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Abstract Infantile Refsum disease (IRD) is one of the less
severe of Zellweger spectrum disorders (ZSDs), a group of
peroxisomal biogenesis disorders resulting from a
generalized peroxisomal function impairment. Increased
plasma levels of very long chain fatty acids (VLCFA) and
phytanic acid are biomarkers used in IRD diagnosis.
Furthermore, an increased plasma level of phytanic acid is
known to be associated with neurologic damage. Treatment
of IRD is symptomatic and multidisciplinary.

The authors report a 3-year-old child, born from consan-
guineous parents, who presented with developmental delay,
retinitis pigmentosa, sensorineural deafness and cranio-
facial dysmorphisms. While the relative level of plasma
C26:0 was slightly increased, other VLCFA were normal.
Thus, a detailed characterization of the phenotype was
essential to point to a ZSD. Repeatedly increased levels of
plasma VLCFA, along with phytanic acid and pristanic
acid, deficient dihydroxyacetone phosphate acyltransferase
activity in fibroblasts and identification of the homozygous
pathogenic mutation c.2528G>A (p.Gly843Asp) in the
PEX1 gene, confirmed this diagnosis. Nutritional advice
and follow-up was proposed aiming phytanic acid dietary
intake reduction. During dietary treatment, plasma levels of
phytanic acid decreased to normal, and the patient’s develop-
ment evaluation showed slow progressive acquisition of
new competences.

This case report highlights the relevance of considering a
ZSD in any child with developmental delay who manifests
hearing and visual impairment and of performing a system-
atic biochemical investigation, when plasma VLCFA are
mildly increased. During dietary intervention, a biochemical
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improvement was observed, and the long-term clinical effect
of this approach needs to be evaluated.

Introduction

Infantile Refsum disease (IRD; OMIM#601539) is the less
severe form of Zellweger spectrum disorders (ZSDs), which
are a continuum of phenotypes with clinical, biochemical and
genetic overlap – Zellweger syndrome, neonatal adreno-
leukodystrophy and IRD. Presenting neonatally with hypo-
tonia, large fontanels, failure to thrive and cholestatic
jaundice, IRD is later recognizable by developmental
delay, retinitis pigmentosa, sensorineural deafness, hepato-
megaly, growth retardation and milder dysmorphic features
(Baumgartner et al. 1998; Poll-The et al. 2004). The disease
progresses slowly and some patients may survive into
adulthood, depending on the level of clinical care (Poll-The
et al. 2004; Crane et al. 2005).

The IRD diagnosis is made by a combination of clinical
manifestations with biochemical and molecular testing, as
well as macro- and microscopic examinations and immuno-
cytochemistry analysis of peroxisomes (Aubourg and
Wanders 2013). Diagnostic tools rely on the fact that IRD
is an autosomal recessive peroxisomal biogenesis disorder
(PBD) caused by pathogenic variants in the PEX genes,
which encode peroxins that are essential to peroxisomal
assembly and the protein import system, resulting in none
or a few abnormally formed peroxisomes, whose functions
are generally impaired (Aubourg and Wanders 2013). Since
very long chain fatty acids (VLCFA) beta-oxidation is a
unique metabolic function of peroxisomes, the identifi-
cation of an increased level of VLCFA in plasma,
fibroblasts and amniotic fluid cells is a biomarker of ZSD
(Wanders 2014). Elevated plasma levels of phytanic and
pristanic acids and bile acid precursors (BAP), as well as
reduced plasmalogen levels in erythrocytes, are additional
biochemical abnormalities that point to a ZSD (Wanders
2014). A reduced dihydroxyacetone phosphate acyltrans-
ferase (DHAP-AT) activity in fibroblasts and amniocytes
confirms the postnatal and prenatal diagnosis of ZSD
(Wanders et al. 1995). Finally, identification of pathogenic
mutations in a PEX gene (http://www.dbpex.org) is useful
for diagnosis, prognosis, and management of a ZSD, but it
also enables carrier testing of at-risk relatives and prenatal
or preimplantation diagnosis (Ebberink et al. 2011).

Management of IRD is multidisciplinary and treatment
remains symptomatic (Braverman et al. 2013). Reports of
treatment impact in disease progression are limited.
However, sporadically reports have showed that changes
in diet lead to specific biochemical effects (Robertson et al.
1988; Moser et al. 1999).

