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Diabetes mellitus leads to increased Advanced Glycation End Products (AGE) production, which has been associated with
secondary diabetic complications. Type 1 diabetic patients undergoing pancreas-kidney transplantation (SPKT) can restore
normoglycemia and renal function, eventually decreasing AGE accumulation. We aimed to prospectively study AGE evolution
after SPKT. Circulating AGE were assessed in 20 patients, at time 0 (T0), 3 months (T3), 6 months (T6), and 12 months
(T12) after successful SPKT. Global AGE and carboxymethyllysine (CML) were analyzed, as well as advanced oxidation protein
products (AOPP). Skin biopsies were obtained at T0 and T12. Immunohistochemistry with anti-AGE antibody evaluated skin AGE
deposition. AGEmean values were 16.8±6.4 𝜇g/mL at T0; 17.1±3.8 𝜇g/mL at T3; 17.5±5.6 𝜇g/mL at T6; and 16.0±5.2 𝜇g/mL at T12.
CMLmean values were 0.94±0.36 ng/mL at T0; 1.11±0.48 ng/mL at T3; 0.99±0.42 ng/mL at T6; and 0.78±0.38 ng/mL at T12. AOPP
mean values were 130.1±76.8 𝜇Mol/L at T0; 137.3±110.6 𝜇Mol/L at T3; 116.4±51.2 𝜇Mol/L at T6; and 106.4±57.9 𝜇Mol/L at T12.
CML variation was significant (𝑃 = 0.022); AOPP variation was nearly significant (𝑃 = 0.076). Skin biopsies evolved mostly from
a cytoplasmic diffuse to a peripheral interkeratinocytic immunoreaction pattern; in 7 cases, a reduction in AGE immunoreaction
intensity was evident at T12. In conclusion, glycoxidation markers decrease, plasmatic and on tissues, may start early after SPKT.
Studies with prolonged follow-up may confirm these data.

1. Introduction

Patients with diabetes mellitus (DM) have increased produc-
tion of AGE, the Advanced Glycation End Products [1, 2].
AGE accumulation is only one of the proposed mechanisms
for cell and tissue injury in diabetes [3]. There are other
possible described mechanisms, such as increased sorbitol

formation through the polyol pathway [2, 4], increased
protein-kinase C activation [1, 2, 5], and the hexosamine
pathway [2]. However, AGE have been the most investigated
and may play a central role [1].

AGE are a group of heterogeneous compounds that rep-
resent the ultimate product of multiple reactions occurring
in several conditions, namely, in the chronic hyperglycemic
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state of DM. Nonenzymatic glycation begins with interaction
and link between the carbonyl group of a reducing sugar and
an aminoterminal group of a protein [1, 3]. Complex rear-
rangements result in early AGE forms, called Amadori prod-
ucts (HbA1c is one of such); progressively they result in more
stable AGE precursors (like methylglyoxal) [6] and lately in
irreversible long-lasting glycoxidation of the proteins, such
as carboxymethyllysine (CML), carboxyethyllysine (CEL),
and pentosidine (an AGE with autofluorescent properties)
[1, 3, 6].This processmay affect not only proteins (plasma and
tissue proteins, such as collagen), but also lipids and nucleic
acids [1, 7], then being a measure of overall metabolic and
oxidative stress [1, 3]. AGE formation, lipoxidation, and reac-
tive oxygen species (ROS) generation can activate inflamma-
tion with consequent tissue damage [3].

Studies did correlate plasmatic and tissue AGE levels to
the main micro- and macrovascular complications of DM [1,
3]. AGE formation and deposition have been deeply searched
in type 2 (DM2) and type 1 diabetes (DM1), with more recent
focus directed to therapeutic possibilities. AGE receptors
(RAGE) antagonists [8–11] and other potential targets, possi-
bly preventing AGE formation [1, 2, 7, 9] or promoting AGE
degradation and removal [3, 9, 10], are still under investiga-
tion.

