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Abstract 

Parkinson’s disease (PD) is a neurogenerative movement disorder that often requires 

surgical interventions such as deep brain stimulation (DBS) when motor 

complications arise from long term levodopa therapy. Understanding the level of 

motor improvement received by patients from levodopa (levodopa response; LR) at 

each stage of disease duration is integral to optimizing both current treatment and 

DBS implementation. In this study, the levodopa challenge test was employed to 

investigate the LR in early to advanced stages of disease in 70 PD participants. The 

LR only moderately correlated with disease duration, suggesting large 

interindividual variability in the LR between patients of similar disease durations. 

The LR correlated most strongly with motor symptom severity in the OFF-

medication state. We proposed that this was in part due to whether an individual 

relies more heavily on a nigral or extra-nigral control of dopamine in the PD brain. 

These findings offer support for implementing DBS in individuals earlier in disease 

and with smaller motor responses to levodopa.             
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Chapter 1  

1.0 Introduction  

This body of work investigates the acute levodopa response in early to advanced stages 

of Parkinson’s disease. Parkinson’s disease is a complex neurodegenerative movement 

disorder that is yet to be fully understood. The clinical nature of this study aims to 

bridge the gap from bench to bedside so that those suffering from Parkinson’s disease 

might see an improvement in their quality of life today, not tomorrow. Let us begin with 

an in-depth review of the foundations of Parkinson’s disease so that the clinical material 

discussed might be understood at a more fundamental level.   

1.1 Background of Parkinson’s Disease 

1.1.1 Epidemiology and Etiology  

Parkinson’s disease (PD) is the most common movement disorder and second most 

common neurodegenerative disorder after Alzheimer’s disease. PD has a general 

incidence rate of 14 in 100,000 persons which increases sharply in those over 65 years 

of age, climbing to 160 in 100,000 persons (De Lau & Breteler, 2006; Lill & Klein, 

2017). This generates a range in prevalence, anywhere from 100 to 200 per 100,000 

persons. Furthermore, there exists a 2% life-time risk of developing PD for men and 

1.3% for women (Tysnes & Storstein, 2017; Lill & Klein, 2017). The disparity in risk 

between genders, however, is not yet fully understood (Haaxma et al., 2007). Given the 

significant portion of our population affected by the disease, it places an exceptional 

burden on the health care system. Alleviating this burden rests on the shoulders of 

physicians and scientists dedicated to fully understanding the nature of the disease.  

Most cases of PD are idiopathic and thought to be of a multifactorial nature. 

With the discovery of mutations like LRRK2, Parkin, and Pink1, monogenetic causes 

are now thought to contribute to 5-10% of PD cases (Tysnes & Storstein, 2017). Beyond 

monogenic causes, idiopathic PD likely develops due to a combination of genetic, 
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environmental and lifestyle factors. An additional 26 genetic loci are thought to be 

involved in idiopathic PD, but further research elucidating underlying disease 

mechanisms is still needed (Lill & Klein, 2017). Substantiated environmental and 

lifestyle risk factors include exposure to pesticides and head trauma; whereas smoking, 

alcohol and caffeine’s influence on disease is still up for debate (Lill & Klein, 2017). 

Although the causes of PD are less well understood, there has been extensive research 

on the anatomical circuitry involved in Parkinson disease.   

1.1.2 Basal Ganglia Circuitry   

The basal ganglia (BG) are a family of highly organized subcortical nuclei responsible 

for facilitating inhibition and initiation of motor behavior. The BG are situated at the 

base of the cerebral hemispheres and partially within the brainstem (Obeso et al., 2008). 

BG nuclei include the caudate and putamen (known collectively as the striatum), globus 

pallidus interna and externa (GPi and GPe; respectively), subthalamic nucleus (STN), 

substantia nigra pars reticulata (SNr), and the substantia nigra pars compacta (SNc) 

(Obeso et al., 2008). The BG belong to a set of parallel and largely closed circuits, of 

which are grouped based on their functional role in the cortex (DeLong & Wichmann, 

2015). These circuits include the oculomotor, limbic, prefrontal and motor circuit 

(DeLong & Wichmann, 2015). However, our focus will be on the motor circuit given its 

involvement in movement and PD (see Diagram 1).  

BG motor circuit begins by extending excitatory glutamatergic projections from 

cortical motor areas to both the STN and striatum of the BG (Squire et al. 2012). The 

striatum also receives dopaminergic input from the SNc, which has a modulating effect 

on the corticostriatal inputs via two distinct pathways. The ‘direct’ pathway sends 

projections from striatal inhibitory GABAergic neurons (medium spiny neurons; MSN) 

in the putamen to the GPi/SNr complex (Obeso et al., 2008). MSNs of the direct 

pathway exhibit excitatory dopamine D-1 receptors and co-express the peptides 

substance-P and dynorphin (Obeso et al., 2008). In contrast, the ‘indirect’ pathway 

involves striatal medium spiny neurons which co-express enkephalin and bear inhibitory 

dopamine D-2 receptors (Obeso et al., 2008). The indirect pathway projects to the GPe, 
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which then extends both directly and indirectly (via the STN) to the GPi/SNr output 

complex (Obeso et al., 2008). Hence, the direct pathway is thought to inhibit the output 

complex, whereas the indirect pathway tends to excite it. However, recent findings 

suggest that the roles of the direct and indirect pathway are not as dichotomous as once 

thought. There is likely a much more intricate balance between the two pathways 

determining the level of activity at the GPi/SNr complex.  