Herein, we describe an IRD patient with mild biochemical
phenotype who had a reduction of plasma phytanic acid

levels after onset of dietary management. Slight develop-
mental progress was observed and retinopathy did not evolve
significantly during follow-up.

Methods

The following peroxisomal biochemical analyses were
performed, as previously reported, with minor modifications:
plasma and fibroblast VLCFA quantification (Moser et al.
1999), plasma phytanic and pristanic acid level quantifi-
cation (Dacremont et al. 1995), fibroblast DHAP-AT
enzymatic activity measurement (Wanders et al. 1995),
erythrocyte plasmalogen level quantification (Bjorkhem
et al. 1986), plasma BAP measurement (Shimada et al.
2001), plasma polyunsaturated fatty acid level measurement
(Bailey-Hall et al. 2008) and antibody anti-catalase
immunofluorescence labelling (Wanders et al. 1989). Geno-
mic DNA was extracted from peripheral blood, using
Qiagen BioRobot EZ1 apparatus with EZ1 DNA blood
350 ml kit (according to the manufacturer’s instructions).
PCR products of all PEX1 exons and flanking regions
(reference number, NM_000466.2) were analysed by Sanger
sequencing using BigDye Terminator v1.1 Cycle Sequenc-
ing Kit and 3130xl Genetic Analyzer (Applied Biosystems)
(PCR primers and conditions are available upon request).

The nutritional management to reduce phytanic acid
intake from the diet consisted in decreasing global fat intake,
mainly from ruminant meats, dairy products and high fat
content fish. Griffiths Mental Development Scales were used
to evaluate psychomotor development.

Results

A 3-year- and 6-month-old girl was referred to the Medical
Genetics outpatient clinic due to retinitis pigmentosa, sensori-
neural hearing loss (SNHL), developmental delay and
dysmorphic craniofacial features (Fig. 1a). She was born
from consanguineous healthy parents, who were first
cousins, and she had two older twin brothers, who mani-
fested hypotonia and psychomotor developmental delay
associated with extreme prematurity. During gestation,
nuchal translucency above the 95th percentile for gestational
age prompted a fetal karyotype and a fetal echocardiography,
which were unremarkable. She was born at 38 weeks, and,
in the neonatal period, hypotonia and jaundice were diag-
nosed. Low-amplitude and high-frequency bilateral vertical
nystagmus was first noticed at 3 months of age. At 6 months,
bilateral pigment deposits became apparent in the retinal
mid-periphery of both ocular fundi. The following months,
these pigment deposits assumed round circular shapes
instead of the more typical bone spicule form and
approached the posterior pole, while the maculas acquired
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a salt and pepper appearance and eventually pigment
scattering (Fig. 1b). Electroretinography was performed
according to ISCEV standards at 4 years of age and
demonstrated an extinguished rod response with a dimin-
ished maximum combined rod-cone response, compatible
with retinitis pigmentosa. Bilateral and symmetric hyperopic

astigmatism was also diagnosed and is currently corrected
with glasses. Due to intellectual disability, visual acuity
could not be reliably tested. Despite the severe and
generalized photoreceptor dysfunction, both parents and
other caretakers report good functional vision for indoor
and outdoor activities, without tripping or collisions that

Fig. 1 (a) Facial dysmorphic features observed in the proband, at 4
years old, included high forehead, absent orbital ridges, and micro-
gnathia. (b) Bilateral retinographies, obtained at 4 years old, showing
diffuse pigment epithelium changes in the retinal mid-periphery, as

well as mottled appearance in the macular area, compatible with
retinitis pigmentosa. (c) Performance level (age of development in
months) in five subscales of the Griffiths Mental Development Scales
at 4, 5 and 6 years of age
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suggested a markedly reduced visual field, and do not report
significant limitations in scotopic conditions (nyctalopia),
typical of severe retinitis pigmentosa. Both fundoscopic
lesions and hyperopia remained stable during the last 3 years
of follow-up. Cerebral MRI did not show brain abnormalities
at 10 months old. Seizures were not reported. Profound
bilateral SNHL at frequencies 2,000–4,000 Hz was con-
firmed at 2 years and 11 months old, by auditory evoked
potentials. However, conditioned play audiometry showed a
40 dB loss at 250–2,000 Hz bilaterally with the use of
hearing aids, placed at approximately 3 years old, and an
increased social interaction was concomitantly observed. She
seated alone at 8 months and started walking at 24 months.
At 4 years, developmental evaluation showed a severe
developmental delay across all areas (GQ ¼ 31) (Fig. 1c).
Height and weight progressed along the 5th percentile curve,
while head circumference was growing along the 25th
percentile curve. At 3 years old, electrocardiography was
normal and echocardiography showed patent ductus arterio-
sus with small left-right shunt but good biventricular
function.

Diagnosis of ZSD was considered, due to hearing and
visual impairment associated with developmental delay and
mild dysmorphic features. At 16 months, quantification of
plasma levels of VLCFA did not clearly support this
diagnosis, since C26:0 and C24:0/C22:0 ratios were within
the normal range and the C26:0/C22:0 ratio was slightly
increased (Table 1). However, at 33 years and 11 months
old, increased plasma levels of VLCFA in combination with
increased phytanic acid and pristanic acid levels supported
the hypothesis of a peroxisomal disorder, either a ZSD or a
D-bifunctional protein deficiency. The decreased activity of
DHAP-AT in fibroblasts was in accordance with the
diagnosis of a ZSD. A pathogenic homozygous missense
mutation c.2528G>A, p.(Gly843Asp), was detected in the
PEX1 gene, establishing a ZSD diagnosis for this patient.
Parents are carriers of the same pathogenic variant. Catalase
immunofluorescence analysis showed a punctuate fluores-
cence pattern in control cells, due to the catalase presence
within the peroxisome compartment. In this patient,
however, the catalase is predominately scattered in the
cytosol, and this leads to a diffuse rather than a punctuate
fluorescence pattern (Fig. 2). From this spectrum, consider-
ing the clinical phenotype, this patient can be classified as
an IRD.

After diagnosis, nutritional advice and follow-up was
proposed. In the first nutritional appointment, at four years
and two months old, the fat intake recorded was 29% of the
total energy intake (1800 kcal/day). The nutritional pre-
scription reduced the total of fat into 15% of the total
energy intake. Diet was also supplemented with malto-
dextrins, in order to prevent catabolism, resulting in a
higher total energy intake (1900 kcal/day). At 7, 12, 18 and

25 months after starting the dietary intervention, plasma
levels of phytanic acid lowered to normal range. The
subsequent nutritional appointments confirmed the excel-
lent compliance with the proposed diet. The successive
developmental evaluations revealed slight progress in all
evaluated areas (at 6 years, GQ ¼ 34), most significantly in
locomotor and autonomy/sociability (Fig. 1c). However,
her performance was significantly conditioned by a short
attention span in more structured tasks.

Discussion

We report a 3-year-old child with IRD, in whom a thorough
characterization of the clinical phenotype was critical to
support the hypothesis of a peroxisomal disorder, in face of
first-tier mild biochemical abnormalities. IRD was consi-
dered due to developmental delay associated with hearing
loss and progressive retinopathy, since facial dysmorphic
features were misleading. Although neurological dysfunc-
tion observed in the neonatal period resembled a neuro-
muscular disorder, later in life, our patient’s phenotype also
resembled Usher type II, congenital defects of glycosyl-
ation or mitochondrial respiratory chain defects. Diagnos-
ing IRD may be complicated due to its phenotypic as well
as genotypic heterogeneity, leading eventually to an under-
estimation of its true prevalence. Since the onset and
severity of manifestations is variable and numerous clinical
differential diagnoses exist, a clinical suspicion of IRD –
based on neurologic, developmental and sensory deficits –
should prompt a systematic biochemical investigation of
PBD (Baumgartner et al. 1998), including measurements in
plasma, erythrocytes and skin fibroblasts, to show defects
in the a-oxidation, b-oxidation and synthesis of ether
phospholipids.

The repeated measurement of plasma VLCFA, along
with phytanic acid and pristanic acid, proved valuable in
the identification of a ZSD in this specific patient, which
was subsequently confirmed by analysis of the DHAP-AT
activity in fibroblasts. Biochemical diagnosis of IRD may
be challenging in patients with normal or mildly increased
plasma VLCFA levels (Gootjes et al. 2004; Zeharia et al.
2007). Indeed, older individuals were shown to have lower
plasma ratios of C24:0/C22:0 and C26:0/C22:0 fatty acids
when compared with children under one year (Hall et al.
1988). Since normal VLCFA plasma levels do not exclude
the diagnosis of IRD, this clinical case highlights the need
of repeated plasma VLCFA measurements or analysis of
additional biochemical parameters, including plasma phy-
tanic acid or erythrocyte plasmalogens, to increase the
diagnostic rate of IRD patients (Krause et al. 2009).

The mild clinical and biochemical phenotype in this
patient is likely to be explained by the type of mutation
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detected in the PEX1 gene, as well as by peroxisomal
mosaicism, which was observed in the patient’s fibroblasts.
This child is homozygous for the pathogenic missense
variant c.2528G>A (p.Gly843Asp) in PEX1, affecting the
second ATP-binding domain of the protein and which may
enable transcription into mRNA and translation into protein
to a certain extent (Crane et al. 2005). As a consequence,
the binding between PEX1 and PEX6 is reduced but not
abolished. This interaction is essential for the peroxisomal
protein import system (Tamura et al. 2001). In addition, this
pathogenic variant influences the PEX1 activity in a
temperature-sensitive manner, i.e. while at 37�C import of
matrix proteins into “ghost” peroxisomes is observed in
some cells (peroxisomal mosaicism), at 30�C, peroxisomal
import is almost completely recovered, as well as peroxi-
somal metabolic functions, and at 40�C, no peroxisomal
import is observed (Imamura et al. 1998). Overall, this
pathogenic variant retains a residual peroxisomal function
which, along with peroxisomal mosaicism, results in less
severe biochemical deficiencies, a milder clinical pheno-
type and prolonged survival (Osumi et al. 2000; Poll-The
et al. 2004; Crane et al. 2005).

This IRD patient was treated with a phytanic acid-
restricted diet, since there is increasing evidence on its
toxicity, namely, disturbing normal lipid homeostasis (van
den Brink and Wanders 2006). Additionally, carbohydrate
supplementation was crucial to maintain an adequate
energy intake. This led to persistent plasma phytanic acid
level normalization after the onset of the dietary regimen.
Similar biochemical results were previously reported in few
patients with IRD treated with a low phytanic acid diet
(Robertson et al. 1988; Pakzad-Vaezi and Maberley 2014).
However, the long-term clinical benefit of this approach
remains to be elucidated. Slow developmental progression
was concomitantly observed in this patient. Nonetheless,
since the prognosis of IRD is variable, the slow disease
progression or halting of the disease progression may be
due to the natural history of the disease. Since phytanic acid

and pristanic acid originate exclusively from exogenous
sources, its accumulation in ZSD patients is dependent on
diet, as well as age (Wanders et al. 2011). Theoretically, the
measurement of plasma phytanic acid levels may be
regarded as a response marker to the low phytanic acid
intake diet. Furthermore, accumulation of phytanic acid
over time, through dietary intake, is a diagnostic marker of
PBD (Aubourg and Wanders 2013). Nonetheless, since
intermittent normalization of plasma phytanic acid levels
may also be observed in IRD patients, possibly depending
on their diet (Poll-The et al. 2004), its value as a
biochemical diagnostic parameter may be less reliable,
prompting the need to combine it with other biochemical
diagnostic parameters.

The missense variant c.2528G>A (p.Gly843Asp) in
PEX1 is the most commonly found pathogenic mutation
in different patient cohorts (25–40% of the ZSD patients)
(Ebberink et al. 2011) and is associated with a mild
phenotype, meaning that IRD patients may live several
decades (Crane et al. 2005). Accordingly, an earlier
diagnosis will enable a more effective intervention in these
patients. Systematic evaluation of long-term biochemical,
clinical and developmental effects of a low phytanic acid
intake diet in IRD patients may prove whether this could be
a useful supplement to the recommended management of
this disorder.
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Synopsis

In spite of being a peroxisomal biogenesis disorder,
infantile Refsum disease may have residual peroxisomal
activity once we obtained a decrease of phytanic acid
plasma levels, along with a low phytanic acid diet, in a 3-
year-old child with the common pathogenic p.(Gly843Asp)
mutation in the PEX1 gene.
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