
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

7-24-2017 12:00 AM

Classification with Large Sparse Datasets: Convergence Analysis Classification with Large Sparse Datasets: Convergence Analysis

and Scalable Algorithms and Scalable Algorithms

Xiang Li
The University of Western Ontario

Supervisor

Charles X. Ling

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Xiang Li 2017

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, Statistical Models Commons, and the

Theory and Algorithms Commons

Recommended Citation Recommended Citation
Li, Xiang, "Classification with Large Sparse Datasets: Convergence Analysis and Scalable Algorithms"
(2017). Electronic Thesis and Dissertation Repository. 4682.
https://ir.lib.uwo.ca/etd/4682

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F4682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=ir.lib.uwo.ca%2Fetd%2F4682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F4682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4682?utm_source=ir.lib.uwo.ca%2Fetd%2F4682&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Large and sparse datasets, such as user ratings over a large collection of items, are common

in the big data era. Many applications need to classify the users or items based on the high-

dimensional and sparse data vectors, e.g., to predict the profitability of a product or the age

group of a user, etc. Linear classifiers are popular choices for classifying such datasets because

of their efficiency. In order to classify the large sparse data more effectively, the following

important questions need to be answered.

1. Sparse data and convergence behavior. How different properties of a dataset, such as

the sparsity rate and the mechanism of missing data systematically affect convergence behavior

of classification?

2. Handling sparse data with non-linear model. How to efficiently learn non-linear data

structures when classifying large sparse data?

This thesis attempts to address these questions with empirical and theoretical analysis on

large and sparse datasets. We begin by studying the convergence behavior of popular classifiers

on large and sparse data. It is known that a classifier gains better generalization ability after

learning more and more training examples. Eventually, it will converge to the best generaliza-

tion performance with respect to a given data distribution. In this thesis, we focus on how the

sparsity rate and the missing data mechanism systematically affect such convergence behavior.

Our study covers different types of classification models, including generative classifier and

discriminative linear classifiers. To systematically explore the convergence behaviors, we use

synthetic data sampled from statistical models of real-world large sparse datasets. We consider

different types of missing data mechanisms that are common in practice. From the experi-

ments, we have several useful observations about the convergence behavior of classifying large

sparse data. Based on these observations, we further investigate the theoretical reasons and

come to a series of useful conclusions. For better applicability, we provide practical guidelines

for applying our results in practice. Our study helps to answer whether obtaining more data

or missing values in the data is worthwhile in different situations, which is useful for efficient

data collection and preparation.

Despite being efficient, linear classifiers cannot learn the non-linear structures such as the

low-rankness in a dataset. As a result, its accuracy may suffer. Meanwhile, most non-linear

methods such as the kernel machines cannot scale to very large and high-dimensional datasets.

The third part of this thesis studies how to efficiently learn non-linear structures in large sparse

data. Towards this goal, we develop novel scalable feature mappings that can achieve better

accuracy than linear classification. We demonstrate that the proposed methods not only out-

i

perform linear classification but is also scalable to large and sparse datasets with moderate

memory and computation requirement.

The main contribution of this thesis is to answer important questions on classifying large

and sparse datasets. On the one hand, we study the convergence behavior of widely used classi-

fiers under different missing data mechanisms; on the other hand, we develop efficient methods

to learn the non-linear structures in large sparse data and improve classification accuracy. Over-

all, the thesis not only provides practical guidance for the convergence behavior of classifying

large sparse datasets, but also develops highly efficient algorithms for classifying large sparse

datasets in practice.

Keywords: Machine learning, large-scale classification, data sparsity, classifier behavior

ii

Acknowlegements

First of all, I would like to thank my supervisor, Dr. Charles Ling, who have guided me through

the path of becoming a better researcher and have taught me important lessons in doing solid

research. I am really grateful that Dr. Ling has always given me encouragement and actionable

suggestions when facing difficulties in research. Without his supervision, this thesis would not

have been possible.

My gratitute also goes to my thesis committee members, Dr. Xianbin Wang, Dr. John

Barron, Dr. Michael Bauer and Dr. Xiaodan Zhu, who graciously agreed to serve on my

committee.

I would like to express my thanks to my lab members, Yan Luo, Shuang Ao, Jun Wang,

Chang Liu, Renfeng Liu, Xiao Li, Tanner Bohn for all the inspirations, encouragements and

help, in research and also in real life. Many thanks to Dr. Shuang Ao, we have many coopora-

tions in research and jointly published several papers. I would also like to thank Dr. Bin Gu,

who had been a visiting scholar to our lab in 2014. Since then, Dr. Gu has given me much

guidance in doing machine learning research, and we have coorporated in publication.

I would like to thank Dr. Huaimin Wang, the advisor of my Bachelor and Master study at

National University of Defense Technology. He recommended me to conduct doctoral study at

Western University and has always been supportive to me throughout my Ph.D. study.

Finally, my gratitude goes to my parents, for their love, sacrifice and tremendous support.

My research is supported by NSERC Grants, China Scholarship Council (CSC) and Na-

tional Natural Science Foundation of China (No. 61432020, 61472430). This thesis would not

have been possible without the generous resources provided by the Department of Computer

Science, Western University.

iii

Contents

Abstract i

Acknowlegements iii

List of Figures viii

List of Tables xi

List of Appendices xii

Acronyms xiii

1 Introduction 1
1.1 Research Questions . 3

1.2 Challenges and Our Approach . 5

1.2.1 Large sparse data and learning convergence behavior 6

1.2.2 Large sparse data and non-linear learning 6

1.3 Thesis Structure . 7

2 Background 9
2.1 Classification . 9

2.2 Convergence of Discriminative Classifiers . 11

2.3 Convergence of Generative Classifiers . 12

2.4 Discriminative Linear Classifiers . 12

2.5 Naı̈ve Bayes Classifier . 15

2.6 Conclusion . 16

3 Data Sparsity in Linear SVM 18
3.1 Introduction . 18

3.2 A Novel Approach to Generate Sparse Data 20

iv

3.2.1 Basic Settings . 20

3.2.2 Review of PMF for Sparse Binary Data 20

3.2.3 The Distribution for Data Sampling 21

3.2.4 Missing Data Model . 23

3.3 Experiment . 24

3.4 Theoretical Analysis . 27

3.4.1 Asymptotic Generalization Error . 27

3.4.2 Asymptotic Rate of Convergence . 32

3.5 Conclusion . 33

4 Convergence Behavior of Naı̈ve Bayes on Large Sparse Data 34
4.1 Introduction . 34

4.2 Experiments with Real-World Data . 36

4.2.1 Effectiveness of Naı̈ve Bayes . 37

4.2.2 Learning Behavior Study – Inadequacy of Using Real-world Data . . . 37

4.3 Missing Data Mechanism 1: Uniform Dilution 40

4.3.1 Observations on Sparse User Behavior Data 40

4.3.2 Bernoulli-trial Expansion . 42

4.3.3 Just-1 Expansion . 42

4.4 Experiment with the Uniform Dilution Approach 43

4.4.1 Learning Curve Behaviors of Bernoulli-trial Expansion 44

4.4.2 Learning Curve Behaviors of Just-1 Expansion 44

4.4.3 Comparing BTE and JE . 48

4.5 Missing Data Mechanism 2: Probabilistic Modeling 49

4.6 Experiment with the Probabilistic Modeling Approach 50

4.6.1 Replicating Learning Curves with GPMF 50

4.6.2 Data Generation Experiment . 52

4.7 Theoretical Study for Experiment Observations 54

4.7.1 Problem Definition . 54

4.7.2 Convergence Rate Analysis . 55

4.7.3 Upper Bound Analysis . 56

4.7.4 Upper Bound Analysis for Just-1 Expansion 57

4.8 A Practical Guide . 58

4.9 Relation to Previous Work . 60

4.10 Summary . 61

v

5 Convergence Behavior of Linear Classifiers on Large Sparse Data 63
5.1 Introduction . 63

5.2 Linear Classification and Asymptotic Risk . 65

5.2.1 Linear Classification . 65

5.2.2 Asymptotic Risk and Convergence Rate 65

5.3 Sparsity and Missing Data Models . 66

5.3.1 Uniform Missing . 66

5.3.2 Uniform Dilution . 67

5.4 Empirical Study . 69

5.4.1 Experiments with Real-world Data . 69

5.4.2 Synthetic Data Generation . 69

5.4.3 Experiments on Synthetic Data . 72

5.5 Theoretical Study for Experiment Observations 77

5.5.1 Notations . 77

5.5.2 Asymptotic Risk for Different Missing Mechanisms 78

5.5.3 Learning Convergence Rate . 83

5.6 A Practical Guideline . 83

5.7 Related Works . 85

5.8 Summary . 86

6 Scalable and Effective Methods for Classifying Large Sparse Data 87
6.1 Introduction . 87

6.2 Classify Large Sparse Data . 89

6.2.1 Problem Formulation . 90

6.2.2 Previous Works . 90

6.3 Approximate Feature Mappings . 92

6.3.1 Density-based strategy . 94

6.3.2 Feature-selection strategy . 95

6.3.3 Clustering-based strategy . 96

6.3.4 Combining feature mapping strategies 96

6.4 Experiments . 97

6.5 Conclusion . 100

7 Conclusion 101
7.1 Summary of research questions and results . 101

vi

7.2 Suggestions of future directions . 103

Bibliography 104

A Proofs of Theorems 113

Curriculum Vitae 119

vii

List of Figures

1.1 A toy dataset of four instances {x1, x2, x3, x4} and 4 features {a1, a2, a3, a4}.

From left to right: the full dataset in hindsight; the actually observed dataset

with 12 missing values (sparsity s = 75%); and its missing pattern. 2

1.2 Learning curves of several real-world datasets measured by 5-fold cross-validation

accuracy and AUC. All data samplings are repeated for 5 times, the regular-

ization parameter of the SVM is tuned using a held-out dataset on the grid

[2−10, 2−9, . . . , 210]. 4

2.1 As the training size N increases, the empirical risk (Remp
Strain∼D

) and true risk (RD)

of a classifier f ∗
Strain

will converge. 12

3.1 Training (dashed) and generalization error rates for different missing data prob-

ability s. Observation: higher sparsity leads to larger asymptotic generaliza-

tion error rate. 25

3.2 The difference between training and generalization error rates for different data

missing probability s. Observation: asymptotic rate of convergence is almost

the same for different sparsity. 26

4.1 Classification error and CPU time comparison between Naı̈ve Bayes (NB) and

l1-regularized linear classifier (l1-sgd) on different user behavior datasets. The

l1-regularized linear classifier is optimized with Stochastic Gradient Descent

with 107 gradient updates. The x-axis is the logarithm scale of the l1-sgd reg-

ularization parameter λ. Observations: after careful parameter tuning (sig-

nificantly more CPU time), l1-sgd outperforms NB on 50% of the datasets;

However, NB gives lower error in most of the settings. 38

4.2 Naı̈ve Bayes AUC learning curves on real-world user behavior datasets as we

systematically vary m. Observation: More attributes is always better, but we

cannot see the convergence behavior. 39

viii

4.3 Naı̈ve Bayes AUC learning curves on real-world user behavior datasets as we

systematically vary s. Observation: Lower sparsity is better, but we cannot see

the convergence behavior. 39

4.4 The user-movie example of Uniform Dilution. Each data entry is either 1

(watched) or 0 (not-watched). The label is a binary-valued user feature, such

as the gender. For illustration purpose, we here use different genres (i.e., Fic-

tion, Cartoon) to denote non-overlapping attribute categories. But in practice,

attribute categories are mostly implicit. 41

4.5 Learning curves of Bernoulli-trial expansion with fixed m and different s. To

ensure that we get smooth and stable learning curves, all our experiments on

synthetic data uses sampling sizes of l = 2i, i ∈ {8, 8.25, 8.5, 8.75, . . .}. More-

over, data sampling and 5-fold cross validation is exhaustively repeated 50

times for each value of l. Observation: higher sparsity leads to slower con-

vergence and lower AUC upper bound. 45

4.6 Learning curves of Bernoulli-trial expansion with fixed s and different m. Ob-

servation: more attributes leads to higher AUC upper bound. 46

4.7 Learning curves of just-1 expansion with different expansion rate t. The num-

ber of attributes and sparsity are not displayed in the legend of the figures, but

can be computed easily from Eq. (4.7). Observation: larger t leads to lower

convergence rate; however, different t does not change the AUC upper bound. . 47

4.8 Comparison of the learning curves on real datasets (the thick lines) and the

generated data. Observation: the learning curve behavior is similar for real

data and synthetic data. 51

4.9 The AUC learning curves of the real data (the thick black line) and synthetic

data generated by GPMF with different sparsity. Observation: higher s leads to

lower upper bound. 53

4.10 The decision flowchart of our practical guideline. 59

5.1 A graphical illustration of Uniform Missing (upper figure) and Uniform Dilu-

tion (lower figure). 0 denotes missing. 67

5.2 Classification accuracy on real-world data with different missing data mecha-

nisms. For UM and UD, sparsity rate increases with s and t, respectively. Solid

and dashed lines indicate training and testing accuracies, respectively. 70

ix

5.3 Linear SVM classification accuracy on synthetic large sparse data generated

from BTE with fixed expansion rate t and various missing likelihood s. Solid

and dashed lines indicate training and testing accuracies, respectively. The

rate of convergence can be measured by the training size needed to approach

convergence. 72

5.4 Linear SVM classification accuracy on synthetic large sparse data generated

from BTE with fixed missing likelihood s and various expansion rate t. Solid

and dashed lines indicate training and testing accuracies, respectively. The

rate of convergence can be measured by the training size needed to approach

convergence. 73

5.5 Linear SVM classification accuracy on synthetic large sparse data with UM

missing mechanism. Solid and dashed lines indicate training and testing accu-

racies, respectively. The rate of convergence can be measured by the training

size needed to approach convergence. 74

5.6 Linear SVM classification accuracy on synthetic large sparse data with JE miss-

ing mechanism. Solid and dashed lines indicate training and testing accuracies,

respectively. The rate of convergence can be measured by the training size

needed to approach convergence. 75

5.7 The road map of our theoretic study about asymptotic risk. 77

5.8 The decision flowchart of our practical guideline. 84

6.1 A graphical illustration of the clustering-based feature mapping strategy. ∗

denotes missing. We set the value of each cluster-level feature as the mean of

its member features. 96

x

List of Tables

1.1 Several real-world large sparse datasets. Instances and Features correspond to

the number of users and items in a dataset, respectively. Sparsity is calculated

as the percentage of unobserved values in each dataset. 3

4.1 Prototype datasets used for expansion . 43

4.2 Datasets for GPMF experiment. Numbers in the parentheses are the biases added

to the posterior mean of z. 52

4.3 upper bound (U) and convergence rate (V) of AUC learning curves 58

5.1 Asymptotic risk (R̂) and convergence rate (V) of discriminative linear classifi-

cation. 83

6.1 Best test performance with different γ values. Each dataset is split as 4:1

for training and testing. The last column indicates the percentage of hyper-

parameters for which Algorithm 3 solved the Kernel SDCA [82] optimization

problem. 93

6.2 Testing accuracy on different large sparse data. Each dataset is split as 6:1:3

for training, validation and testing. The best accuracy is in bold while the sec-

ond best is marked with *. Underlinedresults indicate significantly better than

linear classification under McNemar’s test (p = 0.05). We have not evaluated

KARMA on datasets with more than 105 instances, because it is too expensive

to store the kernel matrix. 98

6.3 Memory consumption (in millions of nonzero data entries) on the large datasets.

For KARMA, we need to store the kernel matrices. For other methods, we only

need to store the non-zeroes in the feature (mapping) vectors. 99

6.4 Training time in seconds (including feature mapping computation). The pro-

posed methods can handle the flickr-all dataset (more than 107 instances) within

several hours of training. 99

xi

List of Appendices

Appendix A Proofs of Theorems . 113

xii

Acronyms

AdaGrad Adaptive Gradient algorithm. 13, 14

AUC Area Under the receiver operating characteristic Curve. ix, x, xii, 4, 34–37, 39, 43–48,

50, 52–61, 64, 81, 86, 102

BNB Bernoulli Naı̈ve Bayes. 16

BTE Bernoulli-trial Expansion. vi, xi, 42–46, 48, 49, 52, 54, 57–59, 61, 68, 72, 73, 76–79,

81, 83–85

ERM Empirical Risk Minimization. 11, 13, 85

GNB Gaussian Naı̈ve Bayes. 16

JE Just-1 Expansion. vi, xi, 42–44, 47–49, 52, 54, 57–59, 61, 68, 75–78, 80, 81, 83–85

KARMA Kernelized Algorithm for Risk-minimization with Missing Attributes. xii, 5–8, 87–

89, 91, 93, 94, 97–100, 102

MAR Missing At Random. 40, 41, 43, 49, 66, 90

MCAR Missing Completely At Random. 23, 40, 90

MNAR Missing Not At Random. 40, 61, 90

MNB Multinomial Naı̈ve Bayes. 16

PAC Probably Approximately Correct. 7, 18–20, 27, 32, 33, 58, 83, 101

pdf prodability density function. 21

PMF Probabilistic Matrix Factorization. vi, 19–21, 23, 49, 50, 52, 56, 61, 68, 69, 71, 72

xiii

SDCA Stochastic Dual Coordinate Ascent. xii, 13–15, 93, 94, 97, 99

SGD Stochastic Gradient Descent. 13, 14

SIBM Stochastic Inference method for Binary Matrices. 21–23

SRM Structural Risk Minimization. 13

SVM Support Vector Machine. v, xi, 4, 9, 10, 12, 13, 15, 17–20, 22, 24, 26–28, 30, 32–34,

63, 64, 67, 69, 72–76, 85, 87, 88, 95, 101

UD Uniform Dilution. x, 40–43, 64, 68–70, 72, 76

UM Uniform Missing. x, xi, 23, 64, 66–70, 74, 76–78, 81–85

VC-dimension Vapnik-Chervonenkis dimension. 11, 19, 32, 65, 83

xiv

Chapter 1

Introduction

Large and sparse datasets are prevalent in the big data era. Specifically, with the rapid emer-

gence of online services and digital devices, tons of data that track our selections, usages and

feedback are generated and stored. Meanwhile, as more items are being digitized, these user

behavior datasets become sparser and sparser. For example, the famous Netflix dataset [3] con-

tains 100, 480, 507 ratings given by 480, 189 users to 17, 770 movies, where 98.822% of the

rating values are missing. Apart from rating datasets, there are many more examples of large

sparse data such as our likes on posts, photos and videos; our purchases on online shopping

website; our clicks on webpages or advertisements, and so forth.

Throughout this thesis, we use data sparsity to denote the percentage of missing or un-

observed values in a dataset. For a given dataset, its missing pattern can be represented by a

binary matrix where each entry indicates missing (0) or not (1). Figure 1.1 uses a toy dataset

to illustrate these different concepts. For the purpose of data modeling, we often assume that

there exists a certain missing data mechanism that causes the missing pattern. For example, a

simple missing data mechanism is that all data points are missing completely at random. We

will further discuss different missing data mechanisms in later chapters.

It is no surprise that many datasets have such a high sparsity. With the huge number of items

in a website, each user can only consume a small portion of them. Table 1.1 gives the number of

users, items and data sparsity of several publicly-available datasets. Specifically, the movielens

datasets1 (ml-1m, ml-100k) and the yahoo-movies dataset2 (ymovie) contain large sparse user

ratings on a large number of movies. Meanwhile, the tafeng dataset3 contains shopping records

of a large number of users on the grocery products; the book dataset [93] is about user ratings

1http://grouplens.org/datasets/movielens/
2http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
3http://recsyswiki.com/wiki/Grocery shopping datasets

1

2 Chapter 1. Introduction

Figure 1.1: A toy dataset of four instances {x1, x2, x3, x4} and 4 features {a1, a2, a3, a4}. From

left to right: the full dataset in hindsight; the actually observed dataset with 12 missing values

(sparsity s = 75%); and its missing pattern.

on books collected from the bookcrossing.com website; the epinions dataset [65] is about user

ratings on various types of products collected from epinions.com. Finally, the flickr dataset [8]

contains information about whether a user has liked a certain photo in flickr.com.

Classification is one of the most fundamental data analysis technique and is of great impor-

tance in mining and making use of the large sparse data. For example, a company may need

to classify the profitability of a product/service based on sparse user feedback vectors. For the

public datasets shown in Table 1.1, various types of data labels (shown in the last column) are

also provided for building interesting and useful classifiers. Besides, in the literature, much

previous work has demonstrated that sparse data are highly useful for predictive modeling. For

example, Brian et al. [14] have demonstrated that classifying user web browsing data, which is

high-dimensional and sparse, is an effective solution for online display advertising. Kosinski et

al. [50] have used the likes in Facebook, which are sparse atomic behavioral data, to accurately

predict the personality trait of each person. The same type of data have also been used in De

Cnudde et al. [15] for improving micro-finance credit scoring. Meanwhile, large and sparse

fine-grained transactional (invoicing) data have been used in Junqué de Fortuny et al. [41] to

build effective linear classification models for corporate residence fraud detection. Mcmahan

et al. [63] have demonstrated how extremely sparse data and linear classification can solve the

advertisement click prediction tasks in the industry. Martens et al. [61] have used massive,

sparse consumer payments data to build linear predictive models for targeted marketing.

All these prior works rely heavily on linear models in classifying large sparse data. The

most important reason for doing this is efficiency: the time complexity of linear classifiers scale

linearly with the number of non-missing values. This would be especially important because

the sample size and feature dimension of these data could be extremely large, while predictions

often have to be made in a real-time fashion [63]. Besides, high-dimensional and sparse data

1.1. Research Questions 3

Table 1.1: Several real-world large sparse datasets. Instances and Features correspond to the

number of users and items in a dataset, respectively. Sparsity is calculated as the percentage of

unobserved values in each dataset.
Datasets Instances Features Sparsity Domains Classification Label

ml-100k 943 1,682 0.937 movie user gender

ml-1m 6,040 3,952 0.958 movie user gender

ymovie 7,620 11,914 0.998 movie user age

tafeng 32,266 23,812 0.999033 grocery user age

book 61,308 282,700 0.99996 book user age

epinions 113,629 318,114 0.99997 product user trustworthiness

flickr 11,195,143 497,470 0.9999987 photo photo comment length

vectors tend to be linearly separable, which makes linear modeling effective for classifying

such data. As a result, linear classification is still an essential tool for mining large sparse data

in practice.

However, despite its scalability, a linear classifier is not always optimal in terms of clas-

sification accuracy. Notice that linear classifiers have assumed that the input vector x and the

predicted value f (x) is of a linear relationship, i.e., f (x) = w · x. As a result, they cannot learn

complex data structures. In recent years, the success of matrix factorization algorithms in many

collaborative filtering applications have verified the assumption that large sparse data tend to

be low-rank, which cannot be fitted by a linear model. The low rank assumption also has a

nice intuition as items/users can often be well-described by a relatively small number of la-

tent factors. Obviously, the major challenge of applying non-linear models on large datasets is

scalability. In this thesis, we will also try to address how to learn the non-linear data structures

such as low-rankness, in a more scalable manner.

1.1 Research Questions

In order to classify large sparse data more effectively, several important questions need to be

answered. The first question is about how data sparsity would affect classification performance:

(1). How different properties of a dataset, such as the sparsity rate, the mechanism of

missing data systematically affect convergence behavior of classification?

Theoretically, a classifier’s generalization ability improves as it learns from more and more

training data. If the training size keeps increasing, it will converge to the optimal classifier for

4 Chapter 1. Introduction

a given hypothesis class. To visualize this theoretical result, in Figure 1.2, we conduct several

classification experiments on large sparse datasets as an example. We train linear Support

Vector Machine (SVM) using 5-fold cross validation with larger and larger sample size. As can

be seen in the figures, both AUC (Area Under the receiver operating characteristic Curve) [22]

and accuracy (0/1 loss) keep increasing until the entire datasets are used. Meanwhile, from the

curves of the largest dataset we have (flickr), we could see the trend that AUC/accuracy starts

to converge.

flickr epinions

book ymovie

log2(N)

Figure 1.2: Learning curves of several real-world datasets measured by 5-fold cross-validation

accuracy and AUC. All data samplings are repeated for 5 times, the regularization parameter

of the SVM is tuned using a held-out dataset on the grid [2−10, 2−9, . . . , 210].

If we want to further improve classification performance, Figure 1.2 implies that collecting

more data instances is almost always beneficial for these large sparse datasets. The same result

has also been observed in the experiments performed by Junqué de Fortuny et al. [40], which

suggest that bigger data is indeed better.

However, in order to have a deeper understanding of this observation or to estimate the

1.2. Challenges and Our Approach 5

amount of data needed for getting a certain accuracy/AUC, we need to know how fast a learn-

ing curve converges and its converged value (asymptote). In this paper, we denote these two

properties as the convergence rate and the asymptotic performance of learning, respectively.

They are also basic problems in the Statistical Learning Theory [88], which have been exten-

sively studied. Unfortunately, previous work has not studied how data sparsity under different

missing data mechanisms would affect these two learning curve behaviors. Chapters 3-5 of

this thesis will provide an in-depth study of this research question for (discriminative) linear

classifiers and naı̈ve Bayes classifier, which is a generative classifier.

Knowing the relationship between data sparsity and the learning convergence behavior of

classification is necessary to estimate the gain (in terms of accuracy) and cost (in terms of data

collection) of a sparse data classification task. Meanwhile, when a (large and sparse) dataset

is given, it is important to have a classifier that can get better accuracy in a scalable manner.

Though the popular linear classifiers are very efficient, they can hardly learn the non-linear

structures in the data, hence accuracy may suffer. This motivates us to study the following

research question:

(2). How to efficiently learn non-linear data structures when classifying large sparse data?

It is acknowledged that linear models do not have a rich learning capacity. As a result, they

could hardly fit the complex structures in a dataset which in turn harms classification accuracy.

In recent years, the field of collaborative filtering has witnessed the success of various low-rank

methods in learning large sparse data, which implies that large sparse data tend to have latent

structures that are non-linear (e.g., the low rank structure).

However, the biggest obstacle for applying non-linear models to large datasets is scalabil-

ity. In fact, the very high feature dimensionality makes it hard to apply deep neural network

methods; meanwhile, the large sample size also makes kernel machines intractable. Apart

from scalability, another challenge is to find an appropriate non-linear model that can learn

data low-rankness during classification. In this thesis, we will focus on the KARMA (Kernel-

ized Algorithm for Risk-minimization with Missing Attributes) kernel proposed in [29], which

has theoretical guarantee in learning low-rank structures in the sparse data. We investigate

strategies to scale up the method for handling very large datasets.

1.2 Challenges and Our Approach

Here we summarize the challenges and our approach for each research question.

6 Chapter 1. Introduction

1.2.1 Large sparse data and learning convergence behavior

There is no universal answer for how data sparsity would affect learning convergence behavior.

It depends on the missing data mechanism that causes data sparsity. Unfortunately, for a real-

world sparse dataset, the actual mechanism that causes sparsity is usually complicated. For

example, a missing movie rating does not necessarily mean that the user has not watched the

movie. Some users may prefer to rate movies that they like, some may rate those they dislike

while some may prefer to rate when (s)he disagrees with the current average rating. The miss-

ing pattern of a real-world large sparse dataset is a complex mixture of many different factors.

To control this complexity, in this thesis, we consider several basic missing data mechanisms

that are common for large sparse data in general.

Another challenge is how to empirically study the learning behaviors, especially the conver-

gence behavior of classifying large sparse data. As can be seen in Figure 1.2, publicly available

real-world sparse datasets are hardly large enough to reveal the convergence of classification.

In this thesis, we address this challenge by using synthetic data generation. To ensure that the

generated data are realistic, our approach is to sample data instances from the probabilistic

model of the real-world datasets. After generating synthetic datasets, which can be arbitrarily

large, we are able to systematically vary data sparsity with different missing data mechanisms

and empirically study the convergence behaviors of different classifiers.