DM1 patients submitted to simultaneous pancreas-
kidney transplantation (SPKT) can restore normoglycemia
and renal function, which are two concurrent ways to
decrease AGE deposition: reducing AGE formation and
increasing their renal elimination. Data on AGE levels after
successful SPKT are very scarce. One might aspire that AGE
stabilization, or even removal, can be achieved once uremia
and hyperglycemia are reverted. However, presuming that it
is possible, still the dynamic back-process is not known.

With this study we aimed to collect data on AGE evolu-
tion after SPKT. For this purpose, we prospectively measured
AGE in the plasma and in skin biopsies, in a group of
SPKT patients during the first year after the procedure. The
overall protein oxidation has also been assessed, through a
test measuring advanced oxidation protein products (AOPP)
plasmatic levels.

2. Research Design and Methods

2.1. Patients. Consecutive patients undergoing SPKT at our
center between 23/January/2012 and 6/July/2013, with suc-
cessful SPKT, who gave their informed consent were enrolled
in this study (only one patient excluded, due to pancreas graft
thrombosis). Twenty SPKT patients were included for mea-
surement of plasmatic AGE levels; in 15 of these, skin biopsies
were obtained to perform the histological and immunohisto-
chemistry analysis of epidermal and dermal AGE deposition.

SPKT was performed with systemic-enteric diversion.
Immunosuppression comprised antithymocyte globulin,
tacrolimus, mycophenolate, and steroids. Steroid withdrawal
after the sixth month is a general practice in our unit, if
immunological events are not observed. At last follow-up,
steroids were totally withdrawn in 30% of the patients; all the
others, except one, were taking ≤5mg/day of prednisone.

2.2. Sample Collection. AGE were prospectively analyzed in
skin deposits and in plasma in these SPKT, from time 0 (the
day of the transplant, or T0) to 12 months (T12) after the pro-
cedure. T0 values (date of transplantation) obtained for each
studiedmarker were considered their basal (reference) levels.

Blood samples were collected in evacuated tubes without
additive at T0 and thereafter at 3 months (T3), 6 months
(T6), and T12 after the transplant. The first skin biopsy was
obtained at T0, during the kidney transplantation surgery;
the second one was obtained through a 5mm skin punch at
T12, from the left abdominal wall, 2-3 cmbelow the scar of the
surgical incision used to perform the kidney transplantation.
The lower abdominal wall is a part of the body with low
chronic UV-exposure and the local of the two biopsies was
very close.

Samples (blood and tissue) collection was delayed at least
one week for T3 samples; two weeks for T6 samples; or 2–
4 weeks for T12 samples, whenever there was an infection
and/or transient mild graft dysfunction.

Besides AGE evaluation, in the 4 blood samples collected
from each patient, we also analyzed fasting blood glucose,
glycated hemoglobin (HbA1c), total cholesterol, triglycerides,
low-density lipoprotein-cholesterol (LDL-c), high-density
lipoprotein-cholesterol (HDL-c), and C-reactive protein
(CRP). Additionally, 24-hour urinary protein excretion was
measured on T12, and estimated-glomerular filtration rate
(e-GFR) was calculated based on MDRD equation. Blood
pressure was recorded in each visit. Hypertension
(>130/85mmHg), hypertriglyceridemia (>150mg/dL), hyper-
cholesterolemia (>200mg/dL), high LDL-c (>130mg/dL),
and low HDL-c (<40 in men, <50mg/dL in women) were
defined according to the National Cholesterol Educational
Program (NCEP/ATPIII) criteria for metabolic syndrome.

Skin samples fromhealthy subjects have been provided by
the Pathology Department of Santo Antonio Hospital, Porto,
from its archive. These were obtained from margins of biop-
sies made to analyze skin lesions of the dorsal or abdominal
wall, which were of benign origin (nevus). Healthy skin from
6 nondiabetic subjects aging between 30 and 45 years was
then used as control samples, to assess AGE deposition in the
absence of diabetes and within this age range.

2.3. Biochemical Studies. Blood samples were centrifuged
without delay and the serum was aliquoted and stored frozen
at −80∘C, until analysis.

