the hybridization V
between valence and conduction electrons, a state can be pulled
down in energy by an amount Q due to the core-valence Cou-
lomb interaction. In this condition, the core-hole potential cre-
ates an excitonic state with a hole in the 3d band. In the well-
screened state a valence electron, via hybridization V, fills this
hole; in the poorly screened state, this hole stays empty.

A theoretical understanding of the satellites features in core
levels of strongly correlated systems dates back several decades
starting from observations in 4d- and 4f-based materials?®-25,
followed by more general models for 3d transition metals?®>C.
More recently, well-screened satellites have been reported as bulk-
only features in core-level HAXPES spectra of 3d transition
metal oxides (vanadates, manganites) and magnetic diluted
systems?>~2>3132 Following these results, improved theoretical
approaches have been presented, based on multisite cluster model,
Anderson impurity model and effective coupling at the Fermi
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Figure 1 | Depth-dependent PES results (a,b) Photon energy-dependent Mn 2p core-level spectra of (Ga,Mn)As (13% Mn-doped GaAs, measured with
linear polarization at T=300K) and (f,g) Mn 2p core-level spectra of LSMO (Lag ¢75r0.33Mn0O3, measured with linear polarization at T=210K). The
spectra were shifted vertically for ease of comparison after integral background subtraction. The multiplet structures of the 2p;,, and 2ps,, are clearly
resolved. The arrows indicate the position of the well-screened satellites for each spin-orbit partner. (b,g) Expanded view of the Mn 2p3,, peak around
640eV BE ((b) (Ga,Mn)As, (g) LSMO). The evolution of the well-screened peak intensity is shown as a function of increasing photon energy (dotted
curves are experimental spectra, filled peaks are the result of a fitting procedure described in the Supplementary Information). Note that at hv=1,000eV
the well-screened intensity is clearly present in (Ga,Mn)As, while almost absent for LSMO. Calculated spectra for (Ga,Mn)As (c¢) and LSMO (h) from
models described in the text with varying hybridization parameter V and V* for (Ga,Mn)As and LSMO, respectively; the spectra are shifted vertically for
clarity. (d,i) Close-up of the Mn 2p3,, peak; the thick marks indicate the different energy separations between main and satellite peak versus hybridization
value V and V*. (ej) Sketch of the depth of information and crystal structures of (Ga,Mn)As and LSMO. The length of the arrows is proportional to the
inelastic mean free path Zjmep in Mn and attenuation length, calculated as defined in refs 20,21, where the information depth corresponds to three times the
inelastic mean free path Amep. The values of Ajmep indicate the number of u.c. probed with the respective photon energy, identified by the colour code.

level?433-35, By quantifying the variation of the hybridization
parameter, the here-performed model calculations provide
evidence of the link between the satellites and the metallic/
insulating character of the system. Calculated spectra are shown in
Fig. 1 for (Ga,Mn)As (panels ¢,d) and LSMO (panels h,i).

Comparison with calculations in Mn-doped GaAs.
Photoemission spectra for the transitions 3d"—2p°3d" in
(Ga,Mn)As are calculated using an Anderson impurity model,

taking into account configuration interaction in the initial and
final states®>. A scheme of the initial- and final-state configuration
is presented in the insets of Fig. 2. In the calculation,
A:E(d6£)—E(d5) is the ligand-to-3d charge-transfer energy,
U is the 3d-3d Coulomb energy and Q is the 2p-3d Coulomb
energy (we will omit L in the notation, as there presence is
clear from charge neutrality). The configurations are mixed
by hybridization, which is described by a parameter V
(see Methods). The A, U and Q values give the relative energies
of the average configuration as E(3dY)= —A+U=3eV,
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Figure 2 | Evolution of the hybridization parameters V and V*. Comparison between experimental and theoretical data regarding the energy separation
between well-screened and main peaks. The experimental data of (Ga,Mn)As (blue filled squares, a) and LSMO (blue filled squares, b) are plotted versus
the calculated inelastic mean free path (left vertical axis) and compared with the theoretical data (red filled circles in both panels) corresponding to the
value of the hybridization parameter Vand V* (right vertical axis in eV). Lines through the points are guides for the eye. The horizontal error is estimated as
the measured experimental energy resolution, which is always larger than the positioning uncertainty of the fitting functions. The vertical error is the 10% of
the IMFP value corresponding to each photon energy, according to the TPP-2M formula. The value of mean escape depth Ajmep is calculated as the product
of the inelastic mean free path and the cosine of the angle between the normal to the sample surface and the photoelectron direction (6 ~3°).