The third challenge is how to understand and verify the observations obtained from syn-

thetic experiments. Specifically, do the observations hold consistently or do they hold only

under certain conditions? For this purpose, we study different types of missing data mecha-

nisms for binary data as well as real-valued data. Besides, our study covers different popular

classifiers for large sparse data, including naı̈ve Bayes and also discriminative linear classi-

fiers. For these different classifiers, we provide in-depth theoretical analyses for our experi-

ment observations based on previous results such as the Statistical Learning Theory [89] and

the convergence analysis of naı̈ve Bayes [69].

1.2.2 Large sparse data and non-linear learning

As demonstrated in previous studies on collaborative filtering tasks, low-rankness is arguably

the most significant non-linear structure that exists in many large sparse data. For classifica-

tion tasks, Hazan et al. [29] have developed the KARMA framework for learning low-rank

structures in the sparse data. Under the low-rank assumption, the framework has theoretical

guarantee to outperform linear classifiers, which was demonstrated with experiments on sev-

1.3. Thesis Structure 7

eral small to medium sized data [29]. However, the KARMA framework is hardly scalable to

large datasets because of the expensive kernel computation. In Chapter 6 of this thesis, we in-

vestigate the inner mechanism of the KARMA kernel with theoretical and empirical analyses.

We find that a KARMA kernel is not only possible but also effective (in terms of accuracy) to

be approximated using scalable feature mapping strategies. We demonstrate that the proposed

feature mappings not only significantly outperform linear classification, but also is scalable for

large and sparse datasets even on a normal desktop computer.

1.3 Thesis Structure

In this introductory chapter, we have described the problem, the motivation and the research

questions of the thesis. In Chapter 2, we describe the theoretical background of classifying

large sparse data. We introduce different types of efficient classifiers on large sparse data,

including naı̈ve Bayes which is a generative classifier and discriminative linear classifiers such

as linear SVM and Logistic Regression [23]. In particular, we address the reason why these

classifiers can efficiently handle data sparsity.

In Chapter 3, we study how data sparsity could affect the convergence behavior of a linear

SVM classifier. We propose a novel approach to generate large sparse binary data from real-

world datasets, using statistical inference and the data sampling process of the PAC (Probably

Approximately Correct) framework [89]. We then study the convergence behavior of linear

SVM with synthetic experiments, and make several important observations. We also offer

theoretical proofs for our observations by studying the Bayes risk and PAC bound. These

experimental and theoretical results are valuable for learning large sparse datasets with linear

SVM.

In Chapter 4, we extend our study to naı̈ve Bayes classifier which is a simple generative

model widely used on large sparse data because of its efficiency. For naı̈ve Bayes, we study how

different mechanisms of missing data, data sparsity and the number of attributes systematically

affect its learning curves and convergence. We consider several common missing data mech-

anisms and propose novel data generation methods based on these mechanisms. We generate

large and sparse data systematically, and study the entire AUC learning curve and convergence

behavior of naı̈ve Bayes. We not only have several important observations, but also provide

detailed theoretical studies. Finally, we summarize the results as a guideline for classifying

large sparse data in practice.

In Chapter 5, we further extend our study from linear SVM and naı̈ve Bayes to all discrim-

8 Chapter 1. Introduction

inative linear classifiers. While the previous chapters only consider missing data mechanisms

and synthetic generations of binary data, we now generalize them to real-valued datasets. Using

synthetic experiments, we observe several important learning curve behaviors under different

missing data mechanisms. We derive several lemmas which prove that our observations con-

sistently hold for different linear classifiers and different loss measures. Practically, our studies

help to determine if or when obtaining more data and/or obtaining missing values in the data is

worthwhile or not. This can be very valuable in many applications.

In Chapter 6, we study how to efficiently learn non-linear structures when classifying large

sparse datasets. Many studies suggest that large sparse data often have a low-rank structure.

By finding the polynomial approximation to the low-rank space, Hazan et al. [29] developed

a kernel algorithm (KARMA) for classifying such datasets with a higher accuracy. In Chapter

6, we develop novel scalable feature mappings to efficiently approximate the kernels used in

KARMA. In experiments, our method is comparable with KARMA on medium-sized data and

scales well to larger datasets that KARMA does not. Our method also significantly outperforms

linear classifiers on datasets of various sizes.

Finally, in Chapter 7, we conclude the thesis and discuss possible future directions.

Chapter 2

Background

In this chapter, we introduce the basic settings of a standard classification task. We distinguish

the definitions of a generative classifier and a discriminative classifier. In the second part of

this chapter, we introduce the basic learning convergence behavior of these classifiers following

the Statistical Learning Theory [89]. Finally, we give some concrete examples of classification

algorithms which will be used in later chapters, including linear SVM, logistic regression and

naı̈ve Bayes. We not only describe their problem formulations and solutions but also illustrate

their efficiency in dealing with sparse data.

2.1 Classification

The general purpose of a classification algorithm is to map a given input x to its output y, where

y is the target of interest. Formally, let us assume that the data space of input x is X = Rd, and

the space of the target variable (label) isY = {1, 2, . . . ,C} (while for regression task the domain

ofY is continuous), where C is the number of classes and d is the number of input features. The

data are assumed to be i.i.d. (individually independently distributed) according to distribution

D =de f p(x, y) over space {X × Y}.

For learning, the classifier is given a set of training data S train = {x(i), y(i)}i=1,...,N which are

also distributed according toD. The goal of classification is to find a decision function f using

the training data, such that for an unseen input x, f (x) can provide a good prediction of its

unknown label y, where (x, y) is also fromD. Based on how the decision function f is learned,

we can divide classifiers into discriminative classifiers and generative classifiers.

Discriminative Classifiers. A discriminative classifier tries to either directly learn p(y|x)

(without learning p(x|y) and p(y), e.g., Logistic Regression [23]) or to directly find the mapping

9

10 Chapter 2. Background

f (such as SVM) from a predefined class of functionsH .

Following the Statistical Learning Framework [89], a discriminative classifier will target a

non-negative loss function L
(
f (x), y

)
∈ R+, which quantifies the penalty if the true target for

x is y, while the predicted target is f (x). The goal of the training process is to minimize the

following quantity, which is denoted as the generalization risk (true risk) of classification

RD(f) = E(x,y)∼D

[
L
(
f (x), y

)]
=

∫
X×Y

L
(
f (x), y

)
dp(x, y). (2.1)

The optimal function will be

f Discriminative = arg min
f∈H

{
RD(f)

}
, (2.2)

which can then be used for predicting unseen data in the future. When the class of functions

H is rich enough to contain all possible mappings,H = { f : X → Y}, the optimal f Discriminative

will be equivalent to the Bayes classifier which knows everything about the distribution p(y|x):

f Bayes = arg min
f :X→Y

{
RD(f)

}
(2.3)

f Bayes(x) = arg min
y′

p(y′|x)L
(
y′, y

)
, (2.4)

and the risk incurred by the Bayes classifier is denoted as the Bayes risk:

RBayes
D

(f) = E(x,y)∼D

[
L
(
f Bayes(x), y

)]
. (2.5)

It is obvious that the Bayes risk is the smallest risk a classifier can get given D, even in an

idealistic setting.

Generative Classifiers. Unlike a discriminative classifier, a generative classifier tries to

estimate p(x|y) and p(y) by assuming a certain probabilistic model M for the data. The model

M is a prior belief of what p(x|y) and p(y) should be like, which in turn allows the classifier

to estimate the two distributions, p̂(x|y,M) and p̂(y), from the given data. Afterwards, the

classifier uses the Bayes rule to find the estimation of p(y|x) :

p(y|x) ≈ p̂(y|x,M) =
p̂(x|y,M) p̂(y)

p̂(x)
. (2.6)

Finally, it acts the same as a Bayes classifier (Eq. (2.4)) in learning f , except it uses the

estimated distribution rather than the true distribution:

f Generative = arg max
y

p̂(y|x,M) (2.7)

2.2. Convergence of Discriminative Classifiers 11

as the learned mapping.

Ng and Jordan [69] have provided detailed discussion of the advantages and disadvantages

of discriminative and generative classifiers. However, this is not the focus of this thesis. In the

previous chapter, we have demonstrated how linear classifiers behave as we increase the size

of large sparse data (Figure 1.2). Here we introduce the theoretical background behind this

phenomenon, i.e., the convergence of classification.

2.2 Convergence of Discriminative Classifiers

As described earlier, since only the training data Strain are given, a discriminative classifier will

use the Empirical Risk

Remp
Strain∼D

(f) =
1
N

N∑
i=0

L
(
f (x(i)), y(i)) (2.8)

to estimate the generalization risk in Equation (2.1). A most simple discriminative classifier

will use the ERM (Empirical Risk Minimization) principle [89] for training1. In other words,

it finds the decision function by

f ∗
Strain

:= arg min
f∈H

{
Remp
Strain∼D

(f)
}
. (2.9)

Because of the Uniform Convergence of ERM [88], when N becomes sufficiently large, the

empirical risk, f ∗
Strain

will converge to the optimal generalization (true) risk:

Remp
Strain∼D

(f ∗
Strain

)→p
N→∞ min

f∈H

{
RD(f)

}
:= R̂D, (2.10)

Here the symbol→p
N→∞ represents the convergence in probability when N → ∞, which follows

the definition in Vapnik et al. [88]. We denote the asymptotic risk as R̂D. Notice that the above

results hold so long as H has bounded complexity (VC-dimension [88]), which is true for

discriminative linear classifiers:

Hlinear = { f | f (x) = w · x,w ∈ Rd}. (2.11)

As we increase training size, N, the convergence rate of learning describes how fast the

empirical risk converges to the asymptotic risk R̂D. For illustration purpose, Figure 2.1 gives

the convergence behavior of empirical risk and true risk of the discriminative training process.

1here we ignore the regularization problem, which will be discussed later

12 Chapter 2. Background

Figure 2.1: As the training size N increases, the empirical risk (Remp
Strain∼D

) and true risk (RD) of

a classifier f ∗
Strain

will converge.

2.3 Convergence of Generative Classifiers

The learning convergence behavior of a generative classifier is similar to that of a discriminative

classifier. Basically, the learning process converges because of the convergence of the estimated

probabilities to their true values. In other words, the optimal classifier f Generative(x) computed

by:

f Generative(x) = arg max
y

p̂(y|x,M) = arg max
y

p̂(x|y,M) p̂(y) (2.12)

converges because of the convergence of p̂(x|y,M) and p̂(y) to their corresponding asymptotes.

Finally, if we quantify the predictive performance using the risk of classification in Equation

(2.1), we expect a very similar convergence curve as the discriminative classifiers.

In the next subsection, we describe concrete examples of discriminative and generative

classifiers, which will be used in the thesis.

2.4 Discriminative Linear Classifiers

Because of their efficiency in dealing with large datasets, we focus on discriminative linear

classifiers, including linear SVM and Logistic Regression. A practical algorithm for discrimi-

native classification often optimizes an objective function of the form

min
f∈H

Remp
Strain∼D

(f) + λC(f), (2.13)

2.4. Discriminative Linear Classifiers 13

where C(f) quantifies the complexity of the function f and λ is the parameter that controls the

strength of regularization. This strategy (adding regularization to ERM principle) is known as

the Structural Risk Minimization (SRM) principle [89], which is especially necessary when the

sample size is small.

Without loss of generality, consider the binary classification problem whereY has only two

distinct elements {+1,−1}. Both linear SVM and Logistic Regression consider the following

objective function:

min
w∈Rd

1
N

N∑
i=1

L(f (x(i)), y(i)) +
λ

2
||w||2, (2.14)

where f (x) = wT x is the decision function whose sign can be used for prediction. For linear

SVM, we set the loss function as:

Lhinge(f , y) = max{0, 1 − y f }, (2.15)

which is known as the hinge loss, while for logistic regression, we use the logistic loss:

Llogistic(f , y) = ln(1 + e−y f). (2.16)

There are many other loss functions for linear prediction, such as squared loss Lsquared(f , y) =

(y − f)2, and squared hinge loss Lsquared-hinge(f , y) = (max{0, 1 − y f })2. These commonly used

loss functions are actually convex surrogates [2] of the error rate (0-1 loss), which is defined

as L0-1(f , y) = I(sign(f) , y), where I(A) equals 1 if event A is true and 0 otherwise..

There are many algorithms and their corresponding software packages that can solve Equa-

tion (2.14). Traditional methods use the quadratic programming algorithms which cannot scale

well to large scale learning problems. Recently, efficient solvers have been proposed using

SGD (Stochastic Gradient Descent) [81, 19] or coordinate ascent [34, 82], which work on the

primal and dual problem of Eq. (2.14), respectively. To illustrate the efficiency of these modern

solvers on learning sparse data, we briefly review the AdaGrad (Adaptive Gradient algorithm)

[19] and the SDCA (Stochastic Coordinate Dual Ascent) [82] algorithm as representatives of

each family of optimizers.

AdaGrad Let us consider the standard SGD algorithm. At iteration t, SGD randomly chooses

a data instance (x(t), y(t)) to observe, then updates the model parameter of (2.14) by

wt+1 = wt − ηt
∂ht

∂wt
, (2.17)

14 Chapter 2. Background

where ηt is the learning rate and ht = L(f (x(t)), y(t))+ λ
2 ||w||

2 is the regularized loss for the current

instance. With a good step-size strategy for ηt, ft can converge to the optimal linear function

with Õ(1/t) convergence rate.

Compared to other SGD variants, AdaGrad [19] is the most suitable solver for learning

sparse data. The most important design of AdaGrad is to update each attribute with differ-

ent learning rates to adapt for their different sparsity rates. Unlike Equation (2.17), AdaGrad

updates using:

wt+1 = wt − ηtG
−1/2
t

∂ht

∂wt
, (2.18)

where

Gt =

t∑
τ=1

∂hτ
∂wτ

(
∂hτ
∂wτ

)T (2.19)

is a d × d matrix whose diagonal elements are the sums of squared historical gradients on each

attribute. This adaptation is especially useful because sparsity rates for each attribute are often

quite different.

SDCA As its name suggests, SDCA [82] works on the dual problem of Eq. (2.14) using

stochastic coordinate ascent. If we consider Eq. (2.14) as the primal problem:

min
w∈Rd

P(w), where P(w) =
1
N

N∑
i=1

L(f (x(i)), y(i)) +
λ

2
||w||2 (2.20)

its dual can be formulated as:

max
α∈RN

D(α), where D(α) =
1
N

N∑
i=1

−φ∗i (−α(i)) −
λ

2
||

1
Nλ

N∑
i=1

α(i)x(i)||2 (2.21)

α is the N-dimensional dual coefficient and φ∗i (·) is the convex conjugate of L(·), see [83] for

detail.

The duality theory implies that the gap between the primal and dual objectives are always

non-negative:

∆gap(α) := P(w(α)) − D(α) ≥ P(w(α)) − P(w∗) ≥ 0, (2.22)

where w(α) := 1
Nλ

∑N
i=1 α

(i)x(i). This duality gap can be used to measure the accuracy of a

current solution α, w.r.t. the optimal one.

The implementation of the SDCA solver is simple. Briefly speaking, SDCA initializes α to

be α0 = 0. At each iteration t, it randomly picks an element α(i)
t from {α(1)

t , α(2)
t . . . , α(N)

t } (with

replacement), and updates α(i)
t to be α(i)

t+1 by maximizing the dual objective in Eq. (2.21) along

2.5. Naı̈ve Bayes Classifier 15

the selected coordinate i. This process is repeated until the duality gap is sufficiently small,

e.g., ∆gap(α) < 0.001.

While this idea is quite simple, we focus more on its efficiency in dealing with highly-

sparse data. The analysis in Shalev et al. [82, 83] implies that the time complexity for the

SDCA solver to achieve ∆gap(αt) ≤ ε on the logistic regression problem is

Õ
(
(1 − s) · d

(
N + min

{R2

λ
,

√
NR2

λ

}))
(2.23)

while on the linear SVM problem is:

Õ
(
(1 − s) · d

(
N + min

{R2

λε
,

√
NR2

λε

}))
, (2.24)

where R := maxi ||xi||
2 measures the radius of the input. As before, s represents the sparsity rate

(percentage of zeros) in the data. It can be seen that this algorithm has nice scalability since it

only scales linearly with the number of non-missing values (i.e., (1 − s)dN).

We would like to mention that AdaGrad and SDCA have similar optimization speed ac-

cording to our empirical results on classifying large sparse data. In our later experiments, we

extensively use SDCA as the optimizer for discriminative linear classifiers on large sparse data.

2.5 Naı̈ve Bayes Classifier

Naı̈ve Bayes makes assumptions about the generation process and the underlying distribution

of the observed data. This is different from the discriminative classifiers described above,

which have adopted a distribution free approach.

Specifically, the Naı̈ve Bayes model assumes that the data distribution of each feature x j is

independent of one another, when its label y is given. In other words, the conditional probability

p(x|y) can be factorized as:

p(x|y) =

d∏
j=1

p(x j|y). (2.25)

Finally, a classification decision is made by

fNB(x) = arg max
y

p(y)p(x|y) = arg max
y

p(y)
d∏

j=1

p(x j|y). (2.26)

The training process of a naı̈ve Bayes classifier is basically to estimate all the probability

densities appearing in the right-hand side of Equation (2.26). Notice that the naı̈ve indepen-

16 Chapter 2. Background

dence assumption greatly simplifies density estimation, especially when the number of dimen-

sion d is high: it reduces the density estimation of the joint distribution p(x|y) to the estimation

of a collection of univariate probabilities.

In practice, there are different prior models for estimating the density of p(x j|y) for different

types of data. For example, when x j ∈ R is a continuous variable, p(x j|y) is often estimated

using a one-dimensional Gaussian prior:

p(x j|y) ∼ N(µ j,y, σ
2
j,y), (2.27)

where parameters µ j,y andσ2
j,y are computed using maximum likelihood estimation. This model

is denoted as Gaussian Naı̈ve Bayes (GNB) classifier.

In situations like text classification, a feature value x j may represent a discrete value. For

example, whether each word of the vocabulary appears in a document (binary) or its frequency

of appearance (ordinal). In this case, p(x j|y) can be modeled using either a multinomial dis-

tribution or a multivariate Bernoulli distribution, which leads to the Multinomial Naı̈ve Bayes

(MNB) and Bernoulli Naı̈ve Bayes (BNB) classifier, respectively. One of the major difference

between the two models is that BNB only considers the binary state of whether each event

occurs while MNB also models the frequency of appearance. In practice, both BNB and MNB

are highly effective for classifying sparse data such as text documents, though each model has

its own preferred setting [62].

We would like to mention that MNB is also a linear classifier in the sense that the decision

function can be represented as a linear combination of the input feature values; see Rennie et

al. [75] for the detailed derivation. Meanwhile, BNB is not a linear classifier. In Chapter 4, we

will study BNB and its convergence behavior on large sparse data.

For handling sparse data, a Gaussian Naı̈ve Bayes model can simply ignore the features

with missing values in computing the decision function in Eq. (2.26). Meanwhile, both MNB

and BNB can naturally model the missing features because both Multinomial and Bernoulli

distribution can model the absence of an event. Moreover, the time complexity of a naı̈ve

Bayes classifier scales linearly with the number of non-missing values only. Take BNB as

an example, estimating the marginal probability p(x j|y) amounts to counting the number of

non-missings in feature x j and class y.

2.6 Conclusion

In this chapter, we have introduced the general setting of a classification task. Moreover, we

introduce the discriminative and also generative classifiers which are trained using different

2.6. Conclusion 17

principles. To illustrate the key issues of large-scale classification, we also reviewed the theo-

ries of learning convergence behavior for different types of classifiers. Finally, we use concrete

algorithms of discriminative linear classifiers and naı̈ve Bayes classifiers to illustrate how these

classifiers handle large sparse data and achieve fast learning.

Starting from the next chapter, we present the major contributions of the thesis, i.e., analyz-

ing how data sparsity would affect the convergence behavior of a classifier. Our study covers

both discriminative linear classifiers such as linear SVM and also generative classifier such as

naı̈ve Bayes.

Chapter 3

Data Sparsity in Linear SVM

Large sparse datasets are common in many real-world applications. Linear SVM has been

shown to be very efficient for classifying such datasets. However, it is still unknown how data

sparsity1 would affect its convergence behavior. To study this problem in a systematic manner,

we propose a novel approach to generate large and sparse data from real-world datasets, using

statistical inference and the data sampling process of the PAC framework [89]. We first study

the convergence behavior of linear SVM experimentally, and make several observations, useful

for real-world applications. We then offer theoretical proofs for our observations by studying

the Bayes risk and PAC bound. Our experiment and theoretical results are valuable for learning

large sparse datasets with linear SVM.

3.1 Introduction

As described earlier, large sparse datasets are common in many real-world applications. Linear

SVM solvers such as Pegasos [81] and LibLinear [21] are popular choices to classify large

sparse datasets efficiently, because they scale linearly with the number of non-missing values.

Nowadays, it is possible to train linear SVM on very large datasets. Theoretically, it is known

that larger training data will lead to lower generalization error, and asymptotically it will con-

verge to the lowest error that can be achieved [88]. However, it is still hard to answer the

following important questions about linear SVM and data sparsity:

(1). If we put in effort to reduce data sparsity, would it decrease the asymptotic generaliza-

tion error of linear SVM?

1In our published manuscript of this chapter [54], we use the term sparseness. However, sparsity and sparse-

ness refer to the same concept. For consistency, we use data sparsity throughout this thesis

18

3.1. Introduction 19

(2). Would data sparsity affect the amount of training data needed to approach the asymp-

totic generalization error of linear SVM?

These questions essentially concern the convergence behavior of learning, which has been

addressed in previous works. In Statistical Learning Theory [88], PAC bound gives a high-

probability guarantee on the convergence between training and generalization error. Once

the VC-dimension of the problem is known, PAC bound can predict the amount of training

instances needed to approach the asymptotic error. Barlett et al. [1] have shown that the VC-

dimension of linear SVM is closely related to the hyperplane margin over the data space. As

an initial step of understanding the impact of data sparsity on the margin of hyperplanes, Long

and Servedio [57] have given bounds for integer weights of separating hyperplanes over the

k-sparse Hamming Ball space x ∈ {0, 1}m
≤k (at most k of the m attributes are non-zero). There

also exist several SVM variants that could deal with missing data [70, 9]. However, there is still

no work could explicitly predict the convergence behavior of linear SVM when data is highly

sparse.

In this chapter, we will answer this question by systematic experiments and then verify

our findings through theoretical study. We propose a novel approach to generate large and

sparse synthetic data from real-world datasets. First, we infer the statistical distribution of real-

world movie rating datasets using a recent Probabilistic Matrix Factorization (PMF) inference

algorithm [32]. From the inferred distribution, we then sample a large number of data instances

following the PAC framework, so we can study the generalization error with various training

sizes.

In order to study the effect of data sparsity, we consider a simple missing data model,

which allows us to systematically vary the degree of data sparsity and compare the learning

curves of linear SVM. To follow the PAC framework, we study the curves of training and

testing error rates as we keep increasing the training size. We have made several important

observations about how data sparsity would affect the asymptotic generalization error and the

rate of convergence when using linear SVM; see Section 3.3.

We then analyze our observations with a detailed theoretical study. For asymptotic gen-

eralization error, we study the change of Bayes risk as we vary data sparsity. With proper

assumptions, we have proved that higher sparsity will increase the Bayes risk of the data, see

Section 3.4.1. For the asymptotic rate of convergence, we observe that different sparsity would

not change the amount of training data needed to approach convergence. We study its theoret-

ical rationale using the PAC bound, see Section 3.4.2.

Our results are very useful for using linear SVM in real-world applications. Firstly, they

20 Chapter 3. Data Sparsity in Linear SVM

indicate that sparser data would generally increase the asymptotic error, which encourages

practitioners to put effort in reducing data sparsity. Secondly, our results also imply that sparser

data will not lead to slower learning curve convergence when using linear SVM, although the

asymptotic generalization error rate would increase.

The rest of the chapter is organized as follows. Section 3.2 gives details of our data gener-

ation approach. Section 3.3 describes our experiment and observations. Section 3.4 provides

mathematical proofs for our observations. Section 3.5 concludes the chapter.

3.2 A Novel Approach to Generate Sparse Data

To systematically study the impact of data sparsity on linear SVM, in this section, we first

propose a novel approach to generate sparse data.

3.2.1 Basic Settings

To simplify the problem setting, we only consider binary attribute values x ∈ {0, 1}m and bi-

nary label y ∈ {+,−}. Our data generation approach follows the standard setting of the PAC

framework [88], which assumes that data (x, y) are independently sampled from a fixed dis-

tribution P(x, y) = P(y)P(x|y). In addition, our approach uses the distribution inferred from

real-world datasets, so the generated data are realistic in a statistical sense. Specifically, we use

the datasets of recommendation systems, such as movie ratings to infer P(x, y).

Recently, datasets of recommendation systems are widely studied. They usually contain

ordinal ratings (e.g., 0 to 5) given by each user to each item. We consider each user as a data

instance and its rating on items corresponds to each attribute. To make the data binary, we only

consider the presence/absence of each rating. We choose the gender of each user as its label

y ∈ {+,−}.

To infer the distribution P(x, y), we use Probabilistic Matrix Factorization [67], which is a

widely-used probabilistic modeling framework for user-item ratings data. In the next section,

we will briefly review the PMF model for binary datasets proposed by Hernandez et al. [32],

which will be used in our data generation process.

3.2.2 Review of PMF for Sparse Binary Data

Consider L users and M items, the L×M binary matrix X indicates whether each rating exists.

In this case, X could be modeled by the PMF given in Hernandez et al. [32] which has good

3.2. A Novel Approach to Generate Sparse Data 21

predictive performance:

p(X|U,V, z) =

L∏
i=1

M∏
j=1

p(xi, j|ui, v j, z), (3.1)

where a Bernoulli likelihood is used along with the Matrix Factorization assumption X ≈ U ·V
to model each binary entry of X as:

p(xi, j|ui, v j, z) = Ber
(
xi, j|δ(uivT

j + z)
)

(3.2)

where δ(·) is the logistic function

δ(x) =
1

1 + exp(−x)

used to ‘squash’ a real number into the range of (0, 1), Ber(·) is the pdf (prodability density

function) of a Bernoulli distribution and z is a global bias parameter in order to handle data

sparsity.

This PMF model further assumes that all latent variables are independent by using fully

factorized Gaussian priors:

p(U) =

L∏
i=1

D∏
d=1

N(ui,d|mu
i,d, v

u
i,d), (3.3)

p(V) =

M∏
j=1

D∏
d=1

N(v j,d|mv
i,d, v

v
i,d), (3.4)

and

p(z) = N(z|mz, vz), (3.5)

whereN(·|m, v) denotes the pdf of a Gaussian distribution with mean m and variance v. Given a

binary dataset X, the model posterior p(U,V, z|X) could be inferred using the SIBM (Stochastic

Inference method for Binary Matrices) algorithm [32]. The posterior predictive distributions

are used for predicting each binary value in X:

p(X̃|X) =

∫
p(X̃|U,V, z)p(U,V, z|X)dUdVdz. (3.6)

3.2.3 The Distribution for Data Sampling

Based on the above PMF model, we next describe the distribution for sampling synthetic data.

Since the distribution is inferred from a given real-world dataset X, we denote it as

22 Chapter 3. Data Sparsity in Linear SVM

p(̃x, y|X) = p(y)p(̃x|y,X). (3.7)

For p(y), we simply use a balanced class prior, p(+) = p(−) = 0.5. This ensures equal chances

of getting positive and negative instances when sampling.

Now we describe how we get p(̃x|y,X). We first divide the real-world dataset X into the

positive labeled set X+ and the set of negative instances, X−. We infer the model posteriors

p(U,V, z|X−) and p(U,V, z|X+) separately using the SIBM algorithm.

Notice that these inferred models cannot be directly used to generate infinite samples: sup-

pose the number of users in X+ (and X−) is L+ (and L−), the posterior predictive (3.6) only gives

probabilities for each of these L+ (L−) existing users. In other words, the predictive distribution

could only be used to reconstruct or predict the original X, as did in the original paper [32].