Global plasmatic Advanced Glycation End Products
(AGE) were evaluated using a competitive ELISA-Kit, OxiS-
elect AGE (STA-817, Cell Biolabs, Inc., San Diego, CA).
NL–(Carboxymethyl) lysine (CML), a specific AGE, was
evaluated using a competitive ELISA-Kit, OxiSelect CML
(STA-816, Cell Biolabs, Inc., San Diego, CA). Oxidative
state was evaluated with a colorimetric kit for the detection
of Advanced Oxidation Protein Products, OxiSelect AOPP
(STA-318, Cell Biolabs, Inc., San Diego, CA). Biochemical
analyses were performed according to manufacturer’s indi-
cations for each assay.

2.4. Skin Histological/Immunohistochemistry Studies. After
excision, skin samples were immediately fixed in 10% neutral
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buffered formalin for 24 h and embedded in paraffin wax.
Serial 3 𝜇m cuts were obtained from each block. These sec-
tions were stained with hematoxylin-eosin and others used
to analyze AGE deposition, through immunohistochemistry
assay. After deparaffinization and rehydration, these sections
were incubated with the primary polyclonal IgG antibody
anti-AGE (ab23722, Abcam, Cambridge, UK) diluted 1 : 5000,
for 20 minutes at room temperature, according to the manu-
facturer’s instructions. Immunohistochemistry protocol from
Ventana Benchmark Ultra (Ventana Medical Systems, Inc.,
Roche) has been followed, using detection system Optiview
DAB, IHC Detection Kit. Sections were counterstained with
hematoxylin and then dehydrated and coverslipped under
DPX mountant.

A semiquantitative AGE assessment was made based on
its immunoreaction intensity and graded on a scale from 0
(absent) to 1+ (weakly positive), 2+ (moderately positive), or
3+ (strongly positive). All the samples were analyzed by the
same pathologist, in two different occasions, and this was a
blind analysis: characteristics of patients and the timing of
biopsywere not known by the pathologist before observation.

2.5. Statistical Analysis. Variables distribution was studied by
Kolmogorov-Smirnov test. Results are presented as mean ±
standard deviation for continuous, normally distributed vari-
ables, or as medians and 95% confidence interval for non-
normal distribution variables (e.g., AOPP). Percentages were
used for categorical data. A repeated measures ANOVA was
used to compare AOPP, AGE, and CML between time points.
Multiple comparisons were adjusted using Bonferroni’s test.
The effect of potential confounding variables, such as age,
gender, previous time ondialysis, diabetes time, dyslipidemia,
HbA1c, and creatinine clearance, was then analyzed on
longitudinal changes of the three markers also using repeated
measures ANOVA.

Statistical analysis was performed using SPSS software
version 22.0 (SPSS, Chicago, IL, USA) and 𝑃 < 0.05 was
considered statistically significant.

3. Results

3.1. Demographic and Clinical Patients’ Characteristics. Base-
line and post-SPKT patients’ characteristics are presented in
Table 1. Their age at transplantation date ranged from 28 to
47 (mean 36.7) years; their time on dialysis from 2 to 40
(mean 18) months; and their diabetes evolution time from
17 to 33 (mean 26) years. Excessive weight was not observed
in this sample of DM1 patients; 20% were active smokers
before SPKT; very poor glycemic control was evident in
35%, who presented HbA1c ≥9% (≥74.9mmol/mol). Three
patients needed reoperation (due to infection, bleeding, and
partial pancreatic venous thrombosis, one each) and 3 had an
early acute rejection, efficiently treated. All of these patients
have kept both grafts functioning during the study follow-up.

After SPKT, graft function remained stable. The rate of
actively smoking patients has decreased (5%). Hyperlipi-
demia and hypertension prevalence was low: the percentage
of patients taking antihypertensive medication or statins was
15% and 5%, respectively. Mean BMI before and after SPKT

Table 1: Patients’ demographic and clinical characteristics.