The separation between the peaks follows the trend predicted by theory. In the insets: Schematic energy level diagram of the 3d configurations before

hybridization in the initial and final state (in presence of a core hole), following the theoretical models described in the text. The configuration-averaged
energies of the ionic configurations have been used, neglecting multiplet, crystal field, and hybridization effects in the diagram. It should be kept in mind,

however, that all these effects shift and spread the levels.

E(Bd®)=0eV and E(3d®)=A=1¢V, and for the final state
as E(261753d4) =-A+U+Q=8eV, E(2p°3d°)=0eV and
E(2p°3d°) = A — Q= —4eV. This means that, while the ground
state has primarily d° character, the lowest final state has mainlg
d® character. The final state 2p°3d® is pulled down below 2p°3d

by an energy ~ Q. Thus, the order of the energy levels 3d° and
3d° is reversed in the final state, which means that the 2p°3d° is a
poorly screened state and the 2p>3d® a well-screened state with an
extra d-electron. Here we adopt values A=1eV, U=4eV,
Q=>5¢eV similar as for (resonant) PES30-38 and X-ray absorption
spectroscopy>’ of (Ga,Mn)As, In Fig. 1c one observes that a good
agreement with the bulk’ spectrum (orange curve in Fig. la) is
obtained with A=1eV, U=4eV, Q=5¢eV and V=25¢V,
confirming the coexistence of localized and itinerant electrons in
the bulk. The low-energy PES spectrum, representative of the
more-localized surface region, is well reproduced with V=1.5.
Overall, a good agreement is found between experiment and
calculation concerning the change of intensity and the relative
position of satellite and main peak. The main difference with the
experiment is that the calculation overestimates the intensity of
the poorly screened peak. This is because the model does not
include all possible additional screening channels, which can take
away intensity from the screened peak, smearing out the
calculated leading peak.

Comparison with calculations in LSMO. The Mn 2p HAXPES
spectra were calculated within the extended configuration inter-
action model, described in previous lines of work?434. As basis
states, configurations 3d*, 3d°L and 3d°C were used. The 3d°C
represents the charge transfer (CT) between Mn 3d and the
doping-induced coherent state at Ep, labelled C. An effective
coupling parameter V* for describing the interaction strength
between the Mn 3d and coherent state is introduced, analogous to

4

the Mn 3d-O 2p hybridization V. Two parameters are varied: the
CT energy between Mn 3d and the new C states (A*) and the
hybridization between Mn 3d and coherent states (V*). Except for
these two parameters, all other parameter values are fixed. In
Fig. 1h calculated spectra for three different hybridization values
V* are shown. Both the low-energy feature around 640 eV BE and
a broad shoulder appearing at 644 eV with large probing depth
are well reproduced by the calculations. The well-screened peak
in the calculation is analysed to originate from the 2p°3d°C
configuration of the final state, and increases in intensity with
increasing V*.

The evolution of satellite peaks in LSMO is qualitatively similar
yet quantitatively different with respect to (Ga,Mn)As: a sizeable
intensity of the low-BE feature in LSMO is found at much larger
depth, as indicated in Fig. le)k. It is important to underline that
the well-screened peaks correspond to the lowest-energy state.
Compared to the higher-energy states, this low-energy state is less
mixed with other states, which means their linewidth should be
narrower. This characteristic is confirmed convincingly by the
experimental results.