In order to build a distribution for sampling an infinite number of synthetic users, we em-

ploy the following stochastic process: whenever we need to sample a new synthetic instance

x̃, we first randomly choose a user i from the L+ (or L−) existing users, and we then sample

the synthetic instance using the posterior predictive of this user. Using this process, the pdf of

p(̃x|y,X) is actually

p(̃x|y,X) =

Ly∑
i=1

p(i|y) ·
∫

p(̃x|U,V, z, i)p(U,V, z|Xy)dUdVdz, (3.8)

where y ∈ {+,−}, p(i|y) = 1
Ly

and

p(̃x|U,V, z, i) =

M∏
j=1

p(x̃i, j|ui, v j, z) (3.9)

is the likelihood for each instance (existing user) of Xy, which is equivalent to Eq. (3.1). The

process of sampling data from p(̃x, y|X) can be implemented by the following pseudo code.

3.2. A Novel Approach to Generate Sparse Data 23

Algorithm 1 Data Sampling from a Binary PMF model
infer p(U,V, z|X−) and p(U,V, z|X+) using SIBM;

sample V+, z+ from p(U,V, z|X+);

sample V−, z− from p(U,V, z|X−);
for each new instance (̃x, y) do

randomly sample y from {+,−};

randomly sample i from {1, ..., Ly};

sample ui from p(U,V, z|Xy);

for j in 1...M do
sample x̃ j from Ber(x̃ j|δ(ui · v j,y + zy));

end for
end for

This algorithm allows us to sample infinite instances from the fixed distribution p(̃x, y|X),

to be used for generating data of various sizes. Next, we will discuss how to systematically

vary the sparsity of the sampled data.

3.2.4 Missing Data Model

We employ a simple missing data model, to add and vary data sparsity. Our missing data model

assumes that each attribute has the same probability to become 0, which follows the Missing

Completely At Random (MCAR) assumption [30].

Given the probability of missing s, the missing data model will transform an instance x̃ =

(x̃1, x̃2, ..., x̃m) to x = (x1, x2, ..., xm) following:

p(x|̃x, s) =

m∏
j=1

Ber(x̃ j · (1 − s)). (3.10)

To ease our illustration, we hereafter call this sparsification process as Uniform Missing

(UM), and the resultant data as the sparsified data. Now if instances are originally sampled

from p(̃x|y), the distribution of the sparsified data can be computed by

p(x|y, s) =

∫
p(x|̃x, s)p(̃x|y)dx̃.

When we apply this sparsification process to data generated from Algorithm 1, we denote the

resultant distribution as p(x|y,X, s) =
∫

p(x|̃x, s)p(̃x|y,X)dx̃.

Using the above missing data model, additional sparsity will be introduced uniformly to

each attribute and higher s will lead to sparser data. This enables us to vary s and study the

impact of data sparsity systematically, as we will describe in the next section.

24 Chapter 3. Data Sparsity in Linear SVM

3.3 Experiment

In this section, we describe how we use the proposed data generation and sparsification process

to study our research question with experiments.

Data. We use two movie rating datasets: the movielens 1M dataset2 (ml-1m) and the Yahoo

Movies dataset3 (ymovie). As mentioned earlier, we only consider absence/presence of each

rating. The preprocessed ml-1m dataset is 3, 418 (instances) ×3, 647 (attributes) with balanced

classes and an original sparsity of 0.9550. The preprocessed ymovie dataset is 9, 489 (instances)

×4, 368 (attributes) with balanced classes and an original sparsity of 0.9977.

Training. To study the impact of data sparsity, we use various values of s; see the leg-

ends of Figure 3.1 and 3.2. For each s, we generate training samples of various sizes l from

p(x, y|X, s) using the proposed data generation and sparsification process. To solve the linear

SVM problem, we use Lib-linear [21] with default parameters to train the classifier and get the

corresponding training error εtrain(l, s).

Testing. It is empirically impossible to test a classifier on the whole distribution and get the

true generalization error. For this reason, we generate a large test dataset from p(x, y|X, s) for

each setting of s. For the ymovie experiment, the size of test sets is 7.59 million instances (800

times of the real data size). For the ml-1m experiment, the test size is 0.68 million (200 times

of the real data size). We test the classifiers on the corresponding test set and get the test error

εtest(s).

For each setting of s and training size l, we repeat the data generation (including sparsifica-

tion), training and testing process for 10 times, and record the average training and testing error

rates. The most time consuming step in our experiment is data generation: the largest training

dataset (l = 220 in the ymovie experiment) costs us one day on a modern Xeon CPU to generate

each time; Meanwhile, training on this particular dataset only costs several minutes, thanks to

the efficiency of linear SVM. To speed up the computation, we straight-forwardly parallelize

the data generation jobs on a cluster.

As we systematically vary s, the resultant learning curves of averaged training and testing

error rates are given in Figure 3.1. Figure 3.2 shows the difference between the two errors in

order to show the rate of convergence. We have two important observations which are obvious

in both experiments:

Observation 1. asymptotic generalization error: Higher sparsity leads to a larger asymp-

totic generalization error rate;

2http://grouplens.org/datasets/movielens/
3http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

3.3. Experiment 25

Figure 3.1: Training (dashed) and generalization error rates for different missing data proba-

bility s. Observation: higher sparsity leads to larger asymptotic generalization error rate.

26 Chapter 3. Data Sparsity in Linear SVM

Figure 3.2: The difference between training and generalization error rates for different data

missing probability s. Observation: asymptotic rate of convergence is almost the same for

different sparsity.

3.4. Theoretical Analysis 27

For example, in the ymovie experiment, the asymptotic (training size l > 106) generalization

error rates are 16.6%, 22.4%, 33.7% and 39.2% for s = 0.5, 0.7, 0.9 and 0.95, respectively.

Observation 2. asymptotic rate of convergence: the asymptotic rate of convergence is

almost the same for different sparsity.

In other words, different sparsity would not change the amount of training data needed to

approach convergence. For example, in the ymovie experiment, the minimum training size l for

the two error rates to be within 1% is almost the same (l = 370K), regardless of the value of s.

In the next section, we will study the theoretical reasons behind these observations.

3.4 Theoretical Analysis

In Section 3.4.1, we study the theoretical reason for observation 1, and in Section 3.4.2 we

show that the theoretical reason of observation 2 can be easily explained using the PAC bound.

3.4.1 Asymptotic Generalization Error

Suppose the original data distribution is p(x|y),4 after applying the missing data model de-

scribed in Section 3.2.4, we denote the sparsified data distribution as p(x|y, s). We assume that

the class prior is balanced, i.e., p(+) = p(−) = 0.5. From the Bayesian Decision Theory [20],

we know that the asymptotic generalization error rate of linear SVM can be lower bounded by

the Bayes risk, which is the best classification performance that any classifier can achieve over

a given data space:

R =

∫
arg min

y′
L0-1

(
y′, y

)
p(y′|x)p(x)dx =

∫
min

y′
p(y′|x)p(x)dx, (3.11)

where L0-1
(
y′, y

)
is the 0/1 loss. We denote the Bayes risk for p(x|y, s) as R(s), thus the asymp-

totic generalization error rate is lower bounded by:

lim
l→∞

ε(s) ≥ R(s). (3.12)

Notice that x lives in the discrete data space {0, 1}m, which allows us to write the Bayes risk

as the following form:

R(s) =
∑

x

p(x) · min
y∈{+,−}

p(y|x, s) =
∑

x

min
y∈{+,−}

p(y, x|s) = 0.5
∑

x

min
y∈{+,−}

p(x|y, s) (3.13)

4Our proof does not require p(x|y) to be the specific distribution p(̃x|y,X) introduced earlier.

28 Chapter 3. Data Sparsity in Linear SVM

We will next prove that higher s leads to larger R(s) using three steps. We first consider the

case if only one of the attributes is sparsified. In this case, we could prove that the Bayes risk

will not decrease by any chance, and with high probability it will increase (Lemma 3.4.1). We

next consider the case if we still sparsify only one attribute but with different s; we prove that

higher sparsity will lead to larger Bayes risk (Lemma 3.4.2). Based on these results, we finally

prove that higher s leads to larger Bayes risk R(s) (Theorem 3.4.3).

When we only sparsify one of the m attributes, x j, we denote the rest of the attributes as

x− j = (x1, ...x j−1, x j+1, ..., xm). Since the order of attributes does not matter, we denote x as

(x− j, x j). We denote the corresponding distribution as p(j)(x|y, s) and Bayes risk as R(j)(s). We

now prove:

Lemma 3.4.1 R(j)(s) ≥ R(0) always holds. Specifically, with high probability, R(j)(s) > R(0).

Proof Since we have only sparsified x j, we first expand the computation of the Bayes risk in

Eq. (3.13) along x j:

R(j)(s) − R(0) = 0.5
∑
x− j

[Z(j)(x− j, s) − Z(x− j)], (3.14)

where Z(x− j) denotes the sum of probability mass of p(x|y) at (x− j, 0) and (x− j, 1), each mini-

mized among classes:

Z(x− j) := min
y∈{+,−}

p(x− j, 0|y) + min
y∈{+,−}

p(x− j, 1|y). (3.15)

Z(j)(x− j, s) is also defined accordingly for p(j)(x|y, s).
∑

x− j
denotes the summation over all x− j

in the {0, 1}m−1 space. Now define ∆Z(s) := Z(j)(x− j, s) − Z(x− j), we next prove that ∆Z(s) ≥ 0

holds for all x− j ∈ {0, 1}m−1:

Since x j is sparsified with s, according to Eq. (3.10), this means ∀x− j ∈ {0, 1}m−1, we have

p(j)(x− j, 0|y, s) = p(x− j, 0|y) + s · p(x− j, 1|y) (3.16)

and

p(j)(x− j, 1|y, s) = (1 − s) · p(x− j, 1|y). (3.17)

We denote yh ∈ {−,+} as the label that has a higher probability mass at (x− j, 1), and we

denote the other label as yl:5

5Notice that yh and yl will change for different x− j. Strictly, we should use the notation yh(x− j, 1) and yl(x− j, 1)

if not for the purpose of brevity.

3.4. Theoretical Analysis 29

p(x− j, 1|yh) ≥ p(x− j, 1|yl), (3.18)

min
y∈{+,−}

p(x− j, 1|y) = p(x− j, 1|yl) (3.19)

and then Equations (3.17) and (3.18) lead to:

min
y∈{+,−}

p(j)(x− j, 1|y, s) = p(j)(x− j, 1|yl, s). (3.20)

In order to write out miny∈{+,−} p(x− j, 0|y) and miny∈{+,−} p(j)(x− j, 0|y, s), we first define

g(x− j) :=
p(x− j, 0|yl) − p(x− j, 0|yh)
p(x− j, 1|yh) − p(x− j, 1|yl)

. (3.21)

For each x− j there are in total of three different situations to consider:

Case 1. p(x− j, 0|yh) ≥ p(x− j, 0|yl), (3.22)

Case 2.
{ p(x− j, 0|yh) < p(x− j, 0|yl)

s ≥ g(x− j)
, (3.23)

and

Case 3.
{ p(x− j, 0|yh) < p(x− j, 0|yl)

s < g(x− j)
. (3.24)

We could straight-forwardly compute ∆Z(s) for each case.

Case 1:

∆Z(s) = 0, (3.25)

Case 2:

∆Z(s) = p(x− j, 0|yl) − p(x− j, 0|yh) > 0 (3.26)

and Case 3:

∆Z(s) = s · [p(x− j, 1|yh) − p(x− j, 1|yl)] > 0. (3.27)

For brevity, detailed derivation of Equations (3.25), (3.26) and (3.27) is deferred to the ap-

pendix.

Now that ∆Z(s) ≥ 0 always holds, R(j)(s) ≥ R(0) is true because of Equation (3.14). More-

over, R(j)(s) = R(0) is true only if Case 1 happens for all x− j ∈ {0, 1}m−1, which has low

probability.

30 Chapter 3. Data Sparsity in Linear SVM

In the following lemma, we consider the case when we vary the sparsity s on the one

sparsified attribute.

Lemma 3.4.2 ∀s1, s2 s.t. 1 ≥ s2 > s1 ≥ 0, we have R(j)(s2) ≥ R(j)(s1). Specifically:

(1). only when both s1 and s2 are close enough to 1.0, R(j)(s2) = R(j)(s1) will be true with

high probability.

(2). other wise, R(j)(s2) > R(j)(s1).

Its proof could be derived by studying the value of ∆Z(s) in different situations. It is straight-

forward after we have derived Equations (3.25), (3.26) and (3.27) in the proof of Lemma 3.4.1.

Proof We first prove that ∆Z(s2) ≥ ∆Z(s1) always holds. For any given x− j ∈ {0, 1}m−1:

(1). If Case 1 is true, we will always have ∆Z(s2) = ∆Z(s1) = 0, regardless of the value of

s1 and s2.

(2). If Case 1 is false and 1 ≥ s2 > s1 ≥ g(x− j), then Case 2 holds for both s1 and s2, and

we have:

∆Z(s1) = ∆Z(s2) = p(x− j, 0|yl) − p(x− j, 0|yh).

(3). If Case 1 is false and s2 ≥ g(x− j) > s1, then Case 2 holds for s2 and Case 3 holds for

s1. Thus:

∆Z(s2) = p(x− j, 0|yl) − p(x− j, 0|yh) > s1 · [p(x− j, 1|yh) − p(x− j, 1|yl)] = ∆Z(s1).

(4). Finally, if Case 1 is false and g(x− j) > s2 > s1 ≥ 0, then Case 3 holds for both s1 and

s2. From Eq. (3.27) we know that ∆Z(s2) > ∆Z(s1).

Once we have proved that ∆Z(s2) ≥ ∆Z(s1) always hold, substitute into Eq. (3.14) yielding:

R(j)(s2) − R(j)(s1) = [R(j)(s2) − R(0)] − [R(j)(s1) − R(0)] =
∑
x− j

[∆Z(s2) − ∆Z(s1)] ≥ 0 (3.28)

From the above analysis, we further notice that R(j)(s2) = R(j)(s1) only happens if for ∀x− j ∈

{0, 1}m−1 either Case 1 happens or Case 2 holds for both s1 and s2. Notice for given p(x, y), it

is very unlikely that all x− j could satisfy Case 1. For those x− j where Case 1 is not satisfied,

Case 2 is required to hold for both s1 and s2, which is only likely when both s1 and s2 are close

enough to 1.0.

The next theorem will generalize to the case when sparsity is introduced to all attributes,

which is the goal of our proof:

3.4. Theoretical Analysis 31

Theorem 3.4.3 ∀s1, s2 s.t. 1 ≥ s2 > s1 ≥ 0, we have R(s2) ≥ R(s1). Specifically:

(1). only when both s1 and s2 are close enough to 1.0, R(s2) = R(s1) will be true with high

probability.

(2). other wise, R(s2) > R(s1).

The basic idea of our proof is to find a hypothetical process that varies the sparsification of data

from s2 to s1, one attribute at a time, so we could leverage the result of lemma 3.4.2.

Proof We use F to denote the total attribute set {x1, ..., xm}. At a certain state, we use F(s2) ⊂

F to denote the set of attributes that have been sparsified by s2; and F(s1) ⊂ F the set

of attributes that have been sparsified by s1. We denote the corresponding distribution as

pF(s1),F(s2)(x|y, s1, s2) and its Bayes risk as RF(s1),F(s2)(s1, s2).

Now we consider the following process that iteratively changes the elements of F(s1) and

F(s2): we start from F(s1) = ∅∧F(s2) = F, and move each attribute in F(s2) to F(s1) one after

another. After m such steps we come to F(s1) = F ∧ F(s2) = ∅.

After step i, we denote the current F(s1) as Fi(s1), F(s2) as Fi(s2). Using this notation, the

initial state is F0(s1) = F ∧ F0(s2) = ∅, and final state is Fm(s1) = ∅ ∧ Fm(s1) = F. It’s obvious

that

RF0(s1),F0(s2)(s1, s2) = R(s1)

and

RFm(s1),Fm(s1)(s1, s2) = R(s2).

We next prove that for ∀i ∈ {0, ...,m − 1}:

RFi+1(s1),Fi+1(s2)(s1, s2) ≥ RFi(s1),Fi(s2)(s1, s2). (3.29)

Notice that in each step i, there is only one attribute (e.g., x j) changes from Fi(s2) to Fi(s1),

i.e., F − [Fi(s1) ∪ Fi+1(s2)] = {x j}.

Now consider the distribution pFi(s1),Fi+1(s2)(x|y, s1, s2), which corresponds to an intermediate

state between step i and i + 1 with x j being not sparsified. Now if we sparsify x j by s2, we have

pFi+1(s1),Fi+1(s2)(x|y, s1, s2); Instead, if we sparsify x j by s1, we have pFi(s1),Fi(s2)(x|y, s1, s2). Using

Lemma 3.4.2, it now becomes obvious that Equation (3.29) is true, which further leads to

R(s2) = RFm(s1),Fm(s1)(s1, s2) ≥ ... ≥ RF0(s1),F0(s2)(s1, s2) = R(s1). (3.30)

We further notice that R(s2) = R(s1) only holds when all m equal signs hold simultaneously.

As illustrated in Lemma 3.4.2, each equal sign holds with high probability only when both s2

and s1 are close enough to 1.0.

32 Chapter 3. Data Sparsity in Linear SVM

This theorem tells us that higher sparsity leads to larger Bayes risk, which explains our

observation on the asymptotic generalization error. This result is important for understanding

how data sparsity affects the asymptotic generalization error of linear SVM.

3.4.2 Asymptotic Rate of Convergence

Our observation on the asymptotic rate of convergence could be explained by the PAC bound

[1]. From the PAC bound, we know that the convergence of generalization error rate ε and

the training error rate εtr is bounded in probability by training size l and the complexity of the

function class:

Pr

ε > εtr +

√
ln |H| − ln δ

2l

 ≤ δ, (3.31)

where the VC-dimension |H| is a measure of the capacity or complexity of the class of func-

tionsH that we consider [88]. For fixed δ, the rate of convergence is approximately:

∂(ε − εtr)
∂l

≈ −

√
ln |H|

δ

2l3 (3.32)

Though different data sparsity could change |H|, for linear SVM, |H| < m + 1 holds true

regardless of data sparsity.6 From Eq. (3.32) we could see that asymptotically (when 2l3 �

ln m+1
δ

), the rate of convergence is mostly influenced by the increase in training size l rather

than by the change of |H|, since |H| is always upper bounded by m + 1. In other words,

varying sparsity will have little impact on the asymptotic rate of convergence, which verifies

our observation. Notice that VC-dimension can be very large for some non-linear versions

of SVM, how their convergence rate will be affected by data sparsity could be an interesting

future work.

When using linear SVM in real-world applications, it is important to know whether sparser

data would lead to slower convergence rate. If so, practitioners will have to collect more train-

ing instances in order for linear SVM to converge on highly sparse datasets. Our observation

and analysis shows that the rate of convergence is minimally affected by different data sparsity

for linear SVM.

6As far as we know, how data sparsity affects the VC-dimension of a problem is still an open problem.

3.5. Conclusion 33

3.5 Conclusion

Linear SVM is efficient for classifying large sparse datasets. In order to understand how data

sparsity affects the convergence behavior of linear SVM, we propose a novel approach to gen-

erate large and sparse data from real-world datasets using statistical inference and the data

sampling process of the PAC framework. From our systematic experiments, we have observed:

1. Higher sparsity will lead to larger asymptotic generalization error rate;

2. The convergence rate of learning is almost unchanged for different sparsity.

We have also mathematically proved these findings. Our experiment and theoretical results are

valuable for learning large sparse datasets with linear SVM.

Chapter 4

Convergence Behavior of Naı̈ve Bayes on
Large Sparse Data

Classifying large sparse data is an important topic for machine learning and data mining. In

the previous chapter, we have studied the convergence behavior of linear SVM on large sparse

data. Practically, naı̈ve Bayes is also a popular classification algorithm for large sparse datasets,

as its time and space complexity scales linearly with the size of non-missing values. However,

several important questions about the behavior of naı̈ve Bayes have not been answered. For

example, how different mechanisms of missing data, sparsity rate and the number of attributes

systematically affect the learning curves and convergence? In this chapter, we address several

common missing data mechanisms and propose novel data generation methods based on these

mechanisms. We generate large and sparse data systematically, and study the entire AUC (Area

Under ROC Curve) learning curves and the convergence behavior of naı̈ve Bayes. We not only

have several important experiment observations, but also provide detailed theoretical studies.

Finally, we summarize our empirical and theoretical results as an intuitive decision flowchart

and a useful guideline for classifying large sparse datasets in practice.

4.1 Introduction

The naı̈ve Bayes classifier has been reported to have good predictive performance on large and

sparse datasets despite its simple model assumption [78, 18, 26, 47, 71]. More importantly,

naı̈ve Bayes is popular in practice and its complexity scales linearly with the size of non-

missing values only, as analyzed in Junqué de Fortuny et al. [40]. For datasets with a large

number of attributes, it is common to assume the existence of an underlying sparse model

34

4.1. Introduction 35

structure. However, when evaluated on several large sparse user behavior datasets, naı̈ve Bayes

performs even better than discriminative linear classifiers that encourage a sparse model (l1-

regularization); see Section 4.2. For the above reason, we are motivated to focus our study on

naı̈ve Bayes.

In comparing discriminative and generative classifiers, Ng and Jordan [69] have studied

the convergence behavior of naı̈ve Bayes generalization error with respect to the number of

attributes. They discover that a naı̈ve Bayes classifier needs a training set of size l = Ω(log(m))

to obtain near-optimal generalization ability. In other words, the convergence rate of learning

is a logarithm to m, which is the number of attributes. Despite these important results, previous

studies could not address how data sparsity affects the learning behavior of naı̈ve Bayes.

Meanwhile, from an empirical perspective, Junqué de Fortuny et al. [40] have evaluated

the learning behavior of naı̈ve Bayes on several large sparse datasets with binary attributes.

When continually enlarging the cross-validation datasets, the authors observed that classifica-

tion AUC keeps growing even at a very large sample size, which in turn supports the argument

that bigger data is better.

Theoretically, it is quite obvious that more training data usually improve generalization

performance, and the learning curve converges as training size approaches infinity. In practice,

however, it is still hard to know how sparsity s, the number of attributes m and different missing

data mechanisms could affect the learning curves and convergence.

Unfortunately, existing works on classifying real-world large sparse datasets using naı̈ve

Bayes could not provide us the answer. The main reason is a lack of systematic settings that

could address common missing data mechanisms. Besides, m and s of a real-world sparse

dataset cannot be easily varied in a systematic manner. Moreover, as demonstrated in Junqué

de Fortuny et al. [40], learning curves usually do not converge even at the end for many large-

scale user behavior datasets. For asymptotic learning behavior study, synthetic datasets have to

be used. We further verify this necessity of using synthetic data in Section 4.2.

In this chapter, we consider two missing data mechanisms that are common for real-world

large sparse data. The first mechanism is based on the observation that user behaviors are

often diluted across similar items. The other missing data mechanism is based on a Bayesian

probabilistic model for the user behavior data. We propose novel data generation approaches

for these missing data mechanisms which make it possible to systematically change m and s

and study entire naı̈ve Bayes learning curves; see Section 4.3 and 4.5 for details.

In our synthetic data experiments, we use AUC to measure classification performance.

Compared to 0/1 loss, AUC is not only proved to be a more discriminating criterion, but also a

36 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

common measure for the ranking ability of a classifier [27, 72, 12].

For both missing data mechanisms, we study full AUC learning curves as we systematically

vary m and s. The details will be given in Section 4.4 and 4.6. We have several experiment

observations that are useful for using naı̈ve Bayes on large sparse datasets. We provide both

an intuitive explanation and rigorous proofs for our observations. Specifically, our theoretical

study considers the convergence rate and asymptote of AUC risk [76] for naı̈ve Bayes classi-

fiers.

Our empirical and theoretical results can answer practical questions about classifying large

sparse data with naı̈ve Bayes, including:

1. How does data sparsity affect convergence rate of AUC as data increases?

2. How does data sparsity affect the asymptote (upper bound) of AUC?

3. To improve AUC, do we need (a) more data, (b) more attributes or (c) to reduce the

sparsity of existing data?

To easily answer these questions in practice, we also provide an intuitive decision flowchart

and a guideline in Section 4.8.

The rest of the chapter is organized as follows. In Section 4.2, we describe our results of

classifying real-world user behavior data, which demonstrates the effectiveness of naı̈ve Bayes

on such data and also explains the necessity of using synthetic data for asymptotic study. In

Section 4.3 and 4.5, we describe the missing data mechanisms and the corresponding data

generation approaches. In Section 4.4 and 4.6, we describe experiments and several impor-

tant observations from classifying the generated sparse datasets. Section 4.7 provides detailed

theoretical study for our experiment observations. In Section 4.8, we discuss how our results

could be used in practice. Section 4.9 reviews other related work and Section 4.10 gives our

conclusion.

4.2 Experiments with Real-World Data

To simplify the problem, we consider binary attributes throughout this chapter. For user be-

havior datasets, a binary value x j ∈ {0, 1} is a response indicator for whether a certain behavior

is observed (or missing). This type of binary data are also denoted as implicit user feedback

[36, 74], in contrast to explicit feedback signals such as ratings, which are often ordinal or con-

tinuous values. It is obvious that implicit feedback data are much easier to collect and thus are

more common. In fact, any explicit feedback data can also be treated implicitly. For simplicity

of analysis, our study in this chapter only focuses on implicit feedback data (binary attributes).

4.2. Experiments with Real-World Data 37

We will extend our study to real-valued attributes in Chapter 5.

4.2.1 Effectiveness of Naı̈ve Bayes

As demonstrated in Junqué de Fortuny et al. [40], each attribute of a user behavior dataset

often contains non-negligible information. Attribute selection is not optimal for classifying

such large sparse data. Following this observation, here we further demonstrate that a standard

naı̈ve Bayes classifier which takes all attributes into account can have better performance com-

paring to a linear classifier 1 that encourages a sparse model structure (l1-regularization) using

experiments on several large sparse user behavior data (Table 1.1). Besides, we also find naı̈ve

Bayes is more time-efficient as it does not need the extra time for tuning the best regularization

parameter, see Figure 4.1. This set of experiments indicate that naı̈ve Bayes is effective and

efficient on large sparse user behavior data.

4.2.2 Learning Behavior Study – Inadequacy of Using Real-world Data

In order to systematically study how sparsity s and number of attributes m affect the naı̈ve

Bayes learning behavior, we first experiment with several real-world large sparse datasets.

5-fold cross-validation AUC are recorded as we gradually increase the data size to plot the

learning curves. We use a naı̈ve way to vary m by selecting subsets of attributes at random. To

change data sparsity s, we simply impose a uniform probability of missing θ ∈ (0, 1) on each

attribute, which is also known as blankout noise in other literature [58, 11, 90]. Using these

simple strategies, we vary m and keep s fixed (Figure 4.2) and then change m but keep s fixed

(Figure 4.3).

As can be seen from experiment results, adding sparsity s and reducing the number of

attributes m always lead to a lower classification AUC. However, we cannot tell how s and m

affect the when (convergence rate) and where (upper bound) the AUC learning curve converge.

Besides, we cannot tell the difference between reducing sparsity and adding attributes. These

experiment observations indicate that real-world user behavior datasets are not suitable for

convergence (asymptotic) study, because of the limited data size and also because a lack of

systematic manner to change m and s.

In order to answer the three research questions proposed in Section 4.1, we have to use syn-

thetic sparse datasets generated with missing data mechanisms that resemble real-world data.

1we do not consider kernel classifiers since its time complexity is too high especially when the number of

attributes and instances are huge.

38 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

test

error

log10(λ)

Figure 4.1: Classification error and CPU time comparison between Naı̈ve Bayes (NB) and

l1-regularized linear classifier (l1-sgd) on different user behavior datasets. The l1-regularized

linear classifier is optimized with Stochastic Gradient Descent with 107 gradient updates. The

x-axis is the logarithm scale of the l1-sgd regularization parameter λ. Observations: after

careful parameter tuning (significantly more CPU time), l1-sgd outperforms NB on 50% of the

datasets; However, NB gives lower error in most of the settings.