Total group (𝑛 = 20)
Before SPKT
Age (years) 36.7 ± 5.4
Female gender 11 (55%)
Time of diabetes (years) 26.0 ± 5.3
Time on dialysis (months) 18 ± 11
HbA1c (%) 8.29 ± 1.61
(HbA1c – mmol/mol) 67.1 ± 17.1
HbA1c ≥9% (≥74.9mmol/mol) 7 (35%)
Fasting glucose (mg/dL) 304 ± 129
Active smoking (𝑛/%) 4 (20%)
Body mass index (BMI) (kg/m2) 22.4 ± 2.6
BMI >25 kg/m2 (𝑛/%) 0 (0%)
Hypertension (>130/85mmHg) (𝑛/%) 13 (65%)
After SPKT (12 months)
HbA1c (%) 5.34 ± 0.31
(HbA1c – mmol/mol) 34.9 ± 3.4
HbA1c ≥6% (≥42.1mmol/mol) 0 (0%)
Fasting glucose (mg/dL) 83 ± 9
e-GFR∗ (mL/min/1.73m2) 77.5 ± 15.5
Urinary protein excretion (g/24 h) 0.071 ± 0.093
Active smoking (𝑛/%) 1 (5%)
BMI (kg/m2) 22.4 ± 2.5
BMI >25 kg/m2 (𝑛/%) 2 (10%)
Taking aspirin (𝑛/%) 19 (95%)
Hypercholesterolemia (>200mg/dL) (𝑛/%) 1 (5%)
Hypertriglyceridemia (>150mg/dL) (𝑛/%) 2 (10%)
Low HDL-c∗∗ (𝑛/%) 2 (10%)
High LDL-c (𝑛/%) 0 (0%)
Taking statins (𝑛/%) 1 (5%)
Hypertension (𝑛/%) 6 (30%)
Taking ACEI (𝑛/%) 3 (15%)
C-reactive protein (CRP) (mg/L) 1.58 ± 1.05
CRP >5 (mg/L) 0 (0%)
∗e-GFR: estimated glomerular filtration rate (MDRD calculation).
∗∗Low HDL-cholesterol defined as <40mg/dL in men and <50mg/dL in
women.
ACEI: angiotensin converting enzyme inhibitors.

was similar, although we have noted weight gain in 9 and
weight loss in other 8 patients. Two patients had a BMI
>25 kg/m2 at T12. These patients had stable graft function
and favorable lipid profile evolutions after SPKT (shown in
Table 2).

3.2. AGE, CML, andAOPPPlasmatic Levels after SPKT. AGE,
CML, and AOPP results during the first year, at different 4
time points, are represented in Figures 1(a), 1(b), and 1(c),
respectively.

An increase in the mean values of AGE, CML, and
AOPP was registered from T0 to T3. AGE levels have also
increased from T3 to T6, a fact not observed for CML and
AOPP, for which the decrease started after the 3rd month.
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Figure 1: (a) AGE variation from time 0 (T0) to time 12 (T12). (b) CML variation from time 0 (T0) to time 12 (T12). (c) AOPP variation from
time 0 (T0) to time 12 (T12).

From T6 to T12, all the 3 markers have decreased, reaching
levels below those registered before transplantation. AGE
mean values were 16.8 ± 6.4 𝜇g/mL at T0; 17.1 ± 3.8 𝜇g/mL
at T3; 17.5 ± 5.6 𝜇g/mL at T6; and 16.0 ± 5.2 𝜇g/mL at
T12 measurements. These variations did not reach statistical
significance. CML mean values were 0.94 ± 0.36 ng/mL at
T0; 1.11 ± 0.48 ng/mL at T3; 0.99 ± 0.42 ng/mL at T6;
and 0.78 ± 0.38 ng/mL at T12 measurements. The observed
variation from T0 to T12 was statistically significant (𝑃 =
0.022). AOPP mean values were 130.1 ± 76.8 𝜇Mol/L at T0;
137.3 ± 110.6 𝜇Mol/L at T3; 116.4 ± 51.2 𝜇Mol/L at T6; and
106.4 ± 57.9 𝜇Mol/L at T12 measurements. AOPP variation
was almost statistically significant (𝑃 = 0.076).