A further confirmation that the well-screened peak is a
spectroscopic fingerprint of electron hybridization, that is, a
measure of the truly bulk metallic character, is found from the
comparison between the experimental data and theoretical
predictions regarding the energy separation between main peak
and satellite peak. In (Ga,Mn)As (Figs 1b,d and 2a), the
theoretical description correctly explains the strong decrease in
the energy separation for the main-to-satellite peak (red marks in
Fig. 2d) going from V=1.0eV (surface) to V=2.5eV (bulk),
with a larger discrepancy towards the surface limit. Although a
good agreement is found between experiment and theory,
theoretical data overestimate the energy separation in the range
1<V<2eV. Calculations show that the poorly screened peak
consists in fact of more than one peak. In the experimental results
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we plot the energy distance to the broad main peak because the
experiment cannot resolve the fine structure as theory does
(see Supplementary Information). The same general agreement is
also found in LSMO (Figs 1g,j and 2b) with an overall trend for
increasing the energy separation between peaks when the
hybridization V* increases. The separation between well-screened
peak (2p°3d°C) and main peak (2p°3d°L) peaks increases with A*
and with the hybridization V* between 3d* and 3d°C configura-
tions. The strength of hybridization V* also influences their
relative intensities. Basically, the smaller value of A4* forms a peak
at much lower BE side. Previous reports for metallic LSMO show
that the separation between the main peak and the well-screened
feature increases with hole-doping until x = 0.4, and reduces for
x=0.55 (ref. 22). In addition, this behaviour matches well with
the metallic/magnetic character owing to the fact that, following
the phase diagram, hole-doping with increasing x produces a
ferromagnetic phase in LSMO with larger T and lower resistivity
up to x=0.4 (refs 22,40). Consistent with the decrease of the
well-screened feature at low photon energies (Fig. 1f,g), a smaller
peak separation suggests a smaller effective hole-doping and a
lower metallicity at the surface. It is important to underline that
the observed evolution of the energy separation not only confirms
the validity of our approach but could also be used as a signature
of the competition between localized and delocalized electronic
character.

Critical thickness of electronic hybridization. Having
ascertained that the presence and the evolution of the well-
screened peaks are spectroscopic fingerprints of the electronic
hybridization, we now deepen our analysis to a more quantitative
aspect. Following the results of Figs 1 and 2, the attenuation
of the low-BE satellites versus probing depth can be modelled
by a fitting procedure described in the Supplementary Fig. 3
displays the value of the inelastic mean free path (IMFP) Apgp
at different photon energies versus the ratio between the area
of the satellite peak and the total area of the Mn 2p;),

formula for (Ga,Mn)As and LSMO?!4!, The curves through the
points in Fig. 3 are the best fits to the data of an exponential
attenuation function of the form I(1)=A exp (— B/4), where
A indicates the contribution of the satellite to the total area of the
spectrum and B represents the thickness of a surface layer where
the screening channel associated to the extra peak is considered as
totally absent, that is, a layer fully attenuating the intensity of the
satellite present in the bulk. This simple model describes the
attenuation of the bulk electronic hybridization when going
towards the surface of the solids; hence, the thickness B is a
measure of the spatial extension of the modified electronic
properties or, more precisely, the depth at which both
hybridization and metallicity start to be modified with respect
to their bulk values. A sketch of the solids with these two critical
thicknesses is presented on the right (GaMnAs) and left (LSMO)
sides of Fig. 3. We obtain a value of (12 £ 1) A for (Ga,Mn)As and
(40 £2) A for LSMO, corresponding to more than 2 and almost
10 u.c., respectively. These values should be compared with the
10 A-thick Mn depletion reported in (Ga,Mn)As (ref. 11), and
with X-ray magnetic spectroscopy and transport results on thin
LSMO films, where altered ferromagnetism and metallicity have
been observed up to 30 A of thickness from the surface*>~°.

Strain and temperature dependence. Strain-driven interface
engineering is a relevant issue for spintronic heterostructure, and
recent results have shown that the symmetry breaking induced by
lattice strain influences the electron occupancy of the out-of-
plane orbitals in the topmost surface layer*”. To investigate the
effect of strain on our findings, we have measured the critical
thickness of bulk metallic screening using the same method of
Fig. 3, on LSMO films (100 u.c. thick each) epitaxially grown on
(001)-oriented SrTiO; (STO) and on SrLaAlO, (SLAO)
substrates, producing, respectively, 1% tensile strain and 3%
compressive strain (Supplementary Figs 1-8).