4.2. Experiments with Real-World Data 39

AUC

log2(# instance)

Figure 4.2: Naı̈ve Bayes AUC learning curves on real-world user behavior datasets as we

systematically vary m. Observation: More attributes is always better, but we cannot see the

convergence behavior.

AUC

log2(# instance)

Figure 4.3: Naı̈ve Bayes AUC learning curves on real-world user behavior datasets as we

systematically vary s. Observation: Lower sparsity is better, but we cannot see the convergence

behavior.

40 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

According to the missing data theory [56, 77], missing data mechanisms could be broadly clas-

sified into three types: (1). MCAR (Missing Completely At Random), in which the probability

of missing does not depend on the values of observed as well as the unobserved data; (2).

MAR (Missing At Random), in which probability of missing does not depend on values of

unobserved data, but depends on observed data; and (3). MNAR (Missing Not At Random),

where probability of missing does depend on values of unobserved data themselves. Real-

world user behavior data with explicit feedback are MNAR, because the missing likelihood of

a data entry often depends on its explicit value such as rating [60, 31]. However, since our

study considers data of binary attributes (implicit feedback), we should only use Missing At

Random mechanisms to model the data.

Starting from the next section, we describe two typical MAR missing data mechanisms

for real-world user behavior data. The first mechanism is based on observations that many

items (attributes) of a user behavior dataset are similar and information is often uniformly

diluted among similar attributes; the second missing data mechanism is actually learned from

the probabilistic model of real-world user behavior datasets.

4.3 Missing Data Mechanism 1: Uniform Dilution

In this section, we describe several observations about the missing patterns of large sparse user

behavior data. Inspired by these observations, we propose the Uniform Dilution (UD) miss-

ing data mechanism, which belongs to MAR. We then describe two concrete data generation

methods (Bernoulli-trial Expansion and Just-1 Expansion) for UD.

4.3.1 Observations on Sparse User Behavior Data

Given a user behavior dataset, to find out the exact missing data mechanisms among a large

number of users and items is not an easy task. However, the reason for sparsity is clear –

the number of available items is huge but the behavioral budget of each user is quite limited.

To find out its missing data mechanism then amounts to finding out how users distribute their

behavior budgets over the items. Fortunately, the large number of items are not all distinct.

Many items are similar, e.g., different episodes of a TV opera, books of a very similar topic

and writing style. Here we simply denote a group of similar attributes (items) as a category.

It is reasonable to assume that such categories implicitly exist in real-world user behavior

datasets and items within a category are similar enough so that user behaviors (information)

are distributed almost uniformly among them.

4.3. Missing Data Mechanism 1: Uniform Dilution 41

Figure 4.4: The user-movie example of Uniform Dilution. Each data entry is either 1 (watched)

or 0 (not-watched). The label is a binary-valued user feature, such as the gender. For illustra-

tion purpose, we here use different genres (i.e., Fiction, Cartoon) to denote non-overlapping

attribute categories. But in practice, attribute categories are mostly implicit.

Based on this typical observation, we propose an MAR missing data mechanism, Uniform

Dilution. We describe it with an example in Figure 4.4. For a real user behavior dataset

about users and movies, we assume that there exists an underlying Prototype dataset, which

contains data instances about categories of movies watched by each user. Each of its attributes

represents a movie category instead of each specific movie, and the value is still either watched

(1) or not-watched (0).2 The Uniform Dilution process assumes that user behaviors on specific

items is actually diluted from the underlying prototype with a uniform probability. Notice that

UD is MAR since the missingness does not depend on actual data value but does depend on

the information in the prototype dataset.

This UD process is reasonable and practical. On the one hand, it is unavoidable to make

assumptions about real data in order to generate synthetic data. On the other hand, compared to

a real user behavior data, the assumption made by Uniform Dilution only ignores fine-grained

differences among attributes within a category.

Given a prototype dataset, we can generate an arbitrary number of i.i.d. (independently

and identically distributed) samples following UD process. We next describe two concrete UD

processes for binary data which allow us to generate large sparse data and change m and s

systematically.

2In practice, the underlying item categories are data-dependent and may not explicitly map to any known item

labels such as movie genres.

42 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

4.3.2 Bernoulli-trial Expansion

The first UD process is Bernoulli-trial Expansion (BTE). In BTE, if a prototype attribute is

non-missing (x j = 1), then each expanded attribute x j,k(k ∈ {1, 2, ..., t}) has uniform chance

θ ∈ [0, 1] to be non-missing. Its intuition is that information across a category of items should

be dispersed uniformly if without further prior knowledge. For example, if we know a user has

watched horror movies, without further knowledge we should assume the chance that she/he

watched each horror movie to be the same:

x j,k = I(x j)Ber(θ). (4.1)

In this setting, suppose a prototype dataset has m0 attributes and its sparsity is s0, with expan-

sion rate t, the number of generated attributes m and the expectation of data sparsity s is (when

infinite data are generated):

m = m0t (4.2)

and

E(s) = 1 − (1 − s0)θ. (4.3)

In this respect, we could change the value of t and θ in order to vary m and s systematically.

4.3.3 Just-1 Expansion

We consider the other typical uniform dilution process for user behavior datasets. In this pro-

cess called Just-1 Expansion (JE), we assume the information contained in one attribute is only

retained in one of the expanded attributes, and the others are missing:

x j,k = I(x j), if k = Cat(t), (4.4)

and

x j,k = 0, otherwise, (4.5)

where Cat(t) is the t-way categorical distribution with identical probability 1
t . This setting is

simplified from the observation that a user could only have a certain number of actions over a

given group of items, no matter how large the group is. For example, Amazon users usually

purchase at most one product of a certain type, e.g., a TV.

Again, we do not introduce further prior knowledge within each category of attributes but

assume each fine-grained attribute has identical chance of getting picked. Using this just-1

4.4. Experiment with the Uniform Dilution Approach 43

expansion method, both m and s are changed simultaneously as we change the expansion rate

t:

m = m0t (4.6)

and

E(s) = 1 −
1 − s0

t
. (4.7)

Both BTE and JE use the MAR assumption and are suitable for modeling the missing data

mechanism of sparse binary user behavior data. With either BTE and JE, we are now able to

generate an arbitrarily large dataset, and change m and s systematically to study the learning

behavior of a classifier.

4.4 Experiment with the Uniform Dilution Approach

In this section, we describe experiments with the Uniform Dilution approach. To generate

large and sparse synthetic data with UD , we start from relatively smaller and denser prototype

datasets. We use two datasets from the UCI data repository3 as the prototypes. These two

datasets are popular benchmark datasets, and they are relatively small and dense thus suitable

for expansion and dilution. We convert all attributes and labels into binary ones. Table 4.1

shows the properties of the prototype datasets after preprocessing.

Table 4.1: Prototype datasets used for expansion
Prototype Attr. class +/- Sparsity AUC

(1).Breast Cancer Wisconsin 9 241/458 0.6865 0.9865

(2).Abalone 7 2081/2096 0.5081 0.7988

We conduct a series of experiments under BTE and JE with a wide range of m and s, by tun-

ing parameters t and θ of Eq. (4.1) and (4.4). Our experiments use 5 fold cross validation AUC

to measure classification performance. For different settings of m and s, we always generate

a synthetic dataset large enough to see the learning curve convergence. The sample sizes are

chosen from l = 2i, i ∈ {0.25, 0.5, 0.75, ...}, until we see obvious learning curve convergence.

We run the data expansion, generation and cross validation jobs in parallel on a shared cluster.

The largest synthetic dataset (10.3M instances and 90K attributes) takes 20 hours on a 2.4 GHz

core with 32 GB allocated job memory.

3http://archive.ics.uci.edu/ml/

44 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

Here we present our experiments and observations about how sparsity and the number of

attributes affect the learning behavior, a detailed theoretical study of these observations will be

given in Section 4.7.

4.4.1 Learning Curve Behaviors of Bernoulli-trial Expansion

When using BTE, we are able to vary m and s independently. The values of m and s are

deliberately chosen to cover a wide range, from a small m and s to the level of real-world user-

item data. When varying one parameter, the other is fixed at a large or sparse setting similar

with the datasets used in Junqué de Fortuny et al. [40]. Specifically, we set m as 70K and 90K

respectively (expansion rate t = 10K) for each prototype dataset when varying s (Figure 4.5).

When changing m systematically, we set s to be 0.9997 (approximately) so that the data stays

sparse (Figure 4.6).

From Figure 4.5, we find that when m is fixed, learning curves of higher sparsity converge

at a ‘later’ time (more instances are needed to see convergence). This agrees with the intuition

that sparser data leads to inferior classification performance. Meanwhile, sparser data tend to

have lower upper bounds. However, this observation is only obvious at an extremely high s.

From Figure 4.6, we see that when sparsity s is fixed, more attributes results in higher AUC

upper bound. To sum up, we have the following observation about the learning curve behavior

under BTE:

Observation 1. For large and sparse datasets generated by BTE, higher sparsity leads

to lower AUC convergence rate and upper bound; less attributes leads to lower AUC upper

bound.

A detailed theoretical study of this observation is given in Section 4.7 (Lemmas 4.7.1 and

4.7.2). In Section 4.8, we also give a decision flowchart and a guideline on how to apply this

empirical finding in practice.

4.4.2 Learning Curve Behaviors of Just-1 Expansion

When using JE, m and s change simultaneously as we vary expansion rate t. Larger t results

in more attributes and higher sparsity (Figure 4.7). We find that the AUC upper bound is not

affected by different t’s. Meanwhile, we see that learning curves of smaller expansion rate

converge faster, which is quite intuitive. We can imagine that when expansion rate is extremely

large, a huge number of data instances will be needed to see the convergence. These behaviors

can be summarized as the following observation:

4.4. Experiment with the Uniform Dilution Approach 45

Prototype 1, BTE, m=90K

Prototype 2, BTE, m=70K

Figure 4.5: Learning curves of Bernoulli-trial expansion with fixed m and different s. To

ensure that we get smooth and stable learning curves, all our experiments on synthetic data

uses sampling sizes of l = 2i, i ∈ {8, 8.25, 8.5, 8.75, . . .}. Moreover, data sampling and 5-fold

cross validation is exhaustively repeated 50 times for each value of l. Observation: higher

sparsity leads to slower convergence and lower AUC upper bound.

46 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

Prototype 1, BTE, s=0.9997

Prototype 2, BTE, s=0.9997

Figure 4.6: Learning curves of Bernoulli-trial expansion with fixed s and different m. Obser-

vation: more attributes leads to higher AUC upper bound.

4.4. Experiment with the Uniform Dilution Approach 47

Prototype 1, JE

Prototype 2, JE

Figure 4.7: Learning curves of just-1 expansion with different expansion rate t. The number

of attributes and sparsity are not displayed in the legend of the figures, but can be computed

easily from Eq. (4.7). Observation: larger t leads to lower convergence rate; however, different

t does not change the AUC upper bound.

48 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

Observation 2. For large and sparse datasets that are generated by JE, larger t makes

the AUC learning curve converge slower. However, changing t does not change AUC upper

bound.

A detailed theoretical study of this observation will be given in Section 4.7 (Lemmas 4.7.1

and 4.7.4). For practical classification problems, an intuitive decision flowchart on how this

observation can help is also given in Section 4.8.

4.4.3 Comparing BTE and JE

When comparing the AUC upper bounds of different expansion methods and the corresponding

prototype datasets in Table 4.1, we have the following comparative conclusions:

Comparison 1. For BTE, the AUC upper bound could be lower than the AUC of the

prototype data; for JE, the AUC upper bound always equals to the AUC of the prototype data.

This contrast contains no surprise. In BTE, it is possible all the attributes x j,k expanded

from x j = 1 become 0 in some data instances, which means the information of x j = 1 could be

completely lost. In JE, such cases are avoided. We believe this might be the main reason for

Comparison 1. Moreover, the curves in Figure 4.5 and 4.6 imply that we can not completely

compensate this probabilistic loss of information in BTE even when enough data instances are

used. A detailed study is given Lemma 4.7.2 in Section 4.7.2.

On the one hand, it is intuitive that sparser data may always lead to inferior classification

performance; on the other hand, m may play almost contradictory roles in different missing

data mechanisms. Consider a prototype attribute x j that equals to 1. When using JE, this

information (x j = 1) is diluted across t attributes. The more attributes we have, the harder

for a naı̈ve Bayes classifier to “aggregate” this diluted information. We provide the detailed

study for this effect in Lemma 4.7.1 of Section 4.7.2. For BTE, however, the same information

emerges with a fixed probability. The more attributes we have the more information a classifier

will get; See Lemma 4.7.3 in Section 4.7.3. We can also verify it from the experiment learning

curves:

Comparison 2. For both Uniform Dilution mechanisms, higher sparsity always leads to

slower learning curve convergence rate. More attributes lead to lower convergence rate for

JE, but higher AUC upper bound for BTE.

In Section 4.8, we show how the above observations of Uniform Dilution experiments can

provide practical guidance to classifying large sparse datasets with naı̈ve Bayes. Besides, we

also provide an intuitive decision flowchart (Figure 4.10) for readers to easily apply our results

in solving real-world classification problem.

4.5. Missing Data Mechanism 2: Probabilistic Modeling 49

4.5 Missing Data Mechanism 2: Probabilistic Modeling

In previous sections, we consider the missing data mechanism inferred from domain knowl-

edge (observation) of user behavior data. We now take a probabilistic modeling approach in

interpreting the generative story of the user behavior dataset and its missingness. We use a

Probabilistic Matrix Factorization model [67] to decode the generative process and missing

data mechanism of a dataset. Moreover, we propose the corresponding data generation method

which essentially samples synthetic data instances from the inferred PMF model posterior.

For binary attributes, [32] have proposed a Bayesian PMF model which has good predictive

performance on several real datasets. Given a sparse binary matrix X, the posterior of their

model is:

p(U,V, z|X) =
p(X|U,V, z)p(U)p(V)p(z)

p(X)
, (4.8)

where p(X) is a constant and p(U), p(V) are fully factorized Gaussian priors for the two low-

rank matrices, z ∈ R is the constant that controls global sparsity. The data generation process

can be modeled as:

p(X|U,V, z) =
∏
(i, j)

p(xi, j|ui, v j, z) =
∏
(i, j)

Ber(xi, j|σ(uivT
j + z)), (4.9)

where σ(·) denotes the logistic function to squash a real number into [0, 1].

For data generation, we assume that data are sampled according to the PMF model pos-

terior, and sparsity can be changed by choosing a different prior for z. We denote this data

generation methods as GPMF (Generation using PMF), to distinguish from attribute dilution

methods such as JE and BTE. Notice that GPMF also uses the MAR assumption since the miss-

ing likelihood does not depend on the explicit value of each data entry.

To compute the model posterior, we use the efficient inference algorithm proposed in Her-

nandez et al. [32]. After Bayesian inference, we could then generate an arbitrarily large dataset

using the model posterior. In order to sample an infinite number of synthetic users, we employ

the stochastic process as discussed in Section 3.2.3, i.e., whenever we need to generate a new

synthetic user, we first randomly choose a user Xi from the users (rows) that exist in X as a

prototype user. We then generate a new user using model posterior of this user prototype, i.e.,

ui along with posteriors of other parameters (V and z). This approach will be further discussed

in Section 5.4.2 as we extend our study to real-valued data.

Using this method, the generated data can well approximate the original data in a distri-

butional sense. Besides, in Section 4.6, we will also verify that classifying the generated data

could ‘replicate’ the naı̈ve Bayes learning curve of classifying the original data in our experi-

ments.

50 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

4.6 Experiment with the Probabilistic Modeling Approach

To evaluate the probabilistic modeling data generation approach GPMF , we choose Yahoo

movie data (ymovie) and one of the Movie lens data (ml-1m) where attributes refer to movies

and each data instance corresponds to a user’s ratings on those movies. If a user i has rated on

movie j, then Xi, j = 1, otherwise 0. The class label is the gender of each user. There are 2, 184

females and 5, 436 males in the original ymovie data. To eliminate class skewness, we randomly

select 2, 184 instances from both classes. We use 9, 489 out of the original 11, 916 movies

which are rated at least once by those 4, 368 users. The overall sparsity for the preprocessed

ymovie data is 0.9977. The same preprocess is used for ml-1m dataset (originally 6, 040 ×

3, 952). The preprocessed ml-1m dataset is 3, 418× 3, 647 with balanced classes and an overall

sparsity of 0.9550. For the preprocessed ymovie and ml-1m, we use the inference algorithm

proposed in Hernandez et al. [32] to estimate the posteriors of the latent variables (U,V, z)

separately for data of each class label.

4.6.1 Replicating Learning Curves with GPMF

Hernandez et al. [32] have already evaluated the performance of their PMF model using both

synthetic and real-world data experiments. After removing a set of 1 entries from the training

data, their evaluation task is to find out the location of those removed entries. Here we further

evaluate how well we can reconstruct the whole binary data matrix using only the estimated

model posterior in terms of naı̈ve Bayes learning behavior. To be specific, we focus on whether

we could ‘replicate’ the AUC learning curve behavior of the real data using generated data of

the same size.

To do so, we sample a synthetic data matrix according to the size of ymovie and ml-1m

from the posterior distributions of each corresponding real dataset. The global sparsity of

the synthetic data matrices are very close to the corresponding real data. Table 4.2 shows a

comparison of sparsity between real and reconstructed datasets with different z biases.

Using these datasets, we test the 5-fold cross-validation AUC of naı̈ve Bayes with different

sample sizes. To be consistent with experiments in Section 4.4, sample sizes are also chosen

from the series {2i} with the increment of i being 0.25. The result is shown in Figure 4.8. In the

figure, each AUC value is the average of 50 runs of repeated random sampling. We see that the

learning curve behavior is similar for real data and synthetic data: they all increase log-linearly

with the number of data instances, though with slightly different slopes.

The result of this experiment implies that GPMF provides a reasonable synthetic setting for

4.6. Experiment with the Probabilistic Modeling Approach 51

ymovie

ml-1m

Figure 4.8: Comparison of the learning curves on real datasets (the thick lines) and the gen-

erated data. Observation: the learning curve behavior is similar for real data and synthetic

data.

52 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

Table 4.2: Datasets for GPMF experiment. Numbers in the parentheses are the biases added to

the posterior mean of z.
data sparsity data sparsity

ymovie-real 0.9977 ml1m-real 0.9559

ymovie-synth(0) 0.9971 ml1m-synth(0) 0.9550

ymovie-synth(-0.5) 0.9980 ml1m-synth(-1) 0.9754

ymovie-synth(-0.7) 0.9983 ml1m-synth(-2) 0.9874

ymovie-synth(-0.9) 0.9985

ymovie-synth(-1.1) 0.9987

studying naı̈ve Bayes learning curve behavior on sparse datasets.

4.6.2 Data Generation Experiment

In order to see the entire learning curves, we have sampled more than 0.8 million synthetic

data instances from the inferred the PMF model of ymovie and > 0.13 million for ml-1m. We

vary the data sparsity s by changing the PMF parameter z systematically. Just as the settings of

previous experiments, we record the 5 fold cross-validation AUC over different sample sizes.

We also speedup the experiments by running the data expansion, sampling and cross vali-

dation jobs in parallel on a shared cluster. To speed up the data generation process, we split the

generation of a l-by-m data matrix vertically by a factor of f (f = 10 for ymovie and f = 8 for

ml-1m), i.e., we generate l/ f instances in each single job. The parameters V and z are sampled

before data generation and shared across jobs of each specific setting (ui have to be sampled

on-the-fly for each new instance). We exhaustively run random sampling for 50 repeats for all

the PMF experiments. We also split the random sampling workload into 10 parallelized jobs,

each for 5 repeated random subsampling. Naı̈ve Bayes cross-validation is performed right after

the generation of each subsample. Using this strategy, the slowest data generation job takes no

more than 8K seconds and the slowest random subsampling and cross-validation job takes no

more than 6K seconds (both correspond to the largest expansion experiment of ymovie with no

negative bias of z).

Figure 4.9 shows the learning curves of naı̈ve Bayes on the genereated data. We see that the

curves increase log-linearly at the beginning, but gradually tend to converge. Since the GPMF

experiment does not change sparsity s significantly compared to the BTE and JE experiments,

the rate of learning curve convergence does not differ much for different s. However, we have

the following observation about the learning curve upper bound:

4.6. Experiment with the Probabilistic Modeling Approach 53

ymovie

ml-1m

Figure 4.9: The AUC learning curves of the real data (the thick black line) and synthetic data

generated by GPMF with different sparsity. Observation: higher s leads to lower upper bound.

54 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

Observation 3. For datasets generated by PMF, higher sparsity leads to lower AUC upper

bound.

This result is consistent with our observations on both JE and BTE. The theoretical reason

can also be found in Section 4.7.3. Just like our other observations, readers can refer to our

decision flowchart and guideline in Section 4.8 to know how and when to apply this result in

practice.

4.7 Theoretical Study for Experiment Observations

In this section, we provide the theoretical reason for our experiment observations. Specifically,

we consider the missing data mechanisms described in Section 4.3 and 4.5. We study how data

sparsity s and the number of attributes m affect binary classification problem. We focus on

the convergence rate of learning and the asymptotic generalization AUC. We first describe the

problem definition.

4.7.1 Problem Definition

Consider the space X = {0, 1}m for inputs x, and an unknown distribution D = p(x, y) over

X × {−1,+1}. When we use BTE, we denote the resultant data space as DBT E(t, θ); similarly,

we useDJE(t) to denote the data space of JE. Sparsity refers to the percentage (probability) of

0 values. The set of attributes are denoted as F = {x1, x2, ..., xm}. For ease of illustration, we

also use x− j to denote all attributes except x j. In an asymptotic setting (infinite data samples),

a naı̈ve Bayes classifier predicts by:

fNB(x) = arg max
y

(m∏
j=1

p(x j|y)p(y)
)
, (4.10)

where the following naı̈ve independence assumption is used:

p(x, y) =

m∏
j=1

p(x j|y)p(y). (4.11)

For naı̈ve Bayes, AUC is based on the scoring of test instance x, given by

sNB(x) = log
p(+|x)
p(−|x)

= log
p(+)
p(−)

+

m∑
j=1

log
p(x j|+)
p(x j|−)

. (4.12)

The (asymptotic) risk of AUC is defined as follows [76]:

R(D) = Pr(x,y),(x′,y′)∼D
{[

sNB(x) − sNB(x′)
]
(y − y′) ≤ 0, y , y′

}
. (4.13)

4.7. Theoretical Study for Experiment Observations 55

Now suppose there is a training (empirical) dataset S sampled i.i.d. from D, estimated values

of p(x j|y) and p(y) in S are p̃(x j|y) =
Ny∧x j

Ny
and p̃(y) =

Ny

|S|
, respectively; where Ny∧x j denotes the

number of instances in S that have label y and attribute value x j. We first study how the size of

S affects the convergence of AUC risk.

4.7.2 Convergence Rate Analysis

We first bound the convergence of sNB(x)

Lemma 4.7.1 Let S = {x1, x2, . . . , xl} be the empirical set sampled i.i.d. from distribution D,

sNB be the naı̈ve Bayes AUC score function defined in Eq.(4.12) whose empirical estimate is

s̃NB. For any unseen (test) instance x ∼ D, to ensure

Pr(|s̃NB(x) − sNB(x)| ≥ ε) ≤ δ, (4.14)

it suffices to have a training size

l ≥
3 log 4m+4

δ

pmin(x)(1 − exp(− ε
2m+2))2 , (4.15)

where pmin(x) = min
{

p(x j|y)
∣∣∣∣∣ j ∈ {1, ...,m}, y ∈ {+,−}}.

Proof We first upper bound the error between estimated and true score. From Eq. (4.12), with

some simple algebraic manipulation, we have

|s̃NB(x) − sNB(x)| ≤
∑

y

 m∑
j=1

| log
p̃(x j|y)
p(x j|y)

| +
∣∣∣ log

p̃(y)
p(y)

∣∣∣ . (4.16)

Following the analysis of Ng and Jordan [69], to study the convergence of s̃NB(x) →

sNB(x), we bound each of the 2m+2 terms in the right of Eq. (4.16) individually with Chernoff

bound and use Union bound afterwards. Chernoff bound gives

Pr
(
|
p̃
p
− 1| ≥ ε1

)
≤ 2 exp(−

lε2
1 p
3

) (4.17)

We know:

Pr
(
|
p̃
p
− 1| ≥ ε1

)
≥ Pr

(
1 − ε1 ≥

p̃
p

)
= Pr

(
log (1 − ε1) ≥ log

p̃
p

)
≥ Pr

(
log(1 − ε1) ≥ | log

p̃
p
|

)
= Pr

(
log

1
1 − ε1

≤ | log
p̃
p
|

)
(4.18)

56 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

(given that ε1 ∈ (0, 1)). Thus

Pr
(
| log

p̃
p
| ≥ log

1
1 − ε1

)
≤ Pr

(
|
p̃
p
− 1| ≥ ε1

)
≤ 2 exp(−

lε2
1 p
3

) (4.19)

or equivalently,

Pr
(
| log

p̃
p
| ≥ ε1

)
≤ 2 exp

(
−

l(1 − exp(−ε1))2 p
3

)
. (4.20)

which entails that Pr
(
| log p̃

p | ≥ ε1

)
≤ δ1) holds when

l ≥
3 log 2

δ1

(1 − exp(−ε1))2 p
. (4.21)

To bound Eq. (4.16), we set ε = (2m + 2)ε1 and δ = (2m + 2)δ1. Now with the Union bound

we know that it suffices to have:

l =
3 log 4m+4

δ

pmin(x)(1 − exp(− ε
2m+2))2 , (4.22)

where

pmin(x) = min
{

p(y), p(x j|y)
∣∣∣∣∣ j ∈ {1, ...,m}, y ∈ {+,−}}. (4.23)

When the data are not extremely unbalanced in terms of the distribution of p(y), pmin(x) equals

min
{

p(x j|y)
∣∣∣∣∣ j ∈ {1, ...,m}, y ∈ {+,−}}.

Remarks. It is obvious that pmin(x) is the lowest per-attribute density in either class. With

Eq.(4.15), we have now proved that when sparsity increases (pmin(x) decreases), the minimum

training size l needed for convergence at high probability increases. In other words, conver-

gence rate slows down. This explains the observations in all our experiments that sparser data

always lead to slower learning curve convergence (Figures 4.5, 4.7). For curves in Figure

4.9, the convergence rate does not change significantly. This is because sparsity does not vary

significantly as we change z in the PMF experiments.

4.7.3 Upper Bound Analysis

Next we study the asymptotic AUC (upper bound) of the learning problem. We first give the

qualitative relationship between data sparsity and asymptotic AUC risk. The following lemma

is proved through our analysis (we defer its proof to Appendix)

Lemma 4.7.2 If each attribute x j has missing probability θ ∈ (0, 1), then the AUC risk R(D)

decreases with θ monotonically.

4.7. Theoretical Study for Experiment Observations 57

This lemma is important since it explains qualitative observation about AUC upper bound

and data sparsity (Figures 4.5 and 4.9), i.e., why higher sparsity always leads to lower upper

bound. Notice that Lemma 4.7.2 cannot give and exact quantitative relationship between θ and

AUC upper bound. In fact, the exact quantitative relationship should depend on the distribution

D and it may be hard to find a universal answer.

Next we study how the number of attributes affect asymptotic AUC. In the BTE experiment,

we have varied the number of attributes m and keep sparsity s unchanged. For this setting, we

derive the following lemma (see Appendix for its proof).

Lemma 4.7.3 When the data distribution of existing attributes does not change, more at-

tributes lead to lower AUC risk.

Remarks. This lemma gives the qualitative relationship between AUC risk and the number

of attributes. From the definition of BTE (Eq. (4.1)), we see that the distribution of each

attribute is irrelevant to expansion rate t. Thus, when θ does not change, increasing the number

of attributes would not change the distribution of existing attributes. Lemma 4.7.3 is applicable

in this situation and explains why more attributes always lead to a lower AUC upper bound (see

Figure 4.6).

