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Abstract 

The TGFβ pathway, which regulates cell proliferation and differentiation, has also been shown to 

induce non-small cell lung cancer cell (NSCLC) migration and invasion. The TGFβ pathway is 

initiated through the binding of TGFβ to cell surface Ser/Thr kinase receptors. Activated 

receptors then phosphorylate intracellular signaling proteins, termed Smads, which translocate 

into the nucleus to regulate transcriptional responses. The protein Smad anchor for receptor 

activation (SARA) facilitates the phosphorylation of Smads and allows for efficient signal 

transduction. On the other hand, the inhibitory Smad, Smad7, recruits the E3 ubiquitin ligase, 

Smurf2, to catalyze the degradation of TGFβ receptors. Since the signaling and degradation 

pathways target active receptor complexes, SARA and Smurf2-Smad7 may interact with 

common TGFβ receptors. Therefore, the Smurf2-Smad7 complex may affect SARA steady state 

levels and influence TGFβ signaling. I hypothesized that Smurf2-Smad7 induces SARA 

degradation through an ubiquitin-dependent pathway. I observed that SARA steady state levels 

decrease in the presence of Smurf2 and Smad7, and this is dependent on the HECT E3 ubiquitin 

ligase activity of Smurf2. In addition, I observed that SARA interacts with ubiquitinated proteins 

and is protected from degradation by the pharmacological inhibition of the proteasome. Finally, I 

assessed the functional outcome of reducing endogenous SARA levels.  I observed that siRNA 

directed at SARA decreased both TGFβ-dependent Smad2 phosphorylation as well as EMT.  

These data suggest that the interplay between SARA and Smurf2-Smad7 complexes can 

influence TGFβ receptor signaling and may provide for a novel approach in targeting this 

pathway in NSCLC.  
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1 Introduction 

1.1 Non small cell lung cancer 

Lung cancer is the leading cause of cancer death in the world in that it is responsible to 

approximately 25% of all cancer mortality (Canada Cancer Society 2016; R. Siegel, 

Miller, and Jemal 2017). Over the past 30 years, the 5-year survival rate has not improved 

significantly and remains at 15% due to limiting treatment strategies and detection (R. 

Siegel, Miller, and Jemal 2017).There are two major forms of lung cancers: non small 

cell lung cancer (NSCLC) and small cell lung cancer (Herbst, Heymach, and Lippman 

2008). NSCLC account for approximately 80-85% of all lung cancer cases (D’Addario et 

al. 2010). NSCLC can be divided into three major histological subtypes: adenocarcinoma, 

squamous cell carcinoma, and large cell carcinoma (Travis et al. 2004). Although the 

biological features are similar between the subtypes, their cell origin, location in the lung 

and pattern of growth are different suggesting that they are distinct diseases developing 

through different mechanisms (Pikor et al. 2013). Many human cancers, including lung 

cancer, often overexpress transforming growth factor β (TGFβ), and this cytokine 

enhances the invasiveness and metastatic potential in late-stage tumors (Jeon and Jen 

2010). Decreased or altered TGFβ responsiveness and increased expression or activation 

of the TGFβ ligand lead to cancer progression and metastasis (Roberts and Wakefield 

2003). Therefore, TGFβ induces cell proliferation, migration, invasion in NSCLC cells 
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(Kasai et al. 2005; Mooradian et al. 1992; Scagliotti, Masiero, and Pozzi 1995; Willis et 

al. 2005; Willis and Borok 2007). 

1.2 Metastasis 

Metastasis is the final stage of tumor progression and it accounts for up to 90% of deaths 

associated with tumors (Hanahan and Weinberg 2000). Metastasis consists of multiple 

process: cancer cells enter circulation, disseminate to capillary beds, enter by 

extravasation, adapt to the new microenvironment and grow into lethal colonies that 

invade blood vessels and enter the circulation to produce additional metastases in distal 

organs (Chambers, Groom, and Macdonald 2002; Fidler 2003; Gupta and Massagué 

2006; Padua and Massagué 2009). The TGFβ pathway has been identified as a key 

mediator of extravasation, microenvironment remodelling, homing, invasion, migration 

and survival and it impacts the ability of tumor cells, particularly by promoting EMT, to 

spread throughout the body (Gupta and Massagué 2006).  

 

1.2.1 Epithelial to Mesenchymal Transition 

TGFβ enhances the migratory and invasive properties of cancer through epithelial-

mesenchymal transition (EMT; Figure 1) (Padua and Massagué 2009). During EMT, 

epithelial cell characteristics are lost and an invasive and migratory mesenchymal 

phenotype is acquired. This allows the cells to leave the tissue parenchyma, undergo 

morphogenetic programs, generate new tissues during development or repair wounded 

ones, and to enter  
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Figure 1. Epithelial to Mesenchymal Transition. 

Epithelial to mesenchymal transition (EMT) is important during development and wound healing 
but can also be used by tumor cells to induce metastasis.  There are four key steps during EMT: 
1. Tight junction dissociation; 2. Adherent-junction and desmosome dissociation concomitant 
with the loss of apical-basal polarity; 3. Cytoskeleton reorganization (for e.g., cortical actin 
reorganizes into stress fibres; shown in red) and cell migration; and 4. Basement membrane 
degradation and invasion.  EMT also involves a shift in expression of epithelial markers (for e.g., 
E-cadherin and ZO-1) to cells that express mesenchymal markers such as N-cadherin and 
vimentin and the transcription factors Snail and Slug. 
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the blood circulation during cancer metastasis (Gonzalez and Medici 2014; Thiery 2002; 

Valastyan and Weinberg 2011). EMT starts when intercellular junctions dissociate due to 

the downregulation of adhesion molecules, such as E-Cadherin, claudin, occludin, zona 

occludens-1, and desmoplakin, and epithelial cells lose their apical-basal polarity 

(Aroeira et al., 2013). Next, due to cytoskeletal reorganization, whereby cortical actin 

reorganizes to form stress fibres, cells adopt a front-back polarity and increase their 

migratory capacity (Kalluri and Neilson 2003; Thiery and Sleeman 2006). As EMT 

progresses, the later stages are characterized by cells acquiring the ability to degrade the 

basement membrane and invade the fibrotic stroma by upregulating their expression of 

matrix metalloproteinases (MMPs) (Aroeira et al. 2013). Upregulation of certain 

molecular markers during EMT such as, N-cadherin, vimentin and the transcription 

factors Snail and Slug, will indicate the later stage of EMT (Figure 1). EMT is a 

fundamental process in embryonic development and tissue repair; however, in human 

cancers, cytokines involved in the induction of EMT can be found in certain pathology 

sections and accounts for progression of diseases, including organ fibrosis and cancer 

(Gonzalez and Medici 2014; Padua and Massagué 2009; Thiery 2002). 

1.3 Transforming Growth Factor β 

The TGFβ superfamily of cytokines regulate many biological responses such as cell 

growth, proliferation, differentiation and apoptosis (Asano et al. 2004; Izzi and Attisano 

2004; Massagué 2012). Deregulation of the pathways initiated by these cytokines often 

leads to human disease such as cancer of the breast, colon, pancreas, and lungs (Carl 

Henrik Heldin, Vanlandewijck, and Moustakas 2012). TGFβ superfamily members can 
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facilitate different cellular responses. TGFβ induces all these responses through 

transmembrane receptor serine/threonine kinases and intracellular signaling cascades 

(Caestecker et al. 1998; Padgett 1999). During carcinogenesis, TGFβ plays a dual role. It 

initially suppresses tumorigenesis through induction of growth arrest and promotion of 

apoptosis (C H Heldin, Miyazono, and ten Dijke 1997; Levy and Hill 2006). More 

specifically, TGFβ can induce signaling at any stage in cell cycle but can only induce cell 

cycle arrest at G1 stage (Massague and Gomis 2006). Induction of G1 arrest is achieved 

by activation of various anti-proliferative responses such as the transcriptional 

upregulation of cyclin-dependent kinase (CDK) inhibitors p21 and p15 (Datto et al. 1995; 

Hannon and Beach 1994). In addition, TGFβ causes transcriptional repression of c-Myc, 

a pro-growth transcriptional factor, and ld1, ld2 and ld3, which are inhibitors of 

differentiation (Alexandrow et al. 1995; Kang, Chen, and Massagué 2003; P. M. Siegel 

and Massagué 2003). Pro-apoptotic responses are also induced by TGFβ through 

Phosphatidyl Inositol 3’ kinase-protein kinase B (PI3K-Akt) pathway, where Akt binds 

and sequesters Smad3 from the transcriptional machinery (Conery et al. 2004; P. M. 

Siegel and Massagué 2003). However, due to oncogenic mutations in tumor cells, TGFβ 

is repurposed to promote tumorigenesis by inducing EMT (Levy and Hill 2006). TGFβ 

affects the cell-junction complexes and promotes EMT by Smad-dependent 

transcriptional events (Miettinen et al. 1994). E-cadherin, a cell-cell adhesion receptor, is 

the key target for repression during EMT (Miettinen et al. 1994; Oft et al. 1996). Snail 

and Slug, which are zinc-finger transcription factors are induced through Smad-mediated 

signaling through the TGFβ pathway and repress the E-cadherin gene transcription (P. M. 

Siegel and Massagué 2003). In addition, the expression of N-cadherin, another EMT 
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marker, was observed to be significantly increased in peripheral areas of NSCLC tumors, 

which allows cells to infiltrate and destroy alveolar space (Funai et al. 2003; Watanabe et 

al. 2011). In later stages of cancer, tumor cells acquire the ability to evade growth 

suppression of TGFβ and induce EMT, gaining a selective advantage for cancer cells to 

produce and activate TGFβ to further promote carcinogenic process via fibroblast 

activation (Cantelli et al. 2017; Gupta and Massagué 2006; Kalluri 2016; Lee et al. 2006). 

TGFβ also affects non-malignant cells during tumorigenesis by suppressing immune 

surveillance, promoting angiogenesis and recruiting inflammatory cells that secrete 

cytokines to act on the tumor cells (Carl Henrik Heldin, Vanlandewijck, and Moustakas 

2012).  