As shown in Fig. 4e, strained and unstrained films display the
same main spectral features, with the exception of LSMO grown

spectrum. Here /pyep was obtained from the TPP-2M on SLAO, where a slightly broader satellite is observed. Such
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Figure 3 | Critical thickness determination. Evolution of the ratio between the area of the extra peak and the main peak as a function of the inelastic mean
free path (filled circles for LSMO; filled squares for (Ga,Mn)As). The vertical error bar is calculated, as in Fig. 2, to be the 10% of the absolute value of the
IMFP. The horizontal uncertainty is calculated by means of error propagation from the uncertainty on the parameters of the fitting functions. The solid hued
lines show the curves obtained by fitting the experimental points with the function /() = A exp(— B/A). The dashed black lines show the extrapolation of
the same functions outside the data range. The light green (red) shaded area shows the value corresponding to the critical thickness, that is, the value of
the B parameter obtained from each fit, resulting in 12 A for (Ga,Mn)As and 40 A for LSMO. The two blocks on left and right sides, representing
respectively LSMO and (Ga,Mn)As, give a three dimensional image of the change of electron hybridization when moving from the bulk to the surface.
Dark colours correspond to a zone where hybridization is reduced with respect to its bulk value. The filling is hued from blue to green (red) in the vertical
direction according to the fitted function for (Ga,Mn)As (LSMO), with blue corresponding to zero and green (red) corresponding to the maximum value

assumed by the function in the range 0-100 A.
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(a,c) Mn 2p core-level spectra measured with left- and right-circularly
polarized X-rays in LSMO (c) and (Ga,Mn)As (a). Differences (open
circles) are shown at the bottom of the panels. Note that the largest
magnetic signal is located at the energy position of the well-screened
satellites. (b,d) Temperature dependence of the Mn 2p3,, core-level
spectra. In LSMO (d), a shoulder is still visible above T (345K), while the
intensity of the well-screened satellites, responsible of the large dichroism
observed, is totally suppressed. In (Ga,Mn)As, (b), the intensity variation of
the well-screened satellite is highlighted in the inset. The maximum
increase is observed when crossing Tc =70K. (e) Mn 2p core level of
LSMO thin films (100 u.c.) grown on three different substrates: SrTiO5
(STO), (LaAlO3)3(Sr,TaAlOg)o 7 (LSAT), and SrLaAlO4 (SLAO), measured
at hv=5940¢eV and T =200 K. Due to the lattice mismatch, STO induces a
1% tensile strain and SLAO a 3% compressive one. Films grown on LSAT are
considered as relaxed. No significant difference is observed in their line
shape, except a small decrease in intensity in the case of the compressive
strain (red spectrum). Calculated critical thicknesses, using the same
method of Fig. 3, give 41+7 A in LSMO/SLAQ, while no difference within
the error bar is found in the case of LSMO/STO.

difference is attributed to the lower Curie temperature of strained
films, as explained in the next section. The critical screening
thickess obtained from the application of the fitting procedure is
41+7 A in LSMO/SLAO, while no difference within error bars is
found between the tensile-strained LSMO/STO films and the

unstrained ones grown on LSAT. These results show that,
although sensitive to the change of electronic hybridization across
the entire thickness of the film, core-level photoemission does not
provide a direct probe of orbital occupancy and/or symmetry
breaking at the surface as the X-ray absorption technique used in
ref. 47, suggesting that the evolution of the bulk metallic
screening across the thickness of the sample could be attributed
to dimensionality effects.