Diabetes duration and age at transplantation date did not
significantly correlate with T0 and T12 AGE, CML, or AOPP
levels. Time on dialysis was the single factor with nearly
significant positive correlation with CML values (𝑃 = 0.071).
Poor glycemic control before transplantation (fasting glucose
and HbA1c), as well as hypertension, also did not influence

the values of these 3 markers. Additionally, we could not find
any association between T12 HbA1c and T12 values of the 3
markers.The number of patients with active smoking (𝑛 = 1),
not taking aspirin (𝑛 = 1), taking ACEI (𝑛 = 3), or with any
marker of dyslipidemia (𝑛 = 4) on T12 was too small to study
their correlation with AGE, CML, or AOPP at T12.

3.3. AGE Skin Deposits from T0 to T12 after SPKT. On
histological skin examination we verified that the AGE
immunostaining was invariably negative in some specific
cells/areas: the outer epidermal layer (stratum corneum), the
erector pili muscle, and the eccrine sweat glands. In other
cells/areas, immunoreaction for AGE was invariably positive,
such as fat cells, vascular endothelial cells, dermal collagen
fibers (on superficial dermis 2+/3+, on deeper dermis 3+),
and perivascular collagen. The other layers of the epidermis
(granular, spinous, and basal) and the hair follicle presented
several distinct AGE immunostain patterns and intensity.
Hair follicle layers, whenever hair follicle was present in
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Table 3: Skin biopsies: AGE immunoreaction pattern and intensity before and after SPKT.

Case number
(patients) SPKT

Epidermis Epidermis Epidermis
AGE immunoreaction Immunoreaction pattern Intensity

(layers with positive immunostain) (peripheral; diffuse; Mixt: both coexist) (from 0 to 3+)

1 Before Basal, spinous, granular Diffuse cytoplasmic 2+ (basal layer 1+)
After Basal, spinous, granular Peripheral/interkeratinocytic 2+

2 Before Basal, spinous Peripheral/interkeratinocytic 1+
After Basal Peripheral/interkeratinocytic 1+

3 Before Basal, spinous, granular Diffuse cytoplasmic 2+
After Basal, spinous, granular Diffuse cytoplasmic 1+

4 Before Basal, spinous, granular Diffuse cytoplasmic 3+
After Basal, spinous, granular Peripheral/interkeratinocytic 2+

5 Before Basal, spinous, granular Diffuse cytoplasmic 2+
After Basal, spinous, granular Peripheral/interkeratinocytic 1+/2+ (only spinous layer 2+)

6 Before Basal, spinous, granular Diffuse cytoplasmic 2+
After Basal, spinous, granular Mixt 1+/2+

7 Before Basal, spinous, granular Diffuse cytoplasmic 2+
After Basal, spinous, granular Mixt 1+/2+

8 Before Basal, spinous, granular Diffuse cytoplasmic 3+
After Basal, spinous, granular Peripheral/interkeratinocytic 1+

9 Before Basal, spinous, granular Mixt 1+
After Basal Peripheral/interkeratinocytic 0/1+ (only basal layer 1+)

10 Before Basal, spinous, granular Diffuse cytoplasmic 2+
After Basal Peripheral/interkeratinocytic 1+

11 Before Basal, spinous, granular Diffuse cytoplasmic 2+
After Basal, spinous, granular Peripheral/interkeratinocytic 2+

12 Before None 0
After None 0

13 Before Basal, spinous, granular Diffuse cytoplasmic 2+
After Basal, spinous, granular Peripheral/interkeratinocytic 1+

14 Before Basal, spinous, granular Diffuse cytoplasmic 1+
After Basal, spinous, granular Peripheral/interkeratinocytic 1+

15 Before Basal, spinous, granular Diffuse cytoplasmic 1+
After Basal, spinous, granular Peripheral/interkeratinocytic 1+

the section, normally follow the same pattern and the inten-
sity of the epidermal layers immunoreaction.