The GPi/SNr serves as the main efferent point for the BG, exhibiting a tonic 

inhibitory effect on the ventral anterior and ventral lateral nuclei (motor nuclei) of the 

thalamus (DeLong & Wichmann, 2015). From the thalamus, the circuit completes itself 

by projecting back to the motor cortex. Pathologic dysfunction within the BG motor 

loop is what gives rise to many of the motor symptoms observed in Parkinson’s disease 

(DeLong & Wichmann, 2015). It is important to note that basal ganglia circuitry far 

exceeds the complexities noted here. 
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Diagram 1. Schematic of the basal ganglia-thalamocortical motor circuit in the 

normal and Parkinson’s disease state. Thickness of arrows corresponds to level of 

neuronal activity. Black arrows indicate inhibitory projections; grey arrows indicate 

excitatory projections.   
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1.1.3 Pathology of PD   

Parkinson’s disease is classically described as a neurodegenerative disorder 

characterized by the progressive loss of dopaminergic neurons within the SNc. 

Dopamine functions to fine-tune neuronal excitability in the striatum, thereby 

facilitating movement (Obeso et al., 2008). Simply put, depletion of dopamine leads to 

reduced signaling of the excitatory D-1 (direct pathway) and inhibitory D-2 (indirect 

pathway) receptors (Fuxe, Manger, Genedani, & Agnati, 2006). This results in reduced 

activity of the direct pathway and overactivity of the indirect pathway; ultimately 

increasing inhibition at the level of the thalamus (Fuxe et al., 2006). It is this shift to a 

state of physiologic imbalance within the BG that results in the physical manifestation 

of motor symptoms seen in PD (DeLong & Wichmann, 2015). Accompanying the motor 

symptoms observed in PD are several pathologic features.  

Abnormal folding and accumulation of protein is not uncommon among 

neurogenerative diseases (Kalia, Lang & Shulman, 2015). In fact, it is by these 

intracellular protein inclusions that degenerative diseases are often categorized (Kalia et 

al., 2015). The protein associated with PD is α-synuclein. Insoluble aggregates of α-

synuclein found within the cell body of a neuron are known as Lewy bodies (Braak et 

al., 2003). When found within neuronal processes, they are known as Lewy neurites 

(Braak et al., 2003). In addition to the loss of dopaminergic neurons in the SNc, Lewy 

pathology is the second widely recognized pathologic hallmark of PD (Braak & Del 

Tredici, 2017). However, it is still unknown whether the presence of lewy bodies in 

nigral and extra-nigral neurons is toxic to the system or perhaps even neuroprotective 

(Gallagher & Schapira, 2014). A staging system developed by Braak et al. (2003) 

proposes six stages by which Lewy pathology progresses spatially and temporally in 

PD. The first stage affects the peripheral nervous system, olfactory system and medulla 

oblongata (lesions seen in the dorsal motor nucleus of the vagus). This is supported by 

the early premotor symptoms observed in PD including autonomic dysfunction 

(particularly gastrointestinal issues) and olfactory impairment (Gallagher & Schapira, 

2014). Although controversial, it is posited that Lewy pathology may be spreading in a 

prion-like manner up the vagal nerve to the CNS from the gut (Svensson et al., 2015). 
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Braak’s second stage includes pathology in the pons, and with the third stage comes 

nigral pathology. Third stage nigral pathology provides an explanation for the 

presentation of motor symptoms seen in PD, given its role in the BG motor loop. The 

fourth, fifth and sixth stages involves the spreading of Lewy pathology to include 

lesions in the limbic system, thalamus, and several different cortical regions. The 

presence of cortical Lewy pathology has been shown to correlate with dementia, 

providing evidence for the cognitive decline sometimes seen in advanced stages of PD 

(Irwin et al., 2012). Although no cure exists for treating PD pathology, year 2017 marks 

the 50th anniversary for a molecule that has been instrumental in improving quality of 

life for PD patients.  

1.2 Pharmacology of Levodopa 

1.2.1 Levodopa and its Metabolism  

In 1967, a study was published in which a racemic mixture of D/L-DOPA was used for 

the first time in the treatment of PD (Cotzias, Van Woert & Schiffer, 1967). Harvard 

medical school researchers lead by Dr. George Cotzias were responsible for the study, 

demonstrating a novel treatment that could provide significant motor relief for PD 

patients. At first, this revolutionary treatment was received with much skepticism by the 

scientific community (Fahn & Poewe, 2015). It was not until their follow up study 

published in 1969, which used a 100% pure formulation of L-DOPA, that doubts were 

put to rest (Cotzias, Papavasiliou & Gillene, 1969). L-DOPA or levodopa (L-3,4-

dihydroxyphenylalanine) has been the absolute gold-standard for the treatment of motor 

symptoms in Parkinson’s disease ever since (Fahn & Poewe, 2015).   

Levodopa is a naturally occurring neutral amino acid that is found in some foods 

and as an intermediate in human metabolic pathways (Muller, 2013). Levodopa is 

converted to dopamine in both the central (CNS) and peripheral (PNS) nervous system 

via aromatic acid decarboxylase (AADC) (Muller, 2013). Levodopa undergoes 

significant systemic metabolism by peripheral AADC prior to entering the CNS. 