1.4 The canonical TGFβ pathway 

TGFβ signals through transmembrane TGFβ type II and TGFβ type 1 receptors (TβRII 

and TβRI, respectively), that contain intracellular serine and threonine (Ser/Thr) kinase 

domains (Macías-Silva et al. 1996). The canonical TGFβ pathway is initiated through 

binding of TGFβ ligand to TβRII (Massagué et al., 1994; Wrana et al., 1994). This 

recruits TβRI into a complex with TβRII, where TβRII then phosphorylates TβRI in its 

glycine/serine-rich (GS) domain (Zhang et al., 2001). This phosphorylation leads to an 

activation of a unique family of intracellular signaling proteins, termed Smads, which are 

related to D. Melanogaster Mothers Against Decapentaplegic (Derynck and Zhang 1996; 

Massagué 1996) Smads are highly conserved proteins across species (Sorrentino et al. 

2012). They can be identified and classified into three groups based on their function and 

structure. Receptor-regulated Smads (R-Smads), such as Smad2 and Smad3, interact with 
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TGFβ receptors directly, and are phosphorylated by the receptor complex (Graff, Bansal, 

and Melton 1996). Common Smads (Co-Smads) are responsible for forming heteromeric 

complexes by associating with R-Smads and further carry the signal to the nucleus. 

Smad4 is the only Co-Smad – it has a very similar structure to R-Smads but it does not 

get phosphorylated by TGFβ receptors (Makkar et al. 2009); Finally, inhibitory Smads (I-

Smads), such as Smad6 or Smad7, associate with TGFβ receptors and act as pseudo 

substrate inhibitors as they cannot be phosphorylated by receptors. Their role is to inhibit 

the TGFβ signaling mediated by R-Smads and Co-Smads (Hayashi et al. 1997; Nakao et 

al. 1997). All members of the family share structural domains such as Mad Homology 

(MH) 1 and MH2 domains in their the amino and carboxy-terminal regions, respectively 

(Baker and Harland 1996; Graff, Bansal, and Melton 1996). The MH1 domain contains a 

DNA binding region and contributes to its role in transcriptional activation (Shi et al. 

1998). The MH2 domain mediates several interactions: 1. Between R-Smads and TβRI, 

2. Between R-Smads and Co-Smads, 3. Between R-Smads and SARA, and 4. Between R-

Smads and DNA binding factors (Hata et al. 1997; Macías-Silva et al. 1996) (Figure 2). 

Smads are proteins that function as intracellular signaling effectors in the TGFβ pathway 

(Derynck, Zhang, and Feng 1998). The R-Smads, Smad2 and Smad3 are activated via C-

terminal serine phosphorylation. Once activated, R-Smads associate with the Co-Smad, 

Smad4, and form a complex that translocates and accumulates in the nucleus to regulate 

transcriptional responses on many target genes (C H Heldin, Miyazono, and ten Dijke 

1997; Miyazono 2000) (Figure 3). As mentioned before, upregulation of cell cycle  
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Figure 2. Proteins domains in SARA, Smad2, Smad7 and Smurf2 that mediate protein-

protein interactions. 

SARA interacts with TGFβ type II and type I receptors through the C-terminus domain. It contains 
a Smad binding domain where it interacts with R-Smads, such as Smad2 via the MH2 domain. 
Smad7 interacts with TGFβ type I receptor via its MH2 domain. The PY motif of Smad7 is 
responsible for interaction with the WW domain of Smurf1 and the HECT domain of Smurf2. The 
NTD of Smad7 regulates the catalytic activity of the HECT domain by recruiting UbcH7 to the 
HECT domain. 

NTD: Amino-Terminal Domain, FYVE: Fab1, YOTB, Vac1 and EEA1, SBD: Smad Binding 
Domain, CTD: Carboxyl-Terminal Domain, MH: Mad Homology, HECT: Homology to E6AP 
Carboxyl Terminus 
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Figure 3. The canonical TGFβ pathway. 

TGFβ signals through the transmembrane receptors, TGFβ type II receptor (TβRII) and TGFβ 
type I receptor (TβRI). The canonical TGFβ pathway is initiated through binding of TGFβ ligand 
to TβRII. This recruits TβRI into a complex with TβRII, where TβRII then phosphorylates TβRI 
in its GS domain. This phosphorylation leads to activation of TβRI and the phosphorylation of 
Receptor-regulated Smads (Smads), proteins that function as intracellular signaling effectors in 
the TGFβ pathway. Once phosphorylated, R-Smads associates with a common mediator-Smad 
(Co-Smad), such as Smad4, and form a complex that translocates and accumulates in the nucleus 
to regulate transcriptional responses.  

S2: Smad2, S4: Smad4, TF: transcription factors 
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inhibitors is important in TGFβ-dependent growth arrest. The formation of Smad 

complexes with FoxO, which belongs to the Forkhead transcription factor family, is 

necessary for the transcription of a myriad of genes (Wijchers, Burbach, and Smidt 

2006). Also, transcriptional repression of c-Myc and ld1 are Smad-dependent (Chen, 

Kang, and Massague 2001; Gomis et al. 2006). The formation of Smad-E2F4/5-C/EBPβ 

transcriptional complex is required for the repression of c-Myc and transcriptional 

repressor ATF3-Smad complex formation is necessary for the repression of ld1 (Chen, 

Kang, and Massague 2001; Kang, Chen, and Massagué 2003).  

1.5 Non-canonical TGFβ pathways 

In addition to Smad-dependent pathways, there are non-Smad pathways that TGFβ 

activates in order to achieve growth arrest, apoptosis and other cellular functions. 

Griswold-Prenner, Kamibayashi, Maruoka, Mumby, & Derynck, 1998 showed that TβRI 

associate with the Bα subunit of phosphatase A (PP2A) in epithelial cells, that leads to 

PP2A mediated dephosphorylation and inactivation of ribosome biogenesis and cell 

growth regulator, p70 S6K (Petritsch et al. 2000). Although the precise mechanism is 

unclear, many studies suggested that TGFβ type V receptor (TβRV) induces inhibition of 

epithelial cell growth by forming a complex with TβRI upon TGFβ treatment (S. S. 

Huang et al. 2003; Liu, Huang, and Huang 1997; Tseng, Huang, and Huang 2004). TGFβ 

apoptosis can also be mediated through JNK and p38, which belong to the MAP kinase 

family. TβRII interacts with Daxx, pro-apoptotic adaptor protein and mediates JNK-

dependent apoptosis (Hofmann et al. 2003; Perlman et al. 2001). 
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In addition to apoptosis, EMT also can be mediated through non-Smad pathways. Indeed, 

Par6, a tight junction protein, is phosphorylated by TβRII and regulates tight junction 

integrity via Smurf1, an E3 ubiquitin ligase, resulting in ubiquitination and degradation of 

RhoA GTPase and the dissolution of tight junctions (Ozdamar et al. 2005).  

1.6 Smad Anchor necessary for Receptor Activation 

(SARA) 

R-Smad expression, activation (by phosphorylation) and stability are regulated and 

facilitated by adaptor proteins such as Smad anchor necessary for receptor activation 

(SARA). SARA contains a Smad-binding domain (SBD) where it interacts with Smad2 

on its MH2 domain (Wu et al. 2000), and the carboxyl-terminal region of SARA interacts 

with the TGFβ receptor complex (Figure 2; Tsukazaki et al., 1998). SARA regulates the 

subcellular localization of R-Smads and acts as a recruitment factor that presents R-

Smads to be phosphorylated by the receptors. When R-Smads are phosphorylated, they 

dissociate from SARA, associate with the Co-Smad and translocate to the nucleus (Qin et 

al. 1996; Tsukazaki et al. 1998). SARA is also a zinc finger FYVE (Fab1, YOTB, Vac1 

and EEA1) domain-containing protein that binds to phosphatidylinositol 3-phosphate 

(PI3P), which localizes SARA to PI3P-containing membranes. Early endosomes are 

enriched with PI3P; hence, SARA is highly localized in endocytic compartment. 

Although, SARA co-localizes with Smad2 and TGFβ receptors at the plasma membrane, 

it is thought to concentrate all of the signaling components on the early endosome, 

thereby suggesting a trafficking component to TGFβ signaling (Di Guglielmo et al. 2003; 

Hayes, Chawla, and Corvera 2002). Due to the FYVE domain, SARA was shown to 
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contain a punctate cellular staining whereas a mutant form of SARA that lacks a FYVE 

domain remained cytosolic (Tsukazaki et al. 1998; Wu et al. 2000). In addition, 

disruption of localization of SARA from early endosomes (identified by the presence of 

early endosome antigen-1, EEA-1) inhibits the nuclear localization of Smad2 induced by 

TGFβ (Hayes et al., 2002). Furthermore, endosomes play an important role as signaling 

centers, where they regulate the SARA-Smad2/3 complex as well as the assembly of 

specific TGFβ-dependent multi-protein transducer complexes (Corallino et al., 2015).  

Therefore, receptor endocytosis and trafficking is required for optimal TGFβ signaling; 

SARA facilitates the activation of R-Smads and allow efficient Smad phosphorylation 

(Itoh et al. 1998; Tsukazaki et al. 1998).  

1.7 Smurf2 and Smad7 

In addition to R-Smads and co-Smads, inhibitory Smads (I-Smads), such as Smad6 and 

Smad7, are important in the regulation of TGFβ signaling pathways (Hayashi et al. 1997; 

Kavsak et al. 2000). I-Smads block TGFβ signaling by competing against R-Smads for 

the association with TβRI or by targeting receptor complexes for ubiquitin-mediated 

degradation (Hayashi et al. 1997; Kavsak et al. 2000). Smad7 suppresses TGFβ ligand 

dependent signaling by preventing phosphorylation of Smad2; hence, the Smad2-Smad4 

complex cannot be formed and is unable to accumulate in the nucleus (Hayashi et al. 

1997). It also stably binds to activated TβRI and cannot be phosphorylated since it does 

not contain the C-terminal serine residue motif (SSXS); thus, preventing the interaction 

between the receptor and Smad2 as a competitive inhibitor (Macías-Silva et al. 1996). 

Smad7 functions at an early step in the TGFβ signaling pathway to inhibit the 
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phosphorylated Smad2 function, as opposed to a negative feedback loop towards Smad2-

mediated responses (Hayashi et al. 1997). Indeed, it translocates out of the nucleus and 

targets the receptors on the membrane when the TGFβ pathway is activated (Suzuki et al. 

2002). I-Smads also recruit Smad related E3 ubiquitin ligases (Smurfs) to catalyze the 

degradation of receptor complexes via their HECT (homology to E6AP carboxyl 

terminus) domain (Hayashi et al. 1997; Kavsak et al. 2000; Nakao et al. 1997). In 

addition, Smurf2 associates with inactivated R-Smads, through the PPXY motif, and 

regulate ubiquitin-mediated auto-degradation (Izzi and Attisano 2004; Kavsak et al. 