Table 3 explains the specific sites with positive immuno-
reaction for AGE and the respective intensity. The most
common finding, observed in 11 among the 15 cases, was a
change from a cytoplasmic diffuse immunoreaction pattern
on T0 to an interkeratinocytic pattern on T12, saving the
central cytoplasmic area and only peripherally staining the
cells, with an aspect usually described as “chicken wire”
pattern. At least in 7 cases, we have also observed a decrease
in the intensity of AGE immunoreaction one year after SPKT
(from 3+ to 1+, or from 2+ to 1+). To illustrate these changes
we present 4 cases in Figure 2, which exemplify the modifica-
tions observed from pretransplant to one year later. On
hematoxylin-eosin staining, no relevant changes were found
in our study population; and, in young healthy controls,

epidermal AGE immunostaining was negative (as illustrated
in Figure 3).

4. Discussion

Several studies did confirm the association between AGE
accumulation and diabetic microvascular complications [1–
3, 6, 9], namely, retinopathy [12, 13], neuropathy [7, 14], and
nephropathy [15, 16], and also macrovascular disease, such as
cardiovascular (CV) [9, 17, 18] and peripheral artery disease
[9, 19]. Additionally, it seems that AGE can be directly toxic to
pancreatic beta-cells [6, 11]. Exogenous sources of AGE, from
diet or smoking, are other contributors to their imbalance
and accumulation [1, 3, 6]. AGE formation is not an exclusive
mechanism of diabetes. Many other diseases may induce
AGE overexpression, such as renal diseases evolving to renal



Oxidative Medicine and Cellular Longevity 7

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Epidermal immunostaining for AGE: patient 4 before (a) and after SKPT (b); patient 8 before (c) and after SKPT (d); patient 10
before (e) and after SKPT (f); patient 11 before (g) and after SKPT (h) (400x amplified, hematoxylin counterstained). Images showing themain
immunostaining changes, from a diffuse cytoplasmic to an interkeratinocytic or peripheral pattern, often less intense, at time of 12 months.
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(a) (b)

Figure 3: Image (a) represents a negative control for epidermal AGE immunostaining, from a young healthy individual. Irrelevant changes
were found on hematoxylin-eosin staining in our patient population (exemplified on image (b)).

failure [1, 8], neoplasms [8], Alzheimer’s disease [1, 7, 8],
arthritis [1, 8], and CV disease itself [1, 11]. Furthermore, even
unspecific inflammation and aging promote AGE production
[1, 7]. SinceAGEdepend on renal function for their excretion,
chronic renal insufficiency also leads to AGE accumulation
[1].

RAGE are activated by increased AGE exposure; they
respond with overexpression and contribute to ROS for-
mation and inflammation [1, 6, 8]. There are several AGE
receptors, some of them with protective antioxidant effects,
working to control excessive oxidative stress, whereas others,
like RAGE, have prooxidant properties [6]. The search for
efficient RAGE blockers is still ongoing.

SPKT treats two diseases, DM1 and end-stage renal
disease, and is performed in young patients (most under 50
years of age). Therefore, this is certainly an interesting group
of patients to study AGE evolution. Results from AGE levels
are very difficult to interpret and there are not standardized
methods of detection. Moreover, it remains unclear which
AGE should be measured and where to obtain more reliable
results, whether in plasma or in tissues [9, 20]. Plasma levels
reflect AGE linked to proteins with higher turnover rate
(circulating proteins); tissue levels probably reflect better
those AGE linked to low turnover proteins such as collagen
and, consequently, the tissue damage [20]. For this reason,
stabilization or improvement of diabetic secondary compli-
cations, thought to be associated with AGE formation and
deposition, may eventually occur lately after SPKT [20]. This
is the reversal face of the “metabolic memory” phenomenon
observed in diabetic patients, a concept that came from the
Diabetes Control and Complications Trial-Epidemiology of
Diabetes Interventions and Complications (DCCT-EDIC)
research: several studies demonstrated a slower progression
of diabetic complications in the group of patients who have
received intensive insulin treatment, a persistent benefit
more than 10 years after the end of the treatment [21–23].
Established tissue lesions certainly are not easily and rapidly
reverted, even under maintained normal glycemia and renal
function, after successful SPKT [20].