Peripheral conversion of levodopa to dopamine greatly reduces efficacy, given 

dopamine’s inability to cross the blood-brain barrier (LeWitt, 2015). To combat this, 
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oral formulations also contain an AADC inhibitor (carbidopa), increasing bioavailability 

at the CNS (Muller, 2013).  

There are several challenges that orally administered levodopa faces during 

transport to the brain. First, there is only a brief region of the duodenum and proximal-

jejunum where sodium-dependent neutral amino acid carrier systems exist (LeWitt, 

2015). Within this region, levodopa competes for absorption in the gut with other 

neutral amino acids found in the diet via facilitated transport (LeWitt, 2015). Hence, 

physicians instruct PD patients not to eat one hour before, or two hours after taking 

levodopa orally. Not taking levodopa with food optimizes drug absorption in the small 

intestine (Nutt et al., 1984). From here, much of the absorbed levodopa either undergoes 

significant first-pass metabolism in the liver or is delivered to skeletal muscle and only a 

small percentage is delivered to the CNS (LeWitt, 2015). Levodopa has a plasma half-

life of about 90 minutes, which is nearly doubled when given with carbidopa (Yeh et al., 

1989). Orally administered tablets often consist of 100 mg of levodopa and 25 mg of 

carbidopa; and require 45-60 minutes (± 20 minutes) to reach maximum drug 

concentration in plasma (Yeh et al., 1989). It is around this 45-60 minute mark when 

levodopa reaches maximum plasma concentration that we usually see the greatest effect 

in managing motor symptoms. It is the central action of levodopa responsible for 

providing motor relief.  

Levodopa crosses the blood-brain barrier into the CNS via the same sodium-

dependent amino acid transporter seen in the gut (Nutt et al., 1984). Once in the CNS, L-

amino acid transporters (LAAT) present on the surface of SNc neurons take up 

exogenous levodopa into the cytosol (Vieira-Coelho & Soares Da Silva, 1998). These 

transporters are also present on the surface of extra-nigral neurons. Now exposed to 

AADC and cofactor pyridoxal phosphate, levodopa is converted to dopamine. Excluding 

dopamine supply via exogenously administered levodopa, the primary pathway for 

dopamine biosynthesis within neurons begins with phenylalanine (Daubner, Le, & 

Wang, 2011). Phenylalanine is first converted to L-tyrosine by phenylalanine 

hydroxylase with help from co-factor tetrahydrobiopterin (BH4) (Daubner et al., 2011). 

This step is characterized by the addition of a hydroxyl group to phenylalanine (Daubner 
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et al., 2011). This is followed by rate limiting enzyme tyrosine hydroxylase (TH) and 

cofactors oxygen, BH4, and iron (Fe2+) in adding a second hydroxyl group to tyrosine 

(Ramsey & Fitzpatrick, 2000). The rate limiting addition of a hydroxyl group to tyrosine 

produces L-DOPA (Ramsey and Fitzpatrick, 2000). As discussed earlier, L-DOPA is 

then converted to dopamine via AADC. Dopamine begins its journey by being packaged 

into vesicles in the cytosol.  

1.2.2 Dopamine and its Metabolism   

Dopamine present in SNc neurons must first be packaged into vesicles before release of 

the neurotransmitter can occur. Vesicular monoamine transporters (VMAT2) depend on 

vesicular proton pumps (V-type H+-ATPase) to generate the H+-gradient required for 

vesicular packaging of cytosolic dopamine (Erickson et al., 1996). Peter et al., (1995) 

detected the highest concentrations of VMAT2 in the soma, axon terminals and 

proximal dendrites of dopamine neurons as demonstrated by increased 

immunoreactivity for VMAT2 in those regions. This suggests vesicular packaging of 

monoamines may occur in several areas throughout the neuron. However, given the 

proximity to dendritic spines of medium spiny neurons, the bulk of packaging is likely 

to occur in the axon terminals of dopaminergic neurons (Mosharov, Borgkvist, & 

Sulzer, 2015).  

SNc neurons are tonically active with a basal firing rate of approximately ~4 Hz. 

Upon stimulation, firing frequency rises to roughly ~15 Hz (Mosharov et al., 2015). 

Thus, quantal release of dopamine must be tightly regulated. Stimulation-dependent 

exocytosis is an efficient means of regulating this release. Elsworth and Roth (1997) 

explain that when an action potential arrives, a shift in resting membrane potential 

results in conformational changes in membrane proteins. This allows calcium ions to 

flow into the cytosol, thereby stimulating dopamine concentrated vesicles to fuse with 

the membrane via exocytosis (Kelly, 1993). Upon fusion, dopamine is dumped into the 

synaptic cleft to reach its target post-synaptic membrane. Interestingly, Freund, Powell, 

and Smith (1984) showed that pre-synaptic nigrostriatal neurons often terminate 

specifically on the necks of medium spiny neuron dendrites. This serves to mediate 
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excitatory glutamatergic stimulation by cortical neurons synapsing on the distal ends of 

MSN dendritic spines. Moreover, this provides dopaminergic neurons from the SNc the 

ability to regulate the MSN’s output by regulating its input. This finding vastly 

improved our understanding of the basal ganglia circuitry discussed earlier.  