For JE (Eq. (4.4)), when we increase the expansion rate the data distribution of existing

attributes will also change. Lemma 4.7.3 does not apply here. We next study AUC upper bound

under JE.

4.7.4 Upper Bound Analysis for Just-1 Expansion

The asymptotic value of JE is special in that the number of attributes and data distribution of

existing attributes change simultaneously. However, we could prove that the following lemma

holds.

Lemma 4.7.4 For JE, AUC risk does not change with t.

Proof Assume that instance x in space DJE(t) is expanded from x̃ in DJE(1). Since we will

consider the change of data space, we use notations p(·|D), sNB(·|D) for probabilities and naı̈ve

Bayes AUC scores in spaceD. From Eq. (4.4) and (4.12) we have

sNB(x|DJE(t)) =
∑
x̃ j=0

log
p(x j = 0|+;DJE(1))t

p(x j = 0|−;DJE(1))t︸ ︷︷ ︸
sum over missing (0-valued) attributes of instance x̃

+

58 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

∑
x̃ j=1

log
p
(
x j = 1|+;DJE(1)

)
p
(
x j = 0|+;DJE(1)

)t−1

p
(
x j = 1|−;DJE(1)

)
p
(
x j = 0|−;DJE(1)

)t−1︸ ︷︷ ︸
sum over observed (1-valued) attributes of instance x̃

+ log
p(+)
p(−)

= (t − 1)sNB
(
x̃|DJE(1)

)
+ (t − 1)sNB

(
0|DJE(1)

)
+ log

p(+)
p(−)

. (4.24)

Given x̃ and x̃′ from the original spaceD = DJE(1), whenever sNB
(
x̃|DJE(1)

)
< sNB

(
x̃′|DJE(1)

)
,

we always have that sNB(x|DJE(t)) < sNB(x′|DJE(t)) because of (4.24). Thus from the defini-

tion of AUC risk Eq. (4.13), we know that JE always keeps AUC risk unchanged. This also

explains our observation in Figure 4.7.

4.8 A Practical Guide

In this section, we show how our results can help classify real-world large sparse datasets

with naı̈ve Bayes. First, we summarize our empirical observations and theoretical results for

different missing data mechanisms and various settings of m and s in Table 4.3.

Table 4.3: upper bound (U) and convergence rate (V) of AUC learning curves
Missing Mechanisms Attributes m ↑ Sparsity s ↑ Notations

BTE U ↑ U ↓,V ↓ ↑ / ↓ /→: increase/decrease/unchanged

JE U →,V ↓ U →,V ↓ (ns): not studied

GPMF ns U ↓,V ↓

We show how these results help answer the following practical questions mentioned in the

introduction of this section:

Question 1. How does data sparsity affect the convergence rate of AUC as data increases?

Our Answer: Higher data sparsity leads to slower AUC convergence rate; see Figure 4.5

and 4.7 in our experiments. Lemma 4.7.1 can be used as a PAC bound for the relation between

sparsity and the convergence rate of naı̈ve Bayes AUC.

Question 2. How does data sparsity affect the asymptote (upper bound) of AUC?

Our Answer: For most missing data mechanisms including BTE and GPMF , sparser data

leads to a lower asymptotic AUC; see Figures 4.5, 4.9 and Lemma 4.7.2. Besides, we also

identify a special missing data mechanism JE where sparsity does not affect asymptotic AUC;

see Figure 4.6 and its analysis in Lemma 4.7.4.

Question 3. To improve AUC, do we need (a) more data, (b) more attributes or (c) to

reduce the sparsity of existing data?

4.8. A Practical Guide 59

Our Answer: To decide which actions to take, practitioners should consider the learning

curve behavior as well as the missing data mechanism. Specifically, we provide the following

guideline, as outlined in Figure 4.10.

Figure 4.10: The decision flowchart of our practical guideline.

Given a sparse user behavior dataset, we first identify if there are attribute categories us-

ing domain knowledge. If there are such categories then go to Guideline A, otherwise see

Guideline B.

Guideline A.1. We continue to identify which expansion assumption (BTE or JE) holds

based on domain knowledge. For the user-movie example introduced in Section 4.3, since a

user could watch several movies of a category, we can assume that data are generated by BTE

from category-level information. For cases where at most one attribute of a category is active,

we should use the JE assumption. For instance, JE is suitable when each attribute corresponds

the most recent cellphone purchased by a user. If neither BTE nor JE applies, then go to

Guideline B, otherwise A.2.

Guideline A.2. After identifying the missing data mechanism, we are able to apply our

results about BTE and JE in Table 4.3 to predict the learning curve behavior after certain can-

didate actions we take. For example, adding more attributes usually gives better generalization

AUC for both BTE and JE; however, the learning curve behavior can also be different for BTE

and JE, thus Figures 4.6, 4.7 and Lemmas 4.7.3 and 4.7.4 can be used as a guideline.

60 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

Guideline B. For datasets where no attribute categories exist, we can use the probabilistic

modeling approach to answer the above question. Specifically, we first infer the probabilistic

model of the sparse dataset, and use GPMF to generate a much larger synthetic dataset and

predict the AUC learning curve behavior. This is what we have done in Section 4.6 on real-

world movie rating datasets. For example, according to Figure 4.9, we could predict how

changing sparsity affects the asymptotic convergence behavior.

4.9 Relation to Previous Work

In this section, we mainly review: (1) previous research that applies or studies naı̈ve Bayes

using large sparse datasets; (2) other machine learning methods for dealing with large sparse

user behavior data; (3) related research which also uses synthetic datasets for verification.

Though simple, naı̈ve Bayes was reported to perform surprisingly well on many classifi-

cation tasks [78, 26, 47, 71]. Ng and Jordan [69] have analyzed the asymptotic behavior of

a multivariate naı̈ve Bayes classifier. The authors discover that a naı̈ve Bayes classifier needs

a training set of size l = Ω(log(m)) to obtain near-optimal generalization error. However,

this argument has not been systematically evaluated on large and sparse datasets with different

mechanisms of missing.

For datasets with a large number of attributes, many attributes might be irrelevant, redun-

dant or noisy [39, 48, 38]. In dealing with such datasets, naı̈ve Bayes classifiers are often used

with attribute selection algorithms [37, 4, 84]. However, for user behavior data where each

attribute often contains a small but non-negligible amount of information, selecting a subset of

the most informative attributes could not be optimal, as demonstrated in Junqué de Fortuny et

al. [40].

Recommender systems often have to deal with sparse user behavior datasets. For exam-

ple, in the Netflix Prize contest [3], contestants are provided with a dataset containing millions

of movie ratings given by anonymous users, a very large proportion of the ratings are miss-

ing. Early systems [80, 46] use imputation to fill the missing values. However, inaccurate

imputation could distort the true (unknown) data distribution and harm the predictors’ perfor-

mance. Matrix-Factorization [49] is a way to model the data with only the observed values

while using regularization to prevent over-fitting. Many variants of Matrix-Factorization are

later introduced, of which, Steck [86] has analyzed and made assumptions on the patterns of

data missing and designed a novel objective function for MF. Instead of trying to fill the miss-

ing values or using the observed to predict the unknown entries, in this thesis we focus on

4.10. Summary 61

studying how data sparsity affects classification performance.

There is a popular branch of MF that uses Bayesian probabilistic models to fit the data, la-

tent variables and their relationships. A complex generation process is assumed in these meth-

ods. In Mnih and Salakhutdinov [67], the term Probabilistic Matrix Factorization is proposed

to describe such methods. Earlier, Meeds et al. [64] have provided a Bayesian probabilistic

MF model that assumes data X is generated by the product of UWV, where U,V are binary

matrices, and W is a real-valued weight matrix. Salakhutdinov and Mnih [79] have proposed a

fully Bayesian treatment for PMF, which leads to better predictive performance when evaluated

on the Netflix dataset. Hernandez et al. [32] have proposed a PMF model for binary sparse

datasets and its variational Bayes inference algorithm. It outperforms recent similar meth-

ods when tested on several large binary datasets. In this chapter, we use it to generate sparse

datasets. A modified version of this model is also used in the missing data model (MDM) of

the MF-MNAR algorithm [31], which as a whole is a PMF model for data that is MNAR.

There are previous works in the field of PMF that generates synthetic dataset for evaluation

purposes. Mohamed [68] has used a prototype based approach to generate binary matrix with

coin-flipping probabilities. The performance of the PMF model is evaluated by reconstructing

the synthetic dataset from different sizes of sampling. Sutherland et al. [87] have generated

synthetic matrix of certain patterns of observation (missing) to evaluate the performance of

their PMF-based active learning algorithm. Synthetic random matrix of ordinal user ratings

are also used to evaluate RMSE (root-mean-square error). Hernandez et al. [32] have created

synthetic data using the PMF data generation process with pre-specified hyper-parameters. In

our GPMF method, synthetic data are created with only the posterior parameters estimated from

a known real-world data.

4.10 Summary

Naı̈ve Bayes has good scalability on large sparse datasets. In this chapter, we have studied the

convergence behavior of naı̈ve Bayes on large sparse user behavior datasets. Specifically, we

use generated datasets to explore how different mechanisms of missing, data sparsity and the

number of attributes systematically affect the AUC learning curve behavior. We consider sev-

eral realistic Missing At Random mechanisms for binary user behavior data. We propose the

corresponding data generation approaches using uniform dilution (BTE, JE) and probabilistic

modeling (GPMF). We generate very large synthetic datasets for each missing data mecha-

nism and study the entire learning curve behavior when systematically changing sparsity and

62 Chapter 4. Convergence Behavior of Naı̈ve Bayes on Large Sparse Data

attribute number. Several useful observations have been made, and we provide detailed the-

oretical studies for those observations. We also provide an intuitive decision flowchart and a

guideline on how our results could be used in practice.

Chapter 5

Convergence Behavior of Linear
Classifiers on Large Sparse Data

Large sparse datasets are very common in product recommendation applications. For scalabil-

ity reasons, linear classifiers are preferred in classification tasks on such datasets. The previous

two chapters have studied how data sparsity affects linear SVM and naive Bayes classification

under typical missing data mechanisms for binary inputs. In this chapter, we will extend our

study to all discriminative linear classifiers.1 We will also generalize the missing data mech-

anisms and synthetic data generation methods to real-valued datasets. Using real-world and

synthetic experiments, we observe several important learning curve behaviors under different

missing mechanisms. We also study the theoretic reasons for all our observations. Our stud-

ies provide a practical guideline to determine if or when obtaining more data and/or obtaining

missing values in the data is worthwhile or not. This can be very valuable in many applications.

5.1 Introduction

It is known that more training data can lead to lower generalization risk and asymptotically

the risk converges to the optimal for a given class of classifiers [89]. For a specific data dis-

tribution and a family of classifiers, the asymptotic classification risk and how fast learning

converges when increasing the training size are fundamental problems of learning. As the

sizes of real-world datasets increase, these convergence behaviors become more practically

1Linear SVM is a discriminative linear classifier. While the multinomial naive Bayes model has been shown to

be a (generative) linear classifier, other naive Bayes variants such as the Bernoulli naive Bayes classifier considered

in the previous chapter are not linear classifiers.

63

64 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

important nowadays. Chapter 3 has studied how data sparsity affects linear SVM and its con-

vergence behavior. For naive Bayes classifier, Chapter 4 has also answered how sparsity affects

the convergence rate and asymptote of AUC under typical missing data mechanisms. However,

the above studies are still limited to specific classifiers and the experiments and analysis were

focusing on binary input data.

In this chapter, we significantly extend our work to address discriminative linear classifiers

and generalized loss functions. Instead of studying the missing mechanisms of binary input

data, we consider common missing mechanisms for large sparse datasets of real-value inputs

here: Uniform Missing (UM) and Uniform Dilution (UD), which are more general. Section 5.3

of this chapter describes the details of the two missing mechanisms.

To empirically demonstrate the classification behavior in an asymptotic setting, we gen-

erate arbitrarily large i.i.d. data using the probabilistic model [79] of real-world large sparse

data and introduce the missing mechanisms afterwards. Our experiments cover different dis-

criminative linear classifiers and loss functions. We have several important observations that

consistently hold for different classifiers/losses. To confirm our results and provide an in-depth

explanation, we prove all our observations under the framework of Statistical Learning Theory

[89]. As with the previous chapter, our results help answer the following questions for applying

discriminative linear classifiers with different loss measures on real-valued large sparse data:

1. How does data sparsity affect the convergence rate of learning as sample size increases?

2. How does data sparsity affect the asymptotic classification risk?

3. To improve classification performance, do we need (a) more data samples, (b) more

attributes or (c) to reduce the sparsity of existing data?

This can have an economic impact in real applications, because either to impute the missing

values statistically or to query the actual missing values comes at a cost. To easily apply our

results in practice, we provide an intuitive decision flowchart and its guidelines in Section 5.6.

The rest of this chapter is organized as follows. Section 5.2 and 5.3 establish our problem

settings and describe the missing data models. Section 5.4 describes experiments and obser-

vations on both real-world and synthetic datasets. Section 5.5 presents our theoretic studies.

Section 5.6 gives a guideline for using our results in practice. Section 5.7 reviews related

works; and the final section concludes the chapter.

5.2. Linear Classification and Asymptotic Risk 65

5.2 Linear Classification and Asymptotic Risk

For scalability reason, linear classifiers are often used in mining large sparse data. In this

section, we introduce the basic problem setting for discriminative linear classification.

5.2.1 Linear Classification

Without loss of generality, we study the classification problem with binary label as specified

below. Given an unknown distribution D = p(x, y) over Rd × {1,−1}, the full set of input

attributes for the task is denoted as F = {x1, x2, ..., xd}. For user feedback data, each data

instance x ∈ Rd corresponds to feedbacks given by a user to d items, such as ratings (ordinal

values), ‘like’s (binary values), etc. The goal is to learn a function f within some hypothesis

classH to minimize classification risk:

RD(f) = E(x,y)∼D

[
l
(
f (x), y

)]
, (5.1)

where l
(
f (x), y

)
is a loss function. In this chapter, H can be all linear classifiers Hl = { f :

f (x) = w · x,w ∈ Rd}. The solution to this classification problem amounts to finding f ∗ =

arg min f∈Hl

{
RD(f)

}
. We can then use f ∗ to predict unseen data. In this chapter, we consider

commonly used loss functions including the 0-1 loss and also its convex surrogates such as

hinge and logistic loss [2].

5.2.2 Asymptotic Risk and Convergence Rate

In practice, the empirical risk of a classifier:

Remp
S∼D

(f) =
1
N

N∑
i=0

l
(
f (x(i)), y(i)) (5.2)

is used to approximate generalization risk in the above learning problem, whereS = {x(i), y(i)}i=1,...,N

is an empirical dataset sampled fromD. By the Uniform Convergence of Empirical Risk Mini-

mization [89], when |S| continues to increase, empirical risk and true risk will converge asymp-

totically, so long asH has bounded VC-dimension (true for linear classifiersHl). We consider

the Empirical Risk Minimization [89] setting which does not include the regularization term;

this is reasonable because we are dealing with large sample sizes and simple classifiers.

We denote R̂D as this asymptotic empirical/true risk. We hereafter use asymptotic risk for

brevity:

R̂D := lim
|S|→∞

Remp
S∼D

(f ∗
S

) ≈ RD(f ∗), (5.3)

66 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

where the approximation holds with high probability in the asymptotic setting, and f ∗
S

is the

optimal linear classifier learnt from empirical set S:

f ∗
S

:= arg min
f∈Hl

{
Remp
S∼D

(f)
}
. (5.4)

As we increase |S|, the convergence rate of learning describes how fast the empirical risk

converges to the asymptotic risk R̂D. Given the measure of convergence ε > 0, the conver-

gence rate can be calculated as the smallest empirical size N̂ that guarantees high probability

convergence between the (optimized) empirical risk and asymptotic risk:

N̂ := arg min
|S|

{
Pr(|Remp

S∼D
(f ∗
S

) − R̂D| > ε) < δ
}
. (5.5)

Practically, it is impossible to have an infinitely large dataset. However, the increasing

scales of real-world applications are pushing linear classifiers towards this idealistic frontier.

As data are becoming larger and larger, on the one hand, it is important to study complicated

models with a large learning capacity [52]. On the other hand, it is also practically important

to know how different factors might affect the convergence behaviors of simpler data mining

models. This thesis focuses on the later perspective, and approaches the data sparsity problem

by studying how it affects the convergence of discriminative linear classifiers.

5.3 Sparsity and Missing Data Models

When using linear classifiers on large sparse data, missing values in the input x are treated

as 0s (0-imputation) by convention, and sparsity refers to the percentage (probability) of 0s.

As before, we assume that data sparsity is caused by some missing mechanisms that can be

modeled mathematically. In Chapter 3 and 4, we have introduced missing data mechanisms

for binary data. Here, we will study missing mechanisms for large sparse data of real-valued

inputs, which is more general. We consider two simple missing mechanisms each of which

addresses a major cause of sparsity: (1). limited user feedback budget; (2) large number of

items. According to the missing data theory [56, 77], these two missing mechanisms are MAR

(Missing At Random) models, i.e., we do not make explicit assumptions about how attribute

values affect the likelihood of missing.

5.3.1 Uniform Missing

The first missing data model Uniform Missing (UM) addresses how user activeness (behavior

budgets) affects the sparsity of a user feedback dataset. Figure 5.1 gives a graphical explana-

tion. Basically, UM assumes that each attribute has a uniform likelihood of missing.

5.3. Sparsity and Missing Data Models 67

Figure 5.1: A graphical illustration of Uniform Missing (upper figure) and Uniform Dilution

(lower figure). 0 denotes missing.

Notice that the binary version of this missing mechanism has been used in our study of

linear SVM (see Section 3.2.4), here we override its definition for the case of real-valued

inputs. Given a set of attributes (items) Φ ⊆ F, UM models the change of user activeness over

Φ using a latent multiplicative factor s ∈ [0, 1]. Formally, given an original data distribution

D over Rd × {1,−1}, Uniform Missing assumes that all attribute values in Φ are subject to a

uniform likelihood of missing s ∈ [0, 1]. See Figure 5.1 for a graphical illustration. We denote

the resultant data distribution asDmiss(Φ, s), and its joint distribution as pmiss(x, y|Φ, s). Notice

that this missing data model is additive, in the sense that the original data D could be either

dense or sparse.

With its additive property, UM can generalize to the case where different attributes have

different probabilities of missing. For example, if some attributes Φ1 ⊆ F are missing with

probability s1, while others Φ2 ⊆ F are missing with s2, we can recursively defineD′miss(Φ2, s2)

whereD′ = Dmiss(Φ1, s1). In this chapter, we omit such complications and only studyDmiss(Φ, s).

5.3.2 Uniform Dilution

The major cause of sparsity in a feedback dataset is actually two-fold – user activeness (behav-

ior budget) is limited and the number of available items is huge. The aforementioned Uniform

68 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

Missing model addresses how user activeness affects sparsity. To model sparsity caused by

the large number of items, we use the Uniform Dilution (UD) mechanism which was also

introduced in the previous chapter for the case of binary data. Basically, UD dilutes each non-

missing value using attribute expansion, as can be seen in Figure 5.1. Here we briefly review

the practical meaning of UD and generalize it to real-valued input data.

For many user feedback data, there can be latent clusters of items such that items of the

same cluster are highly similar [53, 91, 66], e.g., different episodes of a TV opera. It is reason-

able that a cluster of similar items often have similar user feedbacks. For example, if a user

gives a high rating to The Lord of the Rings I, (s)he will likely to rate The Lord of the Rings II

high as well. In order to systematically study the sparsity caused by the number of items, UD

considers the case where ratings are sparsified (diluted) evenly across the items of each cluster.

In this manner, we could use an existing real-world dataset as the prototype and expand it to

generate the synthetic large sparse data.

Formally, given an original data distribution (x, y) ∼ D over Rd × {1,−1}, a dilution rate

t and a set of attributes Φ ∈ F, the Uniform Dilution mechanism specifies a data distribution

Ddilute(Φ, t) over the expanded space Rd−|Φ|+t|Φ| × {1,−1}. From a generative perspective, to

sample an instance (x, y) fromDdilute(Φ, t) is equivalent to sample (x̃, y) fromD first and dilute

x̃ to x afterwards. We still use the two dilution processes introduced in the previous chapter,

i.e., Bernoulli-trial Expansion (BTE) and Just-1 Expansion (JE). The only difference is that we

here consider real-valued attribute values instead of binary values; see Figure 5.1.

We can apply Uniform Dilution to any subset of attributes Φ of a real-world large sparse

dataset. Essentially, UD expands item set Φ for t times and dilutes the user feedback informa-

tion in a uniform manner. In this respect, UD can model the sparsity caused by the increasing

number of items.

In the previous chapter, we have also considered the missing mechanism derived from

a Probabilistic Matrix Factorization model [32]. However, the PMF model is limited to data

matrices of binary inputs and not suitable for real-valued inputs. Besides, changing the sparsity

by tuning the parameter z in the binary PMF model (see Eq.(4.9)) is equivalent to varying

the global user activeness, which is already addressed by the UM mechanism. In the next

section, we use experiments to study how UD and UM affect the convergence behaviors of

linear classifiers.

5.4. Empirical Study 69

5.4 Empirical Study

To demonstrate how different sparsity rates and missing data mechanisms affect the learning

behavior, we first describe our findings in real-world and synthetic experiments.

5.4.1 Experiments with Real-world Data

We experiment with real-world large sparse datasets introduced in Table 1.1. We apply the two

missing mechanisms UM and UD on each dataset with different degrees of sparsity. 20% of

each dataset are held out for testing. In order to study the learning curve behaviors as training

size grows, we increase training sample sizes according to {28, 28.25, 28.5, . . . } until the whole

training set is used. For each training sample, we compute the optimized model and its training

and testing errors. To apply the UM models, we vary data sparsity by changing the probability

of missing for both training and testing data according to s ∈ {0.1, 0.2, 0.5, 0.7}; for UD, we

used the Just-1 Expansion strategy and vary the rate of dilution according to t ∈ {1, 4, 8, 16}.

We use linear SVM as our target classifier with a very small regularization (λ = 10−5) in this

experiment. The experiment results of ymovie, Epinions, book datasets are depicted in Figure

5.2.

We observe that these real-world data are not large enough to reveal how learning curves

converge. The curves keep changing even at their ends. To overcome this challenge, we next

describe the approach of synthetic data generation using probabilistic models of real-world

large sparse datasets.

5.4.2 Synthetic Data Generation

To generate arbitrarily large datasets, our approach is to sample i.i.d. data from the statisti-

cal distribution of real-world datasets. Specifically, we use Probabilistic Matrix Factorization

[67, 79] to model and infer the empirical distribution of real-world user-item data. Different

from previous chapters, we select two versions of PMF models which could generate binary

data (implicit feedback) and ordinal data (explicit feedback), respectively. The first PMF only

supports binary data [32], as introduced in Section 3.2.3 and 4.5. The other PMF model is

catered for ordinal rating matrix [31]. These two models are recent variants of PMF that have

well-designed probabilistic modeling framework and have been tested to have good predictive

performance on user-item datasets. The details of these two models can be found in their orig-

inal papers [31, 32]. Here we focus on how to generate large sparse i.i.d. data after we have

inferred the model posteriors from a real-world user rating matrix.

70 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

Uniform Missing Uniform Dilution

ymovie

book

Epinions

log2(training size)

Figure 5.2: Classification accuracy on real-world data with different missing data mechanisms.

For UM and UD, sparsity rate increases with s and t, respectively. Solid and dashed lines

indicate training and testing accuracies, respectively.

5.4. Empirical Study 71

For either of the PMF models, we denote the data (users) belonging to class y as Dy, the

latent parameters for a PMF as Ξ and the corresponding posterior as p(Ξ|Dy). 2 Again, the

meaning of y is problem specific, for example, y could be the gender of a user. The distribution

of synthetic data is p(x, y) = p(x|y)p(y). For p(y), we simply use a balanced class prior,

p(+) = p(−) = 0.5; p(x|y) is the posterior predictive distribution after we infer the model

posterior:

p(x|y) = p(x|Dy) =

∫
p(x|Ξ)p(Ξ|Dy)dΞ. (5.6)

Notice that p(x|Ξ) in Eq. (5.6) should be different from the original posterior predictive of a

PMF, which is often given in the form of p(X|Ξ), where X is the data matrix that are used for

inferring Ξ. In other words, the posterior predictive distribution by default only has support for

in-matrix prediction and could only be used to predict (or reconstruct) entries in the original X,

as is used in most collaborative filtering literature.

In order to generate an arbitrary number of users, we still use the prototype-based sampling

strategy: whenever we need to generate/sample a new synthetic instance x, we first randomly

choose a user Xi from the users (rows) that exist in X as a user prototype. We then generate

the new synthetic user using the model posterior of this user prototype, i.e., Ξi. The following

pseudo code illustrates this idea:

Algorithm 2 Data Generation from a generalized PMF model
Infer the posteriors p(Ξ|D+) and p(Ξ|D−);
for each new instance (x, y) do

Sample y from p(+) = p(−) = 0.5;

Pick a user ui randomly from Dy as the prototype;

Sample Ξi from p(Ξi|Dy);

Sample x from p(x|Ξi);

end for

This algorithm allows us to sample infinite instances from distributions of real-world datasets.

The advantage of this data generation methodology is two-fold: (1). by generating an arbitrar-

ily large dataset, we could see the convergence behavior of classification. (2). from a statistical

point of view, we are studying distributions of real large sparse data.

Next we describe our experiment results on synthetic datasets generated using Algorithm

2.
2With this notation, the data generation distribution used in Section 3.2.3 and 4.5 becomes a special case,

where Ξ = {U,V, z}.

72 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

Linear

SVM
binary ordinal

ymovie

BTE

fix t = 4

ml1m

BTE

fix t = 4

log2(training size)

Figure 5.3: Linear SVM classification accuracy on synthetic large sparse data generated from

BTE with fixed expansion rate t and various missing likelihood s. Solid and dashed lines

indicate training and testing accuracies, respectively. The rate of convergence can be measured

by the training size needed to approach convergence.

5.4.3 Experiments on Synthetic Data

In this section, we describe how we use the proposed data generation process to evaluate our

theoretic results in an asymptotic setting.

Data and Experiment Settings we use two movie rating datasets that are widely studied in

the collaborative filtering literature, i.e., ml1m and ymovie, which were also mentioned previ-

ously in Table 1.1. We have not used larger datasets such as epinions and book to do Bayesian

inference, because it is costly on data matrices of such a large scale. We consider the gender of

a user as the class label y.

For each real-world dataset, we infer its Bayesian PMF model posterior Eq. (5.6) and gener-

ate samples of various sizes using Algorithm 2. Initially, we find that learning curves converge

very slowly (a huge number of synthetic data are needed), especially for the UD mechanism.

5.4. Empirical Study 73

Linear

SVM
binary ordinal

ymovie

BTE

fix

s = 0.5

ml1m

BTE

fix

s = 0.5

log2(training size)

Figure 5.4: Linear SVM classification accuracy on synthetic large sparse data generated from

BTE with fixed missing likelihood s and various expansion rate t. Solid and dashed lines

indicate training and testing accuracies, respectively. The rate of convergence can be measured

by the training size needed to approach convergence.

74 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

linear

SVM
binary ordinal

ymovie

UM

ml1m

UM

log2(training size)

Figure 5.5: Linear SVM classification accuracy on synthetic large sparse data with UM missing

mechanism. Solid and dashed lines indicate training and testing accuracies, respectively. The

rate of convergence can be measured by the training size needed to approach convergence.

5.4. Empirical Study 75

linear

SVM
binary ordinal

ymovie

JE

ml1m

JE

log2(training size)

Figure 5.6: Linear SVM classification accuracy on synthetic large sparse data with JE missing

mechanism. Solid and dashed lines indicate training and testing accuracies, respectively. The

rate of convergence can be measured by the training size needed to approach convergence.