The few studies in transplanted patients [24, 25], one of
them comparing a small number of SPKT to kidney alone
transplants, have not been able to demonstrate additional

benefits with the pancreas graft and euglycemia, besides the
correction of renal failure with a kidney transplant. The
authors could find a decrease in pentosidine plasma levels
in kidney and pancreas-kidney transplants, but not in tissue
pentosidine levels [25].

AGEmeasurement can in fact bemade in plasma [26–30],
in urine [26], or in tissues, skin being the most often used
tissue [31, 32]. Among several compounds already studied,
CML is the best characterized AGE [29] and the most consis-
tently assessed one in plasma analysis [26–30]. Higher plas-
matic CML levels correlated with higher thickening rate of
the glomerular basement membrane [26], increased arterial
stiffness [27], increased coronary artery calcification [28], and
higher incidence of fatal and nonfatal CV events [30] in dia-
betic patients; they even correlate with CV events in elderly
nondiabetics subjects [33]. In studies performed in chronic
kidney disease patients, AOPPplasmatic levels have also been
associated with atherosclerotic events in the predialysis stage
[34]. Additionally, it was demonstrated that these levels
increase after dialysis [35] and AOPP have been proposed
as a reliable marker of oxidant-mediated protein damage.
AGE accumulation may be directly assessed in tissues, by
immunohistochemistry methods [31, 32, 36], or extracted
through acid hydrolysis and enzymatic digestion and then
measured by biochemical assays [37]. High cutaneous AGE
expression has been correlated with skin damage due to sun
exposure [31] in nondiabetic patients. In diabetic patients, it
has been correlated with dermal inflammation and denerva-
tion [32] and with faster progression of microvascular [37]
and macrovascular [36] disease.

These were the main reasons why, in our study, we
decided to use the assays explained above. One assaywas cho-
sen to assess global plasmaAGE levels, another one to specifi-
cally assess CML levels, and AOPP assay to evaluate protein
oxidation. With these 3 markers we can evaluate the overall
oxidative status in these patients. Skin deposits were deter-
mined by immunohistochemistry, amanner to evaluate tissue
lesion and its progression after SPKT.

SPKT patients in our center are strongly encouraged
to abolish smoking and to avoid nonhealthy food, exter-
nal sources of AGE. Smoking habits in these transplanted
patients were very rare: only 1 out of 20 remained as an active
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smoker. Given that, the possible interference of smoking
in AGE results in our study is very unlikely. The same
assumption can be made regarding inflammation: CRP was
almost always steadily low after the first months, data shown
only for time of 12 months.

Our study group presented stable pancreas and kidney
graft function. CV risk factors, such as hypertension and
hyperlipidemia, were generally well controlled. Hypertension
frequency decreased after SPKT, from 65% to 30%. Only
10% presented hypertriglyceridemia and 5% hypercholes-
terolemia after SPKT.The rate of patients needing statins and
ACEI was low. Statins [20] and ACEI have been proposed
as potential preventers of AGE formation and accumulation
[1, 9, 10], as well as aspirin [1, 7]. Per protocol, all of our SPKT
are under aspirin after discharge. In this study group, all the
patients but one were under aspirin. This homogeneity does
not allow us to confirmor to exclude the contribution of these
drugs (ACEI, statins, and aspirin) for the results. Still, based
on all these facts, we have assumed that the changes observed
in our study, regarding AGE, CML, and AOPP levels, may be
attributed mainly to normoglycemia restoration and to renal
function normalization.

What we observed was a transient increase in AGE, CML,
and AOPP after SPKT, instead of an immediate decrease.
However during this initial period after SPKT there are
several well-known inflammatory/infectious insults, or even
high-doses of new drugs, such as immunosuppressors, that
may explain the initial increment of these markers. Major
surgery, indwelled catheters, episodes of wound, and urinary,
abdominal, or systemic infections, among other possible
complications, all may contribute to an initial inflammatory
state in SPKT patients. Inflammation usually leads to an
increase in the oxidative processes. The decrease of the
oxidative markers after the 3rd or after the 6th month,
although statistically significant only for CML, has been an
interesting finding. Once both the rapidity or the reversibility
of glycoxidation and protein oxidation processes are not
known in the short term after SPKT, we cannot say these
were expected results; yet these were not totally surprising
results. The limited sample size may also explain the lack of
significance of markers’ variation.