Following stimulation-dependent exocytosis of dopamine into the synaptic cleft, 

the neurotransmitter may befall several different fates. First, dopamine can stimulate 

dopamine receptors on the post-synaptic membrane. Dopamine receptors belong to a 

class of transmembrane g-protein coupled receptors (Keefe & Gerfen, 1995). Elsworth 

and Roth (1997) explain that there are 5 subtypes of dopamine receptors: D1, D2, D3, 

D4, and D5. These subtypes are then grouped into either the D1-like receptor family 

(includes subtypes D1 and D5) or the D2-like receptor family (includes subtypes D2, 

D3, and D4). D1 receptors typically have an excitatory effect when bound by a ligand; 

exerting its effect by increasing intracellular levels of the second messenger cyclic 

adenosine monophosphate (cAMP) (Beaulieu & Gainetdinov, 2011). In contrast, D2 

receptors are largely inhibitory when bound by ligand; inhibiting cAMP formation 

(Beaulieu & Gainetdinov, 2011). D1 and D2 receptors are both found on the 

postsynaptic medium spiny neuron, with D1 being primarily involved in the direct 

pathway (as mentioned earlier) and D2 with the indirect pathway. According to further 

research by Elsworth and Roth (1996), D2 receptors are also found on the pre-synaptic 

dopaminergic neuron which are referred to as D2 autoreceptors. D2 autoreceptors give 

feedback to the pre-synaptic neuron, providing dopamine autoregulation based on the 

concentration of extracellular ligand available. D2 autoregulation involves adjusting the 

firing rate of the neuron and regulating the biosynthesis of dopamine and its release. In 

addition to receptor-mediated regulation of dopamine, the primary means by which 

dopamine is cleared from the synapse is by dopamine transporters (Elsworth & Roth, 

1996).   

Hitri et al. (1994) showed that dopamine transporters (DAT) are an energy 

dependent protein transporter capable of both releasing dopamine and managing 

reuptake. However, under physiologic conditions, DAT is known for its ability to help 

clear the synaptic cleft of dopamine through reuptake. DAT serves as a symporter 
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during reuptake, using high extracellular sodium (Na+) levels to drive dopamine back 

into the presynaptic terminal. Na+/K+-ATPase pumps help maintain this gradient by 

pumping sodium back into the extracellular space. Hitri et al. (1994) demonstrated this 

by showing that dopamine reuptake is impaired following Na+/K+-ATPase inhibition, 

effectively lowering the extracellular sodium levels needed to drive the DAT symporter. 

Once dopamine has been pumped back inside the terminal bouton, it can either be 

metabolized or recycled back into vesicles to await release. Aside from its presence on 

the pre-synaptic membrane, DAT can also be found on microglia. Through DAT, 

microglia take up residual dopamine to be metabolized.  

Microglia and dopaminergic neurons both have the enzyme monoamine oxidase 

(MAO) located subcellularly on the outer membrane of the mitochondria. In addition to 

MAO, microglia also contain soluble, cytoplasmic catechol-O-methyltransferase 

(COMT) whereas dopaminergic neurons lack this enzyme (Meiser, Weindl, & Hiller, 

2013). MAO catabolizes dopamine via deamination whereas COMT introduces a methyl 

group (Meiser et al., 2013). A few of the main end-point metabolites of dopamine 

catabolism include homovanillic acid (HVA) and 3,4-dihydroxyphenylethanol (DOPET) 

(Goldstein & Lieberman, 1992).  

1.2.3 Compensatory Mechanisms in PD    

As previously discussed in the pathology of PD, we typically see a 30% loss of 

neuromelanin pigmentation in the SNc before PD motor symptoms manifest. In other 

words, this loss of pigmentation translates to 30% nigral cell death. Moreover, due to 

axonal branching at the level of the striatum we see an even higher 50-70% loss of 

nigral terminals before motor symptoms present (Burke & O’Malley, 2013). Hence, 

dopamine release is somehow sufficient even after substantial cell death and loss of 

innervation to the striatum occurs (Mosharov et al., 2015). Three compensatory 

responses seen in pre and postsynaptic terminal sites are likely responsible for correcting 

basal ganglia function in a worsening pathologic state: 1) under lower levels of 

extracellular dopamine, D2 autoreceptors on the presynaptic neuron are stimulated far 

less, causing them to upregulate dopamine biosynthesis and release in the surviving 
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terminals (Zigmond, 1997); 2) reduced dopamine stimulation on postsynaptic MSNs 

results in a compensatory upregulation of MSN-D2 receptors (Berti, Pupi & Mosconi, 

2011); 3) nigral terminal death reduces the overall number of dopamine reuptake 

transporters, increasing the volume of dopamine remaining in the extracellular space 

following release (Venton et al., 2003). These compensatory responses in conjunction 

with exogenous levodopa therapy are likely responsible for restoring much of the basal 

ganglia function in PD.  

Levodopa has been shown to increase cytosolic dopamine levels (Mosharov et 

al., 2009), increase vesicular dopamine storage (Omiatek et al., 2013), and increase 

quantal size of dopamine release from vesicles (Pothos, Davila, & Sulzer, 1998). 