76 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

In order to improve efficiency, we randomly choose a subset of items (200 items in ml1m, 800

items in ymovie) beforehand. This item selection process helps reveal the convergence behavior

with less data generation time.

To study our research questions systematically, we employ both missing mechanisms on the

synthetic data. We introduce various data missing likelihoods s ∈ {0.2, 0.5, 0.7, 0.9} for UM,

while for UD, we set the dilution rates to be t ∈ {1, 2, 4, 8, 16}. We use a held-out synthetic

dataset of size 218 for testing, which is generated from the same probabilistic model with the

corresponding missing mechanism.

We use linear SVM and Logistic Regression as our target classifiers, which are popular in

practice and have different loss functions (hinge and logistic loss). The two types of classifiers

show very similar learning curves in our experiments.

Experiment Results. For each missing mechanism, training size and sparsity, we record

the training and testing accuracy for the learned classifier. The experiment results are given in

Figures 5.3, 5.4, 5.5 and 5.6. We have several important observations:

Observation 1. For BTE with fixed t and UM3, adding sparsity increases asymptotic clas-

sification risk.

Observation 2. For BTE with fixed s, adding features also decreases asymptotic classifi-

cation risk.

Observation 3. For JE, adding features and sparsity4 slows down learning convergence.

Observation 4. For JE, adding features and sparsity does not affect the asymptotic classi-

fication risk.

Compared to our experiment results on naive Bayes and binary datasets of Chapter 4, these

four observations are mostly consistent with only a minor difference: in our empirical and

theoretical results (Lemma 4.7.1) for naive Bayes, we find that adding sparsities in BTE slows

down the convergence rate, this is not significant in the figures here. This is no surprise, as

Lemma 4.7.1 is derived based on the naive Bayes inference process over binary inputs, while

the classifiers studied in this chapter are discriminatively trained with real-valued inputs.

To summarize, observations 1-4 indicate that how sparsity affects convergence of learning

depends on the underlying mechanism of missing. Section 5.6 will discuss how these results

can help in classifying large sparse data in practice. To confirm our findings, we first prove that

the observations are theoretically correct.

3If we fix t = 1 and vary the missing likelihood s, BTE will be equivalent to UM
4remember that features and sparsity will increase simultaneously with JE

5.5. Theoretical Study for Experiment Observations 77

Figure 5.7: The road map of our theoretic study about asymptotic risk.

5.5 Theoretical Study for Experiment Observations

In this section, we present the theoretical studies for our experiment observations. For each

missing mechanism, we study how sparsity affects asymptotic risk and rate of learning conver-

gence: we explain why higher sparsity always increases the asymptotic risk (Theorem 5.5.2)

under UM and BTE with fixed t, but not under JE (Corollary 5.5.3). Moreover, we identify the

quantitative relationship between asymptotic risk and the likelihood of missing in UM (The-

orem 5.5.4). Finally, we study why the missing mechanisms lead to different behaviors of

learning convergence rate.

5.5.1 Notations

We denote the asymptotic risk under the UM, JE and BTE models as R̂Dmiss(Φ,s), R̂D je(Φ,t) and

R̂Dbte(Φ,t,s), respectively. Their definitions can be found by simply replacing distribution D in

Equations (5.3) and (5.4) with the corresponding distributions. In UM, attributes in Φ are

completely missing if s = 1.0, which is equivalent as if the classifier only accesses attributes in

F − Φ (set subtraction). We denote a classifier that only accesses J ⊆ F as fJ. In such a case,

the asymptotic risk is denoted as

R̂D,J := lim
|S|→∞

Remp
S∼D

(f ∗
S,J), (5.7)

where f ∗
S,J is the empirically optimized linear classifier using loss l

(
fJ(x), y

)
:

f ∗
S,J := arg min

f∈Hl

{
Remp
S∼D

(fJ)
}
. (5.8)

78 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

5.5.2 Asymptotic Risk for Different Missing Mechanisms

Our proofs on asymptotic risk follow the road map shown in Figure 5.7. Specifically, we first

derive the accurate value and a lower bound of asymptotic risk when UM is introduced to

only one attribute (Lemma 5.5.1). This lemma also enables us to derive our major qualitative

(Theorem 5.5.2) and quantitative results (Theorem 5.5.4) about UM. These results are also

applicable to BTE with fixed t and varying s. As a corollary to Theorem 5.5.2, we also find

why JE does not change asymptotic risk (Corollary 5.5.3).

We start by considering UM and if Φ contains only one attribute, x j. We use {x− j} to denote

the set of attributes except for x j. In this case, Lemma 5.5.1 gives the exact asymptotic risk

and also a lower bound when Uniform Missing is introduced to only one attribute. Intuitively,

it indicates that the asymptotic risk equals to the minimum of weighted average risk of: (1).

totally ignoring attribute {x j}; (2). having full observation of {x j}.

Lemma 5.5.1

R̂Dmiss({x j},s) = min
f

{
(1 − s)RD(f) + sRD(f{x− j})

}
≥ (1 − s)R̂D + sR̂D,{x− j} (5.9)

Proof According to the Uniform Missing model, we could computeDmiss({x j}, s) = pmiss(x, y|{x j}, s)

fromD = p(x, y). If x j , 0,

pmiss
(
x− j, x j, y|{x j}, s

)
= (1 − s) · p(x− j, x j, y) (5.10)

and

pmiss
(
x− j, 0, y|{x j}, s

)
= s

∫
τ,0

p(x− j, τ, y) dτ + p(x− j, 0, y)

= s
∫
τ

p(x− j, τ, y) dτ + (1 − s)p(x− j, 0, y)

= sp(x− j, y) + (1 − s)p(x− j, 0, y). (5.11)

Using the above two equations, we can rewrite the risk ofDmiss({x j}, s) as:

RDmiss({x j},s)(f) =

∫
y

∫
x− j

∫
x j

l(f (x), y)pmiss(x, y|{x j}, s) dx dy

=

∫
y

∫
x− j

{ ∫
x j,0

l(f (x), y)pmiss(x, y|{x j}, s) dx j+

l
(
f (x− j, 0), y

)
pmiss

(
x− j, 0, y

∣∣∣{x j}, s
)}

dx− j dy. (5.12)

5.5. Theoretical Study for Experiment Observations 79

Using Eqs. (5.11, 5.10) we have

RDmiss({x j},s)(f) =

∫
y

∫
x− j

{
(1 − s)

∫
x j,0

l(f (x), y)p(x, y) dx j

+l
(
f (x− j, 0), y

)[
(1 − s)p(x− j, 0, y) + sp(x− j, y)

]}
dx− j dy

=

∫
y

∫
x− j

{
(1 − s)

∫
x j

l(f (x), y)p(x, y) + sl
(
f (x− j, 0), y

)
p(x− j, y)

}
dx− j dy

= (1 − s)RD(f) + sRD(f (x− j)). (5.13)

Hence the asymptotic empirical risk ofDmiss({x j}, s) is:

R̂Dmiss({x j},s) ≈ min
f

RDmiss({x j},s)(f) = min
f

{
(1 − s)RD(f) + sRD(f (x− j)

}
. (5.14)

Because minu{h(u) + g(u)} ≥ minu h(u) + minu g(u), we have

R̂Dmiss({x j},s) ≥ (1 − s)R̂D + sR̂D,{x− j}. (5.15)

Next, we use this lemma to find the reason why higher sparsity always increases asymptotic

risk under Uniform Missing (Observation 1 of our experiments).

Qualitative Results For the optimal classifier f ∗J that only accesses attribute set J, it is obvi-

ous that

R̂D ≤ RD(f ∗J) = R̂D,J. (5.16)

This actually explains the Observation 2, i.e., for BTE with fixed s, adding features also de-

creases asymptotic classification risk. In this particular BTE experiment, we have kept the

missing probability fixed and increased the expansion rate, this is equivalent to adding more

features while keeping the distribution of existing features unchanged.

When J = {x− j} we have R̂D ≤ R̂D,{x− j}, and with Eq. (5.9) we know that:

R̂Dmiss({x j},s) ≥ R̂D, (5.17)

which indicates that adding Uniform Missing to one attribute increases asymptotic risk. Notice

that

R̂Dmiss({x j},s) = min
f

{
RD(f) + s[RD(f{x− j}) − RD(f)]

}
. (5.18)

Thus when s1 ≤ s2, we have

R̂Dmiss({x j},s1) ≤ R̂Dmiss({x j},s2), (5.19)

80 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

which proves that when Uniform Missing is only introduced to one attribute, higher sparsity

leads to higher asymptotic risk.

If we apply this result one attribute at a time for all attributes in Φ, we can prove our

Observation 1 that higher sparsity leads to higher asymptotic classification risk for Uniform

Missing:

Theorem 5.5.2

R̂Dmiss(Φ,s1) ≤ R̂Dmiss(Φ,s2), (5.20)

where 0 ≤ s1 ≤ s2 ≤ 1.

Based on this theorem, the following corollary explains Observation 4 of our experiments,

i.e., JE does not change the asymptotic risk:

Corollary 5.5.3 For Just-1 Expansion, we have:

R̂D je(Φ,t) = R̂D. (5.21)

Proof Notice that diluting multiple attributes is equivalent to diluting each of the attributes

sequentially, one after another. We can thus assume Φ = {x j} and try to prove:

R̂D je({x j},t) = R̂D (5.22)

instead, without loss of generality.

Suppose f ∗(x) = w∗ · x is the minimizer of RD(f) among all linear classifiers Hl. We

construct a linear classifier f ′(x) for data in the diluted space as:

f ′(x) =

d∑
i=1,i, j

w∗i · xi +

t∑
q=1

w∗j · x jq , (5.23)

where x jq are attributes diluted from x j. By the definition of asymptotic risk and Uniform

Dilution, we have:

RD je({x j},t)(f ′) = RD(f ∗) = R̂D. (5.24)

Thus

R̂D ≥ min
f∈Hl

RD je({x j},t)(f) = R̂D je({x j},t). (5.25)

We next show that R̂D ≤ R̂D je({x j},t) is also true. Consider a special distribution: starting from

the original distribution D, we only copy the attributes in x j for t times as {x j1 , . . . , x jt} but do

5.5. Theoretical Study for Experiment Observations 81

not dilute them. We denote this resultant distribution as Dcopy({x j}, t). From the definition of

Just-1 Expansion, we know that

D je({x j}, t) = D′miss

(
{x j1 , . . . , x jt}, 1 −

1
t

)
, (5.26)

where D′ = Dcopy({x j}, t). In other words, Just-1 Expansion on an attribute is equivalent to

duplicate the attribute t times and apply Uniform Missing on the duplicated attributes. It is

obvious that duplicating attributes does not change asymptotic classification risk: R̂D = R̂D′ .

From Theorem 5.5.2, we now have:

R̂D = R̂D′ ≤ R̂D′miss({x j1 ,...,x jt },1−
1
t) = R̂D je({x j},t). (5.27)

The proof can be completed after combining Equations (5.25) and (5.27).

To summarize, the above results indicate that higher sparsity would surely lead to worse

classification performance for UM (and BTE with fixed t, varying s); while for JE, the in-

creased risk can be alleviated by having larger data, and asymptotically the risk will not be

affected by dilution. These two conclusions are consistent with the theoretical studies on naive

Bayes and AUC risk in the previous chapter. However, the analysis presented here can ap-

ply to discriminative linear classifiers and generalized loss functions, which has much broader

application.

Quantitative Results From a quantitative perspective, we use the next theorem to answer

how much the asymptotic risk would change, given the uniform missing likelihood s. Intu-

itively speaking, Eq. (5.28) entails that the asymptotic risk on Dmiss(Φ, s) equals to weighted

average risk of training over each attribute subspace F − J, where J is every possible subspace

of Φ, and each J gets picked with a probability controlled by a binomial distribution. Eq. (5.29)

further concludes that the optimized risk over Dmiss(Φ, s) is higher than the averaged risk of

separately training each subspace:

Theorem 5.5.4 ∀Φ ⊆ F, let K = |Φ|, the asymptotic risk for distribution under Uniform

MissingDmiss(Φ, s) satisfies

R̂Dmiss(Φ,s) = min
f

RDmiss(Φ,s)(f) = min
f

{
Ek∼Bin(K,s)EJ∈Pk(Φ)RD(fF−J)

}
(5.28)

≥ Ek∼Bin(K,s)
{
EJ∈Pk(Φ)R̂D,F−J

}
, (5.29)

where Bin(N, p) denotes a binomial distribution, Pk(Φ) denotes all subsets of set Φ that has k

elements.

82 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

Proof The basic idea of this proof is to apply Lemma 5.5.1 additively, one attribute at a time.

Consider the following process which introduces sparsity one attribute at a time:

Φ0 = ∅; Φk = Φk−1 ∪ {xk}; ΦK = Φ. (5.30)

Because of Eq. (5.13) in Lemma 5.5.1, we have :

RDmiss(Φk ,s)(f) = (1 − s)RDmiss(Φk−1,s)(f) + sRDmiss(Φk−1,s)(f{x−k}), (5.31)

where we can apply the expansion rule (5.13) again:

RDmiss(Φk−1,s)(f) = (1 − s)RDmiss(Φk−2,s)(f) + sRDmiss(Φk−2,s)(f{x−(k−1)}) (5.32)

and

RDmiss(Φk−1,s)(f{x−k}) = (1 − s)RDmiss(Φk−2,s)(f{x−k}) + sRDmiss(Φk−2,s)(f{x−(k,k−1)}). (5.33)

After applying the above two expansion rules sequentially for k = {K,K − 1, . . . , 2}, we arrive

at:

RD(Φ,s)(f) = (1 − s)KRD(f) +

K∑
k=1

∑
J∈Pk(Φ)

sk(1 − s)K−kRD(fF−J)

=

K∑
k=0

∑
J∈Pk(Φ)

sk(1 − s)K−kRD(fF−J). (5.34)

Notice that since |Pk(Φ)| =
(

K
k

)
, we have

RDmiss(Φ,s)(f) =

K∑
k=0

(
K
k

)
sk(1 − s)K−k

∑
J∈Pk(Φ) RD(fF−J)
|Pk(Φ)|

= Ek∼Bin(K,s)
{
EJ∈Pk(Φ)RD(fF−J)

}
, (5.35)

where we have used the fact that
(

N
x

)
px(1− p)N−x is the probability mass function of a binomial

distribution x ∼ Bin(N, p). Because RD(fF−J) is always positive for all f and J:

R̂Dmiss(Φ,s) = min
f

{
Ek∼Bin(K,s)EJ∈Pk(Φ)RD(fF−J)

}
≥ Ek∼Bin(K,s)EJ∈Pk(Φ) min

f
RD(fF−J)

= Ek∼Bin(K,s)
{
EJ∈Pk(Φ)R̂D,F−J

}
, (5.36)

Notice though we have specified the order of choosing attribute at each step k; however, the

result is irrelevant to this ordering.

The above theorem is useful for understanding how much the classification risk will change

as sparsity is reduced/increased with UM.

5.6. A Practical Guideline 83

5.5.3 Learning Convergence Rate

From the PAC theory [89] we know that the convergence rate of learning depends on the VC-

dimension 5 of the hypothesis space. If d is the number of attributes, the VC-dimension of a

linear classifier equals to d + 1, which is min([R2

∆2], d) + 1 for ∆-margin linear classifiers, where

R is the input radius. When we apply JE, the VC-dimension increases with d, which leads

to slower convergence rate (Observation 3 in our experiments). Meanwhile, we argue that

Uniform Missing does little affect on the VC-dimension,6 thus we do not observe change of

convergence rate in experiments of UM or BTE with fixed t. In the next subsection, we will

discuss how to apply our empirical and theoretical results in practice.

5.6 A Practical Guideline

After detailed empirical and theoretic studies, Table 5.1 summarizes our major conclusions

about learning behaviors with respect to different missing mechanisms, which can be used as

a practical reference. Compared to the results in the previous chapter, this table has a broader

application because it works for the whole family of discriminative linear classifiers on real-

valued data inputs.

Table 5.1: Asymptotic risk (R̂) and convergence rate (V) of discriminative linear classification.
Missing Mechanism Attributes ↑ Sparsity ↑ Notations

UM ns R̂ ↑ ↑ : increasing ↓ : decreasing

JE R̂→,V ↓ R̂→,V ↓ → : keep unchanged

BTE R̂ ↓ R̂ ↑ ns : not supported

To easily apply our results in real applications, we also provide a guideline to help make

decisions such as whether to collect more data instances or to reduce the current missing values.

The flowchart and guidelines are very similar to the one we presented in Section 4.8. Basically,

the first step is still to determine which expansion assumption (UM, BTE or JE) is likely to

hold using domain knowledge. Then we refer to each of the following detailed guidelines. See

the decision flowchart (Figure 5.8) and guidelines below:

5VC-dimension is not the only theoretic measurement for learning convergence rate, but it does provide a good

explanation for our experiment observations.
6As far as we know, Long and Servedio [57] have made an initial step in understanding how data sparsity

affects the margin of hyperplanes, but how sparsity affects the VC-dimension of a problem can still be an open

problem.

84 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

Figure 5.8: The decision flowchart of our practical guideline.

Guideline A. In the case of UM (or BTE with fixed t), higher sparsity always decreases

learning performance. This is true irrespective of data size. In practice, no matter how large

the sample size we have, reducing the sparsity rate will always help us build a better predictive

model. For example, we can apply certain strategies to increase the activeness of the users or to

interactively query the users for the missing values. If or not this is worthwhile depends on the

cost of reducing sparsity and the benefit of improved performance for the specific application.

Guideline B. This guideline is useful when we find clusters of similar items. In the case

of BTE, we know that adding more attributes (items) will help improve classification perfor-

mance. This motivates collecting more attributes when the extra effort is affordable.

In the case of JE, our results indicate that sparsity does not change the asymptotic risk, but

does affect the rate of convergence. In our experiments, when the data size is small, we observe

that sparsity causes classification performance to deteriorate. However, this deterioration can

be gradually compensated after seeing more training instances. In this case, we do not neces-

sarily need to reduce the sparsity of existing data by querying users to give more feedbacks. In

fact, we can actually gain better predictive performance as the user population grows.

In the case where we cannot have more data, or when obtaining more data is too expensive

5.7. Related Works 85

for a specific application, it is still useful to identify the similar items (latent item clusters)

and aggregate them together, e.g., combining The Lord of the Rings trilogy into one movie

in a movie recommendation dataset. This amounts to reducing the expansion rate t in our JE

experiments, which is helpful especially when data size is small, see Figure 5.6.

Guideline C. A real-world dataset is more likely to have more than one missing data mech-

anisms. Still takes a movie recommendation dataset as an example: for a certain group of users,

we may have none or too few feedbacks on some items (UM), meanwhile we may have clusters

of items which are very similar (BTE or JE) and can be aggregated. In this case, we need to

apply different strategies accordingly.

5.7 Related Works

Classifying data with missing or corrupted values has been a classic topic for the machine

learning and data mining community [17, 56]. In this section, we mainly review some of the

research efforts in this direction.

To deal with missing data in classification, imputation is a widely used strategy. The goal

of imputation is to reduce a problem with missing data to the simpler problem where all data

could be observed. Commonly used imputation strategies include unconditional and condi-

tional mean imputation, maximum likelihood and multiple imputation. Readers are referred

to Little [55] for a review. However, advanced imputation methods often involve inferring the

Bayesian probabilistic model of the observed and missing data, which is computationally inef-

ficient for large datasets. Besides, the effectiveness of these methods also rely on selecting the

right model or prior, which is also a complicated issue.

Apart from imputation, there is a large body of work devoted to learning with missing or

corrupted attributes without an explicit imputation step. For example, Pelckmans et al. [70]

have proposed to minimize an unbiased estimate of the empirical risk when missing values are

present, and proposes an ERM algorithm based on Least-Square SVM. Our study also relates

to the field of budgeted learning [59, 44, 7], where a learner only has access to a limited number

of attributes at training [28, 51] or testing [16], and the budget constraint can be either on a per-

instance or global basis. However, budgeted learners get the chance to actively choose which

attributes to observe, while for the problem we studied, the missingness of a dataset is fixed

and before learning.

Apart from these related works, our formulation of Uniform Missing (Section 5.3) also con-

nects to dropout learning with marginalized corrupted features [85, 58, 11, 10]. By artificially

86 Chapter 5. Convergence Behavior of Linear Classifiers on Large Sparse Data

corrupting attributes with some known distribution, dropout learning aims to train robust clas-

sifiers by minimizing the expected loss under corruption, thus to mimic the idealistic setting of

training with infinite (corrupted) examples [58]. However, the purpose of dropout learning is

not to study the convergence performance, since the corruption is only introduced to the limited

training dataset.

There are several recent studies [25, 29] that address the problem of classifying datasets

with missing values by using the low-rank assumption. The intuition is that large sparse data

might reside in a lower dimension as implicitly evidenced by the existence of prototypical users

in many user item datasets. With this assumption, Hazan et al. [29] have proposed a kernel-

based algorithm that could classify provably as well as the best classifier that has access to the

full data. It is very interesting to study how such kernel classifiers perform on large sparse

datasets. However, scalability and accuracy is always a trade-off among different choices of

classifiers. Complicated models such as kernels and matrix completion based methods usually

lead to higher time complexity, thus harder to evaluate with large scale data. In the next chapter,

we will address the scalability issue of applying the kernel method [29] for classifying large

sparse data.

5.8 Summary

There is a growing need for mining large sparse data. For such datasets, how sparsity system-

atically affects linear classification is an important data mining problem. We assume that data

sparsity is caused by certain missing mechanisms that can be modeled mathematically. The

previous chapter has studied how typical missing mechanisms affect the convergence of naive

Bayes classifiers with the AUC measure. In this chapter, we have greatly extended our study by

considering all linear classifiers and generalized loss functions. With real-world and synthetic

experiments, we observe different learning curve behaviors under different missing data mech-

anisms. We further prove all our observations theoretically. Our results provide a practical

guideline to determine if or when obtaining more data and/or obtaining missing values in the

data is worthwhile or not. This can be very valuable in applications of classifying large sparse

datasets.

Chapter 6

Scalable and Effective Methods for
Classifying Large Sparse Data

Classifying large sparse data is important in many real-world applications, such as to predict

users’ gender and profitability based on product ratings. Traditionally, such datasets are often

classified with linear models such as logistic regression and linear SVM for scalability, but the

predictive accuracy may suffer. Previous studies suggest that large sparse datasets often have

a low-rank structure. By finding the polynomial approximation to the low-rank space, Hazan

et al. [29] developed a kernel algorithm (KARMA) for classifying such datasets with a higher

accuracy. However, their algorithm does not scale well to large datasets. In this paper, we de-

velop novel scalable feature mappings to efficiently approximate the kernels used in KARMA.

In experiments, our method is comparable with KARMA on medium-sized data and scales

well to larger datasets that KARMA does not. Our method also significantly outperforms lin-

ear classifiers on datasets of various sizes. Overall, our method finds a good trade-off between

effectiveness (better accuracy) and scalability, which is very useful for classifying large sparse

data in practice.

6.1 Introduction

As we have described in earlier chapters, many user-item datasets in real-world applications are

extremely sparse and very high in dimensionality. For example, the Flickr dataset [8], as one

of the datasets used in this chapter has a feature dimensionality of d = 497, 470 and sparsity

s = 99.9994%. Again, classifying such large sparse data is important in many applications,

such as to predict users’ gender and profitability based on the product ratings.

87

88 Chapter 6. Scalable and Effective Methods for Classifying Large Sparse Data

Traditionally, linear models (such as logistic regression and linear SVM) are preferred in

such a learning task because of their efficiency in dealing with sparsity. Because of the high

feature dimensionality, many complicated models (such as neural network methods) may fail

to scale to large datasets. We have analyzed the learning behavior of linear models and data

sparsity in previous chapters. However, an important question that remains unanswered is that

whether a linear model is our best option for classifying the large sparse data in practice. It is

reasonable to worry that the predictive accuracy may suffer, because the linear models do not

have a rich learning capacity and hence cannot exploit the non-linear data structures.

In recent years, large sparse datasets have been the focus of collaborative filtering research.

Many popular algorithms in this field rely on the assumption that the dataset is of a low rank,

e.g., the Probabilistic Matrix Factorization models [67, 32, 31] we have extensively used in

previous chapters for generating synthetic data. This low-rank assumption is quite intuitive as

items/users can often be well-described by a small number of latent factors. For classification

tasks, there are also research efforts to take advantage of this low-rank property. For example,

Goldberg et al. [25] attempt to treat the classification label as an additional column to the input

feature matrix, and assume that the augmented matrix is of low rank. This formulation allows

the use of matrix completion algorithms to solve the classification problem. However, optimiz-

ing the matrix completion loss function is neither necessary nor sufficient for ensuring good

classification performance [29]. Meanwhile, this strategy is also hardly scalable to datasets of

a very large dimension.

More recently, Hazan et al. [29] have developed a classification framework for low-rank

and missing input data. Compared to Goldberg et al. [25], the new framework considers the

low-rank property of the input features only, which is more natural for practical classification

tasks. By using polynomial approximation of the low-rank input space, they demonstrate that

the framework is possible to compete with the oracle linear classifiers which have access to

the full input data (i.e., without missing) during training. Based on the framework, the au-

thors provide a learning algorithm, KARMA (Kernelized Algorithm for Risk-minimization

with Missing Attributes), which is a kernel classifier and is optimized with stochastic gradient

descent. While KARMA outperforms previous methods on medium-sized sparse data, it still

does not scale well to larger datasets because of the expensive kernel computation; see Section

6.2.2.

In this chapter, we develop a scalable learning algorithm based on KARMA [29] which

provides a better trade-off between scalability and classification accuracy. Instead of using

kernels which are computationally expensive, we propose to use feature mappings that satisfy

6.2. Classify Large Sparse Data 89

the following criteria:

• Compactness. The feature mapping can be computed and stored efficiently.

• Expressiveness. Similar to the KARMA kernels, the feature mapping should capture the

linear and also non-linear (low-rank) structures in the sparse data.

To achieve this goal, we first study the empirical performance of KARMA with different

degrees of polynomial approximation. We find that degree-two polynomial approximation

often leads to improved generalization performance in most cases, even though the KARMA

kernel supports approximation of an arbitrary degree. It represents a good tradeoff between

model expressiveness and complexity, while higher degree approximations often over-fit the

data. Based on this, we propose three novel feature mappings to efficiently approximate the

degree-two polynomials; see Section 6.3.

Our methods are evaluated on several real-world large sparse datasets. When classifying

medium-sized sparse data (with < 105 instances), our method can achieve similar accuracy to

that of the KARMA kernel classifier. For large scale classification problems where it is too

expensive to compute the KARMA kernel, our methods scale efficiently to datasets of 107 data

points with over 105 sparse features. Compared to the original KARMA algorithm, our method

is also much more efficient in terms of memory usage. Training such large scale datasets can be

done within several hours on a normal desktop computer. Most importantly, as our methods can

learn from both the linear and non-linear (low-rank) structures in the data, it leads to significant

accuracy improvement over the linear classifiers; see Section 6.4. For the above reasons, our

method is well-suited for classifying large sparse datasets in real-world applications.

The rest of the chapter is organized as follows. In Section 6.2, we describe the problem set-

ting and review previous works of classifying sparse data. In Section 6.3, we provide empirical

studies on the KARMA classifier with real-world large sparse datasets. We further describe

our novel feature mappings in details. Section 6.4 describes our experiments. Section 6.5

concludes this chapter.

6.2 Classify Large Sparse Data

In this section, we introduce the problem setting of classifying large sparse data. We review

several techniques of classifying datasets with missing values.