2000). 

Cells utilize the ubiquitin proteasome pathway for degradation of many cellular proteins 

(Hershko and Ciechanover 1998). E1, ubiquitin-activating enzymes, E2, ubiquitin-

conjugating enzymes and E3, ubiquitin-protein ligases, are responsible for regulating the 

multi-enzyme ubiquitination cascade (Hershko and Ciechanover 1998). E3 activity 

allows for specificity in which proteins are targeted for degradation by recruiting 

substrates to the ubiquitination machinery. Smad7 acts as an adaptor protein to recruit 

Smurf2 to the TGFβ receptor complex (Kavsak et al. 2000). Smurf2 requires Smad7 for 

efficient interaction and to mediate the degradation of TGFβ receptors whereas Smad7 

associates with TβRI and binds directly to Smurf2 (Kavsak et al. 2000). Mutants that 

disrupt the binding of Smad7 to Smurf2 interfere with Smurf2 association with the 

receptor (Kavsak et al. 2000).  

It is suggested that Smurf2 and Smad7 cooperation is important when Smad7 expression 

is low (Kavsak et al. 2000; Nakao et al. 1997). As TGFβ signaling occurs, Smad7-

Smurf2 may function to mediate rapid degradation of TGFβ receptors as a negative 
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feedback loop; therefore, Smurf2 resets the Smad pathway by removing Smad7-bound 

receptor complex (Hanyu et al. 2001; Kavsak et al. 2000).When the TGFβ receptor is not 

available as a target for ubiquitination, Smad7 functions to degrade Smurf2 via auto-

ubiquitination to control the resting state levels of Smurf2 (Hanyu et al. 2001). It was 

previously reported that the amino-terminal domain (NTD) of Smad7, which is necessary 

for the regulation of catalytic activity of Smurf2 at the level of E2 recognition, and MH2 

domain interact with each other – preventing MH2 to interact with TGFβ receptors 

(Hanyu et al. 2001). The Smurf2 HECT domain interacts with the Smad7 NTD to liberate 

the MH2 domain, thereby promoting the interaction between TGFβ receptors and Smad7 

(Kavsak et al. 2000). Hence, Smurf2 and Smad7 are dependent on each other to 

maximally inhibit the activity of TGFβ receptors (Kavsak et al. 2000).   

1.8 Two distinct TGFβ endocytic pathways 

In metazoan cells, endocytic membrane trafficking is an important process to ensure 

proper cell function, which includes delivering membrane components, receptor-

associated ligands and solute molecules to intracellular destination; regulation of signal 

transduction and neurotransmission, and modulation of the composition of the plasma 

membrane (Arias, Siri, and Conde 2015; Conner and Schmid 2003; Mayor and Pagano 

2007).  

Cell surface proteins internalize from the plasma membrane via several pathways, 

including clathrin-mediated endocytosis, lipid-raft mediated endocytosis, 

micropinocytosis and macropinocytosis (Gruenberg 2001). TGFβ receptors have been 

postulated to use two different internalization pathways: the clathrin-dependent pathway 
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and the caveolin-1-lipid raft-dependent pathway (Di Guglielmo et al. 2003). 

Internalization into different endocytic compartments leads to Smad association with 

different proteins and distinct regulation of TGFβ signaling. Differential composition of 

lipid bilayer in the two compartments is responsible for the separation of Smad signaling 

components in the two pathways (Di Guglielmo et al. 2003). In the clathrin-dependent 

pathway, SARA anchors Smad2 to the receptors on endosomal membrane and facilitates 

Smad2 phosphorylation (Penheiter et al. 2002; Roy and Wrana 2005; Sorkin and von 

Zastrow 2010). As mentioned before, SARA localization on the endosome is dependent 

on its interaction of FYVE domain with PI3P (Aasland 1996; Gaullier et al. 1998; 

Gaullier and Simonsen 1998; Hayakawa et al. 2004; Tsukazaki et al. 1998). However, Lu 

et al. (2002) has proposed that the clathrin-dependent pathway may not be essential for 

TGFβ signaling by demonstrating an insignificant change in the TGFβ signaling when 

the clathrin-pathway in HeLa cell was inhibited. Rather, Di Guglielmo et al. (2003) 

suggested that the function of the clathrin-dependent pathway is to sequester receptors 

away from the membrane rafts and caveolae, which can inhibit receptors by the binding 

of caveolin-1 to TβRI or through Smad7-Smurf2 ubiquitination (Razani, Zhang, Bitzer, 

Gersdorff, et al. 2001; Di Guglielmo et al. 2003)). In addition, potassium depletion, 

cytosol acidification or hypertonic buffer treatments dampened clathrin-dependent 

endocytosis and TGFβ receptors were directed to caveolae at the plasma membrane or 

caveosomes in the cytoplasm (Di Guglielmo et al. 2003; Razani, Zhang, Bitzer, Von 

Gersdorff, et al. 2001; Zuo and Chen 2009). Therefore, endocytosis can occur 

independently of clathrin through membrane rafts (Henley et al. 1998; Sharma, 

Sabharanjak, and Mayor 2002). In the caveolin/ membrane raft-dependent pathway, the 
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cholesterol and sphingolipid-rich composition of membrane rafts preferentially associate 

with Smad7-Smurf2 complexes leading to degradation of the receptor complex (Di 

Guglielmo et al., 2003).  When the expression of caveolin-1 was induced in HEK293T 

cells, TGFβ receptors were down-regulated and this degradation was enhanced when 

Caveolin-1 was co-expressed with Smurf2 and Smad7 (Di Guglielmo et al. 2003). The 

two internalization pathways seem to have a delicate balance where disruption of one 

pathway may encourage receptor partitioning into the other pathway. When SARA is co-

expressed with Smad7 and Smurf2, it stabilized receptor levels; however, SARA lacking 

its FYVE domain did not protect TGFβ receptors from Smurf2-Smad7-mediated 

degradation (Di Guglielmo et al. 2003). Furthermore, Di Guglielmo et al. (2003) 

incubated Mv1Lu cells in media lacking potassium chloride in order to inhibit receptor 

endocytosis by blocking clathrin-coated pit formation. As a result, receptor-dependent 

Smad2 phosphorylation was suppressed. However, co-treatment with Nystatin, 

cholesterol-sequestering drug, restored phosphorylation by inhibiting caveolin-1-lipid 

dependent pathway (Di Guglielmo et al. 2003) (Figure 4).  

Although the two internalization pathways are separately located at the plasma 

membrane, the two endocytic pathways may not be functionally separated post 

endocytosis. As clathrin-coated pits pinch off of the plasma membrane, vesicles lose their 

clathrin coats (Abrami et al, 2003; Massol et al., 2006; Rappoport et al., 2004). This 

presents the exposed uncovered lipid membranes to adjacent caveolar vesicles causing a 

partial fusion. Through the guidance of Rab5, caveolar and clathrin-coated vesicles move 

to the early endosome, forming the multifunctional caveolin-1-positive early endosomes  
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Figure 4. Two distinct internalization pathways for TGFβ receptors. 

In the clathrin-dependent pathway, SARA anchors Smad2 to the receptors on the endosome and 
facilitates Smad activation. The function of clathrin-dependent pathway is to sequester receptors 
away from the rafts and caveolin, which can directly inhibit the receptors by binding of caveolin-1 
to TβRI or through Smad7-Smurf2 ubiquitination. In the caveolin raft-dependent pathway, 
cholesterol and sphingolipid-rich composition of lipid rafts preferentially associate with Smad7-
Smurf2 complexes leading to degradation of the receptor complex. The two internalization 
pathways seem to have a delicate balance where disruption of one pathway may push the 
receptors into the other pathway.  
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(He et al. 2015). These multifunctional endosomes have been proposed to contain EEA1, 

caveolin-1, Rab5, TβRI, SARA, and Smad7/Smurf2, thereby, allowing TGFβ receptors to 

access different molecules to efficiently promote TGFβ signaling and/or degradation (He 

et al. 2015).  

1.9 Rationale and Hypothesis 

Although the individual proteins involved in TGFβ signaling have been studied, research 

in the interaction between the key proteins in receptor trafficking remains unclear. For 

e.g. the interaction between SARA and Smurf2 has not been assessed. SARA and Smurf2 

are involved in distinct pathways that lead to different receptor signaling outcomes; 

however, whether they associate with each other by utilizing the same TGFβ receptor 

complex is unknown. This allows the possibility of the interaction between the two 

proteins, directly or indirectly. He et al., (2015) observed a direct fusion of clathrin-

coated and caveolin vesicles during TGFβ receptor endocytic trafficking. Clathrin-coated 

vesicles and caveolin vesicles fused upon internalization and formed a multifunctional 

sorting compartment (He et al. 2015) (Figure 5). However, the study did not address the 

exact location or dynamics of each protein in the fused vesicle. Therefore, the Smurf2-

Smad7 complex may affect SARA steady state levels and influence TGFβ signaling.  

Based on this rationale, I hypothesized that Smurf2 and Smad7 induce SARA 

degradation through a ubiquitin-dependent pathway.  

 



19 

 

 

 

Figure 5. The caveolin-1 positive early endosome. 

A direct fusion of clathrin-coated and caveolin vesicles during TGFβ receptor endocytic trafficking 
was observed by He et al., 2015. Before the vesicles reach the early endosome, clathrin-coated 
vesicles and caveolin vesicles fused upon internalization and formed a multifunctional sorting 
device, caveolin-1-positive early endosomes, for TGFβ receptors. It is in these caveolin-1 positive 
endosomes where it is postulated that the interaction between TGFβ receptors and either signaling or 
degradation proteins occur. This introduces the possibility that proteins involved in TGFβ signaling 
(for e.g., SARA) can interact and be influenced by degradation proteins (for e.g., Smurf2-Smad7) 
through the association with common receptors. 
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Based on the hypothesis state above, I attempted to address the following specific aims: 

1) To determine whether SARA steady state levels are affected by Smurf2 and Smad7. 

2) To determine whether Smurf2-Smad7-mediated degradation of SARA is dependent on 

an ubiquitin-degradation pathway. 
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2 Materials and Methods 

2.1 Antibodies and Reagents 

Primary antibodies were purchased from following vendors: anti-β-Actin (Sigma A2668), 

anti-Phospho-Smad2 (Cell Signaling, 3101), anti-Smad2/3 (BD, 610843), anti-SARA 

(Santa Cruz, sc-9135), anti-Flag (Sigma, F3165), anti-Smurf2 (Santa Cruz, sc-25511 and 

Santa Cruz, sc-393858), anti-Myc (Aves, ET-MY 100), anti-Smad7 (Santa Cruz, sc-7004 

and Santa Cruz, sc-365846), anti-HA (Santa Cruz, sc-805), anti-EEA1 (BD, 610457), 

anti-Cav1 (Cell Signaling, 3238X), anti-E-cadherin (BD, 610182), anti-N-cadherin (BD, 

610921), anti-Ubiquitin (Cell Signaling, 3936), HRP conjugated secondary goat-anti-

rabbit (Thermo Scientific -31460), goat-anti-mouse (Thermo Scientific -31430) and 

donkey-anti-goat (Santa Cruz, sc-2020) were used for immunoblot analysis. 

Fluorescently conjugated donkey α-mouse (Life Technologies, A21206), donkey α-rabbit 

(Life Technologies, A31572), and A555 conjugated Phalloidin (Invitrogen, A34055) 

were used for immunofluorescence studies. Protein G-Sepharose was purchased from GE 

Healthcare (17-0618-01).  

siRNAs were purchased from following vendors: Silencer® Select Negative Control #1 

siRNA (Ambion, 4390844), Silencer® Select siRNA to ZFYVE9 (Ambion, 4392420 ID: 

s17933), Silencer® Select siRNA to SMURF2 (Ambion, 4392420 ID: s34859), 

Silencer® Select siRNA to SMAD7 (Ambion, 4392420, ID: s8414), Smad7 siRNA (h) 

(Santa Cruz, sc-36508) and ON-TARGETplus SMARTpool for Human SMAD7 
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(Dharmacon™, L-020068-00). Shown in Table 1, is the list of antibodies and its dilutions 

used for immunoblotting and IF.  

2.2 Cell Culture and Transfection 

Human embryonic kidney cells 293 transformed with large T antigen (HEK293T) were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal bovine 

serum (FBS). A549 non-small cell lung cancer (NSCLC) cell lines were maintained in 

F12K with 10% FBS. Cells were kept in a tissue culture incubator at 37°C at 5% CO2.  

HEK293T cells were transfected at approximately 70% confluency using the calcium 

phosphate transfection method. Briefly, a mixture of water, cDNA constructs and 10% 

2.5 M calcium chloride (CaCl2) was mixed with 600 µl of 2X HEPES Buffered Saline (12 

mM Dextrose, 50 mM HEPES, 10 mM KCl, 280 mM NaCl, 1.5 mM Na2HPO4•H2O) and 

incubated for 20 minutes. Dropwise, the mixed transfection solution was added to the 

cells and incubated for 48 hours. Total of 3.5 µg of DNA constructs for 6-well dishes; 

total of 16.5 of µg of DNA constructs for 10 cm plates; pCMV5, an empty vector, was 

transfected to maintain the same concentration of DNA constructs throughout the 

experiment. For A549 cells, PolyJet™ DNA InVitro Transfection Reagent (FroggaBio) 

was used to transfect following the manufacturer’s protocol. siRNA transfections were 

performed using Lipofectamine RNAi max (Invitrogen) according to the manufacturer’s 

protocol.  
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Table 1. Antibodies and Dilutions 

Antibody Source Catalogue No. Dilutiona 

β-actin Sigma A2668 1:1000 (IB) 

Phospho-Smad2 Cell Signaling 3101 1:1000 (IB) 

Smad2/3 BD 610843 1:1000 (IB) 

SARA Santa Cruz sc-9135 1:1000 (IB); 
1:100 (IF) 

Flag Sigma F3165 1:1000 (IB) 
1:100 (IF) 

Myc Aves ET-MY 100 1:1000 (IB) 
1:100 (IF) 

Smurf2 Santa Cruz sc-25511 1:1000 (IB); 
1:100 (IF) 

Smad7 Santa Cruz sc-7004 
sc-393858 

1:1000 (IB); 
1:100 (IF) 

HA Santa Cruz sc-805 1:1000 (IB) 

EEA1 BD 610457 1:100 (IF) 

Cav1 Cell Signaling 3238X 1:100 (IF) 

E-cadherin BD 610182 1:1000 (IB); 
1:100 (IF) 

N-cadherin BD 610921 1:1000 (IB); 
1:100 (IF) 

Ubiquitin Cell Signaling 3936 1:1000 (IB) 

HRP conjugated 
secondary goat-
anti-rabbit 

Thermo Scientific 31460 1:25000 (IB) 

HRP conjugated 
secondary goat-
anti-mouse 

Thermo Scientific 31430 1:25000 (IB) 
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HRP conjugated 
donkey-anti-goat 

Santa Cruz sc-2020 1:25000 (IB) 

Fluorescently 
conjugated donkey 
anti-mouse  
(488 nm) 

Life Technologies A21206 1:250 (IF) 

Fluorescently 
conjugated donkey 
anti-rabbit  
(647 nm) 

Life Technologies A31572 1:250 (IF) 

Fluorescently 
conjugated donkey 
anti-goat (555 nm) 

Invitrogen A21432 1:250 (IF) 

A555 conjugated 
Phalloidin 

Invitrogen A34055 1:100 (IF) 

a.  IF = Immunofluorescence   
  IB = Immunoblot  

 

2.3 DH5α transformation 

cDNA constructs for flag-tagged SARA, myc-tagged Smurf2 WT and C716A, HA-

tagged Smad7 and HA-tagged Ubiquitin were obtained from Di Guglielmo’s lab. The 

constructs are in pCMV5 vector, antibiotic resistance to ampicillin. DH5α transformation 

was utilized to amplify the cDNA constructs of interest. Firstly, 25 µl DH5α in tubes 

were thawed out on ice and added 1 µl DNA of interest and incubated on ice for 15 

minutes. Next, the cells were heat shocked in 42°C for 1 minute and back on ice for 2 

minutes. Then, 500 µl of lysogeny broth (LB) was added to the cells and placed in a 

shaker at 250 rpm at 37°C for 15 minutes. Next, the tube was centrifuged at 14000 rpm to 

obtain the pellet. Supernatant was removed and the pellet was re-suspended in 25 µl of 

LB and the re-suspended cells were spread onto LB-agar plate with ampicillin (50 µg/ml) 

and incubated overnight at 37°C. The following day, a colony was picked from the LB 
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plate and incubated in 150 mL of LB with 50 µg/ml of ampicillin overnight. To isolate 

plasmid DNA, PureYield™ Plasma Midiprep System (Promega) was used and assessed 

the purity of DNA using spectrophotometer, accepting the ratio of 1.8 at absorbance of 

260 nm/280 nm.   

2.4 Immunoblotting 

Cells were lysed (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-

100, 1 mM phenylmethylsulfonyl fluoride, and a mixture of protease inhibitors, PMSF 

and Pepstatin A) and gently scraped using a scraper and collected in a 1.5 ml Eppendorf 

tube and centrifuged at 14,000 rpm at 4°C for 10 min. Twenty microliters of supernatants 

were collected for protein concentration assay which was determined using the Lowry 

method (Fisher). Remaining supernatant were recollected in another 1.5 ml Eppendorf 

tube and 8x Sample prep buffer (2.5 ml 1 M Tris-HCl, 0.5 ml of ddH2O, 1.0g SDS, 0.8 

ml 0.1% Bromophenol Blue, 4 ml 100% glycerol, 2 ml 14.3 β-mercaptoethanol, and 

adjust it to 10 ml with ddH2O to make 4x stock) was added. 

2.5 Immunoprecipitation 

For immunoprecipitation, cell lysates were incubated with primary antibody overnight at 

4°C. Next, the lysates were incubated with 10% slurry of protein G-Sepharose beads 

(Amersham) for an hour. The precipitates were collected and washed three times with 

wash buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl), and eluted with 2x sample prep 

buffer. Cell lysates were heated at 90°C for 5 minutes and then resolved by denaturing 

10% polyacrylamide gel electrophoresis (SDS-PAGE). After SDS-PAGE, proteins were 
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transferred to nitrocellulose followed by blocking with with 5% skim milk diluted in 

Tris-buffered saline supplemented with 0.05% Tween-20 (TBST, 100 mM Tris-HCl pH 

7.5, 0.9% NaCl) for 45 minutes at room temperature. Then, blots were incubated in 

primary antibody in TBST overnight at 4°C. The membranes were then washed three 

times for 10 minutes which was followed by 1-hour incubation with HRP conjugated 

secondary antibody. Again, the membranes were washed three times for 10 minutes. 

Proteins were then visualized using West Dura Super Signal ECL (Fisher) hand imaged 

on a VersaDoc Imaging System (BioRad). All results presented are a representative of 3-

4 biological replicates. To quantify the protein levels in the immunoblots, equal sized 

rectangles were drawn around the protein bands of interest on scanned images using 

QuantityOne (BioRad). Background area and the pixel density of each protein bands 

were recorded; the densitometric value of each lane was obtained by subtracting the 

background values.  

2.6 Immunofluorescence Microscopy 

Glass cover slips were autoclaved to be sterilized. In order to plate HEK293T cells, glass 

cover slips were coated with Poly L Lysine (PLL). PLL was diluted in sterile PBS at 1:20 

and each well was coated with 1 mL of diluted PLL. After 2-3 hours, the wells were 

rinsed with PBS and media and cells were plated onto a cover slip at approximately 60% 

confluency. After transfection with the cDNA constructs described in the figures, the 

cells were then fixed with 4% paraformaldehyde for 10 minutes at room temperature. 

Cells were washed three times using 1X PBS and then permeabilized with 0.25% Triton 

X-100 in ddH2O for 5 minutes at room temperature. Cells were again washed three times 
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using 1X PBS and then were blocked in 1X PBS containing 10% FBS for one hour at 

room temperature. Cells were incubated with the following antibodies at 4°C overnight 

with gentle rocking: anti-Smad2/3, anti-EEA1, anti-Cav1, anti-SARA, anti-Smurf2 and 

anti-Smad7. Next, cells were washed with 1X PBS three times and then were incubated 

with appropriate Cy-conjugated secondary antibodies for one hour at room temperature 

with gentle rocking, protected from the light. Cells were washed three times again with 

1X PBS and incubated with 1 mg/ml DAPI (in ddH2O) to visualize nucleus for 5 minutes 

protected from the light, with gentle rocking. Following a wash with 1X PBS, the glass 

cover slips were mounted onto microscope slides, using Immuno-mount mounting 

medium. Samples were dried overnight at room temperature in the dark before analysis. 

Finally, cells were visualized by immunofluorescence microscopy using an inverted IX81 

Microscope (Olympus, Canada).  

2.7 Phospho-Smad Signaling Assays 

A549 cells were plated at approximately 70% confluency. Then, cells were incubated in 

serum-deprived F12K media (0.2% FBS) overnight. Then, cells were washed with sterile 

1X PBS and were treated with either 0 pM, 10 pM, or 100 pM TGFβ in serum-deprived 

F12K media for 45 minutes. Cells were lysed and were processed for SDS-PAGE, and 

immunoblotted for Phospho-Smad2 and total Smad2 levels. 

2.8 Epithelial to Mesenchymal Transition 

A549 cells were plated at approximately 60% confluency. A549 cells were transfected 

with either control or ZFYVE9 (SARA) directed siRNA for 24 hours using PolyJet. Cells 
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were then serum starved using serum-deprived F12K media (0.2% FBS) overnight prior 

to to TGFβ treatment. Next, cells were washed with sterile 1X PBS and then incubated in 

serum free media containing 0 pM, 10 pM, or 100 pM TGFβ for 0, 24 or 48 hours to 

induce EMT. Cells were then lysed and processed for SDS-PAGE to assess E-cadherin 

loss and increase of N-cadherin. 

2.9 Statistical Analysis 

One-way or Two-way ANOVA analysis followed by post-hoc Bonferroni’s Tests were 

used to determine the significance of the results. Statistical analyses were performed 

using GraphPad Prism® Software 5.0 and p-values of < 0.05 were considered statistically 

significant. All experiments were conducted a minimum of 3 times.  
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3 Results 

3.1 The effect on Smurf2-Smad7 on SARA steady state 

levels 

SARA and Smad7-Smurf2 play key roles in two separate endocytic pathways. SARA 

acts as an anchor for Smad2 on the endosomal membrane and presents Smad2 to TGFβ 

receptors during their endocytosis, which in turn stabilizes and facilitates R-Smad 

phosphorylation (Di Fiore & De Camilli, 2001; McPherson et al., 2001). The I-Smad, 

Smad7 in co-operation with Smurf2, facilitate the degradation of TGFβ receptors 

(Kavsak et al. 2000). Smad7 acts as an adaptor protein to recruit the E3 ubiquitin ligase, 

Smurf2, which mediates the ubiquitination and degradation of TGFβ receptor (Kavsak et 

al. 2000). Although the two pathways are separately located at the plasma membrane, 

after internalization, the two endocytic pathways are not functionally separated (Roy and 

Wrana 2005). He et al., 2015 showed that a partial fusion between clathrin coated 

vesicles and caveolar vesicles forming a multifunction endosome that contain many 

proteins involved in the TGFβ pathway, including SARA, Smad7, and Smuf2. Since 

there is a potential interaction of SARA and Smurf2-Smad7 with common TGFβ 

receptors, there is the possibility that SARA and Smurf2-Smad7 may affect each other’s 

protein levels. In order to study this mechanistically, I first assessed the ectopic co-

expression of SARA and Smurf2-Smad7 in HEK293T cells.  

HEK293T cells, expressing flag-tagged SARA, myc-tagged Smurf2 or HA-tagged 

Smad7 separately (Figure 6) or in combination (Figure 7) were assessed by 
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immunofluorescence microscopy. When the proteins were expressed on their own, only 

the proteins of interest were observed in the analysis, indicating the specificity of the 

antibodies used (Figure 6).  In the co-transfected cell analysis, 77% ± 19% of the cells 

expressed all three proteins (Figure 7). Therefore, when multiple constructs were co-

transfected into HEK293T cells, the majority of the cells overexpressed all three proteins 

of interest.  

Having ascertained that all three proteins are co-expressed in the majority of cells, I next 

assessed if the expression of Smad7 and Smurf2 would have an effect on the steady state 

levels of expressed SARA. In order to do this, HEK293T cells expressing different 

combinations of flag-SARA, wild type (WT) myc-Smurf2, or a Smurf2 mutant that 

lacked a functional HECT E3 ubiquitin ligase domain (myc-Smurf2 C716A), as well as 

Smad7-HA were assessed by immunoblotting (Figure 8). When SARA was expressed 

alone or co-expressed with only Smurf2 WT, Smurf2 C716A mutant or Smad7, SARA 

steady state levels did not significantly change (Figure 8A, lane 6-8; Figure 8B). 

However, in the presence of WT Smurf2 and Smad7, the steady state levels of SARA 

were greatly decreased (Figure 8A, lanes 2 vs. 11). Interestingly, in the presence of the 

E3 ligase mutant of Smurf2 (C716A) and Smad7, SARA steady state levels were affected 

to a lesser degree (Figure 8A, lanes 11 vs. 12). The steady state levels of SARA were 

quantitated to decrease significantly only in the presence of WT Smurf2 and Smad7 by 

82% ± 13% (Figure 8B). In addition, this decrease was dependent on the ubiquitin  
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Figure 6. Exogenous expression of SARA, Smurf2 or Smad7 in HEK293T cells. 

HEK293T cells were transiently transfected with cDNA encoding flag-SARA, myc-Smurf2 or Smad7-HA. 
The cells were then fixed, permeabilized and immunostained with anti-SARA rabbit (blue), anti-Smurf2 
mouse (green) or anti-Smad7 goat (red) antibodies, conjugated with donkey-anti-rabbit, donkey-anti-mouse 
and donkey-anti-goat secondary antibodies respectively. The nuclei were visualized using DAPI stain and 
are shown in white. Shown here are representative immunofluorescence images taken with an Olympus 
IX81 microscope at 40x magnification (n=3, bar = 30 µm) 
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Figure 7. Co-expression of SARA, Smurf2 and Smad7. 

HEK293T cells were transiently transfected with cDNA encoding 
flag-SARA, myc-Smurf2 and Smad7-HA. The cells were then fixed, 
permeabilized and immunostained with anti-SARA rabbit (blue), anti-
Smurf2 mouse (green) or anti-Smad7 goat (red) antibodies, 
conjugated with donkey-anti-rabbit, donkey-anti-mouse and donkey-
anti-goat secondary antibodies respectively. Transfected cells were 
counted at ten different fields of views. Shown here are representative 
immunofluorescence images taken with an Olympus IX81 
microscope at 40x magnification. Bar = 30 µm 
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Figure 8. Effect of Smurf2/Smad7 on SARA steady state levels. 

A) HEK293T cells were transfected with cDNA constructs encoding flag-tagged SARA, 
myc-tagged WT Smurf2, or Smurf2 containing a HECT domain mutation (C716A) or HA-
tagged Smad7 as indicated at the top of the panel. Cell lysates were then subjected to SDS-
PAGE followed by immunoblotting with anti-SARA, anti-Smurf2 or anti-Smad7 
antibodies. The lysates were also immunoblotted with anti-β actin antibodies (equal protein 
loading control). The relative migration of each overexpressed protein, compared to the 
molecular mass markers (shown on the left) is indicated.  

B. Three separate experiments were carried out as described in panel A and the relative 
levels of expressed SARA were quantitated using QuantityOne software (BioRad) and 
expressed as the mean ± SD (n=3). The asterisk (*) indicates p<0.05 relative to the level of 
SARA when SARA is transfected alone (One-way ANOVA).  
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ligase activity of Smurf2. When SARA was co-expressed with Smad7 and Smurf2 

C716A, a mutant of Smurf2 where the ligase activity is inactive, the SARA steady state 

levels were significantly higher than SARA steady state levels in the presence of WT and 

Smad7 (Figure 8B).  

Taken together, our results suggest that Smurf2 WT and Smad7 function cooperatively to 

decrease the steady state levels of SARA and that the ligase activity of Smurf2 may play 

an important role in this process. Having observed that Smurf2 WT and Smad7 influence 

the steady state levels of over-expressed SARA levels, I next assessed if this could be 

observed endogenously.  

3.2 Relative levels of SARA, Smurf2, Smad7 when SARA 

or Smurf2 are silenced 

In order to determine whether Smurf2 influences the steady state levels of SARA 

endogenously, I utilized siRNA to silence proteins of interest. A549 cells were 

transfected with siRNAs via Lipofectamine® RNAiMAX and assessed by 

immunoblotting. Increasing concentrations (0-37.5 nM) of SARA siRNA or Smurf2 

siRNA were utilized to silence SARA and Smurf2 respectively (Figure 9). When SARA 

was silenced, the endogenous steady state levels of Smurf2 and Smad7 did not change. 

Also, endogenous steady state levels of SARA and Smad7 did not change when Smurf2 

was silenced. Together, our results indicate that silencing SARA does not affect the 

endogenous level of Smurf2 and Smad7; more interestingly, silencing Smurf2 alone does 

not influence the endogenous level of SARA. This suggests that in terms of Smurf2-

dependent effect on SARA, silencing Smurf2 alone does not affect SARA. Smad7 is the 
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Figure 9. Relative levels of SARA, Smurf2 and Smad7 when SARA, Smurf2 

are silenced. 

A) A549 cells were transfected with a scrambled (control) siRNA or siRNA 
targeting SARA or Smurf2. Cell lysates were then subjected to SDS-PAGE 
followed by immunoblotting with anti-SARA, anti-Smurf2, anti-Smad7 
antibodies. The lysates were also immunoblotted with anti-β-antibodies (equal 
protein loading control). The relative migration of each protein, compared to the 
molecular mass markers (shown on the left) is indicated.  

B) Three separate experiments were carried out as described in panel A and the 
relative levels of endogenous SARA, Smurf2 and Smad7 were quantitated using 
QuantityOne software (BioRad) and expressed as the mean ± SD (n=3) and 
asterisk (*) indicates p<0.05, ** indicate p<0.01, and *** indicate p<0.001 
relative to the level of SARA, Smurf2 and Smad in the control (One-way 
ANOVA).  
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adaptor protein that acts as the bridge for Smurf2 to associate with TGFβ receptor. It is 

possible that silencing of Smad7 in combination with Smurf2 is necessary to alter the 

endogenous steady state levels of SARA. Unfortunately, in the analysis, I was unable to 

silence Smad7, despite using different siRNAs from various companies (including 

Ambion, 4392420, ID: s8414; Santa Cruz, sc-36508 and Dharmacon™, L-020068-00; 

data not shown). Future studies using different approaches may be necessary to address 

this limitation (please see discussion for details).  

Having ascertained that overexpressed Smurf2 and Smad7 reduce the steady state levels 

of SARA, I next wanted to determine whether SARA and Smurf2 could physically 

interact with each other.  