We now turn to the influence of temperature on the magnetic
properties. Chemical sensitive magnetic information can be
obtained by detecting the Mn 2p core-level spectra using left-
and-right circularly polarized X-rays (magnetic circular dichro-
ism in HAXPES), as shown in panel a Fig. 4a for (Ga,Mn)As and
panel ¢ for LSMO, respectively. A large difference, the magnetic
circular dichroism, is observed with the well-known down-up
(2p3/2), up-down (2py),) line shape32’48’49. It is important to
emphasize that, in both systems, the largest magnetic signal is
observed at the energy position of the well-screened satellites,
confirming the major role of delocalized electrons in establishing
the mechanism of ferromagnetism!'>232432_ Furthermore,
Fig. 4b,d shows that the temperature also influences the relative
intensities of the well-screened and poorly screened peaks. In
(Ga,Mn)As, a clear change in the relative intensity of the main
and satellite peaks is visible when crossing Tc=70K, as
previously reported?3. As for LSMO, the inset of panel d reveals
a fine structure of the well-screened satellites, where: (i) a weak
shoulder persists above T¢ (345 K), corresponding to a multiplet
structure not directly linked to ferromagnetic properties and (ii) a
large decrease of spectral weight is observed, connected to the
change of the magnetic order parameter, confirming previous
results on La; _,Ba,MnOj (ref. 50). In this regime of doping, the
bilayered manganites have a concomitant metal-insulator and
ferromagnetic-paramagnetic  transition as a function of
temperature and the well-screened satellite disappears above
Tc (ref. 25). It should be noted that the decrease of the well-
screened satellite intensity follows a bulk-like behaviour and does
not display the well-known rapid decrease usually observed in
surface-sensitive results®!. Although the largest dichroism,
corresponding to the presence of a long-range magnetization, is
observed where delocalized states are, a contribution to
magnetism is also arising from the rest of the spectrum, that is,
localized or poorly screened part. This further corroborates the
fact that the magnetism is reduced in absence of the extra-peak
screening channel, although not suppressed.

Discussion

We provide clear evidence from the study of two paradigmatic
spintronics materials that the electronic hybridization strength
varies significantly from its bulk value when approaching the
surface layers. The dimensionally dependent role of (de)localized
electrons is revealed, affecting both the ferromagnetic and
metallic behaviour. Concerning the spatial extension of the
altered electronic properties, the interplay between carrier
localization and metallicity in (Ga,Mn)As is restricted to the
near-surface region (~ 10 A) in agreement with the observed loss
of long-range magnetization and Mn depletion leading to a
superparamagnetic-like response!!. As for LSMO, previous
reports suggested the existence of decoupled magnetic and
metallic critical thicknesses due to localization effects in thin
films, with a larger extension (up to 30 A) of the metallic
thickness*>4+52-54 Our results corroborate this hypothesis,
giving a quantitative estimate of the crossover thickness range
for a film to fully develop bulk-like hybridization values. It is
important to emphasize that the spectroscopic fingerprints we
have used and modelled are representative of a bulk-only
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character: the strong attenuation of the well-screened feature
measured close to the surface is directly connected to an altered
metallicity, yet not suggesting that this metallicity is completely
suppressed. Moreover, we have shown that both localized and
delocalized electrons contribute to both electronic and magnetic
character, opening the perspective of a direct comparison between
the critical thickness for the electronic structure with the critical
thickness of the magnetic properties. Finally, our data provide
evidence that a difference in the overall film properties will be
always present due to the reduced dimensionality, hence due to
the modified hybridization, especially when the film is not thick
enough and/or at interfaces. The depth extension of the surface/
interface electronic charge distribution, and its control via
atomic-precision growth techniques, will conceivably open
alternative routes for engineering complex heterostructures.

Methods

Growth. La 5510 35MnO; (LSMO) thin films were grown by molecular beam
epitaxy in a dedicated chamber located at the APE beamline (NFFA facility, Trieste,
Italy). LSMO films of different doping and thickness have been grown. Samples
used in the present report are grown on Lag 1551 g2Alg s0Tag.410;5 (LSAT), that is,
strain relaxed, and have a thickness of 100 u.c. (~400 A), with the ¢ axis oriented
perpendicularly to the surface. Growth and characterization of strained films are
described in Supplementary Material. The ferromagnetic (Ga,Mn)As films

(Mn doping level between 6 and 13%) were grown by molecular beam epitaxy on
GaAs substrates using a modified Veeco Gen II system at the University of
Regensburg, Germany, with a Mn doping range between 6 and 13%. Samples
measured in present report have 200 A of thickness and 12.5% of doping, unless
reported otherwise. (Ga,Mn)As films were measured as-grown, in order to avoid
segregation of Mn towards the surface after post-annealing treatment. Details of
structural and magnetic characterization can be found in the Supplementary
Material.