The same interpretation can be made for skin results.
Changes observed from T0 to T12 are in accordance with
a reduction in epidermal AGE deposits. The dermal tissue
lifetime is considerably longer than that of epidermal tissue.
Our observation that the dermal fat cells and collagen fibers
were invariably positive for AGE, irrespective of the timing
of the biopsy, is consistent with this fact. For this reason
our attention was focused on epidermal layers, with higher
turnover. In themajority of patients we have observed amod-
ification from an initial diffuse cytoplasmic immunoreaction
to an immunoreaction only at the periphery of the cells one
year later. Besides this change in pattern, intensity has also
decreased, clearly in 7 out of 15. Patient 12 did not present skin
AGE deposition, as seen in Table 3. Immunochemistry was
repeated and negativity confirmed. Among the other patients
included, this patient had the second shortest time interval

between diabetes diagnosis and SPKT. Perhaps more impor-
tantly, he had an insulin pump and a very good glycemic
control: he presented the lowest HbA1c level (6.1%, as shown
in Table 2) within our study population, at time of SPKT. It is
certainly forced to make definitive conclusions based on data
obtained from a single patient. However, the most reasonable
explanation is that strict glycemic control protects diabetic
patients from the accelerated glycosylation process. There
are inherent limitations of this semiquantitative assessment
from 0 to 3+; however, this is currently the most often
used method to subjectively quantify the immunoreaction
intensity in immunohistochemistry.

Certainly, it will be of interest to extend the follow-up of
these patients and AGE measurements, in order to analyze
their progressive evolution after SPKT, in those maintaining
both grafts functioning. Reminding of the knowledge that
emerged from several studies, which led to the “metabolic
memory” concept, it is very unlikely that AGE reduction
within a short time period after uremia and hyperglycemia
reversion can produce significant and measurable cell injury
improvements, such as relevant changes in neuropathy or
vasculopathy parameters, traducing microvascular disease
improvements. In the mid- and long-term we hope these
improvements will be apparent and quantifiable.

C-reactive protein was the single inflammation marker
analysed in this study, due to economic constraints. However,
we are aware of other inflammatory factors potentially inter-
fering with AGE production. Another future point of interest
will be to find if AGE evolution will eventually correlate
with other markers of inflammation. For instance, it is our
aim to proceed to further studies, including markers such
as inflammatory cytokines (IL-6, among others), as well as
markers of vascular cell apoptosis and platelet activation.

Skin autofluorescence (SAF)measure is a promising non-
invasivemethod to evaluateAGEdepositionwhich correlated
with AGE levels determined by biochemical analysis of skin
biopsies [38]. In uremic patients under dialysis, data obtained
on AGE levels through the AGE-Reader were associated with
CV mortality [39]. Even in early stages of chronic renal
disease, several studies could find a correlation between SAF
and CV disease [20]. Additionally, in diabetic patients, data
from SAF could be associated with vascular damage [40].
SAF reading needs, however, some adjustments that can affect
the accuracy of the method. There are no standardized units;
it has to be corrected to ethnic, age, and skin phototype
characteristics, and it should be measured in the same part of
the body in consecutive measurements, to avoid biases from
different UV-exposure zones. Even so, when widely available
and taking into account the necessary adjustments, this may
be a practical method to measure AGE accumulation, also in
SPKT patients.

We have not been able to find any factors clearly associ-
ated with the variation of AGE, CML, and AOPP levels in our
group of patients.

Based on our results, we can conclude that skin and
plasmatic glycoxidation markers, in DM1 patients, may in
fact start to decrease during the first year after SPKT. Further
studies in a larger sample and with extended follow-up are
needed to confirm these results.
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