
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

7-18-2017 12:00 AM 

System reliability analyses and optimal maintenance planning of System reliability analyses and optimal maintenance planning of 

corroding pipelines corroding pipelines 

Changqing Gong 
The University of Western Ontario 

Supervisor 

Wenxing Zhou 

The University of Western Ontario 

Graduate Program in Civil and Environmental Engineering 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Changqing Gong 2017 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Civil Engineering Commons 

Recommended Citation Recommended Citation 
Gong, Changqing, "System reliability analyses and optimal maintenance planning of corroding pipelines" 
(2017). Electronic Thesis and Dissertation Repository. 4669. 
https://ir.lib.uwo.ca/etd/4669 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4669&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=ir.lib.uwo.ca%2Fetd%2F4669&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4669?utm_source=ir.lib.uwo.ca%2Fetd%2F4669&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


i 

 

Abstract 

The failure of corroding pipeline joints may induce severe consequences. However, 

maintenance is expensive due to the cost of excavating and repairing a single joint and typically 

a significant number of joints that need repair.  It is central to develop an optimal cost-effective 

maintenance strategy that balances cost and safety.  A key component of the strategy is the 

reliability based condition evaluation of pipeline joints.  The focus of the research reported in 

this thesis is therefore developing efficient reliability assessment methods for pipeline 

individual joints, and developing an optimal maintenance framework for the entire pipeline 

system. 

First, efficient system reliability methods relying on the first-order reliability method (FORM) 

and important sampling (IS) are developed for the assessment of the time-dependent 

probabilities of small leak and burst failure of pipeline joints containing multiple corrosion 

defects.  In addition, a novel method is developed within the FORM to obtain the design points 

efficiently. An improved equivalent component approach for evaluating multi-normal integrals 

is also developed to improve the efficiency of the FORM for system reliability analysis. 

In addition, a multi-objective optimization-based maintenance framework for corroding 

pipeline systems is formulated optimizing three objectives, i.e. the conditioned probabilities of 

burst and small leak, respectively, and repair cost.  An improved genetic algorithm with a pre-

training population is utilized to investigate the optimal Pareto front.  The benefits of this 

framework enable decision makers to access a series of non-dominated optimal repairing 

solutions with respect to multiple conflicting objectives. 

Keywords: First Order Reliability Method, design point, multi-normal integral, small leak, 

burst, importance sampling, competing failure modes, multi-objective optimization, genetic 

algorithm 
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up to t 

Ps(t)   = cumulative probability of any of defects penetrating the 

pipe wall within [0, t] 

rj   = value of random variable Rj 

rsb()   = correlation coefficient between Gse() and Gbe(). 
Rj   = ultimate capacity of the j-th tower 

R   = correlation matrix of the linearized safety margins 

Rs(t)   = correlation matrix of the linearized safety margins associated 

with 𝑔𝑗
𝑠(𝑡) (𝑗 = 1, 2, … ,𝑚) in standard normal space 

Rsb(t)  = correlation matrix of three linearized equivalent limit state  

functions Gse( + t), Gse() and Gbe() 

Rbs(t)   = correlation matrix of three linearized equivalent limit state  

functions Gbe( + t), Gbe() and Gse() 
RZZ   = correlation matrix of the elements in Z 

RZZ(j)   = correlation matrix of the elements in ZD(j) 

RZj,j   = correlation matrix of the elements in Zj 

RZcj,cj    = correlation matrix of the elements in Zcj 

RZj,cj    = correlation between the elements in Zj and Zcj 

SCM   = sequential compounding method  

SMTS   = specified minimum tensile strength 

SMYS   = specified minimum yield strength 

t   = forecasting time 

tr,q   = the time of repair for the q-th pipe joint 

𝑡𝑗
𝑠    = time at which the j-th defect just penetrates the pipe wall 

𝑡𝑗
𝑏   = time at which plastic collapse takes place at the j-th defect  
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T   = inspection time horizon 

u   = the mean of the depth increment within one year 

u    = value of the vector U 

ui   = the i-th element of the vector u 

ucj    = value of the vector Ucj 

uj    = value of the vector Uj 

u*   = design point vector in the standard normal space 

𝒖𝑐𝑗
∗    = vector of (n-nj) design point values that are not in uj

*
 

𝒖𝑖
′   = i-th random sample generated from hU(u) 

u*(j)   = design point involving the whole system associated with j 

𝒖𝐷
∗ (𝑗)   = vector of re-ordered elements of u*(j) 

𝒖𝑗
∗   = design point value of Uj 

uc*()   = design point associated with Gb()=0 

ul*()   = design point associated with Gs()=0 

ub*(, t))  = design point associated with Pb(t) 

us*(, t))  = design point associated with Ps(t) 

𝒖𝑗
𝑏∗(𝜏, ∆𝑡)  = design points associated with Pb,j(t) 

𝒖𝑗
𝑠∗(𝜏, ∆𝑡)  = design points associated with Ps,j(t) 

Ui   = the i-th element of the vector U 

U   = random variable vector in the standard normal space 

UD(j)   = a collection of Uj and Ucj, i.e., [Uj
T, Ucj

T]T 

Uj   = vector of nj independent standard normal variates involving  

gj(•) itself 

Ucj   = vector of (n-nj) random variables that are not in Uj 

UT   = ultrasonic technology 

v   = coefficient of variation  

vr   = discount rate of the maintenance cost  

vW   = coefficient of variation of FWj(•) 

vR   = coefficient of variation of FRj(•) 

𝒗∗(𝑗)   = m-dimensional design point associated with 𝒚∗(𝑗) in the  

standard normal space 

V   = m-dimensional vector in the independent standard normal  

space 

wj   = weighting factor assigned to the IS density function associated  

with the j-th component 

wtj   = wall thickness random variable at the j-th defect 

wtn   = nominal value of wall thickness 

𝑤𝑗
𝑏(𝜏, 𝑡)  = weighting factor for ℎ𝑼

𝑏(𝒖; 𝜏, ∆𝑡) 

𝑤𝑗
𝑠(𝜏, ∆𝑡)  = weighting factors for ℎ𝑼

𝑠 (𝒖; 𝜏, ∆𝑡) 

Wj, Wk   = wind speed at the the j-th and the k-th tower, respectively 

xcj   = value of Xcj 

xj(t)   = value of Xj(t) 

x   = value of the vector X 

xj   = value of the vector Xj 

x*(j)   = design point in original space involving the whole system 

associated with j 
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𝒙𝐷
∗ (𝑗)   = design point in the XD(j) space  

xj(uj)    = function xj is defined in terms of uj 

x(z)   = function x defined in terms of z 

Xcj   = random variable of the critical threshold associated with 

   the j-th component 

Xi   = the i-th element of the vector X 

Xj(t)   = random variable vector of the cumulative degradation within  

the interval [0, t] of the j-th component 

X   = random variable vector in the original space 

Xcj   = vector of (n-nj) random variables that are not in Xj 

XD(j)   = a collection of Xj and Xcj, i.e., [Xj
T, Xcj

T]T 

Xj   = vector of nj random variables involving gj(•) 

y*(j)   = m-dimensional design point associated with the j-th  

component in the correlated normal space 

𝒚𝐷
∗ (𝑗)   = re-ordered vector of design point y*(j) 

𝑦𝑗
∗   = one-dimensional design point associated with the j-th  

component 

𝒚𝑐𝑗
∗    = the values of Yk (k= 1, 2, …, m; 𝑘 ≠ 𝑗)at the design point y*(j) 

yj   = value of a standard normal variate Yj 

Yj   = the j-th element of the vector Y 

Y   = an m-dimensional correlated standard normal variates with the  

correlation matrix R 

z   = value of the vector Z 

zj   = value of normal variate Zj 

𝒛𝑗
∗   = design point only involving the j-th limit state function in  

                                    the correlated space 

𝒛𝑖
𝑠   = the i-th m-dimensional random sample generated from h(•) 

𝑧𝑖𝑗
𝑠    = the j-th (j = 1, 2, …, m) element of the vector 𝒛𝑖

𝑠 

𝒛𝑐𝑗
∗    = (n-nj) elements of design point that are not in zj

* in the  

correlated space 

z*(j) = design point involving the whole system in the correlated 

normal space associated with j 

𝒛𝐷
∗ (𝑗)   = design point in the space ZD(j) 

z(u)   = function z defined in terms of u 

Zj, Zk   = the j-th, k-th element of the vector Z 

Z   = random variable vector in the correlated normal space 

Zj = vector of nj random variables in the correlated normal space 

Zcj = vector of (n-nj) random variables associated with Xcj in  

the correlated normal space 

ZD(j)   = a collection of Zj and Zcj, i.e., [Zj
T, Zcj

T]T 

SC1, SC2 SC3  = solutions selected from the Pareto front with the constant  

budget constraint 

SN1, SN2  = solutions selected from the Pareto front with no budget  

constraint 

SV1, SV2  = solutions selected from the Pareto front with the variable  

budget constraint 

  = penalty factor modulating the relative amplitude of the budget  
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Constraint 

   reduction factor 

(•)   = standard normal density function

2(•, •, •)  = probability density function of the bivariate normal  

distribution

m(•,•)   = m-dimensional normal probability density function 

(•)   = standard normal cumulative distribution function 

(•)   = the inverse of the standard normal cumulative distribution  

function 

m(•,•)  = m-variate standard normal distribution function 

2(β1, β2, 12)  = bivariate cumulative normal function evaluated at [β1 β2]
T wit 

correlation coefficient of 12 

i, k   = coefficients of variation of Xi and Xk, respectively 

n-nj
   = (n-nj)-dimensional vector of zeros 

1(∙)   = inverse normal transformation operator 

   standard deviation of the depth increment within one year

u   = ultimate tensile strength

uj   = ultimate tensile strength at the j-th defect 

yj   = yield strength at the j-th defect 

 

𝜉𝑗   = model error associated with burst capacity model at the j-th  

defect 

jk   = distance between the j-th and k-th tower sites 

dj(t) lj(t) = growths of the depth and length of the j-th defect, respectively, 

by time t

Pb,j(t) = incremental probability of burst between and  + t for the 

j-th defect

Ps,j(t) = incremental probability of small leak between and  + t for 

the j-th defect

Ps(t) Pb(t)  = incremental probabilities of small leak and burst, respectively, 

within a short time interval between  and  + t.

t   = incremental time interval 

||•||   = norm of a vector 

Ω(x)   = failure domain with x being the value of X 

Ω'(u)   = failure domain with u being the value of U 

b(, t)  = failure domain associated with Pb(t) 

s(, t)  = failure domain associated with Ps(t) 
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1 Introduction 

1.1 Background  

Onshore pipeline systems are generally recognized as the safest and most economical way 

to transport oil and gas in a long distance.  Failures of pipelines do occur occasionally and 

are associated with severe consequences in terms of the human safety, property damage 

and environmental impact.  Pipelines are required to be well maintained to ensure safe 

operation throughout the service life.  However, pipeline operators are faced with limited 

financial resources for maintenance.  To achieve a desirable solution between pipeline 

safety and economic viability, the optimal maintenance strategy for in-service pipelines 

should be explicitly investigated.  

Metal loss corrosion is one major failure cause for onshore pipelines (EGIG 2015; Nessim 

et al. 2009).  Corrosion caused 35% of failures on oil and gas transmission pipelines in 

Canada between 2010 and 2014 (CEPA 2015) and 32% of reportable incidents on gas 

transmission pipelines in the US between 2002 and 2013 (Lam and Zhou 2016).  A typical 

corrosion defect is three-dimensional and characterized by its length (in the pipeline 

longitudinal direction), width (in the circumferential direction) and maximum depth (in the 

through-pipe wall thickness direction).  A representative corrosion defect is showed 

schematically in Fig. 1.1.  Corrosion defects grow actively in length and depth over time.  

In-Line Inspections (ILI), relying on the Magnetic Flux Leakage (MFL) or ultrasonic 

technology (UT), are now being commonly employed by pipeline operators to detect, 

locate and size corrosion defects on the surfaces of pipelines at a regular interval varying 

from a few to ten years (Kariyawasam and Peterson 2010). 

In general, a corroding pipe joint (typically 12-20 m long) may fail by small leak when 

wall thickness is penetrated by corrosion defect or by burst resulting from pipeline steel 

plastic collapse at the defect subjected to internal pressure prior to the defect penetrating 

the pipe wall (Zhou 2010).  Small leak and burst result in markedly distinct consequences.   

Small leak failures typically merely involve the cost of repairing pipeline joints, whereby 

burst failure could result in ignition of the released substance that may damage the 

environment and the surrounding properties, and induce fatalities (Nessim et al. 2009).   
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Industry practice is to mitigate corrosion defects on a joint-by-joint basis as opposed to a 

defect-by-defect basis (Zhang and Zhou 2014); that is, mitigating a critical corrosion defect 

requires the excavation of the entire pipe joint containing the defect and repairing (or 

replacing) the joint.  Condition assessment of corroding joints based on the defects reported 

by ILI tool is a critical part of developing excavation and repairing schedules.  Integrity 

engineer carries out the deterministic or probabilistic defect assessment (Kariyawasam and 

Huyse 2012; Zhou et al. 2016).  The deterministic assessment requires evaluating the 

Failure Pressure Ratio (FPR) between the nominal burst pressure capacity at the defect and 

the Maximum Operating Pressure (MOP) of the pipeline (Kariyawasam and Huang 2014).  

Any defect with FPR less than the pre-defined threshold (e.g., 1.1 or 1.25) is considered 

critical and the joint containing such a defect is excavated and repaired.  The probabilistic 

defect assessment involves calculating the burst failure probability at the defect, and the 

one with probability of burst exceeding the pre-defined threshold (e.g. 10-3) is deemed 

critical.  The latter is increasingly employed in industry practice for quantifying the pipeline 

safety (Kariyawasam and Peterson 2010; Huyse and Brown 2012), chiefly for the 

advantages of managing various relevant uncertainties such as model error, wall thickness, 

and pressure et al.  However, a single pipeline joint, typically with length of 10 - 20 m long 

(Al-Amin and Zhou 2014), may contain multiple active corrosion defects.  The joint with 

a single defect is less critical than the one containing more defects with the same size.  The 

joint should be considered as a series system in the reliability assessment.  The correlation 

between the defect sizes, operating pressure and pipe properties (e.g. pipe wall thickness 

and yield strength) at different defects can result in correlated failures at different defects.  

Such correlations must be dealt with.  Small leak and burst are mutually competing against 

each other.  The occurrence of one failure mode, either small or burst, would eliminate the 

occurrence probability of the other.   

The commonly used method for the assessment of the time-dependent small leak and burst 

failure probabilities of the corroding pipeline system is the simple Monte Carlo simulation 

(MC) (Zhou 2010; Zhou 2012).  However, this method demands significant computational 

cost if the probabilities of corroding pipelines are very small (e.g. ≤ 10-6) and/or there are 

large numbers of pipeline joints to be analyzed.  The application of the efficient FORM to 

approximate the failure probabilities of pipelines with corrosion defects has been 
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introduced in the literature (Teixeira et al. 2008; Sahraoui et al. 2013; Zhang and Zhou 

2014; Miran et al. 2016).  However, those methods either ignore the competing 

characteristics of small leak and burst failures, or fail to consider multiple correlated 

corrosion defects as a series system.  The application of the FORM to the system reliability 

analyses relies on the design points to calculate the correlation coefficients between the 

failures at different defects and the multi-normal integral to evaluate the system reliability.  

The design point is obtained from the constrained optimization while the multi-normal 

integral is a function of reliability index at different defects and associated correlation 

coefficients.  With an increased number of defects, the dimension of both optimization and 

multi-normal integral increases (Kang and Song 2010; Roscoe et al. 2015).  It follows that 

the efficiency of the FORM may be therefore hampered.   

Defect mitigation is very costly, with the typical spending for excavating and repairing a 

single pipe joint in Canada reaches up to CAD$125,000 (Zhang and Zhou 2014), and in 

general a significant number of (e.g. dozens or more) joints need to be excavated and 

repaired in a relatively short pipeline (e.g. one or two hundred kilometers long) after the 

ILI.  The non-critical joint at the ILI time may become critical because corrosion defects 

grow over time.  Besides, the critical joints may be not repaired all immediately after the 

ILI due to the constraints of the budget, labor resources or accessibility.  Therefore, a 

phased defect mitigation strategy is employed in practice; that is, mitigation actions are 

spread out over the period between two consecutive ILIs.  A challenging task faced by 

pipeline operators is how to schedule defect mitigation actions to achieve an optimal 

balance between the safe operation of the pipeline and the maintenance expense, subjected 

to various constraints. 
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1.2 Objective and Research Significance  

The research described in this thesis is financially supported by Natural Sciences and 

Engineering Research Council (NSERC) of Canada and TransCanada Ltd.  The objective 

of this research is summarized as follows:  

1) Development of efficient methods to obtain the design points for limit state functions in 

the system reliability application of the FORM;  

2) Development of efficient multi-normal integral methods within the FORM for large 

series systems with significant number of correlated components;  

3) Development of the FORM and important sampling (IS) based methodology for 

assessing small leak and burst system failure probabilities incorporating the competing 

characteristics;  

4) Development of the optimum cost-effective maintenance strategy for corroding pipeline 

systems, with the consideration of the conflicting safety and cost objectives.  It is expected 

that the contribution in this thesis will be beneficial for the reliability assessment of large 

systems in various other disciplines in addition to pipeline systems.  Moreover, it will also 

facilitate the integrity maintenance management of in-service corroding pipeline systems. 

1.3 Scope of Study 

This study is composed of five main topics that are described from Chapters 2 to Chapters 

6.  Chapter 2 presents an efficient procedure employing the FORM to evaluate the 

reliability of engineering systems governed by multiple limit state functions that are 

correlated due to the correlation among random variables involved in different limit state 

functions.  To estimate the system reliability, the FORM analyses for an individual limit 

state function included in the system needs to be carried out by only considering the random 

variables involved in the limit state function itself; the design point hereby obtained from 

the FORM can be mapped to the design point in the space that corresponds to all the 

random variables in the system.   
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Chapter 3 presents an improved equivalent component approach to evaluate the system 

reliability of series systems by providing an analytical expression to evaluate the unit 

normal vector, in the context of the FORM, associated with the equivalent component.  It 

is also proposed that the two components with the highest correlation coefficient be 

combined at each combining step.  The accuracy and efficiency of the adaptive equivalent 

component approach are demonstrated to be excellent for series systems with equi-

correlated and unequally correlated components through various examples.   

Chapter 4 introduces a methodology that employs the FORM to evaluate the time-

dependent system reliability of a joint of a pressurized pipeline containing multiple active 

corrosion defects.  The methodology considers small leak and burst failure modes of the 

pipeline joint, and accounts for the correlations among limit state functions at different 

corrosion defects.  The methodology involves first constructing two linearized equivalent 

limit state functions for the pipe joint in the standard normal space and then evaluating the 

probabilities of small leak and burst of the joint incrementally over time based on the 

equivalent limit state functions.   

In Chapter 5, an IS technique-based method is introduced to evaluate the time-dependent 

system reliability of corroding pipeline joints containing multiple active corrosion defects 

by considering two competing failure modes, i.e., small leak and burst.  The IS density 

functions in the standard normal space for incremental probabilities of small leak and burst 

of the pipeline joint over a short time interval are established as the weighted averages of 

the IS density functions for small leak and burst, respectively, at individual corrosion 

defects.  The IS density functions for incremental probabilities of small leak and burst at 

individual defects are centered at the design points associated with corresponding failure 

domains.   

In Chapter 6, a multi-objective optimization based pipeline maintenance strategy is 

presented.  The optimized variables are the location of to-be-repaired pipeline joints and 

associated time points after an ILI.  Three objectives are optimized simultaneously, i.e. 

minimizing the maximum annual conditional probabilities of small leak and burst, 

respectively, and the corresponding cost for exaction and repairing.  Genetic algorithm with 
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specified initial population is employed to improve the robustness of obtaining a complete 

Pareto front.   

It is assumed throughout this thesis that sizes of corrosion defects are monotonically 

increasing with time.  Both stochastic process- and random variable-based defect growths 

are considered in the work reported in the thesis.  Once repaired, a corroding pipe joint is 

restored to the pristine condition.  All pipelines are accessible to ILI.  The reliability 

analysis is carried out based on the corrosion defect information provided by a recently-

run ILI.  Since a future ILI will provide the updated information for corrosion defects, the 

time-dependent reliability analysis is generally carried out up to the time of the next ILI. 

1.4 Thesis Format  

This thesis is prepared in an Integrated-Article Format as specified by the School of 

Graduate and Postdoctoral Studies at Western University, London, Ontario, Canada.  In 

total, seven chapters are included in the thesis.  Chapter 1 is the introduction of the whole 

thesis, describing the research background, objectives and scope.  Chapter 2 through 

Chapter 6 are the main body of the thesis, where each chapter acts as a stand-alone 

manuscript that is the key part of the published papers and submitted manuscripts.  In the 

last chapter, conclusions of the thesis and recommendations for the future work are 

summarized. 
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Figure 1.1 Schematic illustration of the geometry of a typical corrosion defect 
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2 New Perspective on the Application of the First-order 
Reliability Method for Estimating System Reliability 

2.1 Introduction 

The reliability of a system governed by a single limit state function can be calculated 

efficiently using the well-known first-order reliability method (FORM) (Hasofer and Lind 

1974; Veneziano 1974; Rackwitz and Fiessler 1978).  The calculation involves 

transforming the random variables involved in the limit state function into the standard 

normal space and evaluating the reliability index, which equals the minimum distance from 

the origin to the limit state surface in the standard normal space.  The application of the 

FORM also provides a vector of sensitivity factors at the solution point (i.e., design point) 

on the limit state surface in the standard normal space (Madsen et al. 2006).  Moreover, the 

FORM assumes that the limit state function is approximated by a linearized safety margin, 

resulting in the limit state surface being approximated by a tangential hyperplane passing 

the design point.  

If the performance of a system is governed by many limit state functions, the system 

reliability analyses must consider all the limit state functions and correlations between the 

corresponding safety margins (Straub and Faber 2005; Der Kiureghian 2005; Madsen et al. 

2006; Kang et al. 2012).  To take the correlation into account, the application of the FORM 

to each limit state function is carried out by mapping the random variables in the entire 

system into the normal space, and the correlation coefficients between the linearized safety 

margins for any two limit state functions are calculated using the vectors of sensitivity 

factors at the respective design points (Melchers 1999; Madsen et al. 2006; Ang and Tang 

2007).  In such a case, the number of random variables involved in the FORM analyses for 

each limit state function in the transformed normal space may be much greater than that is 

required for the limit state function in the original space.  This increase in the dimensions 

of the analyses space reduces the computational efficiency and robustness of the FORM. 

The above-observed deficiency in using the FORM to calculate the system reliability is 

relevant to many practical problems.  For example, a corroding pipeline may contain many 

corrosion defects (Hong 1999; Zhou et al. 2012), and the safety margins at different 
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corrosion defects are correlated if, for example, the sizes of different defects are correlated.  

This correlation increases the number of random variables involved in the FORM analyses 

for each individual defect in the standard normal space if the system reliability aspect is 

considered.  Another example is a tower-line system with several transmission towers that 

are subjected to spatially correlated wind loads (or ice loads or earthquake loads) (Hong et 

al. 2006, Zhang and Li 2007; Chen and Booth 2011).  As a first order approximation, 

assume that the wind load on each tower can be characterized by the time averaged mean 

wind speed at the tower site and that the tower capacity can be presented by the nonlinear 

static pushover curve (Mara and Hong 2013).  To evaluate the system reliability of the 

tower-line systems, the wind load in the FORM analyses for each individual tower needs 

to be expressed as a combination of standard independent normal variates due to the spatial 

correlation of the wind loads.  This increase in the number of random variables reduces the 

computational efficiency and robustness of using the FORM to calculate the failure 

probability of each tower.  

In short, the use of the FORM to calculate the reliability of engineering systems could be 

inefficient if there are many limit state functions involved in the system and each limit state 

function is a function of only a few random variables in the original space but a large 

number of random variables for the system in the transformed normal space.  A new 

efficient procedure for calculating the correlation coefficients between the safety margins 

associated with different limit state functions in the system reliability analyses is proposed 

in this chapter.  The basic steps of the procedure are to 1) apply the FORM to each limit 

state function by considering only the random variables involved in the limit state function 

(as opposed to the entire system); 2) identify the design point for each limit state function 

by considering all random variables for the system based on the results obtained in Step 1); 

and 3) find the correlation coefficients among the linearized safety margins. Steps 1) - 3) 

involve the application of a new theorem put forward in this chapter.  In the following 

sections, the basic concept of the FORM is summarized, and the new theorem is presented.  

The application of the procedure to several practical system reliability analyses problems 

is shown. 
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2.2 Basics of the First-order Reliability Method 

2.2.1 Analyses for a Single Limit State Function 

The basic concept of the FORM is explained in several well-known references, including 

Melchers (1999), Madsen et al. (2006), and Ang and Tang (2007). It is used to evaluate 

approximately the failure probability, Pf, represented by the following multidimensional 

integral 

𝑃𝑓 = ∫ 𝑓𝑿(𝒙)𝑑𝒙𝑔(𝒙)≤0
  (2.1) 

where x denotes values of a vector of random variables X = [X1, X2, …, Xn]
T; g(x) is the 

limit state function with g(x) > 0 and g(x) < 0 defining the safe and failure domains, 

respectively; g(x) = 0 is known as the limit state surface, and fX(x) is the joint probability 

density function of X.  The FORM is carried out by transforming X into Z = [Z1, Z2, …, 

Zn]
T, and Z to U = [U1, U2, …, Un]

T, where Zi (i = 1,…, n) are correlated normal variates 

with zero means and unity variances, and Ui are independent and standard normal variates.  

The reliability index  is then given by 

 𝛽 = min
𝑔𝑍(𝒛)=0

√𝒛T𝑹𝒛𝒛−1𝒛  (2.2) 

or, 

 𝛽 = min
𝑔𝑈(𝒖)=0

√𝒖T𝒖  (2.3) 

where z denotes the value of Z; u denotes the value of U; RZZ is the correlation matrix of 

Z, gZ(z) = g(x(z)) is the limit state function in terms of z; x(z) denotes that x is a function 

of z; gU(u) = g(x(z(u))) is the limit state function in terms of u, and z(u) denotes that z is a 

function of x.  The equivalence of Eqs. (2.2) and (2.3) is well established in the context of 

the first-order second-moment reliability method (Veneziano 1974; Hasofer and Lind 

1974).  The meaning of Eq. (2.2) in the context of the FORM is explained by Low and 

Tang (2007); that is,  is the axis ratio of a multi-normal dispersion ellipsoid that just 

touches the limit state surface gZ(z) = 0 and the ellipsoid corresponding to 𝒛T𝑹𝑧𝑧
−1𝒛 = 1.  



13 

 

The spreadsheet-based implementation of Eq. (2.2) for simple practical applications is also 

described in Low and Tang (2007).   