HAXPES. Photon energy- and temperature-dependent HAXPES experiments were
performed at the 109 beamline at Diamond Light Source (Didcot, UK). The
beamline’s end station is equipped with a SCIENTA EW-4000 electron energy
analyser, mounted with the lens axis perpendicular to the X-ray beam. A grazing
incidence geometry (that is, normal photoelectron emission) has been used, that is,
3° angle between the X-ray beam and the surface plane, with an angular and ener%y
resolution better than 0.2° and 20 meV, respectively, resulting in a 30 x 250 pm
beam footprint on the sample. The position of the Fermi level Er and the overall
energy resolution have been estimated by measuring the Fermi edge of a poly-
crystalline Au foil in thermal and electric contacts with the samples. The overall
energy resolution (analyser + beamline) was kept below 250 meV over the entire
photon energy range. Magnetic dichroism in HAXPES spectra was acquired at
BL19LXU at Spring-8, Japan, equipped with a SCIENTA R4000-10kV electron
energy analyser at grazing incidence geometry (> 4° angle between the X-ray beam
and the surface plane) and a spotsize of 40 x 500 um? on the sample. The overall
energy resolution (analyser + beamline) was kept below 400 meV at the selected
photon energy.

Calculations. (GaMn)As. Photoemission spectra for the transitions 3d"—>2p53d"
in (Ga,Mn)As are calculated using an Anderson impurity model, taking into
account configuration interaction in the initial and final states?. The wave
functions are a coherent sum over d", d"+ 1L, d"T2[2,... configurations, where

L denotes a hole in the ligand orbitals. The average energies of the initial and final
state configurations are taken as points on a parabola, E(d") =n(A —5U) + %
n(n— 1)U and EQp°d") = E(2p°) + E(d") — nQ, respectively, where

A =E(d°L) — E(d) is the ligand-to-3d charge-transfer energy, U is the 3d-3d
Coulomb energy and Q is the 2p-3d Coulomb energy. The configurations are
mixed by hybridization with a parameter V= <d|H|L>.

The Hamiltonians, H, for the initial and final states of the Mn atoms are
calculated using Cowan’s code®, including tetrahedral crystal-field symmetry
(10Dg= — 0.5eV), spin-orbit and multiplet structure but neglecting band
structure dispersion. Wave functions are calculated in intermediate coupling using
the atomic Hartree-Fock approximation with relativistic corrections and by
reducing the Slater parameters to 80% to account for intra-atomic correlation
effects. No coherent state near the Fermi level has been included. When V is larger,
there will be more weight of the 3d°® configuration in the initial state, resulting in a
more intense ‘satellite’ peak at ~4 eV lower BE than the main peak, giving a d
count of 5.2 and ground state of 0.3% d°, 10.0% d*, 60.8% d°, 26.5% d® and 2.8% d’.

LSMO. A modified Anderson impurity model was used with six configurations
as basis states: 3d%, 3d51; and 3d5£. The 3d5g represents the CT between Mn 3d and
doping-induced coherent state at Er, labelled C. The V (I'), Udd and — Udc are the
hybridization between the TM 3d and the ligand states, the on-site repulsive
Coulomb interaction between TM 3d states and the attractive core-hole potential,

respectively. The standard Hamiltonian Hmult describes the intra-atomic multiplet
coupling between TM 3d states and that between TM 3d and TM 2p states. The
spin-orbit interactions for TM 2p and 3d states are also included. A further term
V*, is introduced to account for the ‘coherent’ screening channel at the Fermi
level??40, with an effective coupling parameter accounting for interaction strength
with 3d states. The CT energy for such additional state is A*. We used a value of
U=5.1Vh for the on-site Coulomb repulsion, Q=5.4¢V for the attractive
core-hole potential, A*=4.5¢eV for the CT energy, 10Dg=1.5¢V for the crystal
field and V(eg) =2.94eV. The reduction factors of V are R.=0.8, R, =0.9.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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