90 Chapter 6. Scalable and Effective Methods for Classifying Large Sparse Data

6.2.1 Problem Formulation

Suppose p(x, y) is the underlying distribution for a fully observed datasetSdense = {x(i), y(i)}i=1...N ,

where x = [x1, x2, . . . , xd] ∈ Rd is the input vector and y ∈ Y is a one-dimensional label. We

study the case where the majority of the feature values in x are missing. In other words, instead

of learning from the dataset Sdense, the learner is only given an extremely sparsified dataset

Ssparse = {xo
(i), y(i)}i=1...N where o = [o1, o2, . . . , od] ∈ [0, 1]d a is a d-dimensional observability

vector indicating whether each feature is missing or not.

Using ∗ to denote a missing value, we have that xo ∈ {R ∪ {∗}}
d, in particular,

(xo
(i)) j =

 x(i)
j if o(i)

j = 1

∗ if o(i)
j = 0

. (6.1)

Given a Lipschitz loss function l(·), the goal of classifying large sparse data is to learn from

Ssparse and induces a solution f ∗ that has small risk on future (sparse) data:

f ∗ = min
f∈H
E(xo,y)∼p(o,x,y)

[
l
(
f (xo), y

)]
. (6.2)

We denote the distribution p(o|x, y) as the missing data mechanism. As mentioned before,

according to the missing data theory [56], the dataset is MCAR (Missing Completely At Ran-

dom) when the observability does not depend on the feature values, i.e., p(o|x, y) = p(o);

MAR (Missing At Random) if observability only depends on the observed feature values

p(o|x, y) = p(o|xo, y), and MNAR (Missing Not At Random) in all other cases. The study

in this paper does not restrict the missing data mechanism. It is applicable to any of MAR,

MNAR or MCAR.

6.2.2 Previous Works

To classify data with missing values, one can simply skip the missing values if using a genera-

tive classifier such as naive Bayes. For (discriminative) linear classifiers such as support vector

machines, one of the common strategies is to use 0-imputation where all ∗s are replaced with

0s. For 0-imputation, we have

(xo
(i))0-imp = x(i) ◦ o(i), (6.3)

where ◦ denotes element-wise product.

Apart from imputation, Chechik et al. [9] propose to maximize the classifier margin com-

puted according to geometries of the non-missing dimensions of a particular instance, i.e.:

max
w

(
min

i

y(i)wx(i)

||w ◦ o(i)||

)
. (6.4)

6.2. Classify Large Sparse Data 91

However, this method has not been tested on the classification tasks of large sparse user-item

datasets where the sparsity could be extremely high. In the field of budgeted learning, there are

also much work on learning from data with a limited number of observed features [7, 28, 51, 6].

However, they all assume that the learner can actively choose which features to observe, which

is different from our setting.

The success of low-rank matrix factorization algorithms [79, 49] on many collaborative

filtering tasks suggest that many large sparse datasets have a low rank structure. To leverage

this low-rank property, Goldberg et al. [25] formulate missing data classification as a matrix

completion task where the class label is treated as an additional column to the sparse input

matrix. This formulation can handle multi-label classification, semi-supervised classification

and matrix completion at the same time. However, instead of optimizing the classification loss,

this model needs to optimize the matrix completion loss as an indirect step.

To address this challenge, Hazan et al. [29] have proposed a learning framework that only

assumes the input X is of low-rank. By studying the polynomial approximation of the linear

models in the low-rank data space, authors provide a learning framework for classifying low-

rank data that directly optimizes classification loss. Here we briefly review their results.

(Theorem 1 [29]) When distribution D is of low rank, let Γ =
∑γ

j=1 d j be the number of

unique sequences s of feature index {1, 2, . . . , d} with length 1 ≤ |s| ≤ γ. Using γ-degree

polynomial approximation to the inner product (w · x) in the low-rank space, authors have

proved that a certain feature mapping φγ : {R ∪ {∗}}d → RΓ can be constructed, such that there

exists a classifier v∗ in the ambient space RΓ which satisfies

E[l(v∗ · φγ(xo), y)] ≤ min
w
E[l(w · x, y)] + ε. (6.5)

In other words, the classifier v∗ can compete with the best linear classifier that accesses the full

data during training.

Instead of computing φγ directly, which is extremely high-dimensional, its inner product

can be computed using the following kernel trick (Theorem 2 [29]):

〈φγ(xo
(i1)), φγ(xo

(i2))〉 = kγ(xo
(i1), xo

(i2)) =
|o(i1) ∩ o(i2)|γ − 1
|o(i1) ∩ o(i2)| − 1

〈xo
(i1), xo

(i2)〉, (6.6)

where |o(i1) ∩ o(i2)| denotes the size of common non-missing features of xo
(i1) and xo

(i2). Based

on this kernel trick, Hazan et al. [29] further provide a kernelized stochastic gradient descent

learning algorithm, KARMA, to find the optimal solution in the space of φγ.

Restricted by the time and space complexity of kernel computation, KARMA is not scalable

on large sparse datasets. Meanwhile, notice that Eq. (6.6) is essentially a dot product kernel in

92 Chapter 6. Scalable and Effective Methods for Classifying Large Sparse Data

the ultra-high dimensional (Γ =
∑γ

j=1 d j) space. It is too expensive even to compute its random

feature approximation [73]. For example, to get N random features for a dot-product kernel,

we need to generate d × N random numbers [45].

Next, we describe our method which benefits from the theoretic results of Hazan et al.

[29] while skipping the kernel computation step. Our approach is motivated by the following

thought:

Given that the dimensionality of φγ is too high to compute directly, is it possible to approxi-

mate φγ using relatively lower dimensional feature mappings which we can compute and store

explicitly?

6.3 Approximate Feature Mappings

To approximate φγ, we first review its definition (Definition 4 [29]). Given γ, each dimension

of φγ encodes a unique sequence s of feature index {1, 2, . . . , d}, 1 ≤ |s| ≤ γ:

(φγ(xo))s =

 xsend if s ∈ o
0 else

, (6.7)

where send denotes the last element of s. We could see that when γ = 1, φ1(xo) = (xo)0-imp;

while φ2 is the concatenation of φ1(xo) and the co-occurrence information of each feature pair:

φ2(xo) = [φ1(xo), A(xo)], (6.8)

where the operator A : {R ∪ {∗}}d → Rd2
denotes the flattening of outer-product:

A(xo) := ((xo)0-imp ⊗ o)flatten, (6.9)

where ⊗ denotes the outer product of two vectors. Equation (6.9) encodes the second order

(co-occurrence) information among the non-missing features. For example, for data point

xo = [2 ∗ 3], we have φ2(xo) = [203202000303]. where φ2(xo)[1:3] = (xo)0-imp and φ2(xo)[4:12]

equals the flattening of [203] ⊗ [101]. It is obvious that larger γ provides higher learning

capacity but also increases the risk of over-fitting.

To see how the polynomial degree γ affects classification performance on sparse data, we

use several real-world benchmark datasets for empirical evaluation, which have been intro-

duced in Table 1.1. Again, the classification task is to classify user gender from movie rating

vectors (ml100k, ml1m1, ymovie2) or age according to grocery shopping records (tafeng3). We
1http://grouplens.org/datasets/movielens/
2http://webscope.sandbox.yahoo.com
3http://recsyswiki.com/wiki/Grocery shopping datasets

6.3. Approximate Feature Mappings 93

Table 6.1: Best test performance with different γ values. Each dataset is split as 4:1 for training

and testing. The last column indicates the percentage of hyper-parameters for which Algorithm

3 solved the Kernel SDCA [82] optimization problem.
Data γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 Solved

ml100k 0.8349 0.8459 0.8202 0.8183 0.8018 19/150

ml1m 0.8416 0.8501 0.8457 0.8407 0.8348 18/150

ymovie 0.7883 0.8383 0.8380 0.8353 0.8328 44/150

tafeng 0.7423 0.7680 0.7567 0.7391 0.7306 150/150

use hinge loss with l2-regularization in our experiments. For fast optimization, we use the

kernelized version of Stochastic Dual Coordinate Ascent [82]. We compute the generalization

performance under a series of parameter settings, i.e., γ = {1.0, 2.0, 3.0, 4.0, 5.0} and regular-

ization parameter C = {2−15, 2−14, . . . , 214, 215}. This is a parameter grid of 150 vertices. To

speedup the exhaustive grid search process, we use the approximate parameter path tracking

approach [5]. The basic idea is that when a dual solution α found by SDCA is optimal (with

a duality-gap less than ε) at regularization parameter C1, then C2
C1
α will also be an optimal so-

lution for the problem at C2 if C2 is in the vicinity of C1. The pseudo code in Algorithm 3

implements this idea for hyper-parameter selection of KARMA. With this approximate track-

ing procedure, we only need to solve the SDCA problems for a small number of grid vertices;

see the last column of Table 6.1. 4

An important observation from these real-world experiments is that γ = 2.0 gives signif-

icant performance boost compared to 0-imputation (γ = 1.0). Meanwhile, in many of our

experiments, γ > 2.0 leads to over-fitting rather than better generalization performance. While

it is too early to conclude that γ = 2.0 is always the best setting, it is promising that φ2 could

help improve classification accuracy in many tasks. Besides, as introduced in the previous sec-

tion, higher γ corresponds to a more complex model structure and thus is harder to compute

or approximate efficiently. Because of the above reasons, we focus on degree-two polynomial

approximation, which is promising to provide a good trade-off between model expressiveness

and complexity.

However, even φ2 still has d + d2 dimensions, which is intractable for large datasets, where

the feature dimension d > 105. Next we discuss several practical strategies to construct a

sufficiently compact feature mapping to approximate φ2.

Notice that the first d-dimensions in φ2 equals to the 0-imputation of the original feature

4the tafeng dataset is an exception, for which the approximate path does not lead to any speedup

94 Chapter 6. Scalable and Effective Methods for Classifying Large Sparse Data

Algorithm 3 Approximate Path Tracking to evaluate the Generalization Performance of

KARMA
Input: matrices A[·,·], G[·,·] for storing the solution and duality gap at each grid vertex;

Output: A[·,·], optimal solutions for all grid vertices

(γ′,C′)← (γmin,Cmin); /*the next grid vertex to solve*/

allconverged ← False

while not allconverged do
Compute KARMA Kernel Kγ′;

A[γ′,C′],G[γ′,C′] ← SolveKernelSDCA(Kγ′ , y,C′) until duality gap < ε/4;

for every (γ,C) in grid do
/*scan the whole grid with A[γ′,C′]*/

Update kernel to be Kγ;

α← A[γ′,C′] ·
C
C′ ;

g← EvaluateDualGap(α,Kγ, y,C)

if g > ε then
(γ′,C′)← (γ,C); /*an unconverged solution*/

Break;

else if g < G[γ,C] then(
G[γ,C], A[γ,C]

)
← (g, α); /*update the solution*/

end if
end for
allconverged ← True;

end while
return A

vector, which needs no computation and is tractable for storage. We only need to approximate

the d2 dimensions that encode the second-order terms in the polynomial (feature co-occurrence

information). We propose the following strategies.

6.3.1 Density-based strategy

For many real-world large sparse data, an important observation is that density often follows

a long-tailed distribution, so that a small fraction of features contribute the majority of non-

missing values. Naturally, a large number of co-occurrence information would be contributed

by a small number of dense features only.

6.3. Approximate Feature Mappings 95

Let F ⊆ { j1, j2, . . . , jk} be the top-k features in terms of data density. We propose to ap-

proximate the second order terms A(·) in φ2(·) by only representing the co-occurrence among

the k dense features, i.e., we approximate φ2 (see Eq.(6.8)) by

φ̃2(xo) = [(xo)0-imp, A((xo)F)]

= [(xo)0-imp
−F , φ2

(
(xo)F

)
], (6.10)

where −F denotes features except for F, and φ2
(
(xo)F

)
= [(xo)0-imp

F , A((xo)F)] is the degree-two

polynomial approximation to the low rank space F. The intuition is that we care more about

the low-rankness in the denser features because learning from the extremely sparse features

may not be worthwhile in terms of information gain v.s. computational cost. The procedure is

also described in Algorithm 4.5

Algorithm 4 Feature Mapping with Density-based Strategy
Input: xo, the original input vector (sparse);

Input: k, the dimensionality of the selected subspace;

Select top-k dense features to form the subspace F;

Compute A((xo)F) and φ̃2(xo) using (6.9) and (6.10);

Use φ̃2(xo) to train / test with a linear classifier;

According to Theorem 1 and 2 of [29], the classifier trained with φ̃2(xo) can still compete

with the semi-oracle classifier that can observe all feature values in the subspace F without any

missing. (the subspace of the less dense features −F are handled with 0-imputation.)

With this strategy, the overall dimension of φ̃2 will be d+k2 and can be computed efficiently

in O(k2
nnz) time using simple outer product operations, where knnz denotes the average number

of non-zeroes in the selected k features. The memory consumption will be O(dnnz +k2
nnz). When

k � d, it is possible to directly compute and store φ̃2.

6.3.2 Feature-selection strategy

Alternatively, we could also select the subspace F using feature selection algorithms. In our

current implementation, we simply rank the feature importance according to |w j|, where w is

the weight vector of a pre-trained linear SVM. More advanced feature selection algorithm is

possible to lead to better performance, which can be studied in future work.

5The algorithm for the other two feature-mapping strategies are very similar. We omit for brevity.

96 Chapter 6. Scalable and Effective Methods for Classifying Large Sparse Data

6.3.3 Clustering-based strategy

Finally, instead of selecting a small subspace for low-rank learning, we could also aggregate the

sparse and high dimensional data space to form the more compact subspace. In this clustering-

based strategy, we use K-means clustering [43] to aggregate the d features into k feature clus-

ters, which forms the space F of cluster-level features. We set the value of each cluster-level

feature as the mean of its member features; see Figure 6.1. This method is also intuitive be-

cause latent item clusters do exist in many large sparse data (e.g., different episodes of a TV

opera), several previous methods [53, 91, 66] have successfully exploited this observation.

With this strategy, F is no longer a subspace of the original feature space. However, same

as the previous two strategies, using φ̃2 (Eq. (6.10)) can still take advantage of the low-rank

structure of space F according to the framework of [29].

Figure 6.1: A graphical illustration of the clustering-based feature mapping strategy. ∗ denotes

missing. We set the value of each cluster-level feature as the mean of its member features.

6.3.4 Combining feature mapping strategies

The aforementioned strategies use feature selection or clustering to form a low-dimensional

space F and approximate the second-order information A(xo) with A((xo)F). It is possible

that the space formed by different strategies can capture complementary information. For this

reason, we also propose to combine different feature mapping strategies, which could be im-

plemented simply by concatenating their corresponding subspaces when computing F. In our

experiments, we will show that combining the density-based strategy with the clustering-based

strategy helps improve classification performance.

In the next section, we compare the predictive performance of these different strategies.

6.4. Experiments 97

6.4 Experiments

We use the large sparse real-world datasets described previously in Table 1.1. For simplicity,

all our datasets address binary classification. Apart from the ymovie, ml-1m, ml-100k and

tafeng datasets introduced in the previous section, we use book [93] dataset to predict user age

from highly-sparse book rating records. For the epinions [65] dataset, we classify each user as

trustworthy or not based on the rating records. For the flickr [8] dataset, we classify whether a

photo is heavily commented according to the likes given by a large population of users. Apart

from the whole flickr data, we also populate the flickr-5m and flickr-500k data by randomly

subsampling 5 million and 500, 000 data instances, respectively.

To deal with imbalanced data, we use under-sampling to reduce the over-represented class.

We split each balanced dataset into 6:1:3 as training, validation and test set. The validation

set is used to tune the best hyper-parameters. For the regularization parameter C, we use

grid search within [10−5, 10−4, . . . , 104, 105] and we tune the best γ within [1, 2, 3, 4, 5]. We

repeat the whole process (undersampling, splitting, training, parameter-tuning and testing) for

10 times with different random seeds.

We evaluate the classification accuracy of the feature mappings proposed in Section 6.3,

which include DenseFM, WeightFM, ClusterFM and a mixed strategy (MixFM) that combines

DenseFM and ClusterFM6. For the baseline methods, we consider linear classification with

0-imputation, geometric margin adjustment (geom) [9] and the KARMA kernel classifier [29].

All our experiments are carried on a desktop computer with 24 GB of memory. Since the

feature selection strategies are simple and efficient, we try to make k as large as possible so

long as it fits into the memory. For DenseFM and WeightFM strategies we select the dimension

of F to be k = 40000. For the ClusterFM strategy the number of clusters is set as 1000 for

efficient clustering.

With these settings, the memory consumption for each method is given in Table 6.3. For

KARMA, we need to store the kernel matrix which is O(n2). For other methods, we only need

to store the non-zero entries in the feature or feature mapping vectors. It is obvious that it is

impractical to compute and store the KARMA kernel for the larger datasets, while the proposed

feature mappings are much more memory-saving.

All classifiers are implemented with the SDCA optimizer [82], and the duality gap ε < 10−4

is used as the stopping condition. For smaller datasets, we evaluate all classification methods

mentioned above. For datasets with more than 105 instances, it is computationally expensive

6Notice that we have also tried combining ClusterFM and WeightFM, the accuracy and time/space complexity

is similar.

98 Chapter 6. Scalable and Effective Methods for Classifying Large Sparse Data

to compute the KARMA kernel matrices. Thus we do not evaluate KARMA classifier on

those large-scale data. The averaged test accuracy7 is shown in Table 6.2. For the KARMA

experiments, we only record the best performance among different settings of γ. We have

several experiment observations:

Observation 1. On the small to medium-sized data (ml100k, ml1m, ymovie and tafeng)

where it is possible to compute the KARMA kernel, the proposed feature mapping strategies

can achieve similar performance to that of KARMA. For large scale classification tasks where

we cannot compute the KARMA kernel matrix (book, epinions, flickr), all our feature mapping

strategies significantly outperform 0-imputation and the Geom algorithm, especially for the

MixFM strategy.

Table 6.2: Testing accuracy on different large sparse data. Each dataset is split as 6:1:3 for

training, validation and testing. The best accuracy is in bold while the second best is marked

with *. Underlined results indicate significantly better than linear classification under Mc-

Nemar’s test (p = 0.05). We have not evaluated KARMA on datasets with more than 105

instances, because it is too expensive to store the kernel matrix.
Datasets 0-imp Geom KARMA DenseFM WeightFM ClusterFM MixFM

ml-100k 0.7806 0.7667 0.7885* 0.7739 0.7752 0.7909 0.7703

ml-1m 0.8150 0.8156 0.8219 0.8216* 0.8146 0.8160 0.8161

ymovie 0.7736 0.7484 0.7976 0.7913 0.7826 0.7732 0.7956*

tafeng 0.7158 0.7038 0.7333 0.7390* 0.7391 0.7192 0.7354

book 0.7276 0.6881 0.7355 0.7308 0.7297 0.7309 0.7337*

epinions 0.7211 0.6960 - 0.7308 0.7301 0.7548* 0.7664
flickr-500k 0.6645 0.6278 - 0.6657 0.6659 0.6873* 0.6937
flickr-5m 0.7090 0.6455 - 0.7231* 0.7209* 0.7191 0.7447
flickr-all 0.7164 0.6477 - 0.7480* 0.7437 0.7263 0.7659

Observation 2. Comparing different feature mapping methods, we notice that DenseFM

and WeightFM have very similar behavior in terms of classification accuracy, runtime and

space complexity. This is no surprise, as both of them select subsets of features to form the

low dimensional space. Meanwhile, ClusterFM does behave differently. Finally, MixFM leads

to the best performance especially on the larger datasets. This indicates that DenseFM and

ClusterFM do provide complementary information. For this reason, we recommend MixFM to
7Notice that the accuracy for KARMA on the smaller datasets is different from the results in Table 6.1. The

reason is that in Table 6.1, we do not need a held-out set for tuning the hyper-parameter, so we split each data into

1 : 4 training and testing, instead of 6 : 1 : 3.

6.4. Experiments 99

be the first-choice in real-world applications.

Observation 3. As shown in Table 6.3, the proposed feature mapping strategies need far

less memory than the KARMA kernels, which makes them tractable using a normal desktop

computer even for the largest dataset flickr-all with more than ten million instances.

Table 6.3: Memory consumption (in millions of nonzero data entries) on the large datasets.

For KARMA, we need to store the kernel matrices. For other methods, we only need to store

the non-zeroes in the feature (mapping) vectors.
Datasets 0-imp & Geom KARMA DenseFM WeightFM ClusterFM MixFM

book 0.25 604.9 53.6 10.9 1.7 55.3

epinions 0.95 2178.6 71.5 41.5 10.5 82

flickr-500k 1.8 1.15 × 105 40.0 39.5 4.7 44.7

flickr-5m 17.7 1.15 × 107 358.4 369.4 46.1 404.5

flickr-all 31.5 3.6 × 107 634.5 654.1 81.9 716.4

Observation 4. Notice that all methods can be solved with stochastic linear optimizer such

as SDCA and SGD which scales linearly with the number of non-zeroes in a feature or feature

mapping vector. Compared to 0-imputation, the proposed methods do need the extra time to

pre-compute the feature mappings. However, as can be seen in Table 6.4, the proposed methods

are able to train with the largest dataset within several hours, which is practical.

Table 6.4: Training time in seconds (including feature mapping computation). The proposed

methods can handle the flickr-all dataset (more than 107 instances) within several hours of

training.
Datasets 0-imp Geom KARMA DenseFM WeightFM ClusterFM MixFM

book 0.1 0.1 - 30 30 280 310

epinions 0.3 0.3 - 90 70 1.0 × 103 1.0 × 103

flickr-500k 2 1 - 190 200 3.5 × 103 3.6 × 103

flickr-5m 25 12 - 1.9 × 103 2.0 × 103 5.3 × 103 6.4 × 103

flickr-all 46 33 - 3.1 × 103 3.2 × 103 7.0 × 103 8.2 × 103

Observation 5. Comparing different feature mapping strategies, the ClusterFM method

uses a much smaller k value than the DenseFM and WeightFM while achieves comparable

results. This indicates that the subspace constructed from clustering is more informative than

simply selecting subsets of features. However, ClusterFM requires a clustering step which

involves a considerable amount of computation.

100 Chapter 6. Scalable and Effective Methods for Classifying Large Sparse Data

To summarize, the above observations indicate that the proposed feature mappings are effi-

cient and effective for classifying large sparse datasets in practice.

6.5 Conclusion

In this chapter, we have developed an efficient and effective method for classifying large sparse

datasets. Our method efficiently approximates the KARMA kernel [29] which can learn from

the low-rank structure of a large sparse dataset but does not scale well to very large datasets. To

achieve this, we first analyze the empirical performance of KARMA, and find that the degree-

two polynomials often lead to superior performance. We then propose several novel scalable

feature mappings to efficiently approximate the degree-two polynomials. In experiments, our

method is comparable with KARMA on medium-sized data and scales well to larger datasets

that KARMA does not. Our method also significantly outperforms linear classifiers on datasets

of various sizes. Overall, our method is well-suited for classifying large sparse datasets in real

world applications.

Chapter 7

Conclusion

Large and sparse datasets are pervasive in this big data era. Classifying these data effectively

and efficiently is very important in many applications. In this thesis, we have studied how data

sparsity would affect the convergence behavior of classification and how we could learn the

non-linear structure in the large sparse data efficiently. In this final chapter, we give concluding

remarks and indicate possible future directions.

7.1 Summary of research questions and results

To summarize, this thesis has addressed two important questions related to classifying sparse

data in scale, which were proposed at the beginning of this thesis.

1. Sparse data and convergence behavior. How different properties of a dataset, such as

the sparsity rate and the mechanism of missing data systematically affect convergence behavior

of classification?

This is the major topic of this thesis. In Chapter 3, we have focused on the data sparsity

issue in linear SVM, which is a popular algorithm for classifying large sparse datasets. In

order to understand how data sparsity affects the convergence behavior of linear SVM, we

have proposed a novel approach to generate large and sparse data from real-world datasets

using statistical inference and the data sampling process of the PAC framework. This method

allows us to have arbitrarily large synthetic data efficiently and also enables us to study the

learning behavior systematically. From the experiments we have observed: 1. Higher sparsity

will lead to larger asymptotic generalization error rate, while convergence rate of learning is

almost unchanged for different sparsity. We have also proved these findings theoretically.

We then move on to study the convergence behavior of naive Bayes on large sparse datasets.

101

102 Chapter 7. Conclusion

Naive Bayes has good scalability on large sparse datasets and sometimes even outperform lin-

ear classifiers. In Chapter 4, we continue to use generated datasets to explore how different

mechanisms of missing data, data sparsity and the number of attributes systematically affect the

AUC learning curve of naive Bayes. We have considered several realistic Missing At Random

mechanisms for binary large and sparse data. We propose the corresponding data generation

methods using uniform dilution (BTE, JE) and also probabilistic modeling (GPMF). We have

generated very large synthetic datasets for each missing mechanism and study the entire learn-

ing curve behavior when systematically changing data sparsity and the attribute dimension.

Several useful observations have been made, and we have provided in-depth theoretic studies

for those observations. We have also provided an intuitive decision flowchart and a guideline

on how our results could be used in practice.

In Chapter 5 of the thesis, we further extend our study on naive Bayes model by considering

all discriminative linear classifiers and generalized loss functions. Moreover, we also extend

the missing data mechanisms and data generation methods from binary input to real-valued in-

put. With real-world and synthetic experiments, we have observed several meaningful learning

curve behaviors under different missing data mechanisms. We further prove all our observa-

tions theoretically. Our results provide a practical guideline to determine if or when obtaining

more data and/or obtaining missing values in the data is worthwhile or not. This can be very

valuable in applications of classifying large sparse datasets.

2. Handling sparse data with non-linear model. How to efficiently learn non-linear data

structures when classifying large sparse data?

As the second topic of this thesis, we consider how to build a better model to improve the

classification performance of a given large sparse dataset. Traditionally, we often use linear

models to classify these large-scale and high-dimensional datasets for the sake of scalability.

However, the predictive accuracy may suffer because of linear classifiers cannot capture the

non-linearity in the data. Previous studies of the collaborative filtering problem suggest that

large sparse datasets often have a low-rank structure. To exploit this low-rankness and achieve a

higher classification accuracy, Hazan et al. [29] have developed a kernel algorithm (KARMA)

for classifying such datasets by finding the polynomial approximation to the low rank space.

However, KARMA does not scale well to large datasets because of the expensive kernel com-

putation. In Chapter 6 of this thesis, we have developed novel scalable feature mappings to

efficiently approximate the kernels used in KARMA. In experiments, our method is compa-

rable with KARMA on medium-sized data and scales well to larger datasets that KARMA

does not. Our method also significantly outperforms linear classifiers on datasets of various

7.2. Suggestions of future directions 103

sizes. Overall, our method finds a good trade-off between effectiveness (better accuracy) and

scalability, which can be useful for classifying large sparse data in practice.

7.2 Suggestions of future directions

Finally, we identify possible future research related to classifying large sparse data.

• Active Learning for classifying large sparse data. Our studies (Chapter 3-5 of this the-

sis) indicate that reducing sparsity often helps in learning large sparse data. However, in

real-world applications, either data collection or imputation comes at a cost. It is thus

important to know which data value to collect/impute to be most efficient, for example,

when dealing with the cold-start users who have very few feedbacks, the recommenda-

tion system has to decide which item query to send. Previous work [42, 24] has applied

active learning to classification with partially observed data. However, for large and

sparse data which are high-dimensional, we may have new challenges for applying such

active learning methods, e.g., for each user the number of candidate values to be queried

is huge but many of them are invalid since users only have limited knowledge. Recent

studies of online Matrix Factorization [92, 33] have demonstrated effective and efficient

ways of interactively and sequentially query the missing values to improve recommen-

dation. It is interesting to explore whether similar strategies could be used to improve

classification accuracy.

• Kernel Methods for classifying large sparse data. Chapter 6 of our thesis has proposed

efficient algorithm of learning low-rank structures in the data. Meanwhile, it is also

useful to explore whether learning other non-linear structures would further improve

accuracy of large sparse data classification. For example, the commonly used non-linear

kernels such as Gaussian kernel, Laplacian kernel and so on. Recent studies [13, 35] have

shown that it is possible to scale-up kernel methods to datasets with a large number of

samples. It is interesting to study whether these methods help improve the classification

of large sparse data. However, the scalability of these methods is still limited by the

very high feature dimensionality. It is meaningful to find new kernel approximation

algorithms to scale only with the number of non-missing features rather than the total

number of feature dimensions.