3.3 Immunoprecipitation of Smurf2 and associated proteins 

Based on the overexpression studies described above, Smurf2 and Smad7 cooperatively 

decrease the steady state levels of SARA (Figure 8). It is possible that the three proteins 

can associate directly with each other, or through a common bridge such as the TGFβ 

receptor complex. In order to address if SARA and Smurf2-Smad7 form a complex, I 

carried out co-immunoprecipitation analysis. Briefly, HEK293T cells expressing flag-

SARA, myc-Smurf2 WT or myc-Smurf2 C716A and Smad7 were immunoprecipitated 

with α-myc antibodies to immunoprecipitate for Smurf2 and immunoblotted for Smurf2, 

SARA and Smad7 (Figure 10). I observed that Smad7 co-precipitated with both the WT 

and C716A mutant of Smurf2 (Figure 10, Lanes 3-6); however, SARA was not present in 

any of the immunoprecipitations. These results suggest that SARA and Smurf2 do not 

form a stable interaction. Although Smurf2 and SARA do not form a stable interaction,  
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Figure 10. Smurf2 co-immunoprecipitates with Smad7 but not SARA. 

HEK293T cells were transfected with cDNA constructs encoding flag-tagged SARA, myc-
tagged Smurf2 WT or HECT domain mutant (C716A) or HA-tagged Smad7 as indicated 
at the top of the panel. Cell lysates were immunoprecipitated (IP) with α-myc to precipitate 
myc-tagged Smurf2 and associated proteins (top panel). The immuoprecipitates and 
remaining cell lysates were subjected to SDS-PAGE followed by immunoblotting with 
anti-SARA, anti-Smurf2 or anti-Smad7 antibodies. The lysates were also immunoblotted 
with anti-beta actin antibodies (equal protein loading control). The relative migration of 
each overexpressed protein, compared to the molecular mass markers (shown on the left) 
is indicated.  
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our previous results suggest that Smurf2 WT and Smad7 decrease SARA in an ubiquitin 

ligase activity-dependent manner. Therefore, I next turned my attention towards assessing 

the involvement of ubiquitination and the proteasome on the steady state levels of SARA.  

3.4 Effect of MG132 on SARA steady state levels 

Smurf2 is an E3 ubiquitin ligase that catalyzes the degradation of receptor complexes. 

The work shown above demonstrates that when the ligase activity of Smurf2 is disabled, 

SARA steady state levels do not decrease. In order to determine whether the decrease of 

SARA steady state levels is dependent on the proteasome, I pharmacologically targeted 

the proteasomal degradation pathway using MG132. HEK293T cells expressing flag-

tagged SARA, myc-tagged Smurf2 or HA-tagged Smad7 were treated with MG132 

(10µM) for 6 hours and were assessed by immunoblotting (Figure 11). In the presence of 

Smurf2 WT and Smad7, the steady state levels of SARA significantly decreased by 82% 

± 13% as observed above. As expected, the E3 ubiquitin ligase mutant of Smurf2 

increased the steady state levels of SARA compared to the levels in the presence of 

Smurf2 WT and Smad7 (Figure 11B). A similar rescue effect was seen when the cells 

were treated with MG132. When the proteasome was inhibited, SARA steady state levels 

did not decrease even in the presence of Smurf2 WT and Smad7 (Figure 11A, Lanes 5 vs 

7). As expected, Smurf2 C716A and Smad7 in the presence of MG132 did not alter the 

steady state levels of SARA. Based on the results above, the decrease of SARA steady 

state levels is dependent on the ubiquitin ligase activity of Smurf2. Therefore, the results 

suggest that SARA follows an ubiquitin degradation pathway. Thus far, the literature has 

only described Smurf2-Smad7 affecting the degradation of TGFβ receptors 
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Figure 11. Proteasome inhibition protects SARA from Smurf2/Smad7-mediated 

degradation. 

A. HEK293T cells were transfected with cDNA constructs encoding flag-tagged SARA, 
myc-tagged Smurf2 and/or HA-tagged Smad7 as indicated at the top of the panel. Cells 
were treated with MG132 (10 µM) for 6 hours. Cell lysates were then subjected to SDS-
PAGE followed by immunoblotting with anti-SARA, anti-Smurf2 or anti-Smad7 
antibodies. The lysates were also immunoblotted with anti-β actin antibodies (equal 
protein loading control). The relative migration of each overexpressed protein, 
compared to the molecular mass markers (shown on the left) is indicated. 

B. Three separate experiments were carried out as described in panel A and the relative 
levels of expressed SARA were quantitated using QuantityOne software (BioRad) and 
expressed as the mean ± SD (n=3). The asterisk (*) indicates p<0.05 relative to the level 
of SARA when SARA is transfected alone (One-way ANOVA). 
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(Kavsak et al. 2000). It is therefore possible that by interacting with ubiquitinated 

receptors, SARA is itself targeted for degradation. In order to assess this possibility, I 

utilized a SARA construct (SARA ∆1016-1323) that lacks the C-terminal domain, which 

is responsible for interacting with TGFβ receptors (Tsukazaki et al. 1998).   

3.5 SARA and Ubiquitin 

In order to determine whether SARA is involved in the ubiquitin-degradation pathway, I 

wanted to first observe whether SARA is ubiquitinated, or if it interacts with 

ubiquitinated proteins. HEK293T cells, expressing flag-tagged WT or ∆1016-1323 

SARA and HA-tagged Ubiquitin were immunoprecipitated with α-flag to 

immunoprecipitate SARA and immunoblotted for SARA and Ubiquitin (Figure 12). I 

observed a characteristic high molecular weight ubiquitinated protein species in the lanes 

containing WT SARA, indicating that either SARA is ubiquitinated or it interacts with 

ubiquitinated proteins (Figure 12A, Lane 4). These results showed that SARA is in close 

proximity to ubiquitin and suggests two possibilities: 1) SARA may be acting as an 

ubiquitin sensor and associates with ubiquitinated proteins, or 2) SARA itself is 

ubiquitinated. SARA may be interacting with proteins, such as TGFβ receptor I and II, 

which are ubiquitinated by Smurf2 and targeted for degradation. To assess this 

possibility, I used a C-terminal deletion of SARA that no longer interacts with TGFβ 

receptors (Tsukazaki et al. 1998). Indeed, this mutant of SARA (∆1016-1323 mutant) did 

not immunoprecipitate with ubiquitin (Figure 12, Lane 6). Taken together, these results 

suggest that the interaction of SARA with TGFβ receptors may be necessary for SARA 

to bind to ubiquitinated proteins.  
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Figure 12. Co-immunoprecipitation of SARA and ubiquitinated proteins. 

HEK293T cells were transfected with cDNA constructs encoding flag-tagged SARA WT or 
a mutant of SARA lacking the C-terminal domain (∆1016-1323), and HA-tagged ubiquitin 
as indicated at the top of the panel. Cells lysates were immunoprecipitated with anti-flag to 
immunoprecipitate for SARA. The immunoprecipitates and total cell lysates were then 
subjected to SDS-PAGE followed by immunoblotting with anti-flag and anti-HA. The 
lysates were also immunoblotted with anti-β-actin antibodies (equal protein loading 
control). The relative migration of each overexpressed protein, compared to the molecular 
mass markers (shown on the left) is indicated. 
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3.6 Effect of Smurf2-Smad7 on SARA ∆1016-1323 steady 

state levels 

Above, I have shown that a decrease in SARA steady state levels is dependent on the 

presence of Smurf2 and Smad7 (Figures 8 and 11) and that the presence of TGFβ 

receptor interacting domain of SARA is necessary for the immunoprecipitation of SARA 

and ubiquitin (Figure 12). Therefore, I next assessed whether the TGFβ receptor 

interaction domain of SARA is necessary for the Smurf2-Smad7-dependent decrease in 

SARA steady state levels. HEK293T cells expressing flag-tagged SARA, flag-tagged 

SARA ∆1016-1323, myc-tagged Smurf2 WT and HA-tagged Smad7 were assessed by 

immunoblotting. Consistent with the results above, SARA steady state levels 

significantly decreased in the presence of Smurf2 WT and Smad7. However, when the 

carboxy terminal domain of SARA is deleted, the steady state levels are no longer 

affected by the ubiquitin ligase activity of Smurf2 (Figure 13). Our result suggests that in 

order for Smurf2 and Smad7 to regulate SARA steady state levels in the TGFβ signaling 

pathway, the interaction with the TGFβ receptor complex is necessary.   

3.7 Effects of silencing SARA on TGFβ-dependent signal 

transduction and EMT  

Thus far, the results have shown that SARA steady state levels are regulated by Smurf2 

and Smad7. In order to determine the consequences of modulating SARA levels in the 

TGFβ signaling pathway, I first assessed the effect of reduced SARA levels on Smad2  
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Figure 13. Effect of Smurf2/Smad7 on SARA ∆1016-1323 steady state levels. 

A) HEK293T cells were transfected with cDNA constructs encoding flag-tagged 
SARA, flag-tagged SARA mutant ∆1016-1323, myc-tagged Smurf2 and/or HA-
tagged Smad7 as indicated at the top of the panel. Cell lysates were then 
subjected to SDS-PAGE followed by immunoblotting with anti-flag, anti-Smurf2 
or anti-HA antibodies. The lysates were also immunoblotted with anti-GAPDH 
(equal protein loading control). The relative migration of each overexpressed 
protein, compared to the molecular mass markers (shown on the left) is indicated. 

B) Three separate experiments were carried out as described in panel A and the 
relative levels of expressed SARA were quantitated using QuantityOne software 
(BioRad) and expressed as the mean ± SD (n=3). The asterisk (****) indicates 
p<0.0001 relative to the level of SARA when SARA is transfected alone (One-
way ANOVA). 
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phosphorylation. Briefly, A549 cells were transfected with control siRNA or siRNA 

targeting SARA and TGFβ signal transduction was assessed by immunoblotting for 

phospho-Smad2 (Figure 14). After 45 minutes, even at a relatively low concentration of 

TGFβ (10 pM), Smad2 phosphorylation was observed in cells expressing SARA (Figure 

14A, Lane 2). However, the phospho-Smad2 levels were significantly reduced in SARA 

siRNA targeted cells (Figure 14A, Lanes 5 and 6). The result suggests that in the absence 

of SARA, the phosphorylation of Smad2 is dampened, presumably because Smad2 is no 

longer tethered to the membrane where it can interact with TGFβ receptors.  