Overall, this results in a largely increased volume of transmission of dopamine. An 

important feature of monoamine neurotransmitter synapses such as with dopamine is the 

concept of ‘social transmission’. Social transmission occurs when the neurotransmitters 

released overflow to interact at sites distant from the intended post-synaptic membrane 

(Sulzer & Pothos, 2000); termed perisynaptic zones (Venton et al., 2003). Social 

transmission of dopamine at the striatum allows dopamine to interact with receptors on 

MSN dendritic spines far from the initial release site. It also results in dopamine 

interacting with receptors found on extra-nigral serotonergic neurons, corticostriatal 

synapses and GABAergic and cholinergic interneurons (Venton et al., 2003). Social 

transmission helps explain in part how motor function improves with the use of 

levodopa when so few dopamine terminals remain. As discussed, levodopa increases the 

volume of transmission of dopamine; and reduced DAT due to terminal loss results in 

increased synaptic concentrations of dopamine. These two features in conjunction with 

social transmission allows dopamine to venture to sites of low terminal receptor density, 

increasing stimulation in these denervated areas (Mosharov et al., 2015). Thus, 

temporarily restoring basal ganglia homeostasis and improving motor functioning in 

individuals with PD. This reasoning provides grounds for why we likely do not see a 

change in motor behavior if levodopa were to be given to a healthy individual. Healthy 

individuals do not experience the same level of SNc terminal density loss as those with 

PD (Burke & O’Malley, 2013). Hence, D2 autoreceptors have not increased the overall 
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volume of dopamine transmission from each neuron, postsynaptic striatal D2 receptor 

upregulation has not occurred, and DAT levels remain normal. Quantal release of 

dopamine is highly controlled, and a high number of dopamine reuptake transporters 

remain to rapidly clear the synaptic space of excess dopamine. Therefore, exogenous 

administration of levodopa to healthy individuals has no effect. These compensatory 

mechanisms highlight why levodopa has been so successful in treating PD. Given the 

abovementioned compensatory mechanisms, the PD brain clearly strives to maintain 

physiologic balance in a worsening pathologic state. Although exogenous levodopa 

administration proves useful, an array of motor symptoms persists.  

1.3 PD Motor Symptoms  

1.3.1 Motor Symptom Assessment in PD   

The four cardinal motor symptoms recognized in PD include bradykinesia, rest tremor, 

muscular rigidity, and postural instability (Kalia et al., 2015). The most commonly used 

method of assessment for determining severity of these symptoms is the Movement 

Disorders Society- Unified Parkinson Disease Rating Scale; Part 3: Motor Examination 

(MDS-UPDRS-III) (Martinez-Martin et al., 2013). In 2008, the Movement Disorders 

Society revised the existing UPDRS (Goetz et al., 2008) based on published criticisms 

of the scale. The MDS-UPDRS boasts 4 comprehensive sections including 1) non-motor 

experiences of daily living; 2) motor experiences of daily living; 3) motor examination; 

and 4) motor complications. Our study employed the use of the motor examination (Part 

3) portion of the MDS clinical scale, and will simply be referred to hereafter as the 

‘UPDRS-III’.  

The UPDRS-III includes 18 items which are given individual scores based on 

highly specific rating criteria. The ratings given to each item range in severity on a 5-

point scale from 0 = normal, 1 = slight, 2 = mild, 3 = moderate, and 4 = severe (Goetz et 

al., 2008). The UPDRS-III is an essential part of the ‘Core Assessment Program for 

Surgical Interventional Therapies in Parkinson’s Disease’ (CAPSIT-PD) that was put 

forth by Defer, Widner, Marie, Remy, and Levivier in 1999. CAPSIT-PD outlines the 

steps to determine if a PD patient would make a suitable candidate for more intensive 
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surgical interventions like deep brain stimulation (DBS). DBS is often implemented 

when PD motor symptoms are no longer sufficiently managed by oral anti-parkinsonian 

medications and complications arise. One of the CAPSIT-PD criterium states that PD 

patients should have a minimum 33% dopaminergic responsiveness (levodopa response) 

when undergoing the ‘single-dose L-dopa test’ or the ‘levodopa challenge test’. This 

involves performing the UPDRS-III after a PD patient has been without 

antiparkinsonian medication for a minimum of 12 hours (i.e. when they are in their 

‘defined-off’ state; ‘OFF’ medication). The patient is then given a single dose of 

levodopa and reassessed using the UPDRS-III. They are either reassessed 45-60 minutes 

after levodopa administration, or when the patient is at their best clinically ‘defined-on’ 

state. The defined-on state refers to when both the patient and clinical rater agree that 

the individual is receiving the highest level of therapeutic benefit from the administered 

levodopa. Per CAPSIT-PD protocol, the degree of change measured by the UPDRS-III 

as a result of the levodopa is calculated as: (OFF UPDRS-III score – ON UPDRS-III 

score) / OFF UPDRS-III score x 100%. The value produced by this formula is the 

levodopa response. If this resulted in a levodopa response of 33%, it would indicate that 

the OFF UPDRS-III score decreased by 33% following levodopa administration. 

CAPSIT-PD protocol states than an individual with a 33% dopaminergic response 

demonstrates the minimum response to medication needed to move forward in the 

screening process. Although commonly used to assess an individual’s suitability for 

surgical intervention, the levodopa challenge test has been widely adopted for research 

purposes and will be used in this study. This method for determining an individual’s 

response to medication has become the gold-standard in both the clinical and research 

realm (Albanese et al., 2001). Although the levodopa response generally indicates a 

patient’s overall motor improvement, subscores of the UPDRS-III like those for 

bradykinesia can provide insight into the severity of individual symptoms. Next, is a 

brief overview of the cardinal motor symptoms of PD.   