The transformation from X to Z for dependent or correlated Xi using the Nataf 

transformation is extensively discussed in Der Kiureghian and Liu (1986) and Der 

Kiureghian (2005).  The use of the (unidimensional) inverse normal distribution and Nataf 

transformation provides a one-to-one mapping from Xi to Zi.  Let Zi,k (i, k = 1, 2, …, n; i ≠ 

k) denote the correlation coefficient between Zi and Zk, and Xi,k denote the correlation 

coefficient between Xi and Xk.  Then Zi,k can be evaluated from Xi,k as (Der Kiureghian 

and Liu 1986) 

𝜌𝑍𝑖,𝑘 = 𝐹0 ∙ 𝜌𝑋𝑖,𝑘 (2.4) 

where F0 ( ≥ 1) is in general a function of Xi,k and parameters of the marginal distributions 

of Xi and Xk, and can be estimated using the empirical equations for various marginal 

distributions given in Der Kiureghian and Liu (1986).  The empirical equations that are 

employed for the numerical examples considered in this chapter are summarized in Table 

2.1.  The transformation from Z to U can be carried out by employing U = L-1Z, where L 

is the lower-triangular matrix obtained from the Cholesky decomposition of RZZ (Der 

Kiureghian 2005). 

The failure probability, Pf, is then approximated by 

Pf = (-)  (2.5) 

where (•) is the standard normal cumulative distribution function.  One of the 

assumptions of the FORM is that the limit state surface gU(u) = 0 is approximated by a 

hyperplane that is defined by  – Tu = 0 and passes the solution point u*, where  is a 

unit vector normal to gU(u*) and pointing toward the failure domain, and  equals u*/ 

(Madsen et al. 2006). 
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2.2.2 Observed Deficiency for System Reliability Analyses with 
Multiple Limit State Functions 

Consider a system reliability problem that is defined by m limit state functions, gj(xj) (j = 

1, 2, …, m), where xj is the value of Xj representing a vector of nj random variables that 

need to be considered for gj(xj).  Let X denote the union of all Xj, representing a vector of 

n random variables that needs to be considered for the system, whereby n can be much 

greater than nj. 

If the reliability analyses for a single limit state gj(xj) is of interest, the FORM procedure 

is the same as that shown in the previous section (see Eqs. (2.2) and (2.3)).  However, since 

the safety margins could be correlated and their correlations must be evaluated for 

estimating the system reliability (Madsen et al. 2006; Der Kiureghian 2005), the most direct 

application of the FORM in the context of the system reliability is to first transform X into 

Z and/or U, where the symbols Z and U are already defined in the previous section.  In the 

transformed spaces, the reliability index j for the j-th limit state function mentioned in the 

previous paragraph is then given by 

𝛽𝑗 = min
𝑔𝑗,𝑍(𝒛)=0

√𝒛T𝑹𝒛𝒛−1𝒛 (2.6) 

or, 

𝛽𝑗 = min
𝑔𝑗,𝑈(𝒖)=0

√𝒖T𝒖  (2.7)  

where gj,Z(z) = gj(xj(z)) is the limit state function in terms of z, and gj,U(u) = gj(xj(z(u))) is 

the limit state function in terms of u.  The design point corresponding to j is denoted by 

u*(j). Both Eqs. (2.6) and (2.7) involve n-dimensional vectors of random variables in the 

transformed spaces, which decreases the computational efficiency and robustness of using 

the FORM to evaluate j, as compared to the case where the FORM is applied to gj(xj) 

without considering the system reliability aspect.  The decrease in the efficiency can be 

very significant, especially for n much greater than nj, because the number of calls to the 

limit state function in the FORM is proportional to the number of random variables in the 

limit state function (Rackwitz and Fiessler 1978; Madsen et al. 2006). 
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Because the limit state surface gj,U(u) = 0 is approximated by a hyperplane defined by j – 

j
Tu = 0, where j = u*(j)/j, the correlation coefficient between the safety margins at the 

solution points for the j-th and k-th limit states, jk, equals j
Tk (Madsen et al. 2006).  In 

particular, the failure probability of system, Pf, can be expressed as 

𝑃𝑓 = 1 − ∫ ⋯∫
1

√(2𝜋)𝑚|𝚺|
exp (−

1

2
𝛉T𝑹−1𝛉)

𝛽𝑚

−∞
𝑑θ1⋯𝑑θ𝑚

𝛽1

−∞
  (2.8a) 

if the system is a series system, and 

𝑃𝑓 = ∫ ⋯∫
1

√(2𝜋)𝑚|𝚺|
exp (−

1

2
𝛉T𝑹−1𝛉)

∞

𝛽𝑚
𝑑θ1⋯𝑑θ𝑚

∞

𝛽1
 (2.8b) 

if the system is a parallel system, where R denotes the correlation matrix of standard normal 

variates with diagonal elements equal to one and off-diagonal elements defined by jk; and 

 = [1, 2, …, m]T denotes an m-dimensional vector of standard normal variates with zero 

mean and unity variance.  Many approaches for evaluating the integrals in Eqs. (2.8a) and 

(2.8b) have been proposed in the literature, for example, the Ditlevsen bounds (Ditlevsen 

1979); equivalent component method (Gollwitzer and Rackwitz 1983; Estes and Frangopol 

1998; Roscoe et al. 2015), sequential compounding method (Kang and Song 2010), and 

quasi-Monte Carlo algorithms developed by Genz (1992, 1993), which have been 

implemented in commonly used software packages such as Matlab and R (the 

corresponding commands in Matlab and R are mvncdf(x, mu, sigma) and pmvnorm(upper 

= c, corr = R)), respectively.  Moreover, Eqs. (2.8a) and (2.8b) can be further simplified 

for particular forms of the correlation matrix (Genz 1992, 1993).  Discussions on evaluating 

Pf for systems involving both series and parallel subsystems can be found in Der 

Kiureghian (2005), Madsen et al. (2006) and Kang et al. (2012).   

2.3 Efficient Procedure to Carry Out System Reliability 
Analyses 

The inefficiency in using Eq. (2.6) or Eq. (2.7) to calculate j and find the linearized safety 

margin at the design point in the context of the system reliability can be overcome by using 

the theorem presented below. 
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Theorem: Consider that the vector X of all the n random variables that need to be 

considered for a system can be divided into two sub-vectors of random variables Xj and Xcj, 

where Xj is a vector of nj random variables that need to be considered for gj(xj), and Xcj is 

a vector of (n-nj) random variables that are not in Xj.  Within the context of the Nataf 

transformation and FORM, the design point in the n-dimensional standard normal space is 

given by 

*

j

j

n n

 
 
 
 


u
 and the reliability index j, is given by, 

𝛽𝑗 = min
𝑔𝑗,𝑈𝑗

(𝒖𝒋)=0
√𝒖𝑗T𝒖𝑗             (2.9) 

where n-nj
 denotes an (n-nj)-dimensional vector of zeros; uj

* is the design point obtained 

by solving Eq. (2.9); gj,Uj
(uj) = gj(xj(uj))) is the limit state function in terms of uj; uj denotes 

the value of Uj that represents a vector of nj independent standard normal variates 

transformed from Xj; and xj(uj) emphasizes that xj is a function of uj. 

To show that the above holds, consider XD(j) = [Xj
T, Xcj

T]T.  Note that XD(j) is not 

necessarily equal to X because the orders of the random variables in XD(j) and in X could 

differ.  By applying the (unidimensional) inverse normal transformation to each of the 

random variables in XD(j), denoted as 1(XD(j)) (i.e., 1(∙) represents an element to element 

inverse normal transformation operator) a vector of n zero mean and unity variance normal 

variates, ZD(j) = 1(XD(j)), is obtained.  Similar to XD(j), ZD(j) is divided in two sub-vectors, 

ZD(j) = [Zj
T, Zcj

T]T.  The correlation matrix of ZD(j), RZZ(j) obtained based on the Nataf 

transformation, can be partitioned as follows: 

𝑹𝒁𝒁(𝑗) = [
𝑹𝒁𝑗,𝑗 𝑹𝒁𝑗,𝑐𝑗
𝑹𝒁𝑐𝑗,𝑗 𝑹𝒁𝑐𝑗,𝑐𝑗

]        (2.10) 

where RZj,j represents the correlation matrix of the elements in Zj; RZcj,cj represents the 

correlation matrix of the elements in Zcj; RZj,cj denotes the correlation between the elements 

in Zj and Zcj, and RZj,cj equals 𝑹𝒁𝑐𝑗,𝑗
T . 
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It can be shown that the Cholesky decomposition of RZZ(j) results in the lower diagonal 

matrix L(j) given by 

𝑳(𝑗) = [
𝑳𝑗,𝑗 0

𝑳𝑐𝑗,𝑗 𝑳𝑐𝑗,𝑐𝑗
]           (2.11) 

where Lj,j depends only on RZj,j, and Lj,j, Lcj,j and Lcj,cj are submatrices of dimensions of nj 

× nj, (n-nj) × nj, and (n-nj)× (n-nj), respectively (Press et al. 1992).  Moreover, RZj,j, = 

Lj,j(Lj,j)
T. As the inverse matrix of an invertible lower triangular matrix is also a lower 

triangular matrix, the inverse of L(j), (L(j))-1, can be expressed as 

(𝑳(𝑗))−1 = [
𝑳𝑗,𝑗
−1 0

−𝑳𝑐𝑗,𝑐𝑗
−1 𝑳𝑐𝑗,𝑗𝑳𝑗,𝑗

−1 𝑳𝑐𝑗,𝑐𝑗
−1 ]         (2.12) 

The application of this rotational transformation defined by (L(j))-1 maps ZD(j) into the n-

dimensional (independent) normal space UD(j).  That is, 𝑼𝐷(𝑗) = [𝑼𝑗
T, 𝑼𝑐𝑗

T ]
T
=

(𝑳(𝑗))−1𝒁𝐷(𝑗), where again, similar to XD(j), UD(j) is divided in two sub-vectors Uj and 

Ucj.  More specifically,  

(
𝑼𝑗
𝑼𝑐𝑗

) = [
𝑳𝑗,𝑗
−1 0

−𝑳𝑐𝑗,𝑐𝑗
−1 𝑳𝑐𝑗,𝑗𝑳𝑗,𝑗

−1 𝑳𝑐𝑗,𝑐𝑗
−1 ] (

𝒁𝑗
𝒁𝑐𝑗

)          (2.13) 

This indicates that Uj only depends on Zj, which depends only on Xj.  Based on this, the 

limit state function gj(xj) depends only on the value of Uj, uj, (i.e., gj,U(u) = gj,Uj
(uj)) and j 

is given by 

𝛽𝑗 = min
𝑔𝑗,𝑈𝑗

(𝒖𝒋)=0
√𝒖𝑗T𝒖𝑗 + 𝒖𝑐𝑗T𝒖𝑐𝑗            (2.14) 

As 𝑔𝑗,𝑈𝑗(𝒖𝒋) is independent of ucj, the minimum of 𝒖𝑗
T𝒖𝑗 subjected to 𝑔𝑗,𝑈𝑗(𝒖𝒋) = 0 that 

occurs at the design point uj = uj
*, is independent of the values of ucj.  Since for j to be 

minimum, both 𝒖𝑗
T𝒖𝑗  and 𝒖𝑐𝑗

T𝒖𝑐𝑗  must be minimum, and the minimum of 𝒖𝑐𝑗
T𝒖𝑐𝑗 

occurs at ucj
* = n-nj

, it follows that Eq. (2.14) becomes Eq. (2.9), which completes the 

proof. 
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The above theorem indicates that the reliability analyses needs only to be carried out for nj 

random variables involved in the considered limit state function rather than for the n 

random variables for the system.  The design point in the XD(j) space for the j-th limit state 

function, xD
*(j), is obtained from 

𝒙𝐷
∗(𝑗) = ψ1

−1((
𝒛𝑗
∗

𝒛𝑐𝑗
∗ )) = ψ1

−1(𝑳(𝑗) (
𝒖𝑗
∗

𝛟𝑛−𝑛𝑗

))        (2.15) 

where according to Eq. (2.13), (
𝒛𝑗
∗

𝒛𝑐𝑗
∗ ) = 𝑳(𝑗) (

𝒖𝑗
∗

𝛟𝑛−𝑛𝑗

) represents the design point in the 

ZD(j) space. 

This indicates that at the design point the values of the random variables in Xcj may not 

necessarily be equal to zero although ucj
* = n-nj

.  This can be explained by noting that the 

probability density function of Xj depends on the value of Xcj, and the likelihood of the 

failure may not necessarily be the greatest for Xcj equal to zero.  Because the orders of the 

random variables in XD(j) and X may differ, the elements of the design point 𝒙𝐷
∗ (𝑗) must 

be re-ordered so it represents the design point for the j-th limit state function, denoted as 

x*(j), in the X space. 

Note that the above can also be expressed in the ZD(j) space rather than in the UD(j) space.  

To see this, note that from Eq. (2.13), 
1

,j j j j

u L z  . This leads to 

   
1

1 1

, , , ,

T
T T T T

j j j j j j j j j j j j j j


  u u z L L z z L L z .  Substituting this relation and , , ,

T

Zj j j j j jR L L  

into Eq. (2.9) results in 

𝛽𝑗 = min
𝑔𝑗,𝑍𝑗

(𝒛𝑗)=0
√𝒛𝑗

T𝑹𝒁𝑗,𝑗
−1 𝒛𝑗           (2.16) 

The solution of Eq. (2.16) denoted as 𝒛𝑗
∗ is equal to 

*

,j j jL u .  Since (
𝒛𝑗
∗

𝒛𝑐𝑗
∗ ) = 𝑳(𝑗) (

𝒖𝑗
∗

𝛟𝑛−𝑛𝑗

), 

it follows that 𝒛𝑐𝑗
∗ = 𝑳𝑐𝑗,𝑗𝑳𝑗,𝑗

−1𝒛𝑗
∗.  By considering 𝑹𝒁𝑗,𝑗 = 𝑳𝑗,𝑗𝑳𝑗,𝑗

𝑇  and 𝑹𝒁𝒄𝑗,𝑗 = 𝑳𝑐𝑗,𝑗𝑳𝑗,𝑗
𝑇 , as 
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well as writing 𝒛𝑐𝑗
∗ = 𝑳𝑐𝑗,𝑗𝑳𝑗,𝑗

𝑇 (𝑳𝑗,𝑗
𝑇 )−1𝑳𝑗,𝑗

−1𝒛𝑗
∗, a more convenient equation for calculating 

𝒛𝑐𝑗
∗  is given by 

𝒛𝑐𝑗
∗ = 𝑹𝒁𝑐𝑗,𝑗𝑹𝒁𝑗,𝑗

−1 𝒛𝑗
∗            (2.17) 

In other words, the theorem shown in the above can be restated as that the reliability 

analyses problem is equivalent to solving Eq. (2.16), and the solution point in the ZD(j) 

space, denoted as zD
*(j), is given by 

𝒛𝐷
∗ (𝑗) = (

𝒛𝑗
∗

𝒛𝑐𝑗
∗ ) = (

𝒛𝑗
∗

𝑹𝒁𝑐𝑗,𝑗𝑹𝒁𝑗,𝑗
−1 𝒛𝑗

∗)          (2.18) 

Note that the advantage of solving the reliability problem for the j-th limit state function in 

the ZD(j) space shown in Eq. (2.16) is that it avoids the need to transform ZD(j) to UD(j), 

and the design point is obtained from Eq. (2.18) once solution to Eq. (2.16) is found.  The 

design point for the j-th limit state function, z*(j) in the Z space can be obtained by re-

ordering 𝒛𝐷
∗ (𝑗) . The elements of R, jk (j, k = 1, 2, …, m), are computed as:𝜌𝑗𝑘 =

1

𝛽𝑗𝛽𝑘
(𝒖∗(𝑗))

T
𝒖∗(𝑘) =

1

𝛽𝑗𝛽𝑘
(𝑳−1𝒛∗(𝑗))

T
(𝑳−1𝒛∗(𝑘)) =

1

𝛽𝑗𝛽𝑘
(𝒛∗(𝑗))

T
(𝑳−1)T𝑳−1𝒛∗(𝑘) . 

Considering 𝑹𝑧𝑧
−1 = (𝑳−1)T𝑳−1 , we can derive the following: 𝜌𝑗𝑘 =

1

𝛽𝑗𝛽𝑘
(𝒛∗(𝑗))

T
𝑹𝑧𝑧
−1𝒛∗(𝑘).  This derivation allows obtaining 𝜌𝑗𝑘 without calculating L, which 

would improve the efficiency when number of variables is very large and Cholesky 

decomposition of Rzz is computationally expensive. 

Based on the above, the system reliability analyses problem can be carried out according 

to the following steps: 

1) applying the FORM to the j-th limit state function by solving Eq. (2.16) and evaluating 

the design point 𝒛𝐷
∗ (𝑗) given in Eq. (2.18) in the ZD(j) space for j = 1, 2, …, m; 

2) re-ordering 𝒛𝐷
∗ (𝑗) into the Z space represented by z*(j); 
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3) calculating jk to define R , and evaluating the integrals in Eq. (2.8) to estimate Pf. 

Ensuring the positive definiteness of RZZ is, however, a more challenging issue, especially 

for high-dimensional systems for which the proposed procedure is most advantageous.  

Although in this chapter, the derivation for elements of R, jk (j, k =1, 2, …, m; j ≠ k), 

among linearized safety margins, does not require Cholesky decomposition of RZZ, R can 

be non-positive definite if positive definiteness of RZZ is not guaranteed.  In such a case, it 

makes no sense to evaluate Eqs. (2.8a) and (2.8b) since a positive definite R is a 

prerequisite for the multi-normal integral.  One solution to deal with this problem is to 

calculate the nearest positive definite matrix of R using the methodology proposed by 

Higham (2002), which has been implemented in nearPD function of the R package.  

2.4 Application 

2.4.1 Example 1: System Reliability of Pressurized Pipelines 
Containing Multiple Corrosion Defects 

A joint of pressurized natural gas pipeline contains two corrosion defects. The pipeline 

joint has a diameter (D) of 610 mm, a nominal wall thickness (wtn) of 7.16 mm, a nominal 

maximum operating pressure (Po) of 6.0 MPa, and a specified minimum tensile strength 

(SMTS) of 517 MPa. The joint may fail by burst under the internal pressure at either or 

both of the two corrosion defects; it is a series system consisting of two components. It 

should be noted that although the proposed procedure is most advantageous for systems 

consisting of a large number of components, only two corrosion defects are considered in 

this example for the sake of illustrating the application of the procedure. The limit state 

function at the j-th (j = 1, 2) defect at a given time t, 𝑔𝑗
𝑏, is given by (Zhou et al. 2012) 

𝑔𝑗
𝑏 = 𝑝𝑏𝑗 − 𝑝𝑗 (2.19) 

𝑝𝑏𝑗 = 𝜉𝑗
1.8𝑤𝑡𝑗𝜎𝑢𝑗

𝐷
[
1−

𝑑𝑗

𝑤𝑡𝑗

1−
𝑑𝑗

𝑀𝑗𝑤𝑡𝑗

] (2.20) 

and, 
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𝑀𝑗 =

{
 
 

 
 
√1 + 0.6275

𝑙𝑗
2

𝐷𝑗𝑤𝑡𝑗
− 0.003375

𝑙𝑗
4

(𝐷𝑗𝑤𝑡𝑗)
2
         

𝑙𝑗
2

𝐷𝑗𝑤𝑡𝑗
≤ 50

3.3 + 0.032
𝑙𝑗
2

𝐷𝑗𝑤𝑡𝑗
                                                 

𝑙𝑖
2

𝐷𝑗𝑤𝑡𝑗
> 50

  (2.21) 

where the symbol with the subscript j in the above equations indicates the value of a 

variable at the j-th defect; pb and p denote the burst capacity and internal pressure, 

respectively, of the pipeline;  is the model error associated with the burst capacity model 

(Zhou and Huang 2012); D and u are the actual (as opposed to nominal) pipe diameter 

and tensile strength, respectively; d and l are the depth (i.e. in the through-pipe wall 

thickness direction) and length (i.e. in the pipe longitudinal direction) of the corrosion 

defect, respectively, and M is the so-called Folias factor. 

The probabilistic characteristics of the random variables included in the limit state 

functions are summarized in Table 2.2.  There are four independent random variables (u, 

p, d, ) (i.e. nj = 4) for each limit state function, whereas the total number of random 

variables included in the system is eight (i.e. n = 8).  Therefore, RZj,j (j = 1, 2) is a 4 × 4 

identity matrix.  However, random variables representing the same physical parameter (i.e., 

u, p, d, or ) at different defects are correlated, with the corresponding correlation 

coefficients summarized in Table 2.2.  The reliability indices obtained by carrying out the 

FORM in the nj-dimensional space based on Eq. (2.16) equal 3.25 and 3.19 for the first and 

second defects, respectively.  The corresponding design points in the ZD(j) (j = 1, 2) space 

are shown in Table 2.3, where 𝒛𝑗
∗ is obtained directly from the FORM analyses, and 𝒛𝑐𝑗

∗  is 

obtained from 𝒛𝑐𝑗
∗ = 𝑹𝒁𝑐𝑗,𝑗𝑹𝒁𝑗,𝑗

−1 𝒛𝑗
∗.  For this example, 𝑹𝒁𝑗,𝑗

−1  is a 4 × 4 identity matrix for 

both g1 and g2, whereas RZcj,j for both g1 and g2 is a 4 × 4 diagonal matrix with (diagonal 

elements) diag(RZcj,j) = (0.300, 0.810, 0.504, 0.504).  The design points in the Z and U 

spaces for g1 and g2 are also shown in Table 2.3.  Note that 𝒛∗(1) (𝒛∗(2)) is obtained by 

re-ordering the elements of 𝒛1
∗  and 𝒛𝑐1

∗  (𝒛2
∗  and 𝒛𝑐2

∗ ) based on the order of random variables 

Z1, Z2, …, Z8.  Finally, 𝒖∗(1) = L-1𝒛∗(1) and 𝒖∗(2) = L-1𝒛∗(2), where L is obtained from 

the Cholesky decomposition of the correlation matrix of Z1, Z2, …, Z8.  The correlation 

coefficient between the two linearized limit state functions is subsequently computed as 
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0.64.  By substituting 1 = 3.25, 2 = 3.19 and 12 = 0.64 into Eq. (2.8a), the failure 

probability of the pipeline joint is evaluated to be 8.2 × 10-4.  To demonstrate the 

computational efficiency of the proposed procedure for this example, the numbers of 

evaluations of the limit state function and relative CPU times required for solving Eq. (2.6) 

(i.e. without using the proposed procedure) and Eq. (2.16) (i.e. using the proposed 

procedure) are compared in Table 2.4.  As indicated in the table, the proposed procedure 

leads to an approximately 40% reduction in the computational cost of searching for the 

design points associated with the corrosion defects.   

2.4.2 Example 2: Degrading Parallel Systems with Multiple 
Components  

This example involves the evaluation of the reliability of a system consisting of five 

components that are connected in parallel and subjected to dependent stochastic 

degradation over time (Hong et al. 2014).  The limit state function at time t (year) for the 

j-th component, gj(t) (j = 1, 2, …, 5), is given by, 

𝑔𝑗(𝑡) = 𝑥𝑐𝑗 − 𝑥𝑗(𝑡) (2.22) 

where xcj (mm) denotes the value of the critical threshold, Xcj, for degradation of the j-th 

component beyond which failure occurs; Xcj is a lognormal variate with a mean of 2.7 mm 

and a COV of 25%; xj(t) (mm) denotes the value of the cumulative degradation within the 

interval [0, t] of the j-th component, Xj(t), and assumed to be characterized by a 

homogeneous gamma process (van Noortwijik 2009).  The probability density function of 

Xj(t), F(xj(t)|at,b), is, 

𝐹(𝑥𝑗(𝑡)|𝑎𝑡, 𝑏) = 𝑏
𝑎𝑡(𝑥𝑗(𝑡))

𝑎𝑡−1
exp (−𝑏𝑥𝑗(𝑡))/Γ(𝑎𝑡) (2.23) 

where a and b are parameters of the gamma process and assigned values of 10/9 (/year) 

and 100/9 (mm), respectively, and (•) is the gamma function. It follows that the mean and 

variance of Xj(t) equal 0.1t (mm) and 0.009t (mm2), respectively. It is assumed that Xcj of 

different components are identically distributed and correlated with a correlation 

coefficient of 0.5, whereas Xj(t) of different components are identically distributed and 
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statistically dependent, with the joint probability distribution function, FX(x1, x2, …, xm), 

characterized by the Gaussian copula (Nelsen 2006),  

𝐹𝑿(𝑥1, 𝑥2, … , 𝑥𝑚) = Φ𝑚(Φ
−1(𝐹𝑋1(𝑥1)),Φ

−1(𝐹𝑋2(𝑥2)),⋯ ,Φ
−1(𝐹𝑋𝑚(𝑥𝑚)) , 𝑹)  (2.24) 

where m = 5; FXj(xj) denotes the cumulative distribution function of Xj(t); (•) denotes 

the inverse of the standard normal distribution function, and m(•,•) is the m-variate 

standard normal distribution function with the correlation matrix R.  For simplicity, equal 

correlation coefficient 0 for this example is assumed in the Gaussian copula among -

1(FXj(xj)).   

Because Xcj and Xj(t) of different components are identically distributed and because equal 

correlation is assumed in the normal copula, the reliability indices for different components 

are identical and the linearized safety margins of different components are also 

equicorrelated.  Therefore, the FORM analyses only needs to be carried out for a single 

component, say the first component, in the n1-dimensional space (n1 = 2) to evaluate 1.  

Figure 2.1 depicts 1 and the corresponding failure probability as a function of time.   

The design point for the first component in the n-dimensional Z space (n = 10), 𝒛∗(1), is 

obtained from the proposed procedure: the 2-dimensional 𝒛1
∗  is obtained from the FORM; 

the 8-dimensional 𝒛𝑐1
∗  is obtained from 𝒛𝑐1

∗ = 𝑹𝒁𝑐1,1𝑹𝒁1,1
−1 𝒛1

∗  with 𝑹𝒁1,1
−1  being a 2 × 2 

identity matrix and 𝑹𝒁𝑐1,1  being an 8 × 2 matrix, and finally 𝒛∗(1)  is obtained by 

reordering the elements of (
𝒛1
∗

𝒛𝑐1
∗ ) based on the predefined unique order of the n random 

variables (physical parameters) in the Z space.  To obtain the design points for the other 

four components, note that 𝒛𝑗
∗ = 𝒛1

∗  and 𝒛𝑐𝑗
∗ = 𝒛𝑐1

∗  for j = 2, 3, 4, 5.  Reordering the elements 

of (
𝒛𝑗
∗

𝒛𝑐𝑗
∗ ) based on the order of the n random variables in the Z space then generates 𝒛∗(𝑗).  

It must be emphasized that 𝒛∗(𝑗) ≠ 𝒛∗(1) (j = 2, 3, 4, 5) because the physical parameters 

corresponding to 𝒛𝑗
∗  (𝒛𝑐𝑗

∗ ) are different from those corresponding to 𝒛1
∗  (𝒛𝑐1

∗ ), i.e. 𝒛𝑗
∗ 

corresponding to Xcj and Xj(t) whereas 𝒛1
∗  corresponding to Xc1 and X1(t).     
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Let jk denote the correlation coefficient between the linearized safety margins of the j-th 

and k-th components (j, k = 1, 2, …, 5; j ≠ k) and it is assumed that jk = .  Since the design 

point for the component depends on time and the value of 0, it follows that  is also a 

function of time and 0.  Figure 2.2 depicts the values of  at different times and for three 

different values of 0 (i.e. 0.1, 0.5 and 0.9).  The failure probability of a parallel system 

consisting of five components with equicorrelated safety margins can be obtained from the 

following integral (Genz 1993): 

𝑃𝑓 =
1

√2𝜋
∫ 𝑒−

𝑠2

2 ∏ Φ(
−𝛽𝑗+√𝜌

√1−𝜌
)5

𝑗=1
∞

−∞
𝑑𝑠  (2.25) 

The failure probabilities as a function of time are depicted in Figure 2.3 for 0 equal to 0.1, 

0.5 and 0.9, respectively.  Because the system in Example 2 includes more components 

than that in Example 1, the improvement in the computational efficiency achieved by the 

proposed procedure for Example 2 is more significant than that achieved for Example 1 

(Table 2.4).  

2.4.3 Example 3: Failure Probability of a Transmission Tower-line 
System Subjected to a Wind Event 

The reliability analyses of the electrical transmission tower-line system under wind hazard 

is a complex task and involves the consideration of uncertainties in the material and 

geometric variables in tower–line systems, the variability in the pressure coefficients and 

spatially varying wind speed (Zhang and Li 2007).  The nonlinear inelastic static and 

dynamic analyses of a tower for estimating the tower-capacity curve as well as its ultimate 

capacity is computationally intensive by considering the mentioned variabilities (Mara and 

Hong 2013, Mara et al. 2016).  Consider a joint of straight tower-line system with 11 towers 

and a separation between two adjacent towers equal to 500 m.  The tower-line system is 

subjected to transversal wind loading.  For simplicity and illustrative purpose, it is 

considered that the ultimate capacity, Rj (m/s), of the j-th tower in terms of sustaining the 

3-second gust mean wind speed at 10 m height at the tower site is lognormally distributed 

with the cumulative distribution function FRj(rj), mean mR and COV vR.  It is further 

assumed that Rj (j =1, …, 11) are identically distributed and equally correlated with a 
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correlation coefficient R.  The joint probability distribution of Rj (j = 1, …, 11), denoted 

by FR(r1, r2, …, r11), can be represented by the Gaussian copula as given by Eq. (2.24) with 

m = 11, xj replaced by rj, and FXj(xj) by FRj(rj) for j = 1, …, 11.  

Furthermore, it is considered that for a rare scenario wind event, the 3-second gust mean 

wind speed at 10 m height at the j-th tower site, Wj (j = 1, …, 11) (m/s), is Gumbel 

distributed with the cumulative distribution function FWj(wj), mean mW and COV vW.  For 

illustration purpose, the correlation coefficient between Wj and Wk (j, k = 1, …, 11), w(jk), 

is assumed to be given by (Hong et al. 2006) 

0.65( ) exp( 0.02 )W jk jk      (2.26) 

where jk (km) denotes the distance between the j-th and k-th tower sites.  The joint 

probability distribution of Wj (j = 1, …, 11) is assumed to be modeled by the Gaussian 

copula.  The elements of the correlation matrix in the Gaussian copula are obtained from 

w(jk) and the empirical equation given in Der Kiureghian and Liu (1986) for the Nataf 

transformation of the Gumbel distribution.   

The reliability index j for the j-th (j = 1, …, 11) tower can be evaluated by applying the 

FORM in the nj-dimensional space (nj = 2) with Rj - Wj ≤ 0 indicating collapse of the tower.  

In particular, for mR/mW = 1.25, vR = 0.12 and vW = 0.05, the calculated reliability indices 

j (j =1, …, 11) are identical and equal to 1.73.  The design point in the n-dimensional 

space (n = 22) for each tower is obtained for R = 0.2 using the procedure given in the 

previous sections, and the obtained 11 × 11 correlation matrix R (see Eq. (2.8)) for the 

eleven linearized safety margins is shown in Figure 2.4.  Because n is much greater than nj 

for this example, the proposed procedure results in a substantial reduction in the 

computational cost in computing j and the corresponding design point compared with the 

conventional FORM analyses (Table 2.4).  

Based on the above-indicated j and R, the probability of collapse of at least one tower, 

Pfsys, evaluated from Eq. (2.8a) (with m = 11) equals 0.27.  The probability of simultaneous 

failure of a number of specific towers can also be estimated.  For example, the probability 
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of simultaneous collapse of towers 1 and 3 only, Pf1,3, is estimated to be 1.1 × 10-3 by using 

the following integral: 

𝑃𝑓1,3 = ∫ ∫ ∫ ∫ ⋯∫
1

√(2𝜋)11|𝚺|
exp (−

1

2
𝛉T𝑹−1𝛉)

𝛽11

−∞

𝛽4

−∞

𝛽2

−∞

∞

𝛽3

∞

𝛽1
𝑑θ1⋯𝑑θ11  (2.27) 

The computation of R, Pfsys and Pf1,3 is repeated for R varying from 0.3 to 0.7.  The 

corresponding values of Pfsys and Pf1,3 are depicted in Figure 2.5.  The figure indicates that 

both Pfsys and Pf1,3 decrease slightly as R increases from 0.3 to 0.7.   

The effects of mR/mW, vR and vW on Pfsys and Pf1,3 are examined by fixing R at 0.2 but 

varying mR/mW from 1.3 to 1.5, vR from 0.10 to 0.14, and vW from 0.04 to 0.08.  The 

computation of j, , Pfsys and Pf1,3 is then repeated with the corresponding values of Pfsys 

and Pf1,3 shown in Figure 2.6 and 2.7, respectively.  The results suggest that both Pfsys and 

Pf1,3 become less sensitive to the increase in vW as mR/mW decreases from 1.5 to 1.3 and vR 

increases from 0.10 to 0.14.  At mR/mW = 1.3 and vR = 0.14, Pfsys (Pf1,3) remains practically 

the same as vW varies from 0.04 to 0.08.   

2.5 Conclusions 

The present chapter is focused on the application of the FORM to evaluate the reliability 

of systems whose performance is governed by multiple limit state functions that are 

correlated as a result of correlations among random variables involved in different limit 

state functions.  A theorem is put forward, which basically states that the reliability index 

for the j-th limit state function within a multi-limit-state-function system obtained by using 

the FORM and only the nj random variables included in the j-th limit state function is 

identical to the reliability index for the same limit state function obtained by involving all 

n random variables in the system and using the FORM analyses.  Moreover, the design 

point obtained from the FORM for the j-th limit state function in the nj-dimension space 

can be directly used to evaluate its corresponding design point in the n-dimension space by 

considering all the random variables involved in the system.  The design points in the n-

dimension space for different limit state functions are used as the basis to compute the 

correlation coefficients among the linearized safety margins required for the system 

reliability evaluation.  Based on the theorem, a procedure is proposed to evaluate the 
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system reliability by using the FORM.  The procedure is particularly efficient for systems 

involving many limit state functions with n much greater than nj.  The efficiency is 

illustrated through system reliability analyses of three examples: a pressurized pipeline 

joint containing two corrosion defects, a parallel system consisting of five components 

subjected to dependent stochastic degradation over time, and a group of 11 transmission 

towers in a tower-line system subjected to spatially correlated wind loads for a scenario 

wind event.   
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Table 2.1 Empirical equations for estimating F0 in Eq. (2.4) for the numerical 

examples considered in this chapter 

Marginals of Xi 

and Xk 
Equation for F0 

Lognormal 
ln(1+𝜌𝑋𝑖,𝑘𝛿𝑖𝛿𝑘)

𝜌𝑋𝑖,𝑘√ln(1+𝛿𝑖
2) ln(1+𝛿𝑘

2)

a, b 

Gumbel 1.064-0.069𝜌𝑋𝑖,𝑘+0.005𝜌𝑋𝑖,𝑘
2  

Weibull 
1.063-0.004 𝜌𝑋𝑖,𝑘 -0.200( 𝛿𝑖 + 𝛿𝑘) − 0.001𝜌𝑋𝑖,𝑘

2 + 0.337(𝛿𝑖
2 + 𝛿𝑘

2) +

0.007𝜌𝑋𝑖,𝑘(𝛿𝑖 + 𝛿𝑘)-0.007𝛿𝑖𝛿𝑘
b 

aThe F0 equation for the lognormal marginals is exact.  
bi and k denote the coefficients of variation (COV) of Xi and Xk, respectively.  

 

Table 2.2 Probabilistic characteristics of random variables for Example 1 

Parameter Distribution Mean 
COV 

(%) 

Corr. coef. at 

different defects 

D  Deterministic D - - 

wt  Deterministic wtn - - 

u  Lognormal 1.09SMTS 3.0 0.3 (0.300)b 

p  Gumbel 1.05Po 10.0 0.8 (0.810)b 

l  Deterministic 50 (mm) - - 

d  Weibull 0.25/0.30wtn
a 20 0.5 (0.504)b 

 Lognormal 1.10 17.2 0.5 (0.504)b 
aThe mean defect depth equals 0.25wtn and 0.30wtn for defects #1 and #2, respectively.  
bThe first value is the correlation coefficient in the original space, and the bracketed 

value is the corresponding correlation coefficient in the normal space obtained by using 

the empirical equation developed by Der Kiureghian and Liu (1986) and shown in 

Table 2.1.  
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Table 2.3 Summary of design points for two corrosion defects 

Random 

variables 

in the Z 

space 

Physical 

para.  
g1  g2 

𝒛1
∗  𝒛𝑐1

∗  𝒛∗(1) 𝒖∗(1)  𝒛2
∗  𝒛𝑐2

∗  𝒛∗(2) 𝒖∗(2) 

Z1 u1 -0.42  -0.42 -0.42   -0.12 -0.12 -0.12 

Z2 p1 2.16 2.16 2.16  1.71 1.71 1.71 

Z3 d1 0.17 0.17 0.17  0.12 0.12 0.12 

Z4 1 -2.39 -2.39 -2.39  1.19 1.19 1.19 

Z5 u2  -0.13 -0.13 0  -0.41  -0.41 -0.39 

Z6 p2 1.75 1.75 0  2.11 2.11 1.24 

Z7 d2 0.09 0.09 0  0.23 0.23 0.20 

Z8 2 -1.20 -1.20 0  -2.35 -2.35 -2.03 

 

Table 2.4 Computational efficiency of the proposed procedure as reflected in the 

numerical examples 

Numerical 

Example 

Number of limit state function 

evaluations for solving 

Ratio of CPU time for 

solving Eq. (2.16) to that 

for solving Eq. (2.6)  Eq. (2.6) Eq. (2.16) 

1  158a 94a 0.59a 

2  1340b 435b 0.35b 

3  143c 23c 0.125c 
aComparison based on the computational costs for finding the design points for the two 

corrosion defects. 
bComparison based on the computational costs for finding the design points for one 

degrading component over a span of 20 years (with a time step of one year), 

corresponding to the scenario of 0 = 0.5.  
cComparison based on the computational cost for finding the design point for one 

transmission tower corresponding to the scenario of R = 0.2, mR/mW = 1.25, vR = 0.12 

and vW = 0.05.   
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Figure 2.1 Reliability index and failure probability of a single component for a 

degrading parallel system with five components 

 

 

Figure 2.2 Correlation coefficient between linearized safety margins associated with 

different components for a degrading parallel system with five components 
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Figure 2.3 System failure probability for a degrading parallel system with five 

components 

 

 

Figure 2.4. Correlation matrix of the safety margins associated with the eleven 

transmission towers in the tower-line system 

 

 

 

  

  1 2 3 4 5 6 7 8 9 10 11 

 1 1           

 2 0.347 1          

 3 0.346 0.347 1         

 4 0.345 0.346 0.347 1        

 5 0.344 0.345 0.346 0.347 1 Symmetric  

 = 6 0.343 0.344 0.345 0.346 0.347 1      

 7 0.342 0.343 0.344 0.345 0.346 0.347 1     

 8 0.341 0.342 0.343 0.344 0.345 0.346 0.347 1    

 9 0.341 0.341 0.342 0.343 0.344 0.345 0.346 0.347 1   

 10 0.340 0.341 0.341 0.342 0.343 0.344 0.345 0.346 0.347 1  

 11 0.339 0.340 0.341 0.341 0.342 0.343 0.344 0.345 0.346 0.347 1 

 

R
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Figure 2.5 Sensitivity of Pfsys and Pf1,3 to R (mR/mW = 1.25, vR = 0.12 and vW = 0.05) 

 

 

Figure 2.6 Sensitivity of Pfsys to mR/mW, vR and vW (R= 0.2) 
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Figure 2.7 Sensitivity of Pf1,3 to mR/mW, vR and vW (0 = 0.2) 
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3 Improvement of Equivalent Component Approach for 
Reliability Analyses of Series Systems 

3.1  Introduction 

Many engineering structures are characterized as series systems, e.g. pressurized pipelines 

containing multiple corrosion defects (Zhou 2010; Zhou et al. 2012), bridge girders with 

different failure modes (Yang et al. 2004) and levee systems for flood defense (Roscoe et 

al. 2015).  Failure of any component of a series system leads to failure of the system.  The 

first-order reliability method (FORM) (Rackwitz and Fiessler 1978; Ditlevsen 1996; Der 

Kiureghian 2005; Madsen et al. 2006; Low and Tang 2007) can be employed to evaluate 

the system reliability of series systems.  Consider a series system consisting of m 

components.  The application of the FORM to the j-th (j = 1, 2, …, m) component results 

in a linearized safety margin (i.e. a hyperplane to approximate the limit state surface) in the 

standard normal space and the corresponding reliability index j.  The failure probability 

of the system, Pfs, is evaluated as Pfs = 1 - m(β, R), where β = [β1, β2,…, βm]T; T denotes 

transposition; R is the m × m matrix of the correlation coefficients among the linearized 

safety margins for different components, and m(•, •) is the m-variate standard normal 

cumulative distribution function.  The elements of R, jk (j, k = 1, 2, …, m), are computed 

as the inner product of the unit normal vectors associated with the j-th and k-th components 

obtained from the FORM (Der Kiureghian 2005; Madsen 2006).  

Two key aspects of the FORM-based evaluation of Pfs are the computation of R and m-

dimensional normal integral m(β, R).  A direct way to compute R is to carry out the FORM 

for each component by including all the random variables involved in the system.  This 

ensures that the unit normal vectors for all components have the same dimension; the 

evaluation of jk then follows straightforwardly.  Approaches for evaluating m(β, R) are 

well reported in the literature (Gollwitzer and Rackwitz 1983; Genz 1992; Estes and 

Frangopol 1998; Yuan and Pandey 2006; Kang and Song 2010; Roscoe et al. 2015).  

Among them, the equivalent component approach (Roscoe et al. 2015; Gollwitzer and 

Rackwitz 1983; Estes and Frangopol 1998; Kang and Song 2010) is the focus of the present 

chapter because of its ability to deal with systems with a large number of components.  The 
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basic idea of the equivalent component approach is to combine two components of the 

system into an equivalent component, which is then combined with a third component of 

the system.  This process continues until a single equivalent component replaces all the 

components in the system.   

Several variations of the equivalent component approach reported in the literature differ 

primarily in the way to evaluate the correlation coefficients between the equivalent 

component and remaining system components.  In the approaches proposed by Gollwitzer 

and Rackwitz (1983) as well as Estes and Frangopol (1998), a linearized safety margin for 

the equivalent component is constructed in the standard normal space.  The corresponding 

unit normal vector is then estimated from the finite difference method and used to evaluate 

the correlation coefficients between the equivalent component and remaining system 

components.  The equivalent planes method (EPM) reported by Roscoe et al. (2015) 

assumes that the same set of physical parameters are involved in different components.  

This assumption allows efficient evaluation of the unit normal vector of the linearized 

safety margin for the equivalent component through the finite difference method, but 

restricts the general applicability of the equivalent planes method.  In the sequential 

compounding method (SCM) proposed by Kang and Song (2010), the correlation 

coefficient between the equivalent component and a system component is evaluated by 

solving a nonlinear equation resulting from approximate decomposition of the bi- and tri-

variate normal distributions using conditional probabilities.   

In this chapter, an analytical expression to evaluate the unit normal vector associated with 

the equivalent component is derived using the chain rule.  The expression facilitates the 

evaluation of the correlation coefficients between the equivalent component and remaining 

system components.  Moreover, an adaptive combining process for generating the 

equivalent component is proposed and shown to markedly improve the accuracy of the 

equivalent component approach for series systems with unequally correlated components.  

The remainder of the chapter is organized as follows.  The improvement of the equivalent 

component approach is described in Section 3.2, and the illustration and validation of the 

proposed improvements in terms of numerical examples are presented in Section 3.3 

followed by conclusions in Section 3.4.  
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3.2 Improvement of Equivalent Component Approach 

3.2.1  Unit Normal Vector for Equivalent Component 

Let C1, C2, …, Cm denote, respectively, the m components of the series system.  The 

application of the equivalent component approach to the system is illustrated in Fig. 3.1, 

where 𝐶•
𝑒  denotes an equivalent component.  The first combining step results in the 

equivalent component 𝐶12
𝑒  .  Given the reliability indices β1 and β2 for C1 and C2, 

respectively, as well as the correlation coefficient between linearized safety margins at C1 

and C2, 12, the failure probability of 𝐶12
𝑒 , Pf12, equals 1 - 2(β1, β2, 12) and is represented 

by an equivalent reliability index 𝛽12
𝑒  = - -1(Pf12).  To continue the combining process and 

generate the equivalent component 𝐶123
𝑒 , the correlation coefficient between 𝐶12

𝑒  and C3, 

12,3, needs to be computed.  This can be achieved by developing an equivalent linearized 

safety margin, 𝑔12
𝑒 (𝒖), in the standard normal space for 𝐶12

𝑒  (Roscoe et al. 2015; Gollwitzer 

and Rackwitz 1983; Estes and Frangopol 1998): 

𝑔12
𝑒 (𝒖) = 𝛽12

𝑒 − (𝜶12
𝑒 )T𝒖 (3.1) 

where 𝜶12
𝑒   is the n-dimensional unit normal vector associated with 𝑔12

𝑒 (𝒖)  and can be 

obtained as follows based on the sensitivity interpretation of the unit normal vector: 

𝜶12
𝑒 =

𝜕𝛽12
𝑒

𝜕𝒖
/ ‖

𝜕𝛽12
𝑒

𝜕𝒖
‖ (3.2) 

with ||•|| denoting the norm of a vector.  The value of 12,3 then equals (𝜶12
𝑒 )T𝜶3.  The finite 

difference method is generally used to evaluate 𝜶12
𝑒  in the literature (Roscoe et al. 2015; 

Gollwitzer and Rackwitz 1983; Estes and Frangopol 1998); however, this method is time 

consuming for systems involving a large number of random variables and may not be 

numerically robust.   

 

In this chapter, an analytical expression utilizing the chain rule is developed to evaluate 

𝜶12
𝑒 .  To this end, the i-th (i = 1, 2, …., n) element of 

𝜕𝛽12
𝑒

𝜕𝒖
, 
𝜕𝛽12

𝑒

𝜕𝑢𝑖
, is given by  

𝜕𝛽12
𝑒

𝜕𝑢𝑖
=

𝜕𝛽12
𝑒

𝜕𝑃𝑓12

𝜕𝑃𝑓12

𝜕𝛽1

𝜕𝛽1

𝜕𝑢𝑖
+

𝜕𝛽12
𝑒

𝜕𝑃𝑓12

𝜕𝑃𝑓12

𝜕𝛽2

𝜕𝛽2

𝜕𝑢𝑖
  (3.3) 
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Note that  

𝜕𝛽12
𝑒

𝜕𝑃𝑓12
= −

1

𝜑(−𝛽12
𝑒 )

 (3.4) 

where (•) is the standard normal density function, and that 
𝜕𝑃𝑓12

𝜕𝛽1
 and 

𝜕𝑃𝑓12

𝜕𝛽2
 have analytical 

expressions as follows (Chun et al. 2015): 

𝜕𝑃𝑓12

𝜕𝛽1
= −𝜑(𝛽1)Φ(

𝛽2−𝜌12𝛽1

√1−𝜌12
2
) (3.5a) 

𝜕𝑃𝑓12

𝜕𝛽2
= −𝜑(𝛽2)Φ(

𝛽1−𝜌12𝛽2

√1−𝜌12
2
) (3.5b) 

Note also that 1/ui and 2/ui can be obtained from the component FORM analyses 

with respect to C1 and C2; that is,  

1/ui = i,1  (3.6a) 

2/ui = i,2  (3.6b) 

where i,1 and i,2 are the i-th elements of the unit normal vectors for C1 and C2, 1 and 2, 

respectively.   

Substituting Eqs. (3.4), (3.5) and (3.6) into Eq. (3.3) leads to  

𝜕𝛽12
𝑒

𝜕𝑢𝑖
= 𝑒

(𝛽12
𝑒 )

2
−(𝛽1)

2

2 Φ(
𝛽2−𝜌12𝛽1

√1−𝜌12
2
)𝛼𝑖,1 + 𝑒

(𝛽12
𝑒 )

2
−(𝛽2)

2

2 Φ(
𝛽1−𝜌12𝛽2

√1−𝜌12
2
)𝛼𝑖,2 , (i = 1, 2, …, n)

 (3.7) 

Equation (3.7) allows the unit normal vector for 𝐶12
𝑒  to be evaluated analytically as opposed 

to using the finite difference method.  Note that Chen et al. (2012) derived the same 

equation, albeit by employing the first-order Taylor series expansion of the expression for 

evaluating 𝛽12
𝑒  .  Equation (3.7) can be repeatedly applied to evaluate the unit normal 
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vectors associated with the equivalent components generated from subsequent combining 

steps.  For example, let 𝛽123
𝑒  denote the equivalent reliability index associated with 𝐶123

𝑒  as 

shown in Fig. 3.1.  It follows from Eq. (3.7) that 
𝜕𝛽123

𝑒

𝜕𝑢𝑖
 is given by  

𝜕𝛽123
𝑒

𝜕𝑢𝑖
= 𝑒

(𝛽123
𝑒 )

2
−(𝛽12

𝑒 )2

2 Φ(
𝛽3−𝜌12,3𝛽12

𝑒

√1−𝜌12,3
2

)𝛼𝑖,12
𝑒 + 𝑒

(𝛽123
𝑒 )

2
−(𝛽3)

2

2 Φ(
𝛽12
𝑒 −𝜌12,3𝛽3

√1−𝜌12,3
2

)𝛼𝑖,3 , (i = 1, 

2, …, n)  (3.8) 

where 𝛼𝑖,12
𝑒  and i,3 are the i-th elements of 𝜶12

𝑒  and 3 (i.e. the unit normal vector for C3), 

respectively.  

3.2.2  Adaptive Combining Process 

The sequence of the combining process can affect the accuracy of the equivalent 

component method.  This is illustrated using a simple example described in the following.  

Consider a series system consisting of three components C1, C2 and C3, with the 

corresponding linearized limit state surfaces in the standard normal (u) space and reliability 

indices schematically shown in Fig. 3.2(a).  The limit state surface corresponding to C1 is 

perpendicular to those corresponding to C2 and C3.  It follows that the exact failure 

probability of the system equals 1-.  The equivalent component approach is now 

employed to estimate the system failure probability by using two different combining 

sequences.  One sequence involves first combining C2 and C3, i.e. the two components 

having the highest correlation coefficient, into an equivalent component 𝐶23
𝑒 , which is then 

combined with C1 to generate the equivalent component 𝐶231
𝑒  .  It follows that this 

combining sequence results in 𝛽23
𝑒  = 2, and the exact system failure probability can be 

subsequently obtained.  For the second combining sequence, C1, C2 and C3 are simply 

combined in the order of their numerical designations; that is, C1 and C2 are first combined 

into 𝐶12
𝑒   (see Fig. 3.2(b)), which is then combined with C3 to generate 𝐶123

𝑒  .  Such a 

combining sequence however overestimates the system failure probability by the amount 

corresponding to the shaded area as illustrated in Fig. 3.2(b).   
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In light of the above example, an adaptive combining process is proposed in this chapter; 

that is, at each combining step the two components with the highest correlation coefficient 

be combined.  More specifically, the two system components having the highest correlation 

coefficient are combined into an equivalent component at the first combining step; at the 

second step, the two components that have the highest correlation and are to be combined 

could be two components out of the remaining (m – 2) system components, or one system 

component and the equivalent component obtained from the first step, and at the third step, 

the two components to be combined could be two system components, two equivalent 

components obtained from the previous steps or one system component and one equivalent 

component.  Such a process continues until all the system components are replaced by a 

single equivalent component.   

3.3  Numerical Examples 

To demonstrate the effectiveness of the improved equivalent component approach (IECA), 

numerical examples representing series systems with equally and unequally correlated 

components are investigated.  All the numerical examples are implemented in Matlab® on 

a personal computer with an Intel® i7 dual-core processor. 

3.3.1  Equally Correlated Components 

We first consider series systems consisting of m equally correlated components.  Without 

loss of generality, it is assumed that each component includes one random variable; 

therefore, the system involves a total of m random variables.  It should be emphasized that 

for systems whereby each component involves more than one random variable, a procedure 

that is based on the methodology proposed in (Zhou et al. 2017) can be used to reduce the 

total number of random variables to one for each component.  This procedure is described 

in Appendix A.  To eliminate the error associated with the linearization of the limit state 

function in the normal space in the FORM, linear limit state functions are assumed in the 

correlated standard normal (i.e. Z) space for all components.  The limit state function in 

the Z space for the j-th component is given by  

𝑔𝑗(𝑧𝑗) = 𝛽𝑗 − 𝑧𝑗, (j = 1, 2, …, m)  (3.9) 
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where zj is the value of a standard normal variate Zj.  It is assumed that the reliability indices 

for all components are identical, i.e. j = c for j = 1, 2, …, m.  The improved equivalent 

component approach is then applied to evaluate system failure probability, Pfs, with the unit 

normal vector of the equivalent component evaluated by Eq. (3.7).  For series systems with 

m equally correlated components having the identical reliability index c and correlation 

coefficient , the exact system failure probability, Pfse, can be computed from the following 

unidimensional integral (Grigoriu and Turkstra 1979): 

𝑃𝑓𝑠𝑒 =
1

√2𝜋
∫ 𝑒−

𝑠2

2 [1 − (Φ(
𝛽𝑐+√𝜌𝑠

√1−𝜌
))

𝑚

]
∞

−∞
𝑑𝑠  (3.10) 

The error, ep (%), associated with Pfs obtained from IECA is quantified as 

𝑒𝑝 =
𝑃𝑓𝑠−𝑃𝑓𝑠𝑒

𝑃𝑓𝑠𝑒
×100%  (3.11) 

Note that positive and negative values of ep mean overestimation and underestimation, 

respectively, of the system failure probability.  The values of Pfs from IECA and ep 

corresponding to m ranging from 30 to 250,  equal to 0.1 or 0.9, and c ranging from 3 to 

6 are shown in Fig. 3.3.   

Figure 3.3 indicates that Pfs from IECA is in excellent agreement with (albeit consistently 

lower than) Pfse for all the cases considered: the largest absolute value of ep (|ep|) is about 

20% corresponding to m = 250 and c = 6.  Given  and c, |ep| increases as m increases.  

Given m, |ep| decreases as c increases from 3 to 6 for  = 0.1; however, |ep| increases as c 

increases from 3 to 6 for  = 0.9.  To further investigate the impact of  on ep, Pfs and Pfse 

are evaluated for systems with m = 250,  ranging from 0.05 to 0.95 and c ranging from 

3 to 6.  The corresponding values of ep are shown in Fig. 3.4.  The figure indicates that for 

a given c, |ep| increases first as  increases until  reaches a transition point, after which 

|ep| decreases as  increases.  The transition  at which |ep| peaks increases with c: the 

transition  equals 0.40, 0.60, 0.75 and 0.85 corresponding to c equal to 3, 4, 5 and 6, 

respectively.  The maximum |ep| in Fig. 3.4 is slightly over 20%, which again indicates the 

excellent accuracy of the equivalent component approach.  Table 3.1 lists the order of 
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combinations involved in the adaptive combining process for a system with 30 components 

and  = 0.5.  The table indicates that for systems with equally correlated components, the 

adaptive combing process is the same as combining the system components based on the 

order of their numerical designations.   

The accuracy and efficiency of IECA are further compared with those of the equivalent 

planes method (EPM) (Roscoe et al. 2015) and sequential compounding method (SCM) 

(Kang and Song 2010) for series systems with 250 equicorrelated components, c= 6 and 

ranging from 0.05 to 0.95.  Figure 3.5(a) compares the accuracies of IECA, EPM and 

SCM - the accuracy of the latter two methods is quantified using Eq. (3.11), with the values 

of Pfs obtained from the two methods, respectively.  Figure 3.5(b) compares the efficiencies 

of EPM, SCM and IECA in terms of the relative CPU times.  Figure 3.5(a) indicates that 

the accuracy of SCM is the highest compared with EPM and IECA.  For  ≤ 0.3, the 

accuracies of the three methods are essentially the same; for 0.3 <  ≤ 0.65, the accuracies 

of EPM and IECA are comparable and somewhat lower than that of SCM, and for  > 0.65, 

the accuracy of IECA is markedly higher than EPM and somewhat lower than that of SCM.  

It is noted that although IECA is somewhat less accurate than SCM, the computational 

efficiency of IECA is two orders of magnitude higher than that of SCM for the examples 

considered as shown in Fig. 3.5(b).  IECA is also markedly more efficient than EPM as 

shown in the same figure.  

3.3.2 Unequally Correlated Components 

Now consider series systems with m unequally correlated components.  Each component 

involves one random variable, and for simplicity, all components are assumed to have the 

same reliability index c.  The limit state function in the Z space for the j-th component is 

given by Eq. (3.9).  The correlation coefficient between the j-th and k-th components, jk, 

is defined using the following equation (Kang and Song 2010), which satisfies the positive 

definite condition for the correlation matrix:  

𝜌𝑗𝑘 = 1 −
|𝑘−𝑗|

𝑚−1
, (k, j = 1, 2, …, m; k ≠ j)  (3.12) 
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Note that the largest value of the correlation coefficients defined using Eq. (3.12) for a 

given system is a function of m (the smallest correlation coefficient is zero).  Since there is 

no closed-form solution for the failure probability of systems with unequally correlated 

components, the importance sampling (IS) is employed to evaluate the benchmark system 

failure probability Pfse as follows (Schuëller and Stix 1987):  

𝑃𝑓𝑠𝑒 ≈
𝟏

𝑁
∑ 𝐼(𝒛𝑖

𝑠)
𝜑𝑚(𝒛𝑖

𝑠,𝑹)

ℎ𝑼(𝒛𝑖
𝑠)

𝑁
𝑖=1   (3.13) 

where N is the total number of IS trials; 𝒛𝑖
𝑠 denotes the i-th (i = 1, 2, …, N) m-dimensional 

random sample generated from the IS density function hU(•); m(•, R) is an m-dimensional 

normal probability density function with zero means and correlation matrix R, and I(·) is 

the failure indicator function, equal to unity if 𝛽𝑐 −max
𝑗
𝑧𝑖𝑗
𝑠 ≤ 0   and zero otherwise, 

where 𝑧𝑖𝑗
𝑠  is the j-th (j = 1, 2, …, m) element of the vector 𝒛𝑖

𝑠.  The IS density function is 

constructed to be the weighted average of m probability density functions, each associated 

with an individual component: 

ℎ𝑼(𝒛𝑖
𝑠) = ∑ 𝑤𝑗𝜑𝑚(𝒛𝑖

𝑠 − 𝒛∗(𝑗), 𝑹)𝑚
𝑗=1        (3.14) 

where 𝒛𝑗
∗ is the m-dimensional design point for the j-th component in the Z space; m(• 

− 𝒛∗(𝑗), R) is the IS density function associate with the j-th component, which is an m-

dimensional normal probability density function with the mean vector equal to 𝒛∗(𝑗) and 

correlation matrix R, and wj is the weighting factor assigned to the IS density function 

associated with the j-th component.  Since all components are assumed to have the same 

reliability index, equal weighting for all components is assumed, i.e. wj = 1/m.  For each 

analyses case, Pfse is estimated using 10,000 IS simulation trials, with the corresponding 

coefficient of variation (COV) of the estimated Pfse being generally less than 4%.   

Figure 3.6 depicts the values of ep for systems with m ranging from 30 to 250 and c ranging 

from 3 to 6, where ep is defined by Eq. (3.11) with Pfs evaluated with the unit normal vector 

of the equivalent component evaluated by Eq. (3.7).  Two sets of results are plotted in Fig. 

3.6: one obtained by combining the system components in the order of their numerical 

designations (i.e. the sequential combining process) and the other obtained by using the 
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adaptive combining process as described in Section 3.2.  The figure indicates that the 

sequential combining process consistently overestimates the system failure probability 

with the corresponding values of ep ranging from 30 to 270%.  In contrast, the adaptive 

combining process leads to markedly improved accuracy: values of ep are between 10 and 

20% for all the cases considered.  The order of combination involved in the adaptive 

combining process for the system with m = 30 and c = 6 is shown in Table 3.2.  As 

indicated in the table, all the system components are combined in the first 15 steps, and 

remaining steps involve the combination of equivalent components only.    

To further illustrate the effectiveness of the adaptive combining process, we investigate 

systems with the correlation coefficient between the j-th and k-th components defined as 

follows:  

𝜌𝑗𝑘 =
𝑚−1−|𝑘−𝑗|

𝑚−2
(𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛) + 𝜌𝑚𝑖𝑛, (j, k = 1, 2, …, m; j ≠ k)                                    (3.15) 

where min and max are pre-determined lower and upper bound values, respectively, of the 

correlation coefficient.   The equivalent component approach is then employed to evaluate 

the system reliability for systems with min = 0, max = 0.98 and m ranging from 30 to 250.  

The accuracy of the evaluation is depicted in Fig. 3.7.  Similar to Fig. 3.6, two sets of 

results are shown in Fig. 3.7, corresponding to the sequential and adaptive combining 

processes, respectively.  The figure clearly shows the significant improvement in the 

accuracy achieved by using the adaptive combining process compared with the sequential 

combining process.  Figure 3.8 depicts the accuracy of the adaptive combining process for 

systems with 250 components that are correlated according to Eq. (3.15) with max fixed at 

0.98 and min varying from 0 to 0.98.  As shown in the figure, the maximum value of |𝑒𝑝| 

is about 13%, demonstrating excellent accuracy of the adaptive combining process. 

The accuracy and efficiency of EPM, SCM and IECA for systems with c= 6, m varying 

from 30 to 240 and the component correlation structure defined by Eq. (3.12) are compared 

in Figs. (3.9a) and (3.9b), respectively.  The efficiency of IS in terms of the relative CPU 

time is also shown in Fig. 3.9(b).  Figure 3.9(a) indicates that the accuracies of EPM and 

IECA are almost identical and somewhat higher than that of SCM, whereas Fig. 3.9(b) 
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indicates that IECA is two orders of magnitude more efficient than IS, EPM and SCM in 

most of the cases analyzed.  

3.3.3 Application to System Reliability of Corroding Pipelines 

The application of IECA is now illustrated through the system reliability analyses of a 

pressurized steel pipeline joint containing multiple active corrosion defects.  The pipeline 

joint has a diameter (D) of 914 mm, a nominal wall thickness (wtn) of 13.2 mm, a nominal 

operating pressure (Po) of 8.5 MPa, and a specified minimum yield strength (SMYS) of the 

pipe steel of 483 MPa.  It is assumed that the joint contains ten active corrosion defects.  

The joint may fail by burst under the internal pressure at any of the ten corrosion defects; 

therefore, it is a series system consisting of ten components.  The limit state function at the 

j-th (j = 1, 2, …, 10) defect at a given time t, 𝑔𝑗
𝑏(𝑡), is given by (Zhou et al. 2012) 

𝑔𝑗
𝑏(𝑡) = 𝑝𝑏𝑗(𝑡) − 𝑝𝑗   (3.16) 

where pbj(t) and pj are the burst pressure capacity in the time of t and internal pressure of 

the pipe joint at the j-th defect, respectively.  The B31G Modified model (Kiefner and Vieth 

1989) is adopted to evaluate pbj as follows: 

𝑝𝑏𝑗 =
2𝑤𝑡𝑗(𝜎𝑦𝑗+68.95)

𝐷
[
1−

0.85𝑑𝑗

𝑤𝑡𝑗

1−
0.85𝑑𝑗

𝑀𝑗𝑤𝑡𝑗

]   (3.17) 

𝑀𝑗 =

{
 
 

 
 
√1 + 0.6275

𝑙𝑗
2

𝐷𝑤𝑡𝑗
− 0.003375

𝑙𝑗
4

(𝐷𝑤𝑡𝑗)
2
,         

𝑙𝑗
2

𝐷𝑤𝑡𝑗
≤ 50

3.3 + 0.032
𝑙𝑗
2

𝐷𝑤𝑡𝑗
,                                                 

𝑙𝑖
2

𝐷𝑤𝑡𝑗
> 50

 (3.18) 

where the subscript j indicates the value of a variable at the j-th defect; D, wt and y are the 

actual (as opposed to nominal) pipe diameter, wall thickness and yield strength, 

respectively; (y + 68.95) (MPa) is the pipe flow stress; d and l are the depth (i.e. in the 

through-pipe wall thickness direction) and length (i.e. in the pipe longitudinal direction) of 

the corrosion defect, respectively, and M is the so-called Folias factor. For brevity, pbj(t), 

Mj(t), dj(t) and lj(t) are simply written as pbj, Mj, dj and lj, respectively, in Eqs. (3.17) and 
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(3.18). For simplicity, the dependence of dj and lj on time is made implicit in Equations 

(3.17) and (3.18). For illustrative purpose, the following simple linear growth model is 

adopted to characterize the growth of the defect depth and length over time: 

𝑑𝑗(𝑡) = 𝑑0𝑗 + 𝑔𝑑𝑗𝑡   (3.19) 

𝑙𝑗(𝑡) = 𝑙0𝑗 + 𝑔𝑙𝑗𝑡   (3.20) 

where the subscript j refers to the j-th defect; d0 and l0 are the initial depth and length, 

respectively; gd and gl are the depth and length growth rates, respectively.   

The probabilistic characteristics of the parameters included in the limit state functions are 

summarized in Table 3.3.  All ten defects are assumed to have the same deterministic initial 

length of 50 mm, whereas defects #1 through #5 are assumed have a deterministic initial 

depth of 0.25wtn, and defects #6 through #10 have a deterministic initial depth of 0.30wtn.  

Different random variables involved at the same defect are mutually independent.  Wall 

thicknesses at different defects are assumed to be fully correlated; the same assumption 

also applies to the yield strength and internal pressure.  Finally, it is assumed that gd (gl) 

for defects #1 through #10 are equicorrelated with a correlation coefficient of 1.  Although 

empirical equations for the Nataf transformation developed by Der Kiureghian and Liu 

(1986) can be employed to convert the correlation coefficient in the original (non-normal) 

space into the equivalent correlation coefficient in the normal space, the correlation 

coefficient in the original space is used in the analyses for the sake of simplicity.   

The system failure probability (Pfs) of the pipeline joint is evaluated using the improved 

equivalent component approach, with the two components having the highest correlation 

coefficient combined at each combining step.  The values of Pfs corresponding to 1 equal 

to 0.2, 0.5 and 0.8, respectively, are depicted in Fig. 3.10 for t ranging from one to ten years.  

The results indicate that Pfs is insensitive to the correlation among growth rates for this 

example.  To investigate the impact of the potential correlation between the depth and 

length growth rates on the system reliability, it is assumed that gd and gl at the same defect 

are correlated with a correlation coefficient of 2.  For simplicity, the growth rates at 

different defects are assumed to be mutually independent in this case.  The values of Pfs 
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corresponding to 2 equal to 0.2, 0.5 and 0.8, respectively, are depicted in Fig. 3.11.  The 

results indicate that Pfs is sensitive to 2 for t ≥ 5 years: a stronger correlation between gd 

and gl results in a higher system failure probability, as expected.  It is also observed from 

Figs. 3.10 and 3.11 that the failure probabilities increase rapidly after year 5.  This is likely 

caused by the nonlinear relationship between the burst pressure capacity and defect depth 

as shown in Eq. (3.17): once the defect depth becomes sufficiently large at around year 5, 

the burst pressure capacity decreases more rapidly as the depth further increases.   

3.4 Conclusions 

This chapter is aimed at improving the equivalent component approach for evaluating the 

failure reliability of series systems.  An analytical expression is derived using the chain rule 

to evaluate the unit normal vector for the equivalent component in the context of the FORM.  

The expression facilitates the evaluation of the correlation coefficient between the 

equivalent and system components.  An adaptive combining process is also proposed such 

that the two components with the highest correlation be combined at each combining step, 

whereby the two components could be both system components, both equivalent 

components, or one system component and one equivalent component.  The improved 

equivalent component approach is shown to be accurate for systems with equicorrelated 

components and systems with unequally correlated components, and markedly more 

efficient than the equivalent planes method and sequential compounding method.  Finally, 

the equivalent component approach is applied to evaluate the time-dependent system 

failure probability of a corroding pressurized pipeline joint containing ten active corrosion 

defects by considering the spatial correlation among different defects and correlation 

between the depth and length growth rates at a given defect.   
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Table 3.1 Order of combination involved in the adaptive combining process for 

system with equally-correlated components (m = 30,  = 0.5 and c = 6) 

Combining  

step 

Components combined 

#1 #2 

1 S1 S2 

2 E-1 S3 

3 E-2 S4 

4 E-3 S5 

… … … 

14 E-13 S15 

15 E-14 S16 

16 E-15 S17 

17 E-16 S18 

… … … 

27 E-26 S-28 

28 E-27 S-29 

29 E-28 S-30 

Note: S# denotes a system component with a numerical designation of #, and E-# denotes 

an equivalent component generated from the combining step #.   
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Table 3.2 Order of combination involved in the adaptive combining process for 

system with components (m = 30 and c = 6) correlated according to Eq. (3.12) 

Combining 

step 

Components combined 

#1 #2 

1 S1 S2 

2 S3 S4 

3 S5 S6 

4 S7 S8 

… … … 

14 S27 S28 

15 S29 S30 

16 E-1 E-2 

17 E-3 E-4 

… … … 

27 E-23 E-26 

28 E-24 E-25 

29 E-27 E-28 

Note: S# denotes a system component with a numerical order of #, and E-# denotes an 

equivalent component generated from the combining step #.   
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Table 3.3 Probabilistic characteristics of parameters for reliability analyses of 

corroding pipeline joint 

Parameter Distribution Mean COV (%) 

D  Deterministic Dn - 

wtj Normal wtn 1.5 

yj Normal 1.1SMYS 3.5 

pj  Gumbel 1.05Po 3.0 

l0j Deterministic 50 (mm) - 

d0j Deterministic 0.25/0.30wtn - 

gdj Weibull 0.3 (mm/year) 50 

glj Weibull 3.0 (mm/year) 50 
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Figure 3.1 Illustration of the equivalent component approach for a series system 

with m components 

 

 

Figure 3.2 Schematic illustration of effects of the combining sequence 
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(a) = 0.1 

 

(b) = 0.9 

Figure 3.3 Accuracy of IECA for series systems with equicorrelated components 
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Figure 3.4 Impact of  on the accuracy of IECA for series systems with 250 

equicorrelated components 
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(a) Comparison of accuracy 

 

(b) Comparison of efficiency 

Figure 3.5 Comparison of EPM, SCM and IECA for series systems with 250 

equicorrelated components and c= 6 
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Figure 3.6 Accuracy of equivalent component approach for series systems with 

unequally correlated components using correlation structure given by Eq. (3.12) 

 

 

Figure 3.7 Accuracy of equivalent component approach for unequally correlated 

components with the correlation structure given by Eq. (3.15) (min = 0 and max = 

0.98) 
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Figure 3.8 Accuracy of adaptive combing process for series systems with 250 

components correlated according to Eq. (3.15) with max=0.98 and min varying from 

0 to 0.98 
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(a) Comparison of accuracy 

 

(b) Comparison of efficiency 

Figure 3.9 Comparison of accuracy and efficiency of EPM, SCM and IECA for 

series system with c= 6 and the component correlation structure defined by Eq. 

(3.12) 

 



62 

 

 

Figure 3.10 Time-dependent system reliability of the corroding pipeline joint 

 

 

Figure 3.11 Sensitivity of the system reliability of the corroding pipeline joint to the 

correlation between the defect depth and length growth rates 
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4 First Order Reliability Method-based System Reliability 
Analyses of Corroding Pipelines Considering Multiple 
Defects and Failure Modes 

4.1 Introduction 

The efficient first-order reliability method (FORM) (Melchers 1999; Der Kiureghian 2005; 

Low and Tang 2007) is widely used to evaluate the reliability of engineering systems.  The 

application of the FORM to evaluate the failure probabilities of pipelines with corrosion 

defects has been reported in the literature (Teixeira et al. 2008; Sahraoui et al. 2013; Zhang 

and Zhou 2014; Miran et al. 2016).  Teixeira et al. (2008) and Sahraoui et al. (2013) 

employed the FORM to evaluate the probability of burst of a pipeline at a given corrosion 

defect, but did not consider the leak failure mode in the analyses.  Zhang and Zhou (2014) 

developed a FORM-based methodology to evaluate the time-dependent probabilities of 

small leak and burst at a single active corrosion defect on a pipeline.  However, the 

methodology is not applicable to evaluating the time-dependent probabilities of small leak 

and burst of a pipe joint containing multiple active corrosion defects.  Miran et al. (2016) 

evaluated the system failure probability of pipe joints considering multiple defects and 

multiple failure modes (i.e. small leak, large leak and rupture) using the FORM.  However, 

their study did not consider the potential correlations among failures at different defects.  

The objective of the work in this chapter is to develop an efficient FORM-based 

methodology to evaluate the time-dependent probabilities of small leak and burst of a 

pipeline joint containing multiple active corrosion defects by taking into account the 

correlations among failures at different defects.  The methodology includes two key 

components.  First, two equivalent linearized time-dependent limit state functions, one for 

leak and the other for burst, are constructed in the standard normal space for the multiple 

defects on the pipeline joint, based on the FORM results obtained for individual failure 

modes associated with individual defects.  Second, formulations are developed for 

computing the incremental probabilities of small leak and burst of the pipeline joint over a 

short time increment based on the equivalent limit state functions.  The proposed 

methodology is illustrated using three numerical examples, in which different models 

characterizing the growth of corrosion defects are employed.  The accuracy of the proposed 
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methodology is demonstrated by comparing the evaluated probabilities of small leak and 

burst with the corresponding values obtained from the simple Monte Carlo (MC) analyses.  

4.2 Limit State Functions 

Consider a pipeline joint with a total of m active corrosion defects.  The limit state function, 

𝑔𝑗
𝑠(𝑡), for the j-th defect (j = 1, 2, ..., n) penetrating the pipe wall at a given time t is given 

by 

𝑔𝑗
𝑠(𝑡) = 𝜑0𝑤𝑡𝑗 − 𝑑𝑗(𝑡)             (4.1) 

where wtj is the pipe wall thickness at the location of the j-th defect; dj(t) is the maximum  

depth of the j-th defect at time t;  ( ≤ 1) is a reduction factor to account for the fact that 

the remaining ligament of the pipe wall is prone to developing cracks that could lead to a 

small leak once the defect is sufficiently deep (Al-Amin and Zhou 2014).  A typical value 

of  is 0.8 (Caleyo et al. 2002; Zhou 2010).  Note that both random variable- and stochastic 

process-based models have been reported in the literature to characterize the defect growth 

(Zhou 2010; Lu et al. 2013; Gomes and Beck 2014).  

The limit state function, 𝑔𝑗
𝑏(𝑡), for plastic collapse of the remaining ligament at the j-th 

defect at time t is given by  

𝑔𝑗
𝑏(𝑡) = 𝑝𝑏𝑗(𝑡) − 𝑝𝑗 (4.2) 

where pbj(t) is the burst pressure capacity of the pipeline joint at the j-th defect at time t and 

pj is the internal pressure at the j-th defect.  Although the pipe internal pressure is controlled 

during operation, there are inevitable random pressure fluctuations over time.  Therefore, 

the internal pressure should ideally be modeled as a time-dependent random process.  

However, such a model will significantly complicate the proposed methodology.  Given 

that the uncertainty in the internal pressure is in general much less than that in the corrosion 

growth process (CSA 2015), the internal pressure is characterized by a time-independent 

random variable instead of a time-dependent random process in this chapter.  pbj is 

evaluated using the well-known ASME B31G Modified model (Kiefner and Vieth 1989) 

as follows: 
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𝑝𝑏𝑗 = 𝜉𝑗
2𝑤𝑡𝑗(𝜎𝑦𝑗+68.95)

𝐷
[
1−

0.85𝑑𝑗

𝑤𝑡𝑗

1−
0.85𝑑𝑗

𝑀𝑗𝑤𝑡𝑗

] (4.3) 
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2
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> 50

  (4.4) 

where  is the model error associated with the B31G Modified model (Zhou and Huang 

2012); D is the pipe outside diameter; y and y + 68.95 (MPa) are the yield strength and 

empirically-defined flow stress of the pipe steel, respectively; M is the so-called Folias 

factor; l is the defect length, and the subscript j denotes the value of the variable 

corresponding to the j-th defect. For brevity, pbj(t), Mj(t), dj(t) and lj(t) are simply written 

as pbj, Mj, dj and lj, respectively, in Eqs. (4.3) and (4.4). For simplicity, the dependence of 

dj and lj on time is made implicit in Equations (4.3) and (4.4).  

Let Ps(t) and Pb(t) denote the cumulative probabilities of small leak and burst of the 

pipeline joint, respectively, within a time interval [0, t].  Further let 𝑡𝑗
𝑠 denote the time at 

which the j-th defect just penetrates the pipe wall, and 𝑡𝑗
𝑏 denote the time at which plastic 

collapse takes place at the j-th defect due to the internal pressure.  Because of the competing 

nature of the small leak and burst failure modes, Ps(t) and Pb(t) are defined as follows using 

𝑡𝑗
𝑠 and 𝑡𝑗

𝑏:  

𝑃𝑠(𝑡) = Prob [(0 ≤ 𝑚𝑖𝑛
𝑗
{𝑡𝑗
𝑠} ≤ 𝑡) ∩ (𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑠} <𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑏})] (4.5a) 

𝑃𝑏(𝑡) = Prob [(0 ≤ 𝑚𝑖𝑛
𝑗
{𝑡𝑗
𝑏} ≤ 𝑡) ∩ (𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑏} <𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑠})] (4.5b) 

where  denotes the intersection of two events.   
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4.3 FORM-based Time-dependent System Reliability 
Analyses of Corroding Pipelines 

4.3.1 Equivalent Limit State Functions for Corroding 
Pipelines 

The pipeline joint containing m active corrosion defects can be considered to include two 

series systems, one system with m limit state functions (𝑔𝑗
𝑠(𝑡), j = 1, 2, ..., m) representing 

the defect penetrating the pipe wall and the other system with m limit state functions (𝑔𝑗
𝑏(𝑡)) 

representing the plastic collapse.  Let the union of all the random variables (e.g. pipe wall 

thicknesses, yield strengths, internal pressures and defect sizes) involved in 𝑔𝑗
𝑠(𝑡)  and 

𝑔𝑗
𝑏(𝑡) (j = 1, 2, ..., m) be represented by an n-dimensional vector X.  The probabilistic 

characteristics of some of the random variables included in X may depend on the axial and 

circumferential locations of the corrosion defect on the pipeline.  For example, defects at a 

certain location on the pipeline may on average grow faster than the defects at other 

locations. 

Consider the series system representing the wall penetration first. At a given time t, the 

FORM can be used to evaluate Prob[𝑔𝑗
𝑠(𝑡) ≤ 0] with the corresponding reliability index 

denoted by 𝛽𝑗
𝑠(𝑡).  For the detailed introduction of the FORM, please refer to Chapter 2.  

It is noted that because 𝑔𝑗
𝑠(𝑡)  monotonically decreases over time as corrosion defects 

cannot self-heal, 𝛽𝑗
𝑠(𝑡)  corresponds to the cumulative probability of the j-th defect 

penetrating the pipe wall within the time interval [0, t] (Andrieu-Renaud et al. 2004).  

Define s(t) =[𝛽1
𝑠(𝑡), 𝛽2

𝑠(𝑡), ..., 𝛽𝑚
𝑠 (𝑡)]T, and let Rs(t) denote the correlation matrix of the 

linearized safety margins associated with 𝑔1
𝑠(𝑡), 𝑔2

𝑠(𝑡), ..., 𝑔𝑚
𝑠 (𝑡) in the standard normal 

space.  The cumulative probability of any of the m defects penetrating the pipe wall within 

[0, t], Ps(t), then equals 1 − Φ𝑚(𝜷
𝒔(𝑡), 𝑹𝒔(𝑡)).  The reliability index, se(t), corresponding 

to Ps(t) equals --1(Ps(t)).  If m is small, Genz's method (Genz, 1992) is advised to evaluate 

Ps(t) for its high accuracy.  Otherwise, improved equivalent component approach (see 

Chapter 3) should be preferred due to the efficiency advantages. 
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Following Gollwitzer and Rackwitz (1983) as well as Estes and Frangopol (1998), we 

construct a linearized equivalent limit state function at time t, Gse(t), in the standard normal 

space whose reliability index equals se(t).  It follows that  

𝐺𝑠𝑒(𝑡) = 𝛽𝑠𝑒(𝑡) − (𝜶𝑠𝑒(𝑡))T𝒖 (4.6) 

where u denotes values of the n-dimensional vector of the standard normal variates 

transformed from X, and se(t) is the equivalent unit normal vector associated with the 

linearized equivalent limit state function at time t.  Given that the unit normal vector 

represents the sensitivity of the reliability index with respect to the random variables 

involved, se(t) can be evaluated as (Gollwitzer and Rackwitz 1983) 

𝛼𝑖
𝑠𝑒(𝑡) =

𝜕𝛽𝑠𝑒(𝑡)

𝜕𝑢𝑖

√∑ (
𝜕𝛽𝑠𝑒(𝑡)

𝜕𝑢𝑖
)
2

𝑛
𝑖=1

, (i = 1, 2, ..., n) (4.7) 

where 𝛼𝑖
𝑠𝑒(𝑡) is the i-th element of se(t).  In this chapter, 

𝜕𝛽𝑠𝑒(𝑡)

𝜕𝑢𝑖
 is computed by utilizing 

the chain rule as follows: 

𝜕𝛽𝑠𝑒(𝑡)

𝜕𝑢𝑖
= ∑

𝜕𝛽𝑠𝑒(𝑡)

𝜕𝛽𝑗
𝑠(𝑡)

𝜕𝛽𝑗
𝑠(𝑡)

𝜕𝑢𝑖

𝑚
𝑗=1  (4.8) 

where 
𝜕𝛽𝑗

𝑠(𝑡)

𝜕𝑢𝑖
 is already available from the FORM analyses carried out for the individual 

limit state function 𝑔𝑗
𝑠(𝑡) ; therefore, only 

𝜕𝛽𝑠𝑒(𝑡)

𝜕𝛽𝑗
𝑠(𝑡)

  needs to be evaluated. This can be 

achieved through the finite difference method.  The use of Eq. (4.8) to evaluate the 

equivalent unit normal vector is more efficient and numerically stable than the approach 

employed by Gollwitzer and Rackwitz (1983), which involves directly calculating 
𝜕𝛽𝑠𝑒(𝑡)

𝜕𝑢𝑖
 

by perturbing the value of ui at the design point associated with the individual limit state 

function.  

Now consider the series system for the plastic collapse. The FORM can be used to evaluate 

Prob[𝑔𝑗
𝑏(𝑡) ≤ 0] with the corresponding reliability index denoted by 𝛽𝑗

𝑏(𝑡).  It is noted 

that 𝑔𝑗
𝑏(𝑡)  is a monotonically decreasing function of time because pbj(t) monotonically 

decreases over time and the pipe internal pressure is assumed to be time-independent in 

this chapter.  Therefore, 𝛽𝑗
𝑏(𝑡) represents the cumulative probability of plastic collapse at 



68 

 

the j-th defect within [0, t].  The procedure for constructing Gse(t) is equally applicable to 

construct a linearized equivalent limit state function, Gbe(t), for the series system 

representing the plastic collapse, with the corresponding reliability index be(t) and 

equivalent unit normal vector be(t), where be(t) corresponds to the cumulative probability 

of plastic collapse at any of the m defects within [0, t].  With the equivalent limit state 

functions for the wall penetration and plastic collapse established, the m active defects on 

the pipeline are now represented by a single equivalent active defect, which greatly 

simplifies formulations for Ps(t) and Pb(t) as described in the next section. 

4.3.2 Formulations for System Failure Probabilities of 

Corroding Pipelines 

As implied by Eq. (4.5), the evaluation of Ps(t) and Pb(t) is a problem of computing the 

probability of first excursion into the failure region associated with either small leak or 

burst within [0, t].  It follows that Ps(t) and Pb(t) must be evaluated incrementally; that is,  

Ps( + t)= Ps() + Ps(t) (4.9a) 

Pb( + t) = Pb() + Pb(t) (4.9b) 

where Ps(t) and Pb(t) (0 ≤  < t) are incremental probabilities of small leak and 

burst, respectively, within a short time interval between  and  + t.  The value of t in 

the range of half to one year is considered a reasonable choice for the reliability analyses 

of corroding pipelines, considering that the growth of corrosion on pipelines is typically a 

slow process.  The geometric descriptions of Ps(t) and Pb(t) in terms of the 

equivalent limit state functions Gse() and Gbe() are shown in Figs. 4.1(a) and 4.1(b), 

respectively.  Four hyperplanes representing Gbe( + t) = Gse( + t) = Gbe() = Gse() = 

0 respectively are shown in Fig. 4.1.  The incremental probabilities of small leak and burst 

as time increases from  to  +t are depicted as the two shaded areas, in Fig. 4.1(a) and 

4.1(b), respectively.  The grey arrows in Fig. 4.1 point to the design points associated with 

limit state functions relevant to the calculations of Ps(t) and Pb(t).  It follows 

from Fig. 4.1 that Ps(t) and Pb(t) are given by  
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∆𝑃𝑠(𝜏, ∆𝑡) = Φ3([𝛽
𝑠𝑒(𝜏), −𝛽𝑠𝑒(𝜏 + ∆𝑡), 𝛽𝑏𝑒(𝜏)]T, 𝑹𝑠𝑏(𝜏, Δ𝑡))  (4.10a) 

∆𝑃𝑏(𝜏, ∆𝑡) = Φ3([𝛽
𝑏𝑒(𝜏),−𝛽𝑏𝑒(𝜏 + ∆𝑡), 𝛽𝑠𝑒(𝜏)]T, 𝑹𝑏𝑠(𝜏, Δ𝑡))   (4.10b) 

where Rsb(t) is the 3 × 3 matrix of correlation coefficients of the three linearized 

equivalent limit state functions Gse( + t), Gse() and Gbe(), and Rbs(t) is the 3 × 3 

matrix of correlation coefficients of Gbe( + t), Gbe() and Gse().  The correlation 

coefficient between Gse( + t) and Gse() equals (se( + t))Tse(); the correlation 

coefficient between Gse( + t) and Gbe() equals (se( + t))Tbe(), and the other 

correlation coefficients can be evaluated in a similar fashion.  

The area ABCD indicated in Fig. 4.1 corresponds to the probability of the occurrence of 

both small leak and burst within [,  + t].  Because it is not feasible for the proposed 

methodology to determine which failure mode will occur first within this time interval, the 

area ABCD is included in both Ps(t) and Pb(t).  For reasonably small values of 

t, the error introduced by this approximation is considered insignificant.  Note that the 

growth of corrosion defects on pipelines is generally a gradual process; therefore, it can be 

assumed that the hyperplanes corresponding to Gse() = Gse( + t) = 0 are parallel to each 

other and that the hyperplanes corresponding to Gbe() = Gbe( + t) = 0 are parallel to 

each other.  In other words, Gse() and Gse( + t) are assumed to be fully correlated, and 

Gbe() and Gbe( + t) are assumed to be fully correlated.  Based on these assumptions, 

Eqs. (4.10a) and (4.10b) can be slightly simplified as  

∆𝑃𝑠(𝜏, ∆𝑡) = ∫ ∫ ϕ2(𝜃1, 𝜃2, 𝑟
𝑠𝑏(𝜏))

𝛽𝑠𝑒(𝜏)

𝛽𝑠𝑒(𝜏+∆𝑡)

𝛽𝑏𝑒(𝜏)

−∞
𝑑𝜃1𝑑𝜃2 (4.11a) 

∆𝑃𝑏(𝜏, ∆𝑡) = ∫ ∫ ϕ2(𝜃1, 𝜃2, 𝑟
𝑠𝑏(𝜏))

𝛽𝑏𝑒(𝜏)

𝛽𝑏𝑒(𝜏+∆𝑡)

𝛽𝑠𝑒(𝜏)

−∞
𝑑𝜃1𝑑𝜃2 (4.11b) 

where 2(•, •, •) is the probability density function of the bivariate normal distribution, and 

rsb() = (se())Tbe() is the correlation coefficient between Gse() and Gbe().  Given the 

formulations for Pl(t) and Pb(t), Pl(t) and Pb(t) can be evaluated recursively from 

Eqs (4.10a) and (4.10b) starting from Ps(0) and Pb(0), which can be evaluated as Prob[Gse(0) 
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≤ 0] and Prob[Gbe(0) ≤ 0], respectively.   

4.4 Numerical Examples 

4.4.1 General Information 

Three examples, which are representative of small-, medium- and large-diameter pipeline 

joints respectively, are used to illustrate the application and accuracy of the above-

described methodology for evaluating the system reliability of corroding pipelines.  Table 

4.1 summarizes the basic attributes of these examples, which includes their nominal outside 

diameters (D), nominal wall thicknesses (wtn), specified minimum yield strengths (SMYS) 

and maximum operating pressures (P0).  For illustrative purpose, it is assumed that ten 

active corrosion defects have been detected and sized by a recently-run ILI on each of the 

three pipeline joints although the methodology can easily cope with more defects.  The 

initial lengths (l0j) of all ten defects reported by the ILI tool are assumed to equal 50 mm; 

the ILI-reported initial depths (d0j) of five defects equal 0.25wtn, and the initial depths of 

the other five defects equal 0.3wtn.  The burst pressure capacity of the joint at a given defect 

is evaluated using the B31G Modified model as given by Eqs. (4.3) and (4.4).  The 

reduction factor  in Eq. (4.1) is set to be 0.8.  

For simplicity, the following simple linear growth model is adopted to characterize the 

growth of the defect length over time t: 

𝑙𝑗(𝑡) = 𝑙0𝑗 + 𝑔𝑙𝑗𝑡  (4.12) 

where gl is the length growth rate; the subscript j denotes the value of the variable 

corresponding to the j-th defect.  In addition, three different defect depth growth models 

that are widely adopted in the literature are employed, namely the linear, nonlinear and 

gamma process-based models (Zhou 2010; Al-Amin and Zhou 2014; Zhang and Zhou 2014; 

Ellingwood and Mori 1997; Valor et al. 2013).  Details of these models are described in 

the following sections.  In practice, the growth of corrosion defects is often quantified 

through the so-called defect matching procedure, i.e. comparing sizes of the same defect 

reported in successive ILIs.  Extensive studies (Achterbosch and Grzelak 2006; Al-Amin 

et al. 2014; Zhang et al. 2014) have been reported in the literature for quantifying various 
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growth models based on the defect sizes reported by multiple ILIs, while taking into 

account the measurement errors associated with the ILI results. 

The probabilistic characteristics of all parameters except for the defect depth growth are 

summarized in Table 4.2.  Note that the uncertainties in d0j and l0j are intended to reflect 

the measurement errors associated with the ILI tools, which can be quantified from typical 

accuracy specifications of the tool such as the measured depth (length) being within ± 

5%wtn (10 mm) of the actual depth (length).  Note further that the pipe internal pressure is 

in general bounded (CSA 2015); however, for simplicity but without affecting the objective 

of the numerical examples, the internal pressure is assumed to be characterized by an 

unbounded distribution (Gumbel distribution) based on the findings of the well-known 

SUPERB project (Jiao et al. 1995).   

Also indicated in Table 4.2 is the assumed correlation coefficient (1) between random 

variables representing the same physical parameter at different defects.  Random variables 

associated with the same defect may also be correlated (e.g. the growths of the defect depth 

and length); such correlations can be easily accounted for in the analyses but are ignored 

for the sake of simplicity.  The spatial correlation between the growths of different defects 

can be quantified based on the results obtained from the defect matching practice; however, 

the measurement errors of the ILI tools as well as the potential spatial correlation associated 

with the measurement errors make this a challenging task.  In the present chapter, 

parametric analyses with respect to the spatial correlation between the defect growths are 

carried out.  

The correlation coefficient between non-normally distributed random variables can be 

modified using the empirical equations provided in (Der Kiureghian and Liu 1986) to 

estimate the corresponding correlation coefficient in the normal space.  For simplicity and 

without affecting the purpose of the examples, the unmodified correlation coefficients are 

employed in the analyses.  To verify the failure probabilities evaluated by using the 

proposed methodology, the simple MC with 106 simulation trials is performed to evaluate 

the benchmark failure probability of each example.   
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4.4.2 Linear Growth Model for Defect Depth 

The growth of the defect depth is characterized by 

𝑑𝑗(𝑡) = 𝑑0𝑗 + 𝑔𝑑𝑗𝑡  (4.13) 

where d0 and gd is the initial defect depth and depth growth rate; the subscript j denotes the 

value of the variable corresponding to the j-th defect.  A Weibull distribution with a COV 

of 50% is assigned to gd, with the corresponding mean value assumed to equal 0.1, 0.2 and 

0.3 mm/year for examples 1, 2 and 3, respectively.  The growth rates at different defects 

on a given pipeline joint are assumed to be equicorrelated, with the correlation coefficient 

ρ2 equal to 0.2 or 0.8.  

The results of the time-dependent system reliability analyses are shown in Fig. 4.2.  Note 

that the probabilities of burst and small leak obtained by using Eq. (4.11) (i.e. based on the 

parallel hyperplane assumption) are shown along with those obtained by using Eq. (4.10) 

(i.e. without the parallel hyperplane assumption).  Moreover, the probabilities of burst and 

small leak obtained from the simple MC are shown in Fig. 4.2 as the benchmark results.  

Because the number of simulation trials included in MC equals 106, the lowest failure 

probability corresponding to MC shown in Fig. 4.2 is 10-6.  Fig. 4.2 indicates that the failure 

probabilities corresponding to Eqs. (4.10) and (4.11) are practically identical, therefore 

validating the assumption that the hyperplane represented by Gse() = 0 (Gbe() = 0) is 

parallel to that represented by Gse( + t) = 0 (Gbe( + t) = 0).  The probabilities of small 

leak evaluated by using the proposed methodology are essentially the same as the 

corresponding failure probabilities obtained from MC for all three examples and the two 

values (i.e. 0.2 and 0.8) of 1 and 2 considered.  The probabilities of burst evaluated by 

using the proposed methodology also in general agree very well with the corresponding 

MC results.  The proposed methodology tends to slightly underestimate the probabilities 

of burst for the small- and medium-diameter pipelines as shown in Figs. 4.2(a) through 

4.2(d), but slightly overestimate the probabilities of burst for the large-diameter pipeline as 

shown in Figs. 4.2(e) and 4.2(f).    
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4.4.3 Nonlinear Growth Model for Defect Depth 

A nonlinear power-law growth model (Ellingwood and Mori 1997; Valor et al. 2013) is 

employed to characterize dj(t) as follows:  

𝑑𝑗(𝑡) = 𝑑0𝑗 + 𝑘𝑗𝑡
0.5  (4.14) 

where kj is the parameters of the power-law growth model corresponding to the j-th defect 

(Ellingwood and Mori 1997); kj is characterized by a Weibull variate with a COV of 50%. 

The mean value of kj is assumed to equal 0.332, 0.663 and 0.995 mm/year0.5 for examples 

1, 2 and 3, respectively.  Furthermore, the Weibull variates representing kj for different 

defects are assumed to be equicorrelated, with the correlation coefficient ρ2 equal to 0.2 

or 0.8. 

The probabilities of burst and small leak obtained from the proposed methodology and 

simple MC for the nonlinear growth model of the defect depth are depicted in Fig. 4.3.  

This figure leads to similar observations as those from Fig. 4.2.  First, the validity of the 

parallel hyperplane assumption is further demonstrated in Fig. 4.3 as the results 

corresponding to Eqs (4.10) and (4.11) are the same.  Second, the probabilities of small 

leak corresponding to the proposed methodology are in excellent agreement with those 

from MC for all three examples.  The proposed methodology somewhat underestimates the 

probabilities of burst for small- and medium-diameter pipelines, especially the latter case 

as shown in Figs. 4.3(c) and 4.3(d), but the difference is considered acceptable.  Finally, 

the proposed methodology slightly overestimates the probabilities of burst for the large-

diameter pipeline as shown in Figs. 4.3(e) and 4.3(f).  

4.4.4 Gamma Process-based Growth Model for Defect Depth 

The homogeneous gamma process (Van Noortwijk 2009) is employed to characterize the 

growth of the defect depth as follows:  

𝑑𝑗(𝑡) = 𝑑0𝑗 + 𝑑𝑔𝑗(𝑡)  (4.15) 
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where dgj(t) denotes the homogeneous gamma process corresponding to the j-th defect at a 

given time t.  The probability density function of the gamma-distributed dgj(t), F(dgj(t)|at, 

b), is given by  

𝐹(𝑑𝑔𝑗(𝑡)|𝑎𝑡, 𝑏) = 𝑏𝑎𝑡(𝑑𝑔𝑗(𝑡))
𝑎𝑡−1 exp(−𝑏𝑑𝑔𝑗(𝑡)) /Γ(𝑎𝑡)  (4.16) 

where a and b are parameters of the gamma process, and (•) is the gamma function.  It 

follows from the properties of the gamma process (Van Noortwijk 2009) that dgj( + t) = 

dgj() + dgj(t), where dgj(t) is the gamma-distributed increment of the defect depth within 

t and is independent of dgj().  

Let  and  denote, respectively, the mean and standard deviation of the depth increment 

within one year.  The parameters of the gamma process, a and b, are related to  and  as 

 = a/b and 2= a/b2 (Van Noortwijk 2009). In this chapter, a is assumed to equal 4, 

whereas b is assumed to equal 40, 20 and 13.33 (mm/year)-1 for examples 1, 2 and 3, 

respectively.  This corresponds to  () = 0.1 (0.05), 0.2 (0.1) and 0.3 (0.15) mm/year for 

examples 1, 2 and 3, respectively.  For simplicity, the gamma processes dgj(t) at different 

defects are assumed to be mutually independent.   

Figure 4.4 depicts the failure probabilities obtained from the proposed methodology and 

MC for the gamma-process based defect depth growth.  The figure indicates that the failure 

probabilities obtained from the proposed methodology agree very well with those obtained 

from MC for all three examples and 1 = 0.2 and 0.8.  Finally, the results shown in Figs. 

4.2, 4.3 and 4.4 demonstrate the applicability of the proposed methodology for both random 

variable- and stochastic process-based defect growth models and accuracy of the 

methodology.   

4.5 Conclusions 

A FORM-based methodology is proposed in this chapter to evaluate the time-dependent 

system reliability of a joint of pressurized steel pipeline containing multiple active 

corrosion defects.  The methodology considers two competing failure modes of the pipe 

joint, i.e. small leak and burst, and takes into account correlations among limit state 
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functions at different defects.  At a given time, the FORM is applied to the limit state 

functions corresponding to the defect penetrating the pipe wall and plastic collapse at 

individual corrosion defects on the pipe joint.  Two linearized equivalent limit state 

functions, corresponding to the defect penetrating the pipe wall and plastic collapse 

respectively, are then established in the standard normal space for all the defects on the 

pipe joint.  The unit normal vectors associated with the equivalent limit state functions are 

computed using the chain rule that incorporates the sensitivity factors obtained from the 

FORM analyses for each individual defect.  Based on the equivalent limit state functions, 

a procedure is developed to incrementally evaluate the probabilities of small leak and burst 

for the pipe joint over a forecasting time period.   

The proposed methodology is applied to three numerical examples that are representative 

of small-, medium- and large-diameter pipeline joints.  Each example is assumed to contain 

ten active corrosion defects.  Furthermore, three widely used models are adopted to 

characterize the growth of the defect depth, namely the linear, nonlinear and homogeneous 

gamma process-based growth models.  The probabilities of small leak and burst of the 

examples evaluated by using the proposed methodology are compared with those obtained 

from the simple Monte Carlo simulation.  The comparison indicates that the proposed 

methodology is accurate for different defect growth models and various levels of 

correlations among limit state functions at different defects.  
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Table 4.1 Basic attributes of three pipeline examples. 

Example D (mm) wtn (mm) SMYS (MPa) P0 (MPa) 

1 324 4.32 359 5 

2 610 7.16 414 6 

3 914 13.15 483 10 

 

 

 

 

 

 

Table 4.2 Probabilistic characteristics of parameters excluding the defect depth 

growth. 

Parameter Distribution Mean 

Coefficient. 

of variation 

(COV) (%) 

Corr. coef. at 

different defects 

(1) 

D  Deterministic Dn - - 

wtj  Normal wtn 1.5 

0.2 or 0.8 

yj  Normal 1.1SMYS 3.5 

pj  Gumbel 1.05P0 3.0 

l0j  Normal 50 (mm) 15 

d0j  Normal 0.25/0.3wtn 15 

glj Weibull 3.0 (mm/year) 15 

j Gumbel 1.297 25.8 
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(a) Ps(t)                                  (b)Pb(t) 

Figure 4.1 Geometric descriptions of Ps(t) and Pb(t) 

 

  

𝐺𝑏𝑒 𝜏 = 0 𝐺𝑏𝑒 𝜏 = 0
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(a) Example 1; Small diameter;  

 

(b) Example 1; Small diameter;  
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(c) Example 2; Medium diameter;  

 

(d) Example 2; Medium diameter;  
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(e) Example 3; Large diameter;  

 

(f) Example 3; Large diameter;  

Figure 4.2 Probabilities of burst and small leak for examples 1, 2 and 3 based on the 

linear growth model for defect depth 
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(a) Example 1; Small diameter;  

 

(b) Example 1; Small diameter;  
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(c) Example 2; Medium diameter;  

 

(d) Example 2; Medium diameter;  
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(e) Example 3; Large diameter;  

 

(f) Example 3; Large diameter;  

Figure 4.3 Probabilities of burst and small leak for examples 1, 2 and 3 based 

on the nonlinear growth model for defect depth 
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(a) Example 1; Small diameter;  

 

(b) Example 1; Small diameter;  
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(c) Example 2; Medium diameter;  

 

(d) Example 2; Medium diameter;  
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(e) Example 3; Large diameter;  

 

(f) Example 3; Large diameter;  

Figure 4.4 Probabilities of burst and small leak for examples 1, 2 and 3 based on the 

homogeneous gamma process-based growth model for defect depth 
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5 Importance Sampling-based System Reliability Analyses 
of Corroding Pipelines Considering Multiple Failure Modes  

5.1 Introduction 

The simple Monte Carlo simulation (MC) is the most straightforward approach to evaluate 

the time-dependent system reliability of corroding pipelines considering the small leak and 

burst failure modes (Zhou 2010; Zhou et al. 2012).  However, this approach is in general 

time-consuming, especially if the failure probability is small (e.g. ≤ 10-6) and/or the number 

of pipelines to be analyzed is large.  Leira et al. (2016) proposed an enhanced MC 

simulation technique to evaluate the probability of burst of a corroding pipeline containing 

multiple defects.  The enhancement results from fitting a parametric probability function 

at moderately high failure levels and extrapolating the tail probability, thus improving the 

efficiency of the simulation.  However, this approach is potentially subjected to tail 

sensitivity issues.  

The efficiency of the simple MC simulation can be improved by using the importance 

sampling (IS) technique.  The theory of the IS technique is well described in the literature 

(Schuëller and Stix 1987; Engelund and Rackwitz 1993; Melchers 1989).  By using an 

appropriately selected IS density function, the IS-based simulation samples the failure 

domain more frequently and therefore achieves a higher efficiency in estimating the failure 

probability than the simple MC simulation.  Studies on selecting the appropriate IS density 

functions for evaluating the system reliability of series and parallel systems have been 

reported in the literature (Schuëller and Stix 1987; Melchers 1989; Mori and Kato 2003; 

Patelli et al. 2011; Wang and Song 2016).  Once a corroding pipeline joint fails, by small 

leak or burst, it is usually detected and repaired within a short time frame such as several 

days.  It follows that the occurrence of small leak eliminates the potential occurrence of 

burst, and vice versa.  Therefore, the small leak and burst should be considered as two 

competing failure modes in the system reliability analyses of corroding pipelines.  However, 

the application of the IS technique to evaluate the time-dependent system reliability of 

corroding pipelines by considering the small leak and burst failure modes has, to our best 

knowledge, not been reported in the literature.  
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The objective of the work reported in this chapter is to explore the use of the IS technique 

to evaluate the time-dependent system reliability of corroding pipelines containing multiple 

active, stochastically dependent corrosion defects by considering the small leak and burst 

failure modes.  The remainder of the chapter is organized as follows.  Section 5.2 describes 

the limit state functions relevant to the small leak and burst failure modes for a corroding 

pipeline; Section 5.3 presents the methodologies for evaluating the system reliability of 

corroding pipelines based on the IS technique and selecting the IS density function; 

numerical examples are given in Section 5.4 to demonstrate the accuracy of the proposed 

methodology, followed by conclusions. 

5.2 Formulations for Limit State Functions and Failure 
Probabilities 

Consider a pipeline joint containing m (m ≥ 1) active corrosion defects.  The limit state 

function, 𝑔𝑗
𝑠(𝑡), for the j-th (j = 1, 2, …, m) defect to penetrate the pipe wall as a function 

of time t is given by Zhou (2010) 

𝑔𝑗
𝑠(𝑡) = 𝜑0𝑤𝑡𝑗 − 𝑑𝑗(𝑡) (5.1) 

where wtj denotes the pipe wall thickness at the j-th defect; dj(t) is the depth (i.e. in the 

through-pipe wall thickness direction) of the j-th defect at time t;  ( ≤ 1) is a reduction 

factor to account for that the remaining ligament of the pip wall may develop cracks that 

result in leaks for relatively deep corrosion defects (Al-Amin and Zhou 2014), and  is 

typically assumed to equal 0.8 (Al-Amin and Zhou 2014; Caleyo et al. 2002).  The time-

dependent limit state function, 𝑔𝑗
𝑏(𝑡), for the severance of the remaining ligament at the j-

th defect is given by Zhou (2010) 

𝑔𝑗
𝑏(𝑡) = 𝑝𝑏𝑗(𝑡) − 𝑝𝑗 (5.2) 

where pbj(t) is the burst capacity pressure at the j-th defect at time t and pj is the internal 

pressure at the j-th defect.  In this chapter, pj is considered a random variable as opposed 

to a stochastic process.  Many empirical and semi-empirical models have been developed 

to evaluate the burst capacity pressure at a corrosion defect; a summary of these models 
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can be found in Zhou and Huang (2012).  In this chapter, the model proposed by Leis and 

Stephens (1997) is adopted to calculate pbj as follows:  

𝑝𝑏𝑗 = 𝜉𝑗
2𝑤𝑡𝑗𝜎𝑢𝑗

𝐷

[
 
 
 
 

1 −
𝑑𝑗

𝑤𝑡𝑗

(

  
 
1 − 𝑒𝑥𝑝

(

 
 −0.157𝑙𝑗

√𝐷(𝑤𝑡𝑗−𝑑𝑗)

2
)

 
 

)

  
 

]
 
 
 
 

 (5.3) 

where u denotes the pipe ultimate tensile strength;  is the associated model error; D is the 

pipe outside diameter, and l denotes the length (i.e. in the longitudinal direction of the 

pipeline) of the defect.  The subscript j for a given symbol indicates its association with the 

j-th defect.  Similar to the defect depth, the defect length can also grow with time.  For 

brevity, pbj(t), dj(t) and lj(t) are simply written as pbj, dj and lj, respectively, in Eq. (5.3). 

Let Ps(t) and Pb(t) denote the cumulative probabilities of small leak and burst of the 

pipeline joint, respectively, within a time interval [0, t].  Further let 𝑡𝑗
𝑠 denote the time at 

which the j-th defect just penetrates the pipe wall, and 𝑡𝑗
𝑏 denote the time at which plastic 

collapse takes place at the j-th defect due to the internal pressure.  Because of the competing 

characteristics of the small leak and burst failure modes, Ps(t) and Pb(t) can be expressed 

in terms of 𝑡𝑗
𝑠 and 𝑡𝑗

𝑏 as follows:  

𝑃𝑠(𝑡)  = Prob [(0 ≤ 𝑚𝑖𝑛
𝑗
{𝑡𝑗
𝑠} ≤ 𝑡) ∩ (𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑠} <𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑏})]  (5.4a) 

𝑃𝑠(𝑡) = Prob [(0 ≤ 𝑚𝑖𝑛
𝑗
{𝑡𝑗
𝑏} ≤ 𝑡) ∩ (𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑏} <𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑠})]  (5.4b) 

where Prob[•] denotes the probability of an event, and the symbol “” denotes the 

intersection of two events.  

5.3  IS-based System Reliability Analyses of Corroding 
Pipelines 

5.3.1  Overview of IS Technique  

The failure probability, Pf, of an engineering system can be calculated as  
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𝑃𝑓 = ∫ 𝑓𝑿(𝒙)Ω(𝒙)
𝑑𝒙 (5.5) 

where X is a vector of random variables involved in the system; fX(x) is the joint probability 

density function (PDF) of X, and Ω(x) denotes the failure domain with x being the value 

of X.  It is generally more advantageous to evaluate Pf in the standard normal space than in 

the original (i.e. X) space due to the rotational symmetry of the joint standard normal PDF 

(Der Kiureghian 2005; Madsen 2006).  To this end, X is transformed to a vector of 

independent standard normal variate U that has the same dimension as X, and Pf is then 

given by 

𝑃𝑓 = ∫ 𝑓𝑼(𝒖)Ω′(𝒖)
𝑑𝒖 (5.6) 

where u is the value of U; Ω’(u) is the failure domain in the standard normal space, and 

fU(u) is the joint (standard normal) PDF of U.  The techniques for transforming X to U are 

described in many well-known references on the structural reliability theory (Melchers 

1989; Der Kiureghian 2005; Madsen 2006).  By applying the IS technique, Pf expressed 

by Eq. (5.6) can be evaluated as (Melchers 1989)  

𝑃𝑓 ≈
1

𝑁
∑

𝐼(𝒖𝑖)𝑓𝑼(𝒖𝑖)

ℎ𝑼(𝒖𝑖)

𝑁
𝑖=1  (5.7) 

where N is the total number of IS simulation trials; hU(u) is the so-called importance sample 

density function; ui is the i-th random (i = 1, 2, …, N) sample generated from hU(u), and 

𝐼(𝒖𝑖)  is an index function that equals unity if ui falls in the failure domain and zero 

otherwise.   

To define hU(u), first consider the case where the failure domain of the system is 

characterized by a single limit state function, g(x), with g(x) < 0 and g(x) > 0 representing 

the failure and safe domains, respectively.  Let G(u) denote the mapping of g(x) in the 

standard normal (i.e. U) space, with G(u) < 0 and G(u) > 0 representing the failure and safe 

domains, respectively in the U space; g(x) = 0 and G(u) = 0 are known as the limit state 

surfaces in the X and U spaces, respectively.  The importance sampling function hU(u) for 

the single limit state function case can be determined by simply shifting fU(u) to the so-
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called design point u* (Melchers 1989; Schuëller and Stix 1987), i.e. hU(u) = fU(u - u*), 

where u* is located on the limit state surface and has the shortest distance to the origin (Der 

Kiureghian 2005).  Making hU(u) centred at u* is justified by the fact that u* is the point in 

the failure domain that has the highest probability density (Der Kiureghian 2005).  The 

value of u* can be determined using the well-known first-order reliability method (FORM) 

(Der Kiureghian 2005), which is in essence a constrained optimization analyses with the 

constraint being G(u) = 0, i.e. 𝒖∗ = argmin {‖𝒖‖ | 𝐺(𝒖) = 0}  , where ||u|| = uTu (all 

vectors are assumed to be column vectors); T denotes transposition, and “arg min” is the 

argument of the minimization.   

Consider now the case where the failure domain of the system is defined by a union of m 

(m > 1) limit state functions, i.e. Ω(𝒙) = ⋃ (𝑔𝑗(𝒙) ≤ 0)
𝑚
𝑗=1 , where gj(x) is the j-th (j = 1, 

2, …, m) limit state function, and  denotes the union of events.  Let Gj(u) (j = 1, 2, …, m) 

denote the mapping of gj(x) in the U space.  Further let uj
* denote the design point 

associated with Gj(u), i.e. 𝒖𝑗
∗ = argmin {‖𝒖‖ | 𝐺𝑗(𝒖) = 0}  .  The corresponding 

importance sampling function, hU(u), can be determined as a weighted average of m 

importance sampling functions, each of which is generated by shifting fU(u) to one of m 

design points uj
* (j = 1, 2, …, m) (Melchers 1989; Schuëller and Stix 1987) that is,  

ℎ𝑼(𝒖) = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑓𝑼(𝒖 − 𝒖𝑗

∗) (5.8) 

where wj is the weighting factor and can be evaluated as (Mori and Kato 2003; Schuëller 

and Stix 1987) 

𝑤𝑗 = Φ(−‖𝒖𝑗
∗‖)/∑ Φ(−‖𝒖𝑘

∗‖)𝑚
𝑘=1   (5.9) 

where (•) is the standard normal cumulative distribution function.  Note that the 

computational efficiency and robustness of the constrained optimization for determining 

uj
* can be significantly improved by using a methodology recently proposed in Chapter 2 

if the number of random variables involved in each of the m limit state functions is much 

less than that involved in the system.   
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5.3.2  IS for Reliability Analyses of Corroding Pipelines 

5.3.2.1  Single Defect 

Consider first the IS-based time-dependent reliability analyses of a pipeline containing a 

single active corrosion defect.  Note that X in the context of the reliability analyses of 

corroding pipelines includes random variables representing the pipe properties, defect 

depth and length, and internal pressure, as reflected in the limit state functions gs(t) and 

gb(t) defined in Section 5.2.  Following the descriptions in Section 5.3.1, we apply the IS 

technique in the standard normal space.  To this end, let Gs(t) and Gb(t) denote the mapping 

of gs(t) and gb(t), respectively, in the standard normal space.  The fact that both Gs(t) and 

Gb(t) are functions of u in addition to t is made implicit to simplify the notation.  As implied 

by Eq. (5.4), the evaluation of Ps(t) and Pb(t) is a problem of computing the probability of 

first excursion into the failure region associated with either small leak or burst within [0, 

t].  Therefore, the IS technique is employed to compute Ps(t) and Pb(t) incrementally; that 

is,  

Ps( + t)= Ps() + Ps(t) (5.10a) 

Pb( + t) = Pb() + Pb(t) (5.10b) 

where Ps(t) and Pb(t) (0 ≤  < t) are incremental probabilities of small leak and 

burst, respectively, within a short time interval between  and  + t.  The evaluation of 

Ps() and Pb() can be straightforwardly carried out using, for example, the FORM (Der 

Kiureghian 2005).  The IS technique is used to evaluate Ps(t) and Pb(t), and Ps(t) 

and Pb(t) can then be evaluated recursively using Eq. (5.10).  Typically t in the range of 

half to one year is considered adequate given that the growth of corrosion defects on 

pipelines is in general a relatively slow process, i.e. on average no more than several 

percentages of the pipe wall thickness per year.   

The evaluation of Ps(t) is schematically illustrated in Fig. 5.1.  The figure depicts 

three limit state surfaces, i.e. Gs() = Gs( + t) = Gb()= 0, in the standard normal space, 

with the corresponding design points denoted by ul*(), ul*( + t) and uc*(), respectively.  

The failure region delineated by a given limit state surface is also indicated in Fig. 5.1.  
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Figures 5.1(a) and 5.1(b) represent two potential scenarios for evaluating Ps(t), which 

is represented by the shaded area in each of the two figures.  The IS density function for 

Ps(t) can be chosen to be centred at the design point (us*(, t)) for Ps(t), defined 

as point in the shaded area and has the shortest distance to the origin, i.e. the point of the 

highest probability density in the shaded area.  To this end, us*(, t) for the scenario 

depicted in Fig. 5.1(a) is the intersection between Gb() = 0 and Gs( + t) = 0.  On the 

other hand, us*(, t) for the scenario depicted in Fig. 5.1(b) is the same as the design point 

for Gs( + t) = 0, ul*( + t).  For both scenarios, us*(, t) can be obtained by solving the 

following constrained optimization problem: us*(, t) = argmin {‖𝒖‖|Ω𝑠(𝜏, Δ𝑡)}, where 

s(, t) ={Gs() > 0  Gs( + t) ≤ 0  Gb() ≤ 0}.   

Similarly, the IS density function for Pb(t) is chosen to be centred at the design point 

(ub*(, t)) for Pb(t), , where ub*(, t) is obtained as ub*(, t) = 

argmin {‖𝒖‖|Ω𝑏(𝜏, Δ𝑡)} with b(, t) ={Gb() > 0  Gb( + t) ≤ 0  Gs() ≤ 0}.  The 

values of Ps(t) and Pb(t) are then evaluated as follows:  

∆𝑃𝑠(𝜏, ∆𝑡) ≈
1

𝑁
∑

𝐼(𝜏,∆𝑡)
𝑠 (𝒖𝑖)𝑓𝑼(𝒖𝑖)

𝑓𝑼(𝒖𝑖−𝒖
𝑠∗(𝜏,∆𝑡)) 

𝑁
𝑖=1  (5.11a) 

∆𝑃𝑏(𝜏, ∆𝑡) ≈
1

𝑁
∑

𝐼(𝜏,∆𝑡)
𝑏 (𝒖𝑖)𝑓𝑼(𝒖𝑖)

𝑓𝑼(𝒖𝑖−𝒖
𝑏∗(𝜏,∆𝑡)) 

𝑁
𝑖=1   (5.11b) 

where 𝐼(𝜏,∆𝑡)
𝑠 (𝒖𝑖)  and 𝐼(𝜏,∆𝑡)

𝑏 (𝒖𝑖)  are index functions associated with Ps(t) and 

Pb(t), respectively; 𝐼(𝜏,∆𝑡)
𝑠 (𝒖𝑖) equals unity if ui is in s(, t) and zero otherwise, and 

𝐼(𝜏,∆𝑡)
𝑏 (𝒖𝑖) equals unity if ui is in b(, t) and zero otherwise.  

If the growth of the defect is extremely slow such that the failure domains corresponding 

to the incremental probabilities of small leak and burst become very small for the typical 

time increment (e.g. one year), a significant number of IS simulation trials may be required 

to generate adequate number of samples that fall into the incremental failure domains.  

Alternatively, a larger time increment may be used. 
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5.3.2.2 Multiple Defects 

Now consider the time-dependent reliability analyses of a pipeline containing m (m > 1) 

active corrosion defects, whereby 𝐺𝑗
𝑠(𝑡) and 𝐺𝑗

𝑏(𝑡) denote mapping of  𝑔𝑗
𝑠(𝑡) and 𝑔𝑗

𝑏(𝑡) in 

the standard normal space.  Similar to the approach described in the previous section, the 

IS technique is employed to evaluate Ps(t) and Pb(t) for the pipeline.  Following 

Eq. (5.8), we define the IS density function for Ps(t), ℎ𝑼
𝑠 (𝒖; 𝜏, ∆𝑡), as the weighted 

average of the IS density functions for Ps,j(t) (j = 1, 2, … m), where Ps,j(t) is the 

incremental probability of small leak between and  + t for the j-th defect; the IS density 

function for Pb(t), ℎ𝑼
𝑏(𝒖; 𝜏, ∆𝑡), is defined as the weighted average of the IS density 

functions for Pb,j(t) (j = 1, 2, … m), where Pb,j(t) is the incremental probability 

of burst between and  + t for the j-th defect.  That is,  

ℎ𝑼
𝑠 (𝒖; 𝜏, ∆𝑡) = ∑ 𝑤𝑗

𝑠(𝜏, ∆𝑡)𝑓𝑼 (𝒖 − 𝒖𝑗
𝑠∗(𝜏, ∆𝑡))𝑚

𝑗=1  (5.12a) 

ℎ𝑼
𝑏(𝒖; 𝜏, ∆𝑡) = ∑ 𝑤𝑗

𝑏(𝜏, ∆𝑡)𝑓𝑼 (𝒖 − 𝒖𝑗
𝑏∗(𝜏, ∆𝑡))𝑚

𝑗=1  (5.12b) 

where 𝑤𝑗
𝑠(𝜏, ∆𝑡) and 𝑤𝑗

𝑏(𝜏, ∆𝑡) (j = 1, 2, … m) are weighting factors for ℎ𝑼
𝑠 (𝒖; 𝜏, ∆𝑡) and 

ℎ𝑼
𝑏(𝒖; 𝜏, ∆𝑡), respectively, and 𝒖𝑗

𝑠∗(𝜏, ∆𝑡) and 𝒖𝑗
𝑏∗(𝜏, ∆𝑡) are design points for Ps,j(t) 

and Pb,j(t), respectively.  Note that the weighting factors should reflect the relative 

contributions of individual defects to the incremental probabilities of small leak or burst.  

To this end, we propose the following empirical equations to compute the weighting factors:  

𝑤𝑗
𝑠(𝜏, ∆𝑡) =

{
 
 

 
 Φ(−‖𝒖𝑗

𝑠∗(𝜏,Δ𝑡)‖)−Φ(−‖𝒖𝑗
𝑠∗(𝜏−Δ𝑡,Δ𝑡)‖)

∑ (Φ(−‖𝒖𝑘
𝑠∗(𝜏,Δ𝑡)‖)−Φ(−‖𝒖𝑘

𝑠∗(𝜏−Δ𝑡,Δ𝑡)‖)) 𝑚
𝑘=1  

𝜏 > 0

Φ(−‖𝒖𝑗
𝑠∗(𝜏,Δ𝑡)‖)

∑ Φ(−‖𝒖𝑘
𝑠∗(𝜏,Δ𝑡)‖) 𝑚

𝑘=1  
                                   𝜏 = 0

 (5.13a) 

𝑤𝑗
𝑏(𝜏, ∆𝑡) =

{
 
 

 
 Φ(−‖𝒖𝑗

𝑏∗(𝜏,Δ𝑡)‖)−Φ(−‖𝒖𝑗
𝑏∗(𝜏−Δ𝑡,Δ𝑡)‖)

∑ (Φ(−‖𝒖𝑘
𝑏∗(𝜏,Δ𝑡)‖)−Φ(−‖𝒖𝑘

𝑏∗(𝜏−Δ𝑡,Δ𝑡)‖)) 𝑚
𝑘=1  

𝜏 > 0

Φ(−‖𝒖𝑗
𝑏∗(𝜏,Δ𝑡)‖)

∑ Φ(−‖𝒖𝑘
𝑏∗(𝜏,Δ𝑡)‖)𝑚

𝑘=1  
                                    𝜏 = 0

 (5.13b) 
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where 𝒖𝑗
𝑠∗(𝜏 − Δ𝑡, Δ𝑡) and 𝒖𝑗

𝑏∗(𝜏 − Δ𝑡, Δ𝑡) are the design points for Ps,j(t, t) and 

Pb,j(t, t) (j = 1, 2, …, m), respectively.  Given ℎ𝑼
𝑠 (𝒖; 𝜏, ∆𝑡) and ℎ𝑼

𝑏(𝒖; 𝜏, ∆𝑡), the IS 

formulations for evaluating Ps(t) and Pb(t) are then given by 

∆𝑃𝑠(𝜏, ∆𝑡) ≈
1

𝑁
∑

𝐼(𝜏,∆𝑡)
𝑠 (𝒖𝑖)𝑓𝑼(𝒖𝑖)

ℎ𝑼
𝑠 (𝒖;𝜏,∆𝑡) 

𝑁
𝑖=1  (5.14a) 

∆𝑃𝑏(𝜏, ∆𝑡) ≈
1

𝑁
∑

𝐼(𝜏,∆𝑡)
𝑏 (𝒖𝑖)𝑓𝑼(𝒖𝑖)

ℎ𝑼
𝑏(𝒖;𝜏,∆𝑡) 

𝑁
𝑖=1   (5.14b) 

where 𝐼(𝜏,∆𝑡)
𝑠   equals unity if ui is in the domain defined by (𝑚𝑖𝑛

𝑗
{𝐺𝑗

𝑠(𝜏)} ≥

0⋂𝑚𝑖𝑛
𝑗
{𝐺𝑗

𝑠(𝜏 + Δ𝑡)} ≤ 0⋂𝑚𝑖𝑛
𝑗
{𝐺𝑗

𝑏(𝜏)} ≥ 0)  (𝑗 =  1, 2, … , 𝑚)  and zero otherwise, 

and 𝐼(𝜏,∆𝑡)
𝑏  equals unity if ui is in the domain defined by (𝑚𝑖𝑛

𝑗
{𝐺𝑗

𝑏(𝜏)} ≥ 0⋂𝑚𝑖𝑛
𝑗
{𝐺𝑗

𝑏(𝜏 +

Δ𝑡)} ≤ 0⋂𝑚𝑖𝑛
𝑗
{𝐺𝑗

𝑠(𝜏)} ≥ 0) and zero otherwise.   

5.4  Numerical Examples 

5.4.1  General 

The proposed IS technique is employed to evaluate the reliability of four examples that are 

representative of natural gas transmission pipelines in the US.  The nominal wall thickness, 

wtn, of a gas pipeline in the US is in general determined as follows (ASME B31.8 2016):  

𝑤𝑡𝑛 =
𝑃0𝐷

2∙𝐹∙𝑆𝑀𝑌𝑆
 (5.15) 

where P0 and D are the nominal operating pressure and outside pipe diameter, respectively; 

SMYS is the specified minimum yield strength, and F (F < 1) is the design factor.  

Depending on the population density in the vicinity of the pipeline, it is categorized as 

Class 1, 2, 3 or 4, whereby Class 1 is associated with the lowest population density (e.g. 

farmland and desert) and Class 4 is associated with the highest population density (e.g. city 

centre).  The design factor F equals 0.72, 0.6, 0.5 or 0.4 for Class 1, 2, 3 or 4, respectively 

(ASME B31.8 2016).  The four pipeline examples are selected to be representative of gas 
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pipelines of four different classes.  The basic attributes of the pipelines are summarized in 

Table 5.1, where SMTS denotes the specified minimum tensile strength.  

It is assumed, somewhat arbitrarily, that each pipeline contains ten active corrosion defects 

that have been detected and sized by a recently run ILI, although the proposed methodology 

can easily deal with cases with larger numbers of defects.  The probabilities of small leak 

and burst of the pipelines are then evaluated for a period of ten years starting from the time 

of the recent inspection (i.e. time zero) by taking into account the growth of the corrosion 

defects.  Two different growth models are considered for the defect depth, i.e. the linear 

and homogeneous gamma process-based models (Zhou 2010; Van Noortwijk 2009).  For 

the linear growth model, the depth of the j-th defect (j = 1, 2, …, 10) at time t, dj(t), is given 

by 

𝑑𝑗(𝑡) = 𝑑0𝑗 + 𝑔𝑑𝑗𝑡 (5.16) 

where d0j is the initial depth of the j-th defect and can be inferred from the inspection result, 

and gdj is the constant but uncertain depth growth rate associated with the j-th defect.  For 

the gamma process-based growth model, dj(t) (j = 1, 2, …, 10) is given by 

𝑑𝑗(𝑡) = 𝑑0𝑗 + 𝑑𝑔𝑗(𝑡) (5.17) 

where dgj(t) denotes the gamma process that characterizes the depth growth of the j-th 

defect.  For simplicity, only the linear growth model is considered for the defect length, i.e. 

𝑙𝑗(𝑡) = 𝑙0𝑗 + 𝑔𝑙𝑗𝑡 (5.18) 

where l0j is the initial length of the j-th defect can be inferred by the inspection result, and 

glj is the length growth rate associated with the j-th defect.   

The professional factor 𝜑0 in the limit state function 𝑔𝑗
𝑠 (Eq. (5.1)) is set to be 0.8 in the 

reliability analyses.  The probabilistic characteristics of the parameters involved in the 

analyses, except for gdj and dgj(t) (j = 1, 2, …, 10), are summarized in Table 5.2.  The 

probabilistic characteristics of gdj and dgj(t) are described in Sections 5.4.2 and 5.4.3, 

respectively.  Note that the uncertainties in the defect initial depth and length reflect the 
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measurement errors associated with the inspection tool.  The pipe wall thicknesses at 

different defects are assumed to be identical, i.e. represented by a single random variable.  

The same assumption also applies to the tensile strength σuj, internal pressure pj and model 

error j.  The initial depths (lengths) of different defects are assumed to be mutually 

independent.  Furthermore, glj (j = 1, 2, …, 10) are assumed to be independent identically 

distributed for a given example.  

The time step t is taken as one year in the IS analyses, and 1,000 IS simulation trials are 

used to evaluate each of Ps,j(t) and Pb,j(t) ( = 0, 1, 2, … and j = 1, 2, …, 10), 

respectively.  The sequential quadratic programming (SQP) algorithm, SNOPT (Sparse 

Nonlinear OPTimizer) (Gill et al. 2005), is employed to evaluate 𝒖𝑗
𝑠∗(𝜏, ∆𝑡)  and 

𝒖𝑗
𝑏∗(𝜏, ∆𝑡) (j = 1, 2, …, 10) for the determination of the corresponding IS density functions.  

Finally, to demonstrate the accuracy of the proposed IS technique, the simple Monte Carlo 

(MC) analyses is performed to evaluate benchmark failure probabilities for all the cases 

analyzed, with the number of simulation trials equal to 107 for each case.   

5.4.2 Linear Growth Model for Defect Depth 

For the linear growth model, it is assumed that gdj (j = 1, 2, …, 10) are independent 

identically Weibull distributed for a given pipeline example.  The COV of gdj equals 50% 

for all four pipelines, whereas the mean of gdj equals 0.4, 0.3, 0.2 and 0.2 mm/year for 

Examples 1, 2, 3 and 4, respectively.  It is further assumed that the depth and length growth 

rates at the same defect are correlated with a correlation coefficient (1) equal to 0.5.  Since 

both the depth and length growth rates are non-normally distributed, 1 should be modified, 

e.g. using the empirical equation proposed by Der Kiureghian and Liu (1986) for the Nataf 

transformation, to estimate the corresponding correlation coefficient in the normal space.  

Note that the correlation coefficients in the normal and original spaces are in general similar; 

therefore, 1 = 0.5 is used in the normal space for simplicity.   

Figure 5.2 depicts the failure probabilities of the four pipeline examples obtained from IS 

and simple MC analyses by considering a single defect only with the corresponding mean 

of the initial defect depth equal to 0.2wtn.  Figure 5.3 depicts the failure probabilities of the 
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four pipelines by considering all ten defects.  Both figures indicate that the failure 

probabilities obtained from the proposed IS technique are in excellent agreement with those 

obtained from the simple MC analyses.  To investigate the sensitivity of the failure 

probabilities to the value of 1, failure probabilities of Example 1 are evaluated using the 

IS technique and simple MC simulation for 1 = 0.2, 0.4, 0.7 and 0.9, respectively.  The 

results (Fig. 5.4) again demonstrate the excellent accuracy of the proposed IS technique.  

Figure 5.4 indicates that the probability of small leak is practically independent of the value 

of 1, which is not unexpected given that the limit state function for small leak is 

independent of the defect length.  On the other hand, the probability of burst increases 

markedly as 1 increases from 0.2 to 0.9.   

5.4.3 Gamma Process-based Growth Model for Defect Depth 

The homogenous gamma process dgj(t) is defined by its shape parameter a and rate 

parameter b (Van Noortwijk 2009).  At a given time t, dgj(t) is gamma distributed with the 

corresponding PDF, F(dgj(t)|at, b), given by  

𝐹(𝑑𝑔𝑗(𝑡)|𝑎𝑡, 𝑏) = 𝑏𝛼𝑡 (𝑑𝑔𝑗(𝑡))
𝛼𝑡−1

exp (−𝑏𝑑𝑔𝑗(𝑡)) /Γ(𝛼𝑡) (5.19) 

where a and b are the parameters of the gamma process; (•) denotes the gamma function.  

An important property of the gamma process is that it has independent gamma distributed 

increments over disjoint time intervals (Van Noortwijk 2009). For each of the four 

examples, dgj(t) (j = 1, 2, …, 10) at different defects are assumed to be identical and 

correlated.  Let and denote, respectively, the mean and COV of the depth growth within 

one year.  It follows from the properties of the gamma process that  = 1/2 and b= 1/(2) 

(Van Noortwijk 2009).  The values of  are assumed to be 0.4, 0.3, 0.2 and 0.2 mm/year 

for Examples 1, 2, 3 and 4, respectively, whereas  is assumed to equal 50% for all four 

examples (i.e. the same as the means and COVs of the growth rates assumed in the linear 

growth model).  This leads to a  for all four examples, and b = 10, 13.33, 20 and 20 

(mm/year)-1 for Examples 1, 2, 3 and 4, respectively.  
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The correlation between dgj(t) and dgk(t) (j, k = 1, 2, …, 10; j ≠ k) for a given example is 

established by assuming that the annual increments of dgj(t) and dgk(t), denoted by dgj(1) 

and dgk(1) respectively, are coupled by the Gaussian copula (Nelsen 2006) characterized 

by a correlation coefficient (2) equal to 0.5.  For simplicity, the depth and length growths 

for a given defect are assumed to be independent in the analyses.  The analyses results are 

shown in Fig. 5.5 for the single defect case (with the mean of the initial defect depth equal 

to 0.2wtn) and in Fig. 5.6 by considering all ten defects.  Due to the limited number (107) 

of simulation trials, failure probabilities obtained from the MC analyses for Examples 3 

and 4 are available at year 10 only as shown in Fig. 5.5.  Figures 5.5 and 5.6 indicate the 

excellent accuracy of the proposed IS technique compared with the MC analyses.  The 

sensitivity of the failure probability to the value of 2 is depicted in Fig. 5.7 for Example 1 

with 2 equal to 0.2, 0.4, 0.7 and 0.9, respectively.  These results indicate that the failure 

probability is insensitive to the correlation among the depth growths of different defects.   

5.4.4  Computational Efficiency and Variability of the Failure 
Probability Estimate 

To illustrate the efficiency of the proposed IS-based methodology, the computational costs 

of the proposed methodology and simple MC analysis are compared.  It is noted that the 

dominant component of the computational cost in both analyses is the cost of repeated 

evaluations of the limit state functions, i.e. function calls (Dubourg et al. 2013; Echard et 

al. 2013; Zhao et al. 2015).  The numbers of function calls associated with the IS-based 

and simple MC analyses are therefore compared for the analysis case of Example 1 with 

ten corrosion defects and linear defect depth growth (the corresponding failure probabilities 

are shown in Fig. 5.3(a)).  The fact that failure probabilities for this example are relatively 

high (> 10-4) after year four implies that the number of simulation trials (107) used in the 

simple MC analysis is unnecessarily large for evaluating the failure probabilities after year 

four.  To avoid unfairly penalizing the efficiency of the simple MC analysis, the comparison 

is based on the total number of function calls up to year four for the IS-based and simple 

MC analyses.  The IS-based analysis involves a total of 312,655 function calls, which 

include 72,655 calls involved in the constrained optimization for finding the design points 

and 2.4×105 calls involved in the IS-based simulation.  In contrast, the simple MC analysis 
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involves a total of 8×108 function calls.  Therefore, the number of function calls associated 

with the IS-based analysis is approximately 0.04% of that involved in the simple MC 

analysis.  This demonstrates the excellent efficiency of the IS-based methodology.  

The variability of the failure probabilities evaluated using the IS-based methodology and 

simple MC analysis is also compared for the same example as described above.  To this 

end, the IS-based analysis is repeated 30 times (each time with a different random seed in 

the simulation) for the example.  This process generates an ensemble of time-dependent 

failure probabilities (i.e. 30 sets of probabilities of small leak and 30 sets of probabilities 

of burst), which allow the estimation of COV values associated with the failure 

probabilities evaluated.  The COV values associated with the failure probabilities evaluated 

from the simple MC analysis are estimated in the same fashion.  The COV values 

corresponding to these two analyses are compared (up to year 6) in Table 5.3.  The table 

shows that the variability of the probabilities of small leak obtained from the IS-based 

analysis is in most case markedly lower than that from the simple MC analysis.  The 

variability of the probabilities of burst obtained from the IS-based analysis is comparable 

to that of the probabilities of burst obtained from the simple MC analysis except for year 

four, at which the former is markedly higher than the latter.  Figure 5.8 depicts the minimum, 

mean and maximum values of the set of 30 probabilities of burst obtained from the repeated 

IS-based analyses.  Although the range of the probability of burst at year four is relatively 

large as shown in Fig. 5.8, it is well acceptable from practical perspective.  

5.5 Conclusions 

An IS-based methodology is proposed in this chapter to evaluate the time-dependent 

system reliability of pressurized steel pipelines containing multiple active corrosion 

defects.  The methodology considers the pipe joint as a series system with two competing 

failure modes, i.e. small leak and burst, and takes into account potential correlations among 

failures at different defects.  The IS technique is applied in the standard normal space to 

evaluate the probabilities of small leak and burst of the pipe joint incrementally over time.  

The IS density functions for small leak and burst, respectively, are constructed as the 

weighted averages of the corresponding IS density functions for individual defects.  Simple 

empirical equations for evaluating the weighting factors are proposed.  The IS density 
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function for small leak (burst) of a given defect is centred at the corresponding design point, 

i.e. the point that is in the incremental domain for small leak (burst) and closest to the origin 

of the standard normal space.   

The application of the proposed methodology is illustrated using four pipeline examples 

that are representative of onshore natural gas transmission pipelines in the US.  Two models 

are employed to characterize the growth of the defect depth in the numerical examples: the 

constant growth rate model and homogeneous gamma process model.  The probabilities of 

small leak and burst are evaluated using the proposed methodology over a time period of 

10 years and compared with those evaluated using the simple Monte Carlo analyses.  The 

comparison demonstrates the excellent accuracy and efficiency of the proposed 

methodology for all four examples.  Analyses are further carried out to investigate the 

sensitivity of the system reliability with respect to the correlation between the growths of 

defect depth and length and correlations among the depth growths of different defects on 

the same pipe joint.  Finally, a comparison study regarding the calls to limit state functions 

are conducted with the results showing that the usage of IS significantly reduces the 

number of calls.  
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Table 5.1 Basic attributes of pipeline examples 

Example  Class F 
D wtn SMTS SMYS P0 

(mm) (mm) (MPa) (MPa) (MPa) 

1 1 0.72 914 13.14 565 483 10  

2 2 0.6 610 8.62 517 413 7 

3 3 0.5 508 7.38 517 413 6 

4 4 0.4 406 7.07 455 359 5 

 

Table 5.2 Probabilistic characteristics of parameters involved in the reliability 

analyses 

 

 

  

Parameter Distribution Mean 

Coefficient of 

Variation (COV) 

(%) 

D/Dn Deterministic 1.0 - 

wtj/wtn Normal 1.0 1.5 

σuj/SMTS Lognormal 1.09 3.0 

pj/p0 Gumbel 1.0 3.0 

d0j/wtn    

(j = 1 – 5) 
Normal 

0.2 
20.0 

(j = 6 – 10) 0.3 

l0j (mm) 

(j = 1 – 10) 
Normal 50.0 20.0 

glj (mm/year) 

(j = 1 – 10) 
Lognormal 5.0 50.0 

j Lognormal 1.0 10.0 
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Table 5.3 COV values of the failure probabilities obtained from IS-based and simple 

MC 

Forcasting 

time (year)  

Burst Small leak 

IS MC IS MC 

1 0.13 0.12 0.09 - 

2 0.13 0.09 0.06 4.47 

3 0.12 0.05 0.05 0.28 

4 0.23 0.03 0.08 0.02 

5 0.09 0.01 0.07 0.01 

6 0.07 0.003 0.06 0.001 

 

 

(a)                                                              (b) 

Figure 5.1 Geometry descriptions of Ps(t) 

 

 

 

𝐺𝑏(𝜏) = 0 

𝒐 
𝐺𝑏(𝜏) = 0 

𝒐 
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(a) Example 1 

 

(b) Example 2 
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(b) Example 3 

 

(c) Example 4 

Figure 5.2 Failure probabilties of four pipeline examples considering a single 

corrosion defect and linear depth growth model 
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(a) Example 1 

 

(b) Example 2 
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(c) Example 3 

 

(d) Example 4 

Figure 5.3. Failure probabilties of four pipeline examples considering ten corrosion 

defects and linear depth growth model 
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(a) Small leak 

 

(b) Burst 

Figure 5.4 Failure probabilties of Example 1 considering ten corrosion defects and 

linear depth growth model with different values of 1 
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(a) Example 1 

 

(b) Example 2 
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(c) Example 3 

 

(d) Example 4 

Figure 5.5 Failure probabilties of four pipeline examples considering a single 

corrosion defect and gamma process-based depth growth model 
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(a) Example 1 

 

(b) Example 2 
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(c) Example 3 

 

(d) Example 4 

Figure 5.6 Failure probabilties of four pipeline examples considering ten corrosion 

defects and gamma process-based depth growth model 
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(a) Small leak 

 

(b) Burst 

Figure 5.7 Failure probabilties of Example 1 considering ten corrosion defects and 

gamma process-based depth growth model with different values of 2 
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Figure 5.8 Range of probabilities of burst obtained from 30 repeated IS-based 

analyses for Example 1 with ten corrosion defects and linear defect depth growth 

model 
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6 Multi-objective Maintenance Strategy for In-service 
Corroding Pipeline Using Evolutionary Strategy 

6.1 Introduction  

The optimal maintenance strategies for corroding pipelines have been investigated in the 

past.  Hong (1999) explored the optimal inspection and repair interval by considering the 

annual failure probability of the pipeline as the constraint.  This method essentially 

formulates the maintenance plan investigation as a constrained single-objective 

optimization analysis.  Gomes et al. (2013), and Gomes and Beck (2014) employed the 

minimum expected life-cycle cost criterion to investigate the optimal ILI (inline inspection) 

interval by assuming a single defect on a pipeline segment.  Zhang and Zhou (2014) also 

employed the minimum expected life-cycle cost criterion to investigate the optimal ILI 

interval, albeit considering joint-based (as opposed to defect-based) defect mitigation 

actions.  There are basically two conflicting objectives in finding the optimal maintenance 

strategy for corroding pipelines, i.e. maximizing the reliability of the pipeline and 

minimizing the maintenance cost.  The minimum expected life-cycle cost criterion thus 

combines the two objectives into a single objective, which facilitates the search for the 

optimal maintenance strategy.  However, the drawback of the single-objective solution is 

that it does not provide pipeline engineers with the flexibility to evaluate how other 

alternative maintenance strategies perform in terms of the objective functions.  In real-life 

decision-making processes, decision makers typically need to consider multiple objectives 

in the optimization, and they may wish to select a maintenance strategy from a group of 

candidate solutions with diverse characteristics in terms of different merit measures.  This 

option is particularly desirable considering that decision-makers may not treat the two 

objectives, i.e. reliability and cost, with equal importance: the former is generally deemed 

more important than the latter.  To this end, the multi-objective optimization technique can 

be employed to find a distribution of solutions that achieve tradeoff between the two 

objectives in a Pareto optimal sense (Deb et al. 2002).   

The application of the multi-objective optimization techniques to the maintenance of 

engineered structures has been extensively reported in the literature (Liu and Frangopol, 

2005; Okasha and Frangopol, 2009; Ayoobian and Mohsendokht 2016; Yu et al. 2015).  Liu 
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and Frangopol (2005) investigated the optimal bridge maintenance planning considering 

the cost, safety index and condition index as conflicting objectives.  Okasha and Frangopol 

(2009) developed a multi-objective optimization framework for structural maintenance by 

incorporating the life cycle cost, redundancy and system reliability as the objectives.  

Ayoobian and Mohsendokht (2016) formulated the optimization of the maintenance of 

nuclear power plants considering three objectives: the cost, system unavailability and 

radioactive exposure.  Yu et al. (2015) performed the multi-objective optimization of 

asphalt pavement maintenance plans by considering the pavement performance, 

environment impact and cost as the objectives.  All of the above-cited investigations 

employed the genetic algorithm (GA)-based evolutionary computation (Deb et al. 2002) to 

search for a group of optimized tradeoff solutions with respect to conflicting objectives, i.e. 

the so-called Pareto optimal front.   

The objective of the present chapter is to investigate the optimal maintenance planning for 

corroding pipelines by employing the genetic algorithm (GA)-based multi-objective 

optimization technique.  The rest of the chapter is organized as follows.  Section 6.2 

describes the objective functions considered in the optimization of maintenance of 

corroding pipelines.  Section 6.3 presents the formulations for the system reliability 

analyses of corroding pipelines considering two potential failure modes, i.e. small leak and 

burst.  Section 6.4 describes the genetic algorithm for solving the mentioned multi-

objective optimization problem, followed by an illustrative example in Section 6.5 and 

conclusions in Section 6.6.  

6.2 Multi-objective Optimization of Maintenance of Corroding 
Pipelines 

6.2.1 Practical Aspects 

Consider that a recently-conducted ILI has identified a total of np corroding pipe joints in 

a buried pipeline.  The pipeline operator is now faced with the task of determining which 

corroding pipe joints should be repaired as well as corresponding times of repair such that 

an optimal balance between the reliable operation of the pipeline and repair cost is achieved.  

The maintenance decision should take into account the growth of corrosion defects over 

time and potential constraints such as the minimum acceptable reliability level and annual 
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budget allocated for corrosion mitigation.  Since the next ILI will provide updated 

corrosion information, the reference time period or time horizon for scheduling the defect 

repair is generally the time to the next ILI, denoted by T (years).  It is noted that the number 

of joints to be repaired within the time horizon, denoted by mp, does not necessarily equal 

the total number of corroding joints (np) identified by ILI, i.e. mp ≤ np.  Note also that np 

does not necessarily equal the total number of joints in the entire pipeline as there may 

exist corrosion-free joints.   

The maintenance decision for corroding pipelines is influenced by uncertainties from 

various sources.  The ILI-reported sizes of corrosion defects are associated with 

measurement errors (Nessim et al. 2009; Zhang and Zhou 2014).  The growth of the defect 

over time is random (Caleyo et al. 2009; Zhang et al. 2013; Al-Amin et al. 2014).  The 

actual pipe wall thickness, yield strength and tensile strength differ from the corresponding 

nominal values by uncertain amounts (Nessim et al. 2009).  The pipe internal pressure 

fluctuates randomly about the nominal operating pressure (Nessim et al. 2009; Zhang and 

Zhou 2013).  Finally, models used to evaluate the remaining capacity of the corroded pipe 

for containing the internal pressure are imperfect and have model errors (Zhou and Huang 

2012).    

6.2.2  Merit Measures 

The quantitative measure for the economic merit of a given maintenance decision is defined 

as the total present-value cost, denoted by C, of repairing mp pipe joints over the time 

horizon T.  The failure probability of the pipeline is selected as the measure for the safety 

merit of the maintenance decision, because the various uncertainties described in the 

previous section can be effectively accounted for in the evaluation of the failure probability.  

Consistent with the joint-based corrosion mitigation practice, the failure probability is 

evaluated on a joint-by-joint basis in this chapter.  Note that an individual pipe joint can 

contain multiple active corrosion defects whereby failure may take place at any of the 

defects.  It follows that the failure probability of the pipe joint is the time-dependent failure 

probability of a series system.  Furthermore, a corroding pipe joint may fail by either small 

leak or burst; therefore, both the time-dependent probabilities of small leak and burst of 

the pipe joint are evaluated.  In the pipeline industry, the annual (as opposed to cumulative) 
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failure probability is commonly used (Nessim et al. 2009; Kariyawasam and Peterson 

2008).  Given this, the annual probabilities of small leak and burst conditional on no failure 

in the past are evaluated.  Let Psa,q(t) and Pba,q(t) (t = 1, 2, …, T) denote, respectively, the 

probabilities of small leak and burst of the q-th corroding pipe joint (q = 1, 2, …, np) 

between years (t – 1) and t, conditional on no failure up to year (t – 1).  Then Psa,q(t) and 

Pba,q(t) are given by  

𝑃𝑠𝑎,𝑞(𝑡) =
𝑃𝑠,𝑞(𝑡)−𝑃𝑠,𝑞(𝑡−1)

1−𝑃𝑓,𝑞(𝑡−1)
  (6.1a) 

𝑃𝑏𝑎,𝑞(𝑡) =
𝑃𝑏,𝑞(𝑡)−𝑃𝑏,𝑞(𝑡−1)

1−𝑃𝑓,𝑞(𝑡−1)
  (6.1b) 

where Ps,q(t) and Pb,q(t) (0 ≤ t ≤ T) are the cumulative probabilities of small leak and burst, 

respectively, of the q-th joint up to t, with t = 0 indicating the start of the time horizon T, 

i.e. immediately after the most recent ILI; Pf,q(t) is the cumulative failure probability of the 

q-th joint due to either small leak or burst up to t.  Methodologies for evaluating Ps,q(t), 

Pb,q(t) and Pf,q(t) are described in Section 6.3.  Let Psa denote the maximum value of Psa,q(t) 

for q = 1, 2, …, np and t = 1, 2, …, T, i.e. Psa = max𝑞=1,2,…,𝑛𝑝
𝑡=1,2,…,𝑇

{𝑃𝑠𝑎,𝑞(𝑡)}.  Similarly define 

Pba = max𝑞=1,2,…,𝑛𝑝
𝑡=1,2,…,𝑇

{𝑃𝑏𝑎,𝑞(𝑡)}.  Psa and Pba are considered as quantitative measures for the 

reliability of the entire set of np corroding pipe joints within the time horizon T.  

6.2.3 Formulation for Multi-objective Optimization 

Let tr,q denote the time of repair for the q-th (q = 1, 2, …, mp) pipe joint that is subjected to 

repair within T (years).  In this chapter, tr,q is treated as a discrete variable that equals 0, 1, 

2, ..., or (T – 1).  A repair time tr,q = 0 means that the q-th pipe joint is repaired immediately 

after the recently-run ILI.  The upper bound for tr,q is (T – 1) as opposed to T in that 

repairing any pipe joint at year T has no effect on Psa or Pba.  Since a repaired pipe joint is 

considered as good as new, it is assumed that Psa,q(t) = Pba,q(t) = 0 for t > tr,q by considering 

the failure probability of a defect-free pipe joint under internal pressure to be negligible.  

The multi-objective optimization problem for the corrosion maintenance can then be stated 

as follows.   
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• Objective: To minimize Psa, Pba and C by selecting mp (mp ≤ np) corroding pipe 

joints for repair and determining corresponding times of repair, tr,q = 0, 1, 2, …, or 

(T – 1), for q = 1, 2, …, mp.   

• Subject to: Psa ≤ P1, Pba ≤ P2 and Cr,t ≤ Ca,t (t = 0, 1, 2, …, (T – 1)), where P1 and 

P2 are the allowable annual probabilities of small leak and burst, respectively, of a 

single pipe joint; Cr,t is the present-value cost of repairs conducted at time t, and Ca,t 

is the annual budget in terms of present value allocated for corrosion repair at time 

t.   

The value of Cr,t is evaluated by 

𝐶𝑟,𝑡 =
𝑛𝑟,𝑡𝐶𝑠+𝐼𝑟(𝑛𝑟,𝑡)𝐶0

(1+𝑣𝑟)𝑡
 (6.2) 

where nr,t is the number of joints repaired at time t (t = 0, 1, 2, …, (T – 1)) with ∑ 𝑛𝑟,𝑡
𝑇−1
𝑡=0 =

𝑚𝑝 (note that nr,t = 0 means that no repair is carried out at time t); Cs is the cost of repairing 

a single joint, and vr is the discount rate; C0 is the mobilization cost, i.e. cost of bringing 

the repair crew and equipment to the pipeline right of way; Ir(nr,t) is an indicator function 

that equals unity for nr,t > 0 and zero for nr,t = 0.  It follows that the total present-value cost 

of repair, C, over the time horizon T is given by 

𝐶 = ∑ 𝐶𝑟,𝑡
𝑇−1
𝑡=0   (6.3) 

6.3  Reliability Analyses of Corroding Pipelines 

For a given pip joint containing mp (mp = 1, 2, …) active corrosion defects, the limit state 

function corresponding to the j-th defect (j = 1, 2, …, mp) penetrating the pipe wall at time 

t (t= 0 corresponding to the time of the recent ILI), 𝑔𝑗
𝑠(𝑡), is given by  

𝑔𝑗
𝑠(𝑡) = 0.8𝑤𝑡𝑗 − 𝑑𝑗(𝑡)  (6.4) 

where wtj is the wall thickness of pipe joint at the location of the j-th defect; dj(t) is the 

depth of the j-th defect at time t, and the coefficient 0.8 accounts for the fact that the 

remaining ligament of the pipe wall at a deep corrosion defect is prone to developing cracks 



124 

 

that cause a leak (Al-Amin and Zhou 2014).  The limit state function for plastic collapse 

of the remaining ligament at the j-th defect at time t, 𝑔𝑗
𝑏(𝑡), is given by  

𝑔𝑗
𝑏(𝑡) = 𝑝𝑏𝑗(𝑡) − 𝑝  (6.5) 

where pbj(t) is the burst pressure capacity of the joint at the j-th defect at time t, and p 

denotes the pipe internal pressure, which is characterized by a time-independent random 

variable (as opposed to time-dependent random process) in this chapter.  The following 

semi-empirical burst capacity model developed by Leis and Stephens (1997) is employed 

to calculate pbj in this study: 

𝑝𝑏𝑗 = 𝜉𝑗
2𝑤𝑡𝑗𝜎𝑢𝑗

𝐷

[
 
 
 
 

1 −
𝑑𝑗

𝑤𝑡𝑗

(

  
 
1 − exp

(

 
 −0.157𝑙𝑗

√𝐷(𝑤𝑡𝑗−𝑑𝑗)

2
)

 
 

)

  
 

]
 
 
 
 

 (6.6) 

where  is the model error associated with Leis and Stephens’s model; D is the outside 

dimeter of the pipe joint; u is the ultimate tensile strength of the pipe steel; l is the defect 

length, and the subscript j in the above-described variables indicates the value of the 

variable corresponding to the j-th defect (j = 1, 2, …, m).  For brevity, pbj(t), dj(t) and lj(t) 

are simply written as pbj, dj and lj, respectively, in Eq. (6.6). 

The defect depth dj(t) and length lj(t) can be further expressed as  

𝑑𝑗(𝑡) = 𝑑0𝑗 + Δ𝑑𝑗(𝑡) (6.7a) 

𝑙𝑗(𝑡) = 𝑙0𝑗 + Δ𝑙𝑗(𝑡) (6.7b) 

where d0j and l0j are the depth and length, respectively, of the j-th defect at the time of the 

most recent ILI, and dj(t) and lj(t) denote the growths of the depth and length, 

respectively, by time t.  Extensive research has been reported in the literature on the 

development of probabilistic models for characterizing dj(t) based on information 

obtained from successive ILI runs conducted on the same pipeline (Achterbosch and 
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Grzelak 2006; Zhang et al. 2013; Al-Amin et al. 2014).  On the other hand, the development 

of probabilistic models for lj(t) is scarcely reported in the literature. 

Based on the above-defined limit state functions, the cumulative probabilities of small leak 

and burst, Ps(t) and Pb(t) (0 ≤ t ≤ T), of the pipe joint are defined as  

𝑃𝑠(𝑡) = Prob [(0 ≤ 𝑚𝑖𝑛
𝑗
{𝑡𝑗
𝑠} ≤ 𝑡) ∩ (𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑠} <𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑏})] (6.8a) 

𝑃𝑏(𝑡) = Prob [(0 ≤ 𝑚𝑖𝑛
       𝑗

{𝑡𝑗
𝑏} ≤ 𝑡) ∩ (𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑏} ≤𝑚𝑖𝑛

𝑗
{𝑡𝑗
𝑠})] (6.8b) 

where 𝑡𝑗
𝑠
 denotes the time at which the j-th (j = 1, 2, …, m) defect just penetrates the pipe 

wall (i.e. 𝑔𝑗
𝑠(𝑡) = 0); 𝑡𝑗

𝑏 denotes the time at which the j-th defect is just large enough to 

cause plastic collapse (i.e. 𝑔𝑗
𝑏(𝑡) = 0 ), and  denotes the intersection of two events.  

Implicit in Eq. (6.8) is that the small leak and burst are considered as two competing failure 

modes; that is, the occurrence of one failure mode eliminates the potential occurrence of 

the other failure mode.  This is because in practice a failed pipe joint, either by small leak 

or burst, is typically repaired within a short timeframe such as within several days.  It 

follows that the probability of no failure of the q-th pipe joint up to time t equals 𝑃𝑓,𝑞(𝑡) =

Prob [(0 ≤ 𝑚𝑖𝑛
         𝑗

{𝑡𝑗
𝑠, 𝑡𝑗

𝑏} ≤ 𝑡)], which can be approximated as the sum of Ps,q(t) and Pb,q(t) 

(Gong and Zhou 2016).  

An importance sampling-based methodology developed by Gong and Zhou (2016) is 

employed in this chapter to evaluate Ps(t) and Pb(t).  This methodology can deal with 

potential correlations among different random variables associated with the same defect 

and different defects and has been demonstrated to be computationally efficient and 

accurate.   

6.4 Genetic Algorithm for Multi-objective Optimization 

6.4.1 Overview of Genetic Algorithm  

Mimicking the natural biological evolution, the evolutionary GA is a stochastic search and 

optimization engine for global solutions.  GA works on populations consisting of a series 
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of possible solutions, known as chromosomes (Deb et al. 2002).  A given chromosome is 

made of discrete units called genes.  The population of GA is initialized randomly and 

updated iteratively through the stochastic tournament mating selection, chromosome 

crossover and mutation operations (Deb et al. 2002).  In the stochastic tournament selection, 

two chromosomes are randomly selected and the one with better fitness measures is added 

to the mating pool (Deb et al. 2002).  The selection is continued until the mating pool is 

filled.  The crossover operation recombines chromosomes randomly selected from the 

mating pool to form new chromosomes known as offspring by exchanging, with a 

prescribed crossover probability, the values of randomly selected genes in the parent 

chromosomes; the mutation operation changes, with a prescribed mutation probability, the 

values of one or more randomly selected genes in an offspring chromosome.  In single-

objective optimizations, the fitness of a given solution is measured in terms of the value of 

the objective function: the better objective value, the better fitness.  The multi-objective 

optimization involves optimizing multiple conflicting objectives simultaneously, and the 

final solutions represent various tradeoffs.  The fitness of a given solution in the multi-

objective optimization can be measured using the Pareto front ranking and crowding 

distance approaches (explained briefly below) as proposed by Deb et al. (2002).  

The Pareto front in the multi-objective optimization is defined as a tradeoff front where a 

series of solutions are non-dominated with respect to each other in terms of the objectives.  

A solution is dominated by another solution if the latter is better than the former in at least 

one objective and no worse than the former in all the other objectives. The Pareto front 

ranking involves first assigning the non-dominated solutions in the population as a rank of 

one (i.e. the first front) and then removes such solutions from the population; the non-

dominated solutions in the remaining population are subsequently identified and assigned 

to the second Pareto front, and such a process is repeated until all solutions in the 

population are assigned appropriate ranks.  Fitness values are then assigned to different 

solutions.  The solutions with lower-numbered ranks are given higher fitness values than 

those with higher-numbered ranks.  For solutions with the same rank, the corresponding 

fitness values can be assigned based on the crowding distance, which is a measure of the 

density of the solutions surrounding a given solution in the population (Deb et al. 2002).  

A solution with a larger crowding distance is more desirable and assigned a higher fitness 
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value in that it is more “dissimilar” than the other solutions and enhances the diversity of 

the population, which is important for searching for globally optimal solutions.   

It should be noted that GA is a computationally intensive method, especially for large scale 

optimization problems.  It may take a large number of generations of the solution 

population to reach the approximate Pareto front.  Moreover, the convergence to the Pareto 

front is not guaranteed.  

6.4.2 GA Used in this Chapter 

For a pipeline segment consisting of np corroding pipe joints, the maintenance solution 

encoded in the GA used in the present chapter is schematically illustrated in Fig. 6.1.  A 

given solution (chromosome) consists of np genes, each gene corresponding to one of np 

corroding joints.  The value of the q-th gene equals 0, 1, 2, …, or T (years) representing the 

time of repair of the q-th pipe joint, where T is the time horizon (i.e. the interval between 

the recently-run and next-scheduled ILIs, see Section 6.2.3) considered in the GA.  A value 

of zero means that the pipe joint is repaired immediately after the recently-run ILI, whereas 

a value of T indicates that the joint is not repaired (see Section 6.2.3) prior to the next ILI.   

To improve the robustness and efficiency of the GA, the initial solutions are not randomly 

generated in this chapter but selected using the approach as described in the following.  

Consider the constrained optimization problem of minimizing the present-value repair cost 

(C) subjected to Psa ≤ P1.  As illustrated in Fig. 6.2, the times corresponding to the 

intersection points of the horizontal line representing Psa = P1 and np curves respectively 

representing the time-dependent probabilities of small leak of np pipe joints are the optimal 

times of repair; the collection of these repair times, rounded off to the nearest smaller 

integers, is then considered as one initial solution to the multi-objective maintenance 

optimization problem.  By varying the value of P1, i.e. the position of the horizontal line in 

Fig. 6.2, a set of initial solutions are then generated.  This technique can be equally applied 

to generate another set of initial solutions by considering minimizing C subjected to Pba ≤ 

P2.  Finally, the union of the two sets of initial solutions forms the initial solution population 

to start the evolutionary process for the multi-objective optimization.    



128 

 

6.4.3 Constraint Handling  

As described in the problem statement in Section 6.2.3, three constraints are considered in 

the optimization process: Psa ≤ P1, Pba ≤ P2 and Cr,t ≤ Ca,t (t = 0, 1, 2, …, (T – 1)).  In this 

chapter, the first two constraints, i.e. Psa ≤ P1 and Pba ≤ P2, are not enforced until at the end 

of the optimization; that is, those solutions violating the two constraints are simply 

removed from the final converged Pareto front.  On the other hand, the annual budget 

constraint Cr,t ≤ Ca,t is handled by adding penalty to the cost objective (Deb 2001).  To this 

end, the maintenance cost is expressed as: 

𝐶 = ∑ 𝐶𝑟,𝑡
𝑇−1
𝑡=0 + 𝜆∑ 𝑚𝑎𝑥{0, 𝐶𝑟,𝑡 − 𝐶𝑎,𝑡}

𝑇−1
𝑡=0  (6.9) 

where the second term of the right hand side of Eq. (6.9) is the penalty term, and  is the 

penalty factor modulating the relative amplitude of violation to Cr,t.  A trial-and-error 

process can be conducted to determine   It is found in this study that  = 1 results in fast 

convergence of the Pareto front.  

6.5  An Illustrative Example 

A numerical example representing an onshore underground natural gas pipeline is 

employed to illustrate the application of the above-described GA-based multi-objective 

optimization framework for determining the optimal corrosion maintenance strategy.  The 

pipeline has a nominal operating pressure (P0) of 5.7 MPa, a nominal outside diameter (D) 

of 508 mm and a nominal wall thickness (wtn) of 5.56 mm.  The specified minimum yield 

and tensile strengths (SMYS and SMTS) of the pipe steel equal 414 MPa and 517 MPa, 

respectively.  For illustrative purpose, a total of 90 corroding pipeline joints, i.e. np = 90, 

are considered in the optimization analysis.  It is assumed that the number and sizes of 

corrosion defects on the 90 pipe joints have been reported by a recently-run ILI.  The ILI-

reported defect information is summarized in Fig. 6.3: the number of defects per pipe joint 

ranges from 1 to 5; the defect depth ranges from 10 to 30%wtn, and the defect length ranges 

from 30 to 70 mm.  It is further assumed that the next ILI is scheduled in five years, i.e. T 

= 5 years.  The cost of repairing a single corroding pipe joint is assumed to be $125,000, 

which is representative of the typical practice in the Canadian pipeline industry (Zhang and 
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Zhou 2014), and the mobilization cost is assumed to be $200,000.  The allowable annual 

probabilities of small leak and burst, i.e. P1 and P2, are assumed to be 10-2 and 10-4, 

respectively.  It is further assumed that there is no budget constraint for the defect repair at 

year zero, which is reasonable considering that in practice defects mitigated at year zero 

are typically critical and near-critical defects and great flexibility in the budget is therefore 

expected to accommodate the mitigation of such defects.  Three scenarios regarding the 

budget constraints in years 1 through 4 are considered: 1) a constant annual budget 

constraint of $3 million in each of years 1 through 4; 2) variable annual budget constraints 

with $3m, $2m, $1.5m and $1m in years 1 through 4, respectively, and 3) no annual budget 

constraint.  Finally, the discount rate is assumed to be 5%.   

For simplicity, the depth and length of a given defect are assumed to grow linearly over 

time, with the constant (but uncertain) depth and length growth rates denoted by gd and gl, 

respectively.  The statistical information of the random variables relevant to the reliability 

analysis is summarized in Table 6.1.  Note that the uncertainties associated with the initial 

defect depth and length (i.e. d0 and l0) are intended to reflect the measurement errors 

associated with the ILI-reported defect depth and length, respectively.  All the random 

variables summarized in Table 6.1 are assumed to be mutually independent; random 

variables representing the same physical parameter associated with different defects on 

different pipe joints are also assumed to be mutually independent, and random variables 

representing the same physical parameters associated with different defects on the same 

pipe joints are assumed to be fully correlated except for gd and gl.  The depth (length) 

growth rates for different defects on the same pipe joint are assumed to be statistically 

dependent, and the dependence is characterized by the Gaussian copula (Nelson 2006) with 

a correlation coefficient of 0.5.  

The time-dependent failure probabilities of the 90 corroding pipe joints are evaluated using 

the IS method (Gong and Zhou 2016) with the number of IS trials equal to 3000 at each 

time step (equal to one year) for each pipe joint.  The GA-based multi-objective 

optimization is conducted using the Matlab Optimization tool.  The number of solutions in 

the population at a given generation is set at 500. The analysis is terminated if the number 

of generations reaches 300 or the average change of the Pareto front is 10-3.   
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The annual conditional probabilities of small leak and burst for each of the 90 pipe joints 

are displayed in Fig. 6.4 as a function of time elapsed since the recent ILI.  In general, the 

probability of small leak of a given pipe joint is markedly lower than the corresponding 

probability of burst at time zero, but the former increases more rapidly with time than the 

latter.  Without any maintenance intervention, Psa and Pba increase to 1.2 × 10-1 and 4.0 × 

10-2, respectively, at the end of the time horizon (T = 5 years). 

Figure 6.5 depicts the converged Pareto front obtained from GA for the considered example 

with the constant annual budget constraint of $3m in each of years 1 through 4.  The Pareto 

front is just below the allowable annual probability of burst of 10-4, whereas the Pareto 

front is almost two orders of magnitude below the allowable annual probability of small 

leak of 10-2.  This implies that the constraint Psa ≤ P1 is automatically satisfied once the 

constraint Pba ≤ P2 is handled for this particular example.  To gain further insights into the 

Pareto front, three solutions denoted by SC1, SC2 and SC3, respectively, are selected from 

the Pareto front and examined in detail.  Table 6.2 presents the details of these three 

solutions with the corresponding locations of the to-be-repaired joints plotted in Fig. 6.6.  

The maximum annual conditional probabilities of small leak and burst of all 90 pipe joints 

corresponding to these three solutions are depicted in Figs. 6.7(a) and 6.7(b), respectively, 

as a function of time.  The solution SC1 is at the upper extreme end of the Pareto front, i.e. 

the solution closest to the allowable annual failure probability boundaries and associated 

with the minimum cost.  This solution can in fact be obtained from a single-objective 

constrained optimization analysis, i.e. minimizing the overall repair cost subjected to the 

allowable failure probability and annual budget constraints.  The advantage of the multi-

objective optimization is reflected in Fig. 6.5: the Pareto front, obtained from a single GA 

run, contains a diverse set of solutions corresponding to extended ranges of values of the 

three objective functions.  Compared with SC1, solution SC2 leads to a 19% increase in C, 

but 99% and 95% decreases in Psa and Pba, respectively.  If the decision maker prefers a 

significantly high safety level, solution SC3 could be a possible candidate.  Compared with 

SC1, SC3 leads to a 51% increase in C, but more than two orders of magnitude decrease in 

Psa and Pba. 
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The impact of the annual budget constraint on the Pareto front is shown in Fig. 6.8, which 

depicts the projections of the Pareto fronts in the C -Psa and C -Pba spaces, respectively, 

corresponding to the three scenarios of budget constraints in years 1 through 4, i.e. constant 

constraint, variable constraint and no constraint.  As expected, Fig. 6.8 shows that the 

Pareto front obtained by assuming no budget constraint includes more viable solutions than 

those corresponding to the other two scenarios.  Details of two solutions (SV1 and SV2) 

selected from the Pareto front corresponding to the variable budget constraint, and two 

solutions (SN1 and SN2) from that corresponding to no budget constraint are shown in 

Table 6.3.  The solutions SV1 and SC1 lead to the same value of Psa and similar values of 

Pba, but have markedly different repair schedules: SV1 involves repairing 15 joints in year 

1 whereas no repair is needed in year 1 according to SC1.  The solutions SV2 and SC2 lead 

to the same values of Psa and Pba, respectively, but the former involves repairing a large 

number of pipe joints (22) in year 1 and no joints need repairing the same time.  It should 

be noted that although solution SN1 is included in the Pareto front corresponding to the 

scenario of no budget constraint, it in fact satisfies the constant annual budget constraint of 

$3m from years 1 to 4.  The fact that SN1 is not included in the Pareto front corresponding 

to the latter scenario as it should have been suggests that GA results in an approximation 

of the true Pareto front.  On the other hand, the closeness between solutions SN1 and SC1 

suggests that the Pareto front obtained from the GA is a good approximation of the true 

Pareto front.   Note further that the solutions corresponding to the scenario of no budget 

constraint can provide the decision maker with insights into the appropriate distribution of 

the corrosion maintenance budget to achieve desired safety levels.  For example, solution 

SN2 provides a possible budget allocation for maintaining Psa and Pba in the order of 10-6.   

Figure 6.9 compares the Pareto fronts associated with the scenario of constant annual 

budget constraint from years 1 through 4 obtained by using two different approaches for 

generating the initial solutions for the GA process: the pre-training approach as described 

in Section 6.4.2 and randomly generated initial solutions.  Note that the total number of 

generations of the solution population remains the same (300).  Figure 6.9 indicates that 

most of solutions in the Pareto front corresponding to randomly generated initial solutions 

are dominated by those corresponding to the pre-trained initial solutions.  This suggests 
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that for a given total number of generations, the latter approach leads to more robust and 

faster convergence to the true Pareto front.   

6.6 Conclusion 

A multi-objective optimization based maintenance framework for in-service corroding 

pipelines is developed in the present chapter.  Three objectives are considered in the 

optimization, namely, minimizing the annual conditional probabilities of small leak and 

burst over the time horizon, as well as the total present-value cost of corrosion repair.  

Consistent with the industry practice, the basic unit in the calculation of the failure 

probability and repair cost is the individual pipe joint.  The design variables for the 

optimization are locations of to-be-repaired individual pipe joints along the pipeline and 

corresponding repair times elapsed from the most recent inline inspection.  Three 

constraints are included in the optimization: the allowable annual probabilities of small 

leak and burst as well as the annual budget for corrosion repair.  The genetic algorithm is 

employed to search for the Pareto front in which the solutions are non-dominated against 

each other with respect to the three objectives.  A hypothetical natural gas pipeline 

consisting of 90 corroding pipe joints is used to illustrate the application of the developed 

maintenance framework.  The analysis results indicate that the obtained Pareto front 

includes a diverse set of solutions that allow the decision maker to balance the tradeoff 

between the failure probabilities and cost of repair.  The annual budget constraint can have 

a marked impact on the converged Pareto front and detailed repair schedules associated 

with individual solutions.  Furthermore, it is observed that for the same number of iterations 

using the pre-trained initial solutions leads to more robust and faster convergence to the 

true Pareto front than using the randomly generated initial solutions.  The proposed 

framework can be the basis of a decision-support tool for the optimal maintenance planning 

of corroding pipelines subjected to safety and resource constraints.   
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Table 6.1 The probabilistic characteristics of parameters 

involved in the reliability analysis 

Variable Distribution Mean COV (%) 

D/Dn Deterministic 1.0 - 

wt/wtn Normal 1.0 1.5 

σu /SMTS Lognormal 1.09 3.0 

p/p0 Gumbel 1.0 3.0 

d0 /wtn Normal ILI-reported depth 20 

l0 Normal ILI-reported length 20 

gd Weibull 
0.1/0.2/0.3a 

(mm/year) 
50 

gl Lognormal 5.0 (mm/year) 50 

 Lognormal 1.0 10.0 
a The mean value of the defect depth growth rate is assumed to be 0.1 mm/yr for pipe 

joints #1-30, 0.2 mm/yr for pipe joints #31-60, and 0.3 mm/year for pipe joints #61-90.   

 

Table 6.2 Details of solutions SC1, SC2 and SC3 

 SC1 SC2 SC3 

Number of joints repaired 

at each year 
(0,0,9,24,15)1 (0,0,24,25,8) (0,17,24,18,12) 

Total number of repaired 

joints  
48 67 71 

Cr,t (k = 0, 1, …, 4) (m$) (0,0,1.2,2.8,1.7)2 (0,0,2.9,2.9,1.0) (0,2.2,2.9,2.1, 1.4) 

C (m$) 5.7 6.8 8.6 

Psa 8.1×10-4 7.1×10-6 5.1×10-6 

Pba 7.3×10-5 3.8×10-6 1.3×10-7 

Note: 1. The numbers of pipe joints to be repaired in years 0, 1, 2, 3 and 4, respectively. 

     2. The present costs of repair in year 0, 1, 2, 3 and 4, respectively. 
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Table 6.3 Details of solutions SV1, SV2, SN1 and SN2 

 SV1 SV2 SN1 SN2 

Number of joints 

repaired at each 

year 

(0,15,14,11,8)1 (0,22,16,12,7) (0,0,7,23,18) (0,4,27,21,6) 

Total number of 

repaired joints  
48 57 48 58 

Cr,k (k = 0, 1, …, 

4) (m$) 

(0,2.0,1.8,1.4,1.

0)2 

(0,2.8,2.0,1.5, 

0.9) 
(0,0,1.0,2.7, 2.0) 

(0,0.7,3.2,2.4,0.8

) 

C (m$) 6.1 7.2 5.6 7.1 

Psa 8.1×10-4 7.1×10-6 1.2×10-3 2.5×10-6 

Pba 6.6×10-5 3.8×10-6 9.0×10-5 4.3×10-6 

Note: 1. The numbers of pipe joints to be repaired in years 0, 1, 2, 3 and 4, respectively. 

     2. The present costs of repair in year 0, 1, 2, 3 and 4, respectively. 

 

 

Figure 6.1 Illustration of one maintenance solution coded in GA 

 

 

Figure 6.2 Illustration of the initial solution generation by minimizing C subjected to 

Psa ≤ P1  
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(a) Defect length 

 

(b) Defect depth 

Figure 6.3 The ILI-reported defect information 
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(a) Pba,q (q=1, 2, …, 90) 

 

(b) Psa,q (q=1, 2, …, 90) 

Figure 6.4 Annual conditional failure probability for the considered pipe joints 
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Figure 6.5 Pareto front of optimal solutions in terms of C, Psa, and Pba considering 

the constant budget constraint in years 1 through 4 
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(a) SC1 

 

(b) SC2 

 

(c) SC3 

Figure 6.6 The locations of the to-be-repaired pipe joints associated with SC1, SC2 

and SC3, respectively 



142 

 

 

(a) Psa 

 

(b) Pba 

Figure 6.7 The maximum annual conditional probabilities of small leak and burst of 

all 90 pipe joints corresponding to solutions SC1, SC2 and SC3 
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(a) C -Psa 

 

(b) C -Pba 

Figure 6.8 Pareto fronts corresponding to three scenarios of annual budget constraint  
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(a) C-Psa- Pba 

 

(b) C-Psa 
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(c) C- Pba 

Figure 6.9 Comparison of Pareto fronts of optimal solutions corresponding to the 

scenario of constant annual budget constraint, obtained from pre-trained and 

random initial populations, respectively 
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7 Chapter 7 Summary, Conclusions and Recommendations 
for Future Study   

7.1 General 

The research described in this thesis primarily concentrates on the development of efficient 

system reliability methods for corroding pipeline systems considering multiple correlated 

corrosion defects, and the optimal corroding pipeline maintenance framework that balances 

safety and cost.  The conclusions drawn from this thesis and recommendations for the 

future study are given as follows. 

7.2 A New Perspective on the Application of the First-order 
Reliability Method 

The FORM for system reliability analysis involves computing correlation coefficients 

between linearized limit state functions, which requires the optimization for each limit state 

function in a dimension where all random variables of the system are involved.  To improve 

the efficiency of the FORM, a novel method is developed in Chapter 2.  The method firstly 

conducts the FORM analyses to locate the design point through the optimization for an 

individual limit state function only considering the random variables that need to be defined 

in the limit state function itself instead of the entire system.  Then, the identified design 

point is extended to a dimension where all random variables in a system are involved.  The 

latter is employed as the basis to calculate the correlation coefficients among the linearized 

limit state functions at the design points for the system reliability assessment.  By this 

procedure, the optimization variable dimension is reduced from total number of system 

variables to that of a given limit state function itself and thereby the computational cost 

can be reduced.  It is further showed that correlation coefficients can be readily calculated 

in the correlated normal space as opposed to the standard normal space, whereby Cholesky 

decomposition is avoided.  

The application of the developed procedure is demonstrated through three numerical 

examples: a pipeline joint with two corrosion defects; a parallel system with five 

components subjected to time variant dependent stochastic degradation; a transmission 

system with 11 individual towers subjected to spatially correlated wind loads.   
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7.3 Development of Improved Equivalent Component 
Approach for Reliability Analyses of Series Systems 

In Chapter 3, an improved equivalent component approach is presented to efficiently 

compute the multi-normal integral within the context of the FORM.  The improvement is 

established on two parts.  The first one is the developed analytical expression relying on 

chain rule for the evaluation of equivalent unit normal vectors in the context of the FORM.  

The expression facilitates the assessment of correlation coefficients between the equivalent 

components and system component in the standard normal space.  Second, an adaptive 

component combing order is proposed, where the two components with the highest 

correlation coefficient are combined at each combing step.  

The effectiveness of the improved equivalent component method was illustrated on 

systems with equally correlated components and unequally correlated components, 

respectively.  Four cases are investigated in terms of component reliability index 3, 4, 5 

and 6, respectively.  It is showed that the maximum absolute error for the system with 250 

equally correlated components is slightly over 20% and the maximum absolute error is less 

than or equal to 20% for the system with unequally correlated components ranging from 

30 to 250.  

An investigation is conducted to compare the performance of the improved equivalent 

component method and state of art equivalent component methods, i.e. sequential 

combining method (SCM) and equivalent plane method (EPM).  The comparison is 

performed on a series system of 250 components with the component reliability index of 

6.  Both equally and unequally correlated components are considered.  Improved equivalent 

component method shows efficiency merits and comparable accuracy in comparison to 

SCM and EPM.  Finally, the improved equivalent component method is applied to a 

pressurized steel pipeline joint containing ten active corrosion defects to demonstrate the 

application for series system reliability analyses. 
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7.4 First Order Reliability Method-based System Reliability 
Analyses of Corroding Pipelines Considering Multiple 
Defects and Failure Modes 

In Chapter 4, a FORM based methodology was proposed to assess the time-dependent 

system reliability of pressurised corroding pipeline joints containing multiple active 

corrosion defects.  Small leak and burst failure modes are considered and the spatial 

correlation among random variables associated with each defect is accounted for.  At each 

given time, the FORM is applied to limit state functions regarding the pipe wall penetration 

and plastic collapse at each individual corrosion defects, respectively.  Two linearized 

equivalent limit state functions representing burst and wall penetration failures of the joint 

are established, respectively, in the standard normal space.  Each equivalent limit state 

function is described by equivalent reliability index and equivalent unit normal vector.  The 

equivalent reliability index is computed as the reliability of system cumulative probabilities.  

The unit normal vector of the equivalent limit state is calculated as the product of the 

gradient of the equivalent reliability index relative to component reliability index, and the 

unit normal vector at individual defects.  Then failure probabilities of burst and small leak 

are evaluated incrementally over time using a proposed procedure.  The proposed 

methodology is applied on three pipeline examples representative of small-, medium and 

large diameter joints.  Each joint contains ten active corrosion defects.  Linear-, nonlinear 

and homogeneous gamma process-based corrosion depth growth models are investigated, 

respectively.  Comparison of the failure probabilities from the proposed methodology and 

the simple Monte Carlo (MC) with 106 trials is carried out to assess the performance of 

proposed methodology.  The results show that the obtained failure probabilities are in close 

agreement with those given by simulation for all three examples. 

7.5 Important Sampling-based System Reliability Analyses of 
Corroding Pipelines Considering Multiple Failure Modes  

In Chapter 5, the Importance Sampling (IS) technique is utilized to assess the time-

dependent system reliability of corroding pipeline joints with multiple active corrosion 

defects.  Competing failure modes, small leak and burst, are considered.  Failure 

probabilities of small leak and burst of the pipe joint, respectively, are evaluated by 
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recursively summing up the corresponding incremental failure probabilities in a short time 

interval, where the IS probability density functions for incremental probabilities are 

computed as the weighted averages of the IS density functions for small leak and burst, 

respectively, at individual corrosion defects.  Density functions are located at design points 

associated with individual defects for small leak and burst, respectively.  The optimization 

constrained by three limit state functions defining the incremental domain at individual 

defects is conducted to obtain design points.  An empirical expression is proposed to 

estimate the weighting factors that determine the contribution of incremental failure of each 

defect to that of the entire joint. 

Four representative examples of onshore gas transmission pipelines in four different 

location classes in the US are used to demonstrate the application of the proposed 

methodology.  Linear based- and Gamma process based-growth model for the defect depth 

are investigated, respectively.  Two scenarios are considered: 1) single defect, and 2) ten 

correlated corrosion defects.  Linear length growth is assumed for all the analyzed cases.  

The probabilities for small leak and burst are evaluated up to ten years with the IS 

simulation trials of 2000.  Benchmark results for comparison are obtained from simple MC 

with 107 trials.  It is revealed results from the IS agree very well with those by MC for all 

four examples, and the IS brings a significant reduction of calls to limit state functions. 

7.6 Multi-objective Optimization Based Maintenance Strategy 
for In-service Corroding Pipelines Using Genetic 
Algorithm 

In Chapter 6, a multi-objective optimization based maintenance framework for in-service 

corroding pipeline systems consisting of many joints is introduced, subjected to the 

constraints of annual failure probabilities and annual budget.  The developed method is 

aimed at addressing the question regarding where and when to optimally perform joints 

excavation and defects mitigation after an in-line inspection, so that the pipeline safe 

operation is guaranteed before next inspection.  Three objectives function are defined, i.e. 

conditioned annual small leak probability and burst probability, respectively, and 

maintenance cost.  Those objectives are optimized simultaneously using genetic algorithm 

(GA).  Important sampling based method developed in Chapter 5 is employed to evaluate 
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the time-dependent joint system failure probabilities of small leak and burst, respectively.  

The objective values of probabilities for small leak and burst, respectively, are calculated 

as the maximum in the entire system throughout the service time before next inspection.  

The maintenance cost is composed of the cost induced by excavation, repair and the 

spending for mobilizing activities.  The constraint of failure probabilities is dealt with by 

directly removing the infeasible solutions from the obtained ultimate trade-offs, whereas 

annual budget constraint is considered by penalizing the cost objective whenever violated.  

Instead of randomly producing the initial population, it is proposed that GA starts up from 

a pre-training set of solutions to speed up the convergence.  The maintenance framework 

is applied to a hypothetic pipeline system with 90 corroded joints.  Results show that 

genetic algorithm with the pre-training population obtains a better Pareto front with better 

diversity and wider spectrum 

Compared with the single optimization method that only gives one solution, the developed 

multi-objective optimization based framework provides decision makers with capability of 

investigating a series of solutions associated with various safety levels and repair cost.  

Decision makers can compare the cost benefits of solutions and finally select one based on 

their own preference and weight of importance of each objective. 

7.7 Recommendations for Future Study 

The recommendations for the future study are summarized as follows: 

1. More advanced burst pressure prediction models should be investigated by conducting 

finite element analysis and experiments.  Empirical experience shows that the current 

available model typically involves a large model uncertainty.  This uncertainty leads to a 

very disperse distribution of predicted burst pressure, which propagates into the evaluated 

burst failure probability and results in over-conservative estimates.  

2. For the small diameter corroding pipeline that is difficult to inspect using inline 

inspection, methodologies should be investigated to infer the condition of underground 

corroded pipeline joint from the corrosive soil properties, which is thereby based on to 

determine the optimum repairing schedules.  Specifically, data driven technique can be 
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employed to establish the relationship between soil property and the condition of aging 

pipeline joints. Optimization is then formulated to identify the most cost effective solutions. 

3. Third party damage, as one of the primary causes of pipeline failure, should also be 

investigated and quantified using the structural reliability method.  The preventative 

measures against third party damage should be incorporated into the multi-objective 

optimization based maintenance framework.  

4. Automatic aerial pipeline monitoring devices using machine learning techniques should 

be developed.  In industry, aerial pipeline patrolling is performed through helicopter or 

fixed wing aircraft to detect right-of-way encroachments, excavation activities, and gas 

leaks.  Those inspections are very costly and only conducted at regular intervals.  Drones 

and satellites are economical tools for inspecting thousands of miles of pipelines but 

requires human intelligence to evaluate the pipeline conditions and still involves significant 

amount of human labor.  Automatic detection methods using drones or satellites should be 

explored to replace human labor. 

  



152 

 

Appendix A Dimension Reduction Method  

The unit normal vector for the equivalent component obtained by applying Eq. (3.7) is n-

dimensional, i.e. the same dimension as that of all the random variables involved in the 

system.  This dimension can be reduced to m (i.e. the total number of components in the 

system) in the equivalent component approach, if m < n.  Note that the linearized limit state 

function at the j-th (j = 1, 2, …, m) component can be written as  

𝑔𝑗(𝑦𝑗) = 𝛽𝑗 − 𝑦𝑗 (A.1) 

where yj is the value of a standard normal variate Yj, and 𝑔𝑗(𝑦𝑗) is the limit state function 

in terms of yj.  It follows that Y = [Y1, Y2, …, Ym]T is an m-dimensional correlated standard 

normal variates with the correlation matrix R.  Furthermore, V = 𝑳𝒀
−1Y is an m-dimensional 

vector in the independent standard normal space, where LY is the lower-triangular matrix 

obtained from the Cholesky decomposition of R.  Note that the design point for 𝑔𝑗(𝑦𝑗), 𝑦𝑗
∗, 

equals j. 

The one-dimensional design point 𝑦𝑗
∗ can be mapped to the m-dimensional design point, 

𝒚𝐷
∗ (𝑗), corresponding to all m components by using the methodology proposed by Zhou et 

al. (2017); that is,  

𝒚𝐷
∗ (𝑗) = (

𝑦𝑗
∗

𝒚𝑐𝑗
∗ ) = (

𝛽𝑗
𝜌𝑗𝑘𝛽𝑗

), (k = 1, 2, …, m; k ≠ j) (A.2) 

where 𝒚𝑐𝑗
∗  denotes the values of Yk (k = 1, 2, …, m; k ≠ j) at the design point y*(j) for the j-

th component.  By re-ordering the elements in 𝒚𝐷
∗ (𝑗) based on the order of m components 

in the Y space, 𝒚𝐷
∗ (𝑗) is mapped to y*(j), which is subsequently mapped to the design point 

in the V space, 𝒗∗(𝑗) , where 𝒗∗(𝑗) = 𝑳𝒀
−1𝒚∗(𝑗) . This allows the evaluation of the m-

dimensional unit normal vector for the j-th component, ’(j) = 𝒗∗(𝑗)/𝛽𝑗  
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