A downstream effect of TGFβ-dependent Smad2 phosphorylation is the induction of 

transcriptional activity and the shift in expression of different cadherin proteins involved 

in EMT. In order to assess the effect of reduced SARA (and Smad2 phosphorylation) on 

TGFβ-dependent EMT, A549 cells were transfected with control siRNA or siRNA 

targeting SARA and incubated with TGFβ for 24 or 48 hours to induce EMT. To assess 

that EMT was occurring, immunoblotting for the loss of E-cadherin (epithelial cell 

marker) and increase in N-cadherin (mesenchymal cell marker) was carried out (Figure 

15). I observed that when cells were treated with control siRNA, there was time-

dependent reduction in E-cadherin levels and a concomitant increase in N-cadherin levels 

(Figure 15) These Cadherin changes were significant and reproducible (Figure 15B). 

Consistent with my observations that SARA silencing reduced Smad2 phosphorylation, I 

also observed a blunted effect in the cadherin shift (Figure 15A and B).  

Taken together, my results suggest that SARA can be targeted for degradation by Smurf2 

and Smad7 and a reduction in SARA levels will affect the robustness of TGFβ-dependent 

signaling and processes involved during EMT.  
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Figure 14. TGFβ signaling in the presence or absence of SARA. 

A) A549 cells were transfected with a scrambled (control) siRNA or siRNA 
targeting SARA. Cells were then cultured in the indicated treatment 
concentration of TGFβ for 45 minutes. Cell lysates were then subjected to 
SDS-PAGE followed by immunoblotting with anti SARA and anti-phospho-
Smad2. The lysates were also immunoblotted with anti-Smad2 antibody 
(equal protein loading control). The relative migration of each protein, 
compared to the molecular mass markers (shown on the left) is indicated.  

B) Three separate experiments were carried out as described in panel A and 
the relative levels of endogenous pS2 and Smad2 were quantitated using 
QuantityOne software (BioRad) and expressed as the mean ± SD (n=3) and 
different letters denote significant differences (p<0.05, One-way ANOVA).  
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Figure 15. TGFβ-dependent EMT in the absence of SARA. 

A) A549 cells were transfected with a scrambled (control) siRNA or siRNA targeting 
SARA. Cells were then cultured in the indicated treatment concentration of TGFβ for 0, 
24, and 48 hours. Cell lysates were then subjected to SDS-PAGE followed by 
immunoblotting with anti-E-cadherin and anti-N-cadherin antibodies. The lysates were 
also wesetern blotted with anti-β actin antibodies (equal protein loading control). The 
relative migration of each protein, compared to the molecular mass markers (shown on 
the left) is indicated.  

B) Three separate experiments were carried out as described in panel A and the relative 
levels of endogenous E-cadherin and N-cadherin were quantitated using QuantityOne 
software (BioRad) and expressed as the mean ± SD (n=3) and asterisk (*) indicates 
p<0.05, **** indicates p<0.0001 (One-way ANOVA). 
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4 Discussion 

4.1 Summary and general discussion 

In the TGFβ pathway, receptors have been postulated to internalize through both the 

clathrin-dependent and caveolin raft-dependent pathway in mammalian cells (Di 

Guglielmo et al. 2003; Roy and Wrana 2005). In the clathrin-dependent pathway, SARA 

anchors Smad2 to the receptors and facilitates Smad activation (Di Guglielmo et al. 2003; 

Penheiter et al. 2002; Roy and Wrana 2005; Sorkin and von Zastrow 2010). In the 

caveolin raft-dependent pathway, cholesterol and sphingolipid-rich composition of lipid 

rafts preferentially associate with Smad7-Smurf2 complexes leading to degradation of the 

receptor complex (Di Guglielmo et al. 2003). Although the individual proteins involved 

in TGFβ signaling have been studied, research in the interaction between the key proteins 

in receptor trafficking remain unclear. Although the two internalization pathways are 

thought to be distinct, the endocytic pathways may not be functionally separated. Indeed, 

clathrin-coated and caveolin-coated vesicles have been postulated to fuse upon 

internalization and formed a multifunctional sorting compartment, where SARA, the 

TGFβ receptor complex, Smad7 and Smurf2 reside (He et al. 2015). Although both 

SARA and Smurf2 interact with activated TGFβ receptor complexes, it was still 

unknown whether SARA and Smurf2 associate with a common receptor complex. In this 

scenario, SARA and Smurf2-Smad7 may influence the ability of SARA to facilitate 

TGFβ signaling by modulating its steady state levels. Indeed, my research shows a new 

potential mechanism whereby SARA degradation is regulated by Smurf2 and Smad7 in 

the TGFβ pathway.  
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4.2 Role of Smurf2 and Smad7 on SARA steady state 

levels 

SARA plays a crucial role in stabilizing and facilitating an efficient Smad signaling (Itoh 

et al. 1998; Tsukazaki et al. 1998). Consistent with previous literature, my data showed 

that in the absence of SARA, phosphorylation of Smad2 decreases significantly, 

presumably because SARA can no longer act as the anchor for Smad2 to efficiently 

associate with TGFβ receptor; thereby reducing the signaling efficiency of Smad2 

(Hayes, Chawla, and Corvera 2002; Tsukazaki et al. 1998). Tsukazaki et al., 1998 

utilized different mutants of SARA to show that the disturbance in the ability of SARA to 

associate with endosomes (via FYVE domain mutants) or Smad2 (via SBD domain 

mutants) can mislocalize Smad2 and blunt TGFβ signaling. Hayes et al., 2002 showed 

that by inhibiting clathrin-dependent receptor internalization via potassium depletion or 

transfecting a dominant negative dynamin, the stimulation of Smad2 nuclear 

translocation and transcriptional activation was greatly impaired. TGFβ receptors 

accumulate in the early endosome, where SARA is localized, during the signaling process 

and plays an important role in sustaining the stimulation of Smad2 signaling (Di 

Guglielmo et al. 2003; Hayes, Chawla, and Corvera 2002). In addition, my data shows 

that when SARA is absent in NSCLC cells, TGFβ signaling and the EMT-dependent 

cadherin shift (E-cadherin shift to N-cadherin) is decreased.  

My results have also shown that in the presence of Smurf2 and Smad7, SARA steady 

state levels decrease. Previous literature has shown that Smurf2 and Smad7 cooperation 

is important for maximal inhibition of the activity of the TGFβ receptors (Kavsak et al. 
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2000). Our work further shows the importance of the cooperation between Smurf2 and 

Smad7 in controlling the turnover of SARA steady state levels mechanistically in the 

TGFβ signaling pathway. Smurf2 alone did not decrease steady state levels of SARA, 

whereas in combination with Smad7, it was capable to do so in an ubiquitin-dependent 

manner. Smad7 acts as the adaptor protein so that Smurf2 may interact with TGFβ 

receptors (Kavsak et al. 2000). Therefore, this suggests that Smurf2 could influence the 

steady state levels of SARA at the level of TGFβ receptor complexes. Interestingly, 

ubiquitin ligase activity of Smurf2 plays an important role in the decrease of SARA 

steady state levels. When Smurf2 loses the ability to ubiquitinate target proteins, SARA 

steady state levels do not decrease. In addition, pharmacologically inhibiting the 

proteasome, one of the end points of the degradation pathway, protects SARA steady 

state levels, suggesting that SARA follows an ubiquitin-dependent degradation pathway 

initiated by Smurf2 and Smad7. 

The interaction of SARA with the TGFβ receptor complex is necessary in the 

maintenance of the steady state levels by Smurf2 and Smad7. Indeed, my results show 

that a SARA mutant that cannot associate with the receptor complex is also not affected 

by Smurf2 and Smad7. In addition, SARA does not associate with ubiquitin if SARA 

cannot interact with the receptors. Smurf2 is an E3 ubiquitin-protein ligase that target 

TGFβ receptors for ubiquitin-mediated degradation (Hayashi et al. 1997; Izzi and 

Attisano 2004; Kavsak et al. 2000; Nakao et al. 1997). Based on our work, there is a 

possibility that SARA may be another target for ubiquitination by the Smurf2-Smad7 

complex. This suggests that there are three possibilities whereby SARA is degraded in 

response to Smurf2-Smad7 association with TGFβ receptors. The first is that TGFβ 
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receptors are ubiquitinated by Smurf2 while SARA is associating with the receptor and 

SARA passively follows TGFβ receptors, leading to degradation of both receptors and 

associated SARA. The second scenario is where SARA acts as an ubiquitin-sensor 

protein, binding to TGFβ receptors that are ubiquitinated by Smurf2. Finally, it is also 

possible that SARA is a target of Smurf2 and gets ubiquitinated for degradation (Figure 

16). 

In support of scenario 1, previous work by Di Guglielmo et al., 2003 showed that SARA 

and Smurf2-Smad7 regulate the fate of TGFβ receptors. Smurf2-Smad7 reduces the half 

life of receptors significantly by targeting the receptors in the raft compartment for 

degradation (Di Guglielmo et al. 2003). However, they observed that in the presence of 

SARA, the receptors are mostly localized in the early endosome stabilizing the receptors 

and inhibiting the degradation pathway. Furthermore, they also showed that mutants of 

SARA that could neither associate with the endosomal membrane, nor interact with the 

receptor complex could protect TGFβ receptors from degradation. Furthermore, He et al., 

2015 showed that a portion of clathrin-coated vesicles and caveolar vesicles fuse after 

internalization into cells and create a multi-sorting vesicle called caveolar-1-positive 

early endosome. Based on these studies and my work, SARA may interact with the 

receptors that are targeted for degradation within the multi-sorting compartment and 

follow for Smurf/Smad7-dependent degradation.  
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Figure 16. Potential scenarios for Smurf2/Smad7 dependent reduction to steady state 

SARA levels. 

1. Smurf2 will ubiquitinate TGFβ receptors. Associated SARA with the receptors will 

passively follow leading to degradation of both proteins. 

2.  Smurf2 will ubiquitinate TGFβ receptors. SARA acts as an ubiquitin-sensor protein and 

associates with the ubiquitinated TGFβ receptors for degradation. 

3. SARA is also ubiquitinated with TGFβ receptors and are both targeted for degradation. 
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To discuss more specifically about how proteins are ubiquitinated, there are three types of 

enzymes that play a key role: ubiquitin-activating enzyme (E1), ubiquitin-conjugating 

enzyme (E2), and ubiquitin ligase (E3) (Connor and Seth 2004). First, E1 activates 

ubiquitin and transfers it to E2. Then, ubiquitin is transferred to the target protein either 

by an E2 or with E3 (Connor and Seth 2004). There are different classifications of E3 

ligase, such as HECT- and RING- (Connor and Seth 2004; Joazeiro and Weissman 2000). 