1.3.2 Bradykinesia  

Per Braak’s staging, the one absolute symptom that must be present to diagnose an 

individual with PD is bradykinesia. Bradykinesia is defined as ‘slowness of movement’ 
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and has been shown to correlate highly with the degree of cell loss in the substantia 

nigra pars compacta (Greffard et al., 2006). Thus, bradykinesia is expected to 

progressively worsen with disease. Bradykinesia is often used interchangeably with 

terms such as akinesia (poverty of spontaneous movement) and hypokinesia (amplitude 

of movements are smaller than normal). Bradykinesia is evident in PD patients when 

asked to perform UPDRS-III tasks like rapid finger tapping or opening and closing of 

the fist. In both instances, bradykinesia presents as a gradual decline in the speed of 

which the task is performed. In this example, hypokinesia presents as a decrement in 

amplitude of the performed task, such that the fingers do not open as big and as wide as 

they did at the beginning of the task. Furthermore, akinesia can manifest as a lack of 

spontaneous facial expression during conversation or reduced arm swing during 

walking. Although these three terms have slightly different definitions, they are likely 

the result of similar etiology.  

The primary pathophysiological reason bradykinesia is seen in PD is likely due 

to basal ganglia dysfunction. However, several secondary causes including rigidity, 

tremor, muscle weakness and slowing of thought likely contribute (Berardelli, Rothwell, 

Thompson, & Hallet, 2001). The following research provides support for these 

secondary causes: a) muscle weakness- a study by Corcos et al., (1996) demonstrated 

that PD participants showed an average 30% reduction in muscle strength when assessed 

OFF levodopa as compared to ON; b) tremor- research by Wierzbicka et al. (1993) and 

Hallet et al. (1977) have shown that patients exhibiting rest or action tremor try to time 

the tremor contraction of their agonist muscle with the initiation of movement, which 

results in an overall delay in initiation (slowness); c) given that PD movements are less 

accurate than healthy controls (Phillips et al., 1994), it has been theorized that 

bradykinesia is actually a trade-off strategy actively employed to improve accuracy by 

reducing speed (Sheridan & Flowers, 1990); and d) lastly, slowness of thought 

(bradyphrenia), although controversial, may interfere with the planning and execution of 

movement (Cooper, Sagar, Tidswell, & Jordan, 1994; Pate & Margolin, 1994). 

Combined, these studies provide evidence for some of the secondary causes that may 

lead to bradykinesia.  
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The primary pathophysiological reason for bradykinesia (as reviewed by 

Berardelli et al., 2001), simplistically put, is that during movement initiation there is 

insufficient recruitment of muscle force, which stems from basal ganglia dysfunction. 

During movement planning and execution, the basal ganglia are responsible for the 

selection and reinforcement of specific patterns of cortical activity. Therefore, a 

breakdown in basal ganglia circuitry leads to deficits in cortical movement commands, 

followed by poor recruitment of muscle force, resulting in underscaled movements; and 

hence, bradykinesia.  

1.3.3 Tremor 

Most PD patients experience tremor at some point in disease (Jankovic, 2008). Hughes, 

Daniel, Blankson, and Lees (1993) explain that tremor in PD can be peculiar and doesn’t 

always progress predictably. Patients may have tremor at onset but see a spontaneous 

remission of the symptom later in disease. Others might be less fortunate, having onset 

tremor that progresses in severity (seen as an increase in tremor amplitude) with disease 

duration.  

Tremor in PD can present as rest, postural or kinetic (action) tremor (Duval, 

Daneault, Hutchison, & Sadikot, 2016). Rest tremor occurs when the limbs are at rest; 

such that the limb might be supported or loosely hanging, or in absence of anti-gravity 

muscle contraction (Duval et al., 2016). Rest tremor typically occurs at a frequency of 4 

– 6 Hz and can be observed in the upper and lower limbs, lip, chin, jaw and head 

(Jankovic, 2008). Postural tremor usually occurs at a slightly higher frequency (8 – 9 

Hz) than rest tremor (Deuschl, Bain & Brin, 1998) and can be observed when a patient 

holds their arms out horizontally in front of their chest. Postural tremor is often 

accompanied by a unique phenomenon known as ‘re-emergent tremor’; where tremor 

recedes when patients move their hands into a horizontally outstretched position and 

returns moments later. This contrasts with a closely related pathologic condition known 

as essential tremor, where there is no latency of tremor when moving from a resting to 

an outstretched, postural position (Jankovic, Schwartz, & Ondo, 1999). Furthermore, 

kinetic or action tremor occurs when performing a voluntary movement, often hindering 
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one’s ability to perform fine motor movements (Rana, Siddiqui, Qureshi, Fattah, & 

Awan, 2014).   

 The pathophysiology of tremor is not yet fully understood; however, a theory 

known as the ‘finger-switch-dimmer’ model of tremor in PD has been popularized by 

Duval and colleagues (2016). Although the theory stands to be more complex than what 

will be discussed, its basic elements are that the basal ganglia functions as the finger, the 

thalamus as the switch, and the cerebellum as the dimmer. Briefly, tremor in PD is 

thought to be induced by basal ganglia dysfunction. This results in abnormal thalamic 

activity which the cerebellum attempts to modulate. Ultimately, this leads to a rhythmic, 

oscillatory contraction of agonist and antagonist muscles visually identified as tremor.  