Bibliography

[1] Peter Bartlett and John Shawe-Taylor. Generalization performance of support vector ma-

chines and other pattern classifiers. Advances in Kernel Methods¢Support Vector Learn-

ing, pages 43–54, 1999.

[2] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Large margin classifiers: Convex

loss, low noise, and convergence rates. In NIPS, 2003.

[3] James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD cup and

workshop, volume 2007, page 35, 2007.

[4] Pablo Bermejo, José A Gámez, and José M Puerta. Speeding up incremental wrapper

feature subset selection with naive bayes classifier. Knowledge-Based Systems, 55:140–

147, 2014.

[5] Katharina Blechschmidt, Joachim Giesen, and Soeren Laue. Tracking approximate solu-

tions of parameterized optimization problems over multi-dimensional (hyper-) parameter

domains. In Proceedings of The 32nd International Conference on Machine Learning,

pages 438–447, 2015.

[6] Brian Bullins, Elad Hazan, and Tomer Koren. The limits of learning with missing data.

In Advances in Neural Information Processing Systems, pages 3495–3503, 2016.

[7] Nicolo Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. Efficient learning with par-

tially observed attributes. The Journal of Machine Learning Research (JMLR), 12:2857–

2878, 2011.

[8] Meeyoung Cha, Alan Mislove, and Krishna P Gummadi. A measurement-driven anal-

ysis of information propagation in the flickr social network. In Proceedings of the 18th

international conference on World Wide Web (WWW), pages 721–730. ACM, 2009.

104

BIBLIOGRAPHY 105

[9] Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, and Daphne Koller. Max-margin

classification of data with absent features. The Journal of Machine Learning Research

(JMLR), 9:1–21, 2008.

[10] Ning Chen, Jun Zhu, Jianfei Chen, and Ting Chen. Dropout training for svms with data

augmentation. arXiv preprint arXiv:1508.02268, 2015.

[11] Ning Chen, Jun Zhu, Jianfei Chen, and Bo Zhang. Dropout training for support vector

machines. In Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI), 2014.

[12] Corinna Cortes and Mehryar Mohri. Auc optimization vs. error rate minimization. Ad-

vances in neural information processing systems, 16(16):313–320, 2004.

[13] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and

Le Song. Scalable kernel methods via doubly stochastic gradients. In Advances in Neural

Information Processing Systems, pages 3041–3049, 2014.

[14] Brian Dalessandro, Daizhuo Chen, Troy Raeder, Claudia Perlich, Melinda Han Williams,

and Foster Provost. Scalable hands-free transfer learning for online advertising. In Pro-

ceedings of the 20th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 1573–1582. ACM, 2014.

[15] Sofie De Cnudde, Julie Moeyersoms, Marija Stankova, Ellen Tobback, Vinayak Javaly,

David Martens, et al. Who cares about your facebook friends? credit scoring for microfi-

nance. Technical report, 2015.

[16] Ofer Dekel, Ohad Shamir, and Lin Xiao. Learning to classify with missing and corrupted

features. Machine learning, 81(2):149–178, 2010.

[17] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the royal statistical society. Series B

(methodological), pages 1–38, 1977.

[18] Pedro Domingos and Michael Pazzani. On the optimality of the simple bayesian classifier

under zero-one loss. Machine learning, 29(2-3):103–130, 1997.

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online

learning and stochastic optimization. The Journal of Machine Learning Research (JMLR),

12:2121–2159, 2011.

106 BIBLIOGRAPHY

[20] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley &

Sons, 2012.

[21] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Lib-

linear: A library for large linear classification. The Journal of Machine Learning Research

(JMLR), 9:1871–1874, 2008.

[22] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874,

2006.

[23] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learn-

ing, volume 1. Springer series in statistics New York, 2001.

[24] Tianshi Gao and Daphne Koller. Active classification based on value of classifier. In

Advances in Neural Information Processing Systems, pages 1062–1070, 2011.

[25] Andrew Goldberg, Ben Recht, Junming Xu, Robert Nowak, and Xiaojin Zhu. Trans-

duction with matrix completion: Three birds with one stone. In Advances in neural

information processing systems (NIPS), pages 757–765, 2010.

[26] David J Hand and Keming Yu. Idiot’s bayes not so stupid after all? International statis-

tical review, 69(3):385–398, 2001.

[27] James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver

operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[28] Elad Hazan and Tomer Koren. Linear regression with limited observation. In Proceedings

of the 29th International Conference on Machine Learning (ICML), pages 807–814, 2012.

[29] Elad Hazan, Roi Livni, and Yishay Mansour. Classification with low rank and missing

data. Proceedings of the 32nd International Conference on Machine Learning (ICML-

15), pages 257–266, 2015.

[30] Daniel F Heitjan and Srabashi Basu. Distinguishing missing at random and missing

completely at random. The American Statistician, 50(3):207–213, 1996.

[31] Jose M Hernandez-lobato, Neil Houlsby, and Zoubin Ghahramani. Probabilistic matrix

factorization with non-random missing data. In Proceedings of the 31st International

Conference on Machine Learning (ICML), pages 1512–1520, 2014.

BIBLIOGRAPHY 107

[32] Jose M Hernandez-lobato, Neil Houlsby, and Zoubin Ghahramani. Stochastic inference

for scalable probabilistic modeling of binary matrices. In Proceedings of the 31st Inter-

national Conference on Machine Learning (ICML), pages 379–387, 2014.

[33] Neil Houlsby, Jose M Hernandez-lobato, and Zoubin Ghahramani. Cold-start active

learning with robust ordinal matrix factorization. In Proceedings of the 31st International

Conference on Machine Learning (ICML), 2014.

[34] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam

Sundararajan. A dual coordinate descent method for large-scale linear svm. In Proceed-

ings of the 25th International Conference on Machine Learning (ICML), pages 408–415.

ACM, 2008.

[35] Cho-Jui Hsieh, Si Si, and Inderjit Dhillon. A divide-and-conquer solver for kernel support

vector machines. In International Conference on Machine Learning, pages 566–574,

2014.

[36] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback

datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on,

pages 263–272. Ieee, 2008.

[37] Kashif Javed, Haroon Atique Babri, and Mehreen Saeed. Feature selection based on class-

dependent densities for high-dimensional binary data. Knowledge and Data Engineering,

IEEE Transactions on, 24(3):465–477, 2012.

[38] Luis O Jimenez and David A Landgrebe. Supervised classification in high-dimensional

space: geometrical, statistical, and asymptotical properties of multivariate data. Sys-

tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

28(1):39–54, 1998.

[39] George H John, Ron Kohavi, Karl Pfleger, et al. Irrelevant features and the subset selec-

tion problem. In ICML, volume 94, pages 121–129, 1994.

[40] Enric Junqué de Fortuny, David Martens, and Foster Provost. Predictive modeling with

big data: Is bigger really better? Big Data, 1(4):215–226, 2013.

[41] Enric Junqué de Fortuny, Marija Stankova, Julie Moeyersoms, Bart Minnaert, Foster

Provost, and David Martens. Corporate residence fraud detection. In Proceedings of the

108 BIBLIOGRAPHY

20th ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 1650–1659. ACM, 2014.

[42] Pallika Kanani and Prem Melville. Prediction-time active feature-value acquisition for

cost-effective customer targeting. 2008.

[43] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silver-

man, and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and imple-

mentation. IEEE transactions on pattern analysis and machine intelligence, 24(7):881–

892, 2002.

[44] Aloak Kapoor and Russell Greiner. Learning and classifying under hard budgets. In Ma-

chine Learning: ECML 2005, volume 3720, pages 170–181. Springer Berlin Heidelberg,

2005.

[45] Purushottam Kar and Harish Karnick. Random feature maps for dot product kernels. In

Proceedings of The 15th International Conference on Artificial Intelligence and Statis-

tics(AISTATS), 2012.

[46] Dohyun Kim and Bong-Jin Yum. Collaborative filtering based on iterative principal com-

ponent analysis. Expert Systems with Applications, 28(4):823–830, 2005.

[47] Sang-Bum Kim, Kyoung-Soo Han, Hae-Chang Rim, and Sung Hyon Myaeng. Some

effective techniques for naive bayes text classification. Knowledge and Data Engineering,

IEEE Transactions on, 18(11):1457–1466, 2006.

[48] Daphne Koller and Mehran Sahami. Toward optimal feature selection. In In 13th Inter-

national Conference on Machine Learning, 1996.

[49] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for rec-

ommender systems. Computer, (8):30–37, 2009.

[50] Michal Kosinski, David Stillwell, and Thore Graepel. Private traits and attributes are

predictable from digital records of human behavior. Proceedings of the National Academy

of Sciences, 110(15):5802–5805, 2013.

[51] Doron Kukliansky and Ohad Shamir. Attribute efficient linear regression with

distribution-dependent sampling. In Proceedings of the 32nd International Conference

on Machine Learning (ICML), pages 153–161, 2015.

BIBLIOGRAPHY 109

[52] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[53] Bin Li, Qiang Yang, and Xiangyang Xue. Transfer learning for collaborative filtering

via a rating-matrix generative model. In Proceedings of the 26th Annual International

Conference on Machine Learning, pages 617–624. ACM, 2009.

[54] Xiang Li, Huaimin Wang, Bin Gu, and Charles X Ling. Data sparseness in linear svm.

In Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI),

pages 3628–3634. AAAI Press, 2015.

[55] Roderick JA Little. Regression with missing x’s: a review. Journal of the American

Statistical Association (JASA), 87(420):1227–1237, 1992.

[56] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data. John

Wiley & Sons, 2014.

[57] Philip M Long and Rocco A Servedio. Low-weight halfspaces for sparse boolean vectors.

In Proceedings of the 4th conference on Innovations in Theoretical Computer Science,

pages 21–36. ACM, 2013.

[58] Laurens Maaten, Minmin Chen, Stephen Tyree, and Kilian Q Weinberger. Learning with

marginalized corrupted features. In Proceedings of the 30th International Conference on

Machine Learning (ICML), pages 410–418, 2013.

[59] Omid Madani, Daniel J Lizotte, and Russell Greiner. Active model selection. In Pro-

ceedings of the 20th conference on Uncertainty in Artificial Intelligence (UAI), pages

357–365. AUAI Press, 2004.

[60] Benjamin M. Marlin, Richard S. Zemel, Sam Roweis, and Malcolm Slaney. Collaborative

filtering and the missing at random assumption. In In Proceedings of the 23rd Conference

on Uncertainty in Artificial Intelligence (UAI), 2007.

[61] David Martens, Foster Provost, and Jessica Clark. Mining massive fine-grained behavior

data to improve predictive analytics. MIS quarterly, 40(4):869–888, 2016.

[62] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive bayes

text classification. In AAAI-98 workshop on learning for text categorization, volume 752,

pages 41–48, 1998.

110 BIBLIOGRAPHY

[63] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian

Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. Ad click predic-

tion: a view from the trenches. In Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1222–1230. ACM, 2013.

[64] Edward Meeds, Zoubin Ghahramani, Radford M Neal, and Sam T Roweis. Modeling

dyadic data with binary latent factors. In Advances in neural information processing

systems, pages 977–984, 2006.

[65] Simon Meyffret, Emmanuel Guillot, Lionel Mdini, and Frdrique Laforest. RED: a Rich

Epinions Dataset for Recommender Systems. Technical Report RR-LIRIS-2012-014,

LIRIS UMR 5205 CNRS/INSA de Lyon/Universit Claude Bernard Lyon 1/Universit Lu-

mire Lyon 2/cole Centrale de Lyon, October 2012.

[66] Nima Mirbakhsh and Charles X Ling. Clustering-based factorized collaborative filtering.

In Proceedings of the 7th ACM conference on Recommender systems, pages 315–318.

ACM, 2013.

[67] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In Advances

in neural information processing systems (NIPS), pages 1257–1264, 2007.

[68] Shakir Mohamed. Generalised Bayesian matrix factorisation models. PhD thesis, Uni-

versity of Cambridge, 2011.

[69] Andrew Y Ng and Michael I Jordan. On discriminative vs. generative classifiers: A com-

parison of logistic regression and naive bayes. Advances in neural information processing

systems, 2:841–848, 2002.

[70] Kristiaan Pelckmans, Jos De Brabanter, Johan AK Suykens, and Bart De Moor. Handling

missing values in support vector machine classifiers. Neural Networks, 18(5):684–692,

2005.

[71] Anita Prinzie and Dirk Van den Poel. Random multiclass classification: Generalizing

random forests to random mnl and random nb. In Database and Expert Systems Applica-

tions, pages 349–358. Springer, 2007.

[72] Foster J Provost, Tom Fawcett, et al. Analysis and visualization of classifier performance:

comparison under imprecise class and cost distributions. In KDD, volume 97, pages 43–

48, 1997.

BIBLIOGRAPHY 111

[73] Ali Rahimi, Benjamin Recht, et al. Random features for large-scale kernel machines. In

Advances in Neural Information Processing Systems, 2007.

[74] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:

Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth

conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.

[75] Jason D Rennie, Lawrence Shih, Jaime Teevan, David R Karger, et al. Tackling the

poor assumptions of naive bayes text classifiers. In ICML, volume 3, pages 616–623.

Washington DC), 2003.

[76] James Ridgway, Pierre Alquier, Nicolas Chopin, and Feng Liang. Pac-bayesian auc clas-

sification and scoring. In Advances in Neural Information Processing Systems, pages

658–666, 2014.

[77] Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

[78] Mehran Sahami. Learning limited dependence bayesian classifiers. In KDD, volume 96,

pages 335–338, 1996.

[79] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization us-

ing markov chain monte carlo. In Proceedings of the 25th International Conference on

Machine Learning (ICML), pages 880–887. ACM, 2008.

[80] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. Application

of dimensionality reduction in recommender system – a case study. In WEBKDD 2000

Workshop. ACM, 2000.

[81] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal

estimated sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

[82] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for

regularized loss. The Journal of Machine Learning Research (JMLR), 14(1):567–599,

2013.

[83] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate

ascent for regularized loss minimization. Mathematical Programming, pages 1–41, 2014.

[84] Qinbao Song, Jingjie Ni, and Guangtao Wang. A fast clustering-based feature subset

selection algorithm for high-dimensional data. Knowledge and Data Engineering, IEEE

Transactions on, 25(1):1–14, 2013.

112 BIBLIOGRAPHY

[85] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The

Journal of Machine Learning Research (JMLR), 15(1):1929–1958, 2014.

[86] Harald Steck. Training and testing of recommender systems on data missing not at ran-

dom. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 713–722. ACM, 2010.

[87] Dougal J Sutherland, Barnabás Póczos, and Jeff Schneider. Active learning and search on

low-rank matrices. In Proceedings of the 19th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 212–220. ACM, 2013.

[88] Vladimir N Vapnik. An overview of statistical learning theory. Neural Networks, IEEE

Transactions on, 10(5):988–999, 1999.

[89] Vladimir Naumovich Vapnik. Statistical learning theory, volume 1. Wiley New York,

1998.

[90] Stefan Wager, William Fithian, Sida Wang, and Percy S Liang. Altitude training: Strong

bounds for single-layer dropout. In Advances in Neural Information Processing Systems,

pages 100–108, 2014.

[91] Bin Xu, Jiajun Bu, Chun Chen, and Deng Cai. An exploration of improving collaborative

recommender systems via user-item subgroups. In Proceedings of the 21st international

conference on World Wide Web, pages 21–30. ACM, 2012.

[92] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. Interactive collaborative filtering. In

Proceedings of the 22nd ACM international conference on Conference on information &

knowledge management, pages 1411–1420. ACM, 2013.

[93] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. Improving

recommendation lists through topic diversification. In Proceedings of the 14th interna-

tional conference on World Wide Web (WWW), pages 22–32. ACM, 2005.

Appendix A

Proofs of Theorems

Proof of Eqs. (3.25, 3.26, 3.27) in Lemma 3.4.1

Proof From (3.16 ,3.17), we notice that:

p(j)(x− j, 0|y, s) + p(j)(x− j, 1|y, s) = p(x− j, 0|y) + ·p(x− j, 1|y) (1)

A. when Case 1 (3.22) holds, we have

min
y∈{+,−}

p(x− j, 0|y) = p(x− j, 0|yl) (2)

(2)(3.18)(3.16) lead to

min
y∈{+,−}

p(j)(x− j, 0|y, s) = p(j)(x− j, 0|yl, s) (3)

(2)(3.19) lead to

Z(x− j) = p(x− j, 0|yl) + p(x− j, 1|yl) (4)

(3)(3.20)(1)(4) lead to

∆Z(s) = 0

B. when Case 2 (3.23) holds, we have

min
y∈{+,−}

p(x− j, 0|y) = p(x− j, 0|yh) (5)

(3.16)(3.23) lead to

min
y∈{+,−}

p(j)(x− j, 0|y, s) = p(j)(x− j, 0|yl, s) (6)

(5)(3.19) lead to

Z(x− j) = p(x− j, 0|yh) + p(x− j, 1|yl) (7)

113

114 Chapter A. Proofs of Theorems

(6)(3.20)(1) lead to

Z(j)(x− j, s) = p(j)(x− j, 0|yl, s) + p(j)(x− j, 1|yl, s)

= p(x− j, 0|yl) + p(x− j, 1|yl) (8)

(5)(7)(8) lead to

∆Z(s) = p(x− j, 0|yl) − p(x− j, 0|yh) > 0

C. when Case 3 (3.24) holds, we know that Eq.(5) still holds.

(3.16)(3.18)(3.24)(3.21) lead to

min
y∈{+,−}

p(j)(x− j, 0|y, s) = p(j)(x− j, 0|yh, s) > 0 (9)

(5)(3.19) lead to

Z(x− j) = p(x− j, 0|yh) + p(x− j, 1|yl) (10)

(3.20)(9)(3.16)(3.17)(3.21) lead to

Z(j)(x− j, s) = p(j)(x− j, 0|yh, s) + p(j)(x− j, 1|yl, s)

= Z(x− j) + s · [p(x− j, 1|yh) − p(x− j, 1|yl)] (11)

(3.18)(11) lead to

∆Z(s) = s · [p(x− j, 1|yh) − p(x− j, 1|yl)] > 0

Proof of Lemma 4.7.2

Proof From the definition of AUC risk (Eq. (4.13)), we have (after simple algebraic manipu-

lation)

R(D) = Pr(x,y),(x′,y′)∼D
{ m∑

j=1

log
p(x j|y)p(x′j|y

′)

p(x j|y′)p(x′j|y)
≤ 0, y , y′

}
(12)

Assuming that the naive independence assumption holds, Eq. (4.13) further becomes

R(D) = Pr(x,y),(x′,y′)∼D
{

log
p(x, y)p(x′, y′)
p(x, y′)p(x′, y)

≤ 0, y , y′
}

= Pr(x,y),(x′,y′)∼D
{
p(x, y)p(x′, y′) ≤ p(x, y′)p(x′, y), y , y′

}
=

∑
(x,y),(x′,y′)

p(x, y)p(x′, y′) · I
{
p(x, y)p(x′, y′) ≤ p(x, y′)p(x′, y), y , y′

}
=

∑
(x,y),(x′,y′)

I(y , y′) min
(y,y′)

p(x, y)p(x′, y′) =
∑
(x,x′)

min
y∈{+,−}

p(x, y)p(x′,−y) (13)

115

where we have leveraged the fact that (x, y) and (x′, y′) live in discrete space X × {−1,+1}.

Suppose attribute x j has chance θ being missing, i.e.:

p(x j = 1|y; θ) = θp(x j = 1|y) (14)

p(x j = 0|y; θ) = 1 − θp(x j = 1|y) (15)

where p(x j = 1|y) is the original data sparsity on attribute x j given label y. Now we study the

change of AUC risk as:

R(D) =
∑

(x− j,x′− j)

∑
(x j,x′j)

min
y∈{+,−}

p(x, y)p(x′,−y)

=
∑

(x− j,x′− j)

∑
(x j,x′j)

min
y∈{+,−}

p(x− j, y)p(x′− j,−y)p(x j|y)p(x′j| − y) (16)

Define

Y := arg miny∈{+,−}p(x− j, y)p(x′− j,−y) (17)

V := p(x− j,Y)p(x′− j,−Y) (18)

V̄ := p(x− j,−Y)p(x′− j,Y) (19)

thus

V̄ ≥ V (20)

we further denote

P := p(x j = 1|Y) (21)

P̄ := p(x j = 1| − Y) (22)

g(x j, x′j) := p(x j|Y)p(x′j| − Y) (23)

ḡ(x j, x′j) := p(x j| − Y)p(x′j|Y) (24)

Z(x j, x′j) := min{Vg(x j, x′j), V̄ḡ(x j, x′j)} (25)

W(x− j, x′− j) :=
∑

(x j,x′j)

Z(x j, x′j) (26)

The following holds

ḡ(0, 1) = g(1, 0) = θP(1 − θP̄) (27)

ḡ(0, 0) = g(0, 0) = (1 − θP)(1 − θP̄) (28)

ḡ(1, 1) = g(1, 1) = θ2PP̄ (29)

116 Chapter A. Proofs of Theorems

ḡ(1, 0) = g(0, 1) = θP̄(1 − θP) (30)

and

R(D) =
∑

(x− j,x′− j)

W(x− j, x′− j) (31)

the proof of lemma 4.7.2 now amounts to prove:

Proposition. W(x− j, x′− j) decreases monotonically with θ .

To verify the validity of this proposition, we discuss all possible configurations of Z(x j, x′j)

in an exhaustive manner.

Case 0. we consider the special case when x− j = x′
− j. This forces V = V̄ , and

Z(0, 1) = Z(1, 0) = V min{g(0, 1), g(1, 0)} (32)

Z(0, 0) = Vg(0, 0) = (1 − θP)(1 − θP̄)V (33)

Z(1, 1) = Vg(1, 1) = θ2PP̄V (34)

which leads to

W(x− j, x′− j) = V(1 − θ|P − P̄|) (35)

and the lemma holds in this special case.

Case 1. when x− j , x′
− j, and Z(0, 1) = Vg(0, 1) ≤ V̄ḡ(0, 1), Z(1, 0) = Vg(1, 0) ≤ V̄ḡ(1, 0).

We have

VθP̄(1 − θP) ≤ V̄θP(1 − θP̄) (36)

VθP(1 − θP̄) ≤ V̄θP̄(1 − θP) (37)

if V < V̄ , then

θ ≤ min{
V̄ P̄ − VP

PP̄(V̄ − V)
,

V̄P − VP̄
PP̄(V̄ − V)

} (38)

if V = V̄ , then:

P = P̄ and θ ∈ [0, 1] (39)

In either case,

W(x− j, x′− j) = (1 − θP)(1 − θP̄)V+

θ2PP̄V + VθP̄(1 − θP) + VθP(1 − θP̄) = V (40)

thus in case 1, W(x− j, x′− j) would not change with θ.

Case 2. when x− j , x′
− j, and Z(0, 1) = Vg(0, 1) ≤ V̄ḡ(0, 1), Z(1, 0) = V̄ḡ(1, 0) < Vg(1, 0).

We have

VθP̄(1 − θP) ≤ V̄θP(1 − θP̄) (41)

117

VθP(1 − θP̄) > V̄θP̄(1 − θP) (42)

if V < V̄ , then

P̄ < P and
V̄ P̄ − VP

PP̄(V̄ − V)
< θ ≤

V̄P − VP̄
PP̄(V̄ − V)

(43)

if V = V̄ , then

P̄ < P and θ ∈ [0, 1] (44)

In either case,

W(x− j, x′− j) = −(PP̄)(V + V̄)θ2 + (V̄ P̄ − VP)θ (45)

which strictly monotonically decreases with respect to θ, given Eq. (43, 44).

Case 3. when x− j , x′
− j, and Z(0, 1) = V̄ḡ(0, 1) < Vg(0, 1), Z(1, 0) = Vg(1, 0) ≤ V̄ḡ(1, 0).

This case is similar with case 2, we also find W(x− j, x′− j) monotonically decreases with respect

to θ. Because, this case entails

VθP̄(1 − θP) > V̄θP(1 − θP̄) (46)

VθP(1 − θP̄) ≤ V̄θP̄(1 − θP) (47)

if V < V̄ , then

P̄ > P and
V̄P − VP̄

PP̄(V̄ − V)
< θ ≤

V̄ P̄ − VP
PP̄(V̄ − V)

(48)

if V = V̄ , then

P̄ > P and θ ∈ [0, 1] (49)

in either case,

W(x− j, x′− j) = −(PP̄)(V + V̄)θ2 + (V̄P − VP̄)θ (50)

which strictly monotonically decreases with respect to θ, given Eq. (48, 49).

Case 4. when x− j , x′
− j, and Z(0, 1) = V̄ḡ(0, 1) < Vg(0, 1), Z(1, 0) = V̄ḡ(1, 0) < Vg(1, 0).

This configuration is impossible, given Eq. (20, 27, 30).

From the discussion of all possible cases, we proved that W(x− j, x′− j) always monotonically

decreases with θ, which in turn proves lemma 4.7.2.

Proof of Lemma 4.7.3

Proof From case 0-4 in the above proof we have

W(x− j, x′− j) ≤ V (51)

118 Chapter A. Proofs of Theorems

The AUC risk of having only the j − 1 attributes is

R(D) =
∑

(x− j,x′− j)

W(x− j, x′− j) <
∑

(x− j,x′− j)

V = R(D− j) (52)

whereD− j is the data space with only attributes x− j. Thus we have proved that adding attribute

will lead to lower AUC risk.

Curriculum Vitae

Name: Xiang Li

Post-Secondary University of Western Ontario

Education and London, ON

Degrees: 2013 - 2017 Ph.D.

National University of Defense Technology

Changsha, Hunan, China

2010 - 2012 M.Sc.

National University of Defense Technology

Changsha, Hunan, China

2006 - 2010 B.Sc.

Honours and First prize award in Machine Learning and AI Session of

Awards: UWO Research in Computer Science, UWORCS 2016

Scholarships Western Graduate Research Scholarship

2013 - 2017

China Scholarship Council Scholarship

2013 - 2017

119

120 Chapter A. Proofs of Theorems

Related Work Research Assistant

Experience: University of Western Ontario

2013 - 2017

Teaching Assistant

University of Western Ontario

2013 - 2017

Publications:

Xiang Li, Huaimin Wang, Bin Gu, and Charles X Ling. Data sparseness in linear SVM. In

Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI), pp. 3628-

3634. AAAI Press, 2015.

Xiang Li, Charles X. Ling, and Huaimin Wang. The convergence behavior of naive bayes

on large sparse datasets. In Proceedings of the 2015 IEEE International Conference on Data

Mining, pp. 853-858.

Xiang Li, Charles X. Ling, and Huaimin Wang. The convergence behavior of naive bayes

on large sparse datasets. ACM Transactions on Knowledge Discovery from Data (TKDD),

11(1):10:110:24, July 2016.

Xiang Li, Bin Gu, Shuang Ao, Huaimin Wang, and Charles X. Ling. Triply Stochastic Gradi-

ents on Multiple Kernel Learning. 2017 International Conference on Uncertainty in Artificial

Intelligence, accepted.

Xiang Li, Huaimin Wang, Bin Gu, and Charles X Ling. The Convergence of Linear Clas-

sifiers on Large Sparse Data. Neurocomputing, under review.

Shuang Ao, Xiang Li, Charles X. Ling. Effective Multiclass Transfer for Hypothesis Transfer

Learning. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 64-75.

Springer, Cham, 2017.

Shuang Ao, Xiang Li, Charles X. Ling. Fast Generalized Distillation for Semi-Supervised

Domain Adaptation. In Proceedings of the 21th AAAI Conference on Artificial Intelligence,

pp. 1719-1725. AAAI Press, 2016.

	Classification with Large Sparse Datasets: Convergence Analysis and Scalable Algorithms
	Recommended Citation

	tmp.1501698899.pdf.zkkag