HECT- ligases, such as Smurf2, are ubiquitinated by E2s and afterwards, transfer the 

ubiquitin to the target protein. RING-type E3 ligases have two types: 1) ones that are able 

to cause ubiquitination on its own; and 2) those that act as in a multi-subunit E3 complex 

(Connor and Seth 2004; Joazeiro and Weissman 2000). One example of RING-type E3 

ligase that acts in a multi-subunit is the ring-finger 11 (RNF11) protein.  Subramaniam et 

al., 2003 and Connor & Seth, 2004 identified that RNF11 protein contains the PY motif, 

like Smad2 and Smad3, and interacts with the WW domain of Smurf2, and contains ring 

finger domain for the purpose of protein-protein interactions including E2s. 

Subramaniam et al., 2003 further discussed the requirement of RNF11 for the ligase 

activity of Smurf2. They identified that RNF11 interacts with an E2 called UbcH5 

enzymes through the ring finger domain and interacts with Smurf2 through the WW 

domain. By bringing the E2 and E3 subunits together, ubiquitin moieties are transferred 

from UbcH5 to Smurf2. However, when Smurf2 is associated with RNF11, the PY motif 

of RNF11 interferes with the binding of Smurf2 and Smad7, inhibiting the degradation of 

TGFβ receptor (Subramaniam et al. 2003). In addition, Kostaras et al., 2012 showed that 

RNF11 is a SARA-interacting protein localized in the early endosome and there is a high 

possibility that both proteins are structurally and functionally associated with endosomal 
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sorting complexes required for transport -0 (ESCRT-0), which are protein complexes that 

generate multi-vesicular bodies via ubiquitinated proteins/receptors and deliver to 

lysosome for degradation (Wollert and Hurley 2010). Therefore, according to scenario 2 

(Figure 16), SARA may be a key protein that is associated with the ESCRT system, 

specifically with ESCRT-0 complex that regulates degradation through lysosome. We 

propose that SARA may target the receptors to two degradation pathways depending on 

its protein-protein interaction. The first is the association with RNF11-Smurf2 complex in 

the early endosome, or in the multi-functional vesicle that He et al., 2015 proposed, will 

target TGFβ receptors to lysosomal degradation pathway. Alternatively, association of 

SARA with TGFβ receptors targeted by Smurf2-Smad7 will follow the receptors to 

proteasomal degradation pathway. Indeed, Kavsak et al., 2000 have demonstrated that 

endogenous TGFβ receptors are degraded through both the proteasome and lysosome 

pathway. There may be a possible balance that cells are trying to maintain through the 

use of the four proteins RNF11, SARA, Smurf2, and Smad7, regulating the fate of TGFβ 

receptors.  

Finally, in scenario 3 (Figure 16), although our result shows that SARA 

immunoprecipitates with ubiquitin, Kostaras et al. (2012) suggested that SARA lacks a 

ubiquitin interacting motif; therefore, it is very unlikely for this scenario to happen. 

Based on the previous literature and my work, the association of Smurf2, SARA and 

RNF11 may be the deciding complex that controls the fate of TGFβ receptors. I propose 

that when TGFβ signaling is activated, SARA acts as the facilitator and stabilizer for 

efficient signaling. After Smad7 translocates from the nucleus to the cytoplasm, it acts as 

an adaptor protein for Smurf2 to associate with the receptors and degrade the receptors 
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through proteasomal degradation pathway. When the receptors are turned over, SARA 

follows along and can be degraded as well. At some point in the process where the TGFβ 

receptors need to be delivered to lysosome instead, RNF11 may associate with Smurf2 to 

interfere with the association of Smurf2 with Smad7. RNF11 may transfer the ubiquitin 

moieties to Smurf2 and along with SARA, the complex may associate with ESCRT 

system to target TGFβ receptors for lysosomal degradation pathway. However, this needs 

more investigation and will be an important question to answer to further reveal the 

regulation of TGFβ receptors by SARA and Smurf2. 

4.3 Limitations and Future Directions 

Although I have investigated and uncovered a novel regulatory mechanism in the 

regulation of TGFβ signaling potential via the interaction of signaling (SARA) and 

degradative (Smurf2-Smad7) proteins, there is still much work to be done to fully 

understand this mechanism. I utilized siRNA for Smurf2 and SARA to observe the 

changes in the endogenous steady state levels. The result showed that silencing Smad7 in 

combination with Smurf2 may be necessary for the increase of SARA steady state levels. 

I attempted to address this by utilizing three different siRNA for Smad7, each from 

different company (Ambion, 4392420, ID: s8414; Santa Cruz, sc-36508; Dharmacon™, 

L-020068-00). However, I was not successful in silencing Smad7 in A549 cells (data not 

shown). Therefore, it would be important to potentially utilize different techniques, such 

as CRISPR/Cas9 gene editing, to manipulate the levels of Smad7 in A549 cells to 

determine whether SARA will be influenced.  
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When I attempted to investigate the association between SARA and Smurf2-Smad7, I did 

not observe these proteins to co-immunoprecipitateAlthough there is the possibility that 

SARA and Smurf2 are not in close proximity, my work has shown that Smurf2 plays a 

crucial role in regulating the steady state levels of SARA via an ubiquitination 

degradation pathway. Therefore, it is more likely that the Smurf2 and SARA interaction 

is very transient and does not withstand co-immunoprecipitation. Whether SARA 

associates with the ESCRT system or follows the ubiquitin-tagged receptors for 

degradation, Smurf2-Smad7 is important in regulating SARA steady state levels through 

the ubiquitination-degradation pathway. Interestingly, however, SARA did not 

immunoprecipitate with Smurf2. He et al., 2015 showed that there is a fusion of the two 

vesicles upon internalization forming a multifunctional vesicle that contains proteins 

involved in the TGFβ pathway, such as TGFβ receptors, SARA, Smurf2 and Smad7. The 

fusion of these vesicles may be very transient for the proteins to form stable complexes. 

In addition, there is the possibility that Smurf2 and SARA may interact with the TGFβ 

receptor at completely different time point in the multifunctional vesicle; it would be an 

important study to follow up. To determine whether Smurf2 and SARA are in close 

proximity throughout the TGFβ pathway, techniques, such as the Proximity Ligation 

assay (PLA). In this technique, fixed cells are probed with antibodies conjugated to 

oligonucleotides. If two antibodies are in close proximity (less than 40 nm), the probes 

can be annealed and following an in situ DNA synthesis (using fluorescent probes), the 

signal is amplified and observed via immunofluorescence microscopy (Gustafsdottir et al. 

2005).  
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Lastly, we showed that Smurf2 alone cannot decrease the steady state levels of SARA; 

however, with enough over-expression of Smurf2, we believe that Smurf2 can associate 

with the endogenous Smad7. Therefore, we suggest a titration experiment with increasing 

concentration of Smurf2 transfection to determine the levels of Smurf2 required to 

interact with endogenous Smad7 to affect SARA steady state levels. Although TGFβ 

signaling and its endocytic pathways have been investigated, there are still many 

questions that need to be answered. Previous studies and my work have shown how 

important SARA and Smurf2 are in the regulation of TGFβ signaling (Di Guglielmo et al. 

2003; F. Huang and Chen 2012; Itman et al. 2011; Moustakas, Souchelnytskyi, and 

Heldin 2001; Runyan et al. 2009). It will be very important to answer how SARA and 

Smurf2 are interacting with RNF11 and Smad7. As suggested, TGFβ receptors may have 

different end points in the degradation pathway depending on which combinations of 

proteins associate with the receptors. Investigating further into the relationship between 

these proteins will provide many answers. 

My work has only shown a small glimpse of how SARA, TGFβ receptors and Smurf2-

Smad7 may possibly interact. There are still many questions that have to be answered to 

fully understand the way cells control TGFβ receptors in the pathway. Besides the 

mechanistic aspect of TGFβ signaling, more studies can be done on the functional 

outcomes of the signaling pathway, such as EMT.  There are many EMT markers that can 

be analyzed; therefore, by silencing SARA, a future study can determine the effect it has 

on the levels of all the EMT markers as well as how it modulates the actin cytoskeleton 

by assessing stress fibre formation. In addition, TGFβ-dependent invasion and migration 

can be studied using techniques such as transwell migration and scratch assays. Knocking 



57 

 

down SARA and Smurf2-Smad7 may have severe negative consequences in growth, as 

Tojo, Takebe, Takahashi, Tanaka, & Alk, 2012 observed that Smad7-deficient mice 

showed growth retardation with reduced viability. Therefore, it would be interesting to 

utilize the knockdown technique on adult mice and observe the influence of SARA 

knockdown has on metastasis. SARA is a potential target to reduce the rate at which 

tumor cells metastasize and will be an interesting subject for future investigation.  

4.4 Significance 

The TGFβ pathway enhances the migratory and invasive properties of cancer through 

EMT (Padua and Massagué 2009). Furthermore, EMT can be found in certain pathology 

sections and accounts for progression of diseases, including organ fibrosis and cancer 

(Gonzalez and Medici 2014; Padua and Massagué 2009; Thiery 2002). The final stage of 

tumor progression is metastasis and is responsible for 90% of deaths associated with 

tumors (Hanahan and Weinberg 2000). Our research proposes that the cooperative effect 

of Smurf2 and Smad7 on TGFβ receptors can influence a major key protein involved in 

TGFβ signaling, SARA. Smurf2-Smad7 decrease the steady state levels of SARA 

through the ubiquitination degradation pathway. As TGFβ signaling progresses, cells 

activate the negative feedback by recruiting Smurf2 to associate with the receptors using 

the Smad7 as an adaptor protein (Hayashi et al. 1997). Our study proposes that as the 

receptors are being transported for degradation, SARA follows the receptor to be 

degraded. As the signaling progresses, the receptors turnover potentially through a raft-

dependent degradation and SARA follows the receptors for degradation; hence, 

decreasing the availability for cells to utilize SARA in the signaling pathway to stabilize 
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and facilitate Smad2 signaling. Therefore, this will lead to a decreased phosphorylation 

activation of Smad2 and affecting the functional outcome of TGFβ signaling such as 

EMT. SARA may be a promising target in cancer cells; by controlling the steady state 

levels of SARA through Smurf2-Smad7, TGFβ signaling may be suppressed, dampening 

the process of EMT and finally, leading to decreased metastasis.  
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