1.3.4 Rigidity  

Rigidity is a form of muscle hypertonia characterized by an increase in resistance to 

passive mobilization of a limb (Delwaide, 2001). Parkinsonian rigidity is direction and 

velocity independent; unlike spasticity (a different form of hypertonia), where tone is 

velocity dependent and exaggerated during extension, rather than flexion movements. 

Baradaran and colleagues (2013) explain that the general stiffness or rigidity observed in 

PD is a sign that often goes unnoticed by patients until detected upon examination by a 

clinician. In patients that do notice, it is commonly misdiagnosed as arthritis or a torn 

rotator cuff when they are in fact suffering from parkinsonian rigidity or ‘frozen 

shoulder’ (a common musculoskeletal disease of PD associated with long term pain).  

Clinicians detect rigidity by passive flexion, extension, and rotation about a joint 

in the upper and lower limbs. In early stages, a slightly increased resistance unilaterally 

to passive movement might be detected that would not be felt in a healthy individual. 

This subjective examination can prove difficult, and is often accompanied by an 

‘activation manoeuver’ when trying to determine if pathologic stiffness is indeed 

present. This activation manoeuver or ‘Froment’s manoeuver’ is a technique whereby 

the examiner instructs the patient to voluntarily move the contralateral limb (patients 

commonly told to tap fingers to their thumb in the hand not being examined) 

(Broussolle, Krack, Thobois, Xie-Brustolin, & Goetz, 2007). Activation manoeuvers are 
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performed to unmask latent rigidity or simply to accentuate existing stiffness 

(Baradaran, 2013).  

There are commonly two classifications of parkinsonian rigidity as discussed by 

Broussolle et al (2007); leadpipe and cogwheel. Patients with leadpipe rigidity 

experience a uniform increase in muscle tone throughout the passive mobilization of a 

limb, which increases in severity (tone) with disease duration. In contrast, those with 

cogwheel rigidity experience interruptions in increased muscle tone during passive 

movement. These interruptions occur at a frequency of approximately 4-6 Hz. During 

passive movement, an examiner will experience a sort of ‘catch and release’ in muscle 

tone; and hence, a cogwheel pattern is felt through the range of movement.   

After bradykinesia, rigidity correlates second most strongly with nigral 

degeneration but its pathophysiology is not well understood. Rigidity is typically 

hypothesized to stem from more than just basal ganglia dysfunction alone. Older 

theories discuss the possible involvement of long-loop reflex pathways that relay in the 

brain; or perhaps inappropriate short reflex pathways in the spinal cord occurring 

because of dysfunctional descending pathways (Delwaide, 2001). A more recent study 

by Baradaran et al. (2013) suggests that stiffness manifests because of the wide spread 

changes seen in the PD brain, and that pinning the underlying pathology of rigidity on 

one discrete locus seems inappropriate.  

1.3.5 Postural Instability and Gait Dysfunction  

Significant balance and gait impairment is not typically seen in PD until 10 years of 

disease (Wenning et al., 1999). Postural instability leading to falls is the number one 

reason for hospitalization in advanced stages of PD, significantly contributing to 

morbidity (Temlett & Thompson, 2006). Patients who experience falls often develop 

anxiety living alone. Some even develop a phobia of falls, commonly referred to as ‘fear 

of falling’. Fear of falling can itself be largely incapacitating for patients, reducing the 

number of activities they once felt comfortable undertaking (Adkin, Frank, & Jog, 

2003). Moreover, postural instability largely contributes to patients reporting increased 
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depression, avoidance of physical activity, social isolation, and an overall reduced 

quality of life (Kim, Allen, Canning, & Fung, 2013).   

 Clinically, postural instability and gait impairment is assessed by several 

different ways as outlined by the UPDRS-III (Kimmel, Pulusu, Bharucha, & Ross, 

2015). First, it can be assessed by instructing a patient to cross their arms and stand up 

from a chair without assistance. Examiners will often observe patients rising slowly 

from the chair, making use of the chair’s armrests; and in severe instances, requiring 

assistance from the examiner to stand up.  

The next method involves an examination of the individual’s posture while 

standing. Individuals are instructed to stand up, and then told to do their best in 

correcting their posture if it seems abnormal. PD patients can develop a stooped posture 

and asymmetrical leaning to one side (scoliosis) later in disease that often cannot be 

corrected volitionally (Kim et al., 2013).  

A balance test is conducted whereby a patient stands upright and the examiner 

abruptly pulls back on their shoulders while standing behind them. This is commonly 

referred to as the retropulsion test or pull-back test. Of the postural instability 

assessment methods, the retropulsion test is believed by physicians to best represent 

axial or truncal impairment in PD. In the retropulsion test, the patient is instructed to try 

and remain upright while taking as few steps behind them to regain their balance as 

possible when pulled backwards (Grimbergen, Munneke, & Bloem, 2004). More than 

two steps required to maintain balance is indicative of postural instability or axial 

impairment (Jankovic, 2008).  

Finally, gait is evaluated by instructing a patient to walk 10 metres away from 

the examiner, turn 180 degrees, and walk back towards the examiner. During this task, 

many features can be examined including stride length and speed, height the foot is 

lifted after each step, arm swing, and overall gait performance while walking and 

turning. Clinicians will commonly observe decreased stride length and speed, shuffling 

of the feet, and reduced arm swing asymmetrically.       
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 Again, the pathophysiology of postural instability and gait impairment has not 

fully been brought to light. Given that several of the features discussed above are 

generally considered non-dopa responsive, it is thought that extra-nigral structures are 

likely involved (Crouse, Phillips, Jahanshahi, & Moustafa, 2016). 

1.4 Role of the Levodopa Response in PD  

1.4.1 The Levodopa Response   

PD individuals will typically have a 70% loss in nigral terminal density when motor 

symptoms manifest. At this point, endogenous dopamine alone is insufficient and 

exogenous levodopa treatment is initiated. PD patients then benefit from what is 

classified as either the short or long duration response to levodopa. The short duration 

response (SDR) is the motor benefit patients receive that rises and falls with plasma L-

DOPA concentrations (Anderson & Nutt, 2011). This acute motor benefit is the direct 

result of corticostriatal modulation via D1-D2 (i.e. direct and indirect pathway) receptor 

activation (Zhuang, Mazzoni & Kang, 2013). The motor benefit provided by the SDR in 

this study will be measured as the magnitude of improvement in UPDRS-III scores from 

OFF to ON levodopa. In contrast, the long duration response (LDR) is not the result of 

acute modulation but rather neuroplasticity of striatal cell excitability that occurs over 

time in response to consistent levodopa therapy. Classically, the LDR is when PD 

patients on long-term levodopa treatment receive sustained motor benefit even after 

discontinuation of levodopa, which can last for days to weeks (Nutt, Carter & 

Woodward, 1995). The LDR can take anywhere from one week to a year to buildup, 

demonstrating large variability between patients (Holford, Chan, Nutt, Kieburtz & 

Shoulson, 2006). The complex mechanisms behind the neuroplastic changes in the 

corticostriatal pathway giving way to the LDR are not yet fully understood (Zhuang et 

al., 2013). The motor benefit provided by the LDR in this study will be represented by 

the UPDRS-III score in the OFF state (i.e. the benefit that persists after levodopa 

withdrawal determines the severity of the OFF-motor state). The combination of the 

SDR and LDR to levodopa is what determines the magnitude of an individual’s overall 

motor response (Nutt & Holford, 1996).  
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The long duration response is significant early in disease and is often referred to 

as the ‘honeymoon’ period (Wider et al., 2006). In the honeymoon period, long-term 

treatment with levodopa can reduce the severity of the OFF state, somewhat preserving 

normal motor functioning even after levodopa withdrawal. This results in relatively 

stable short duration responses of smaller amplitude, typical of the honeymoon period. 

The LDR is expected to decline with disease progression, giving way to disabling motor 

fluctuations (Zappia et al., 1999). However, early research by Ogasahara and colleagues 

(1984) have found the LDR to provide significant motor benefit even after 9 years of 

PD. Anderson and Nutt (2011) propose that when the LDR is still providing significant 

motor benefit (early in disease), it may be contributing one third to half of the overall 

effect on motor symptoms. The more immediate SDR is thought to contribute one half 

to two thirds of the overall effect on motor improvement. The relative contribution of 

the LDR and SDR at each stage of disease is not yet clear.   

As the LDR wanes, the SDR is thought to persist and perhaps take over, 

eventually providing the bulk of the overall motor response. Given that the SDR is 

thought to take over, the amplitude of motor benefit following acute doses of levodopa 

are expected to increase with disease duration. In other words, the amplitude of change 

in UPDRS-III scores from OFF to ON levodopa (as a result of the SDR) will increase as 

disease progresses. This study seeks to further understand how motor improvement as a 

result of the SDR (which will simply be referred to hereafter as the ‘levodopa response’) 

relates to factors like disease duration, levodopa duration, age, medication, and motor 

scores in PD.  

1.4.2 Rationale   

The goal of our study is to investigate how the levodopa response changes from early to 

advanced stages of disease duration in 70 PD participants. Recall that the levodopa 

response is a critical tool for determining suitability for more serious interventions in PD 

like deep brain stimulation (Defer et al., 1999). Successful DBS selection also heavily 

depends on a patient’s age and disease duration. Shedding light on how the levodopa 

response relates to factors like age and disease duration allows neurologists to make 
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more highly informed treatment decisions when planning a therapeutic timeline for their 

PD patients. Optimizing implementation of surgical treatments in PD could enhance 

quality of life for longer and earlier in disease.  

The CAPSIT-PD protocol (Defer et al., 1999) recommends PD patients not be 

considered for DBS surgery until at least 5 years of disease duration. Volkmann (2004) 

reported that of 122 candidates who received the implanted DBS device, the average 

disease duration at time of surgery was 14.2 years. Interestingly, a study by Espay and 

colleagues (2010) used computer modelling to predict that patients who undergo DBS 

earlier in disease would see an increase of 2.5 quality-adjusted life years (QALYs) as 

compared to those who wait until later in disease. Although they recommend further 

clinical trials to confirm, there is a growing interest in performing surgery earlier in 

disease provided the substantial benefits seen by patients. DBS has been shown to 

efficiently manage PD motor symptoms, with benefit persisting in populations even 

after 8 to 10 years of stimulation (Fasano et al., 2010; Castrioto et al., 2011; Zibetti et 

al., 2011). Depending on the locus of implantation, PD patients have observed up to a 

50% reduction in their baseline OFF medication UPDRS-III score after 3 to 4 years of 

stimulation (Rodriguez-Oroz et al., 2005). If we can deepen our understanding of 

disease progression as it relates to the levodopa response, perhaps we can consider 

implanting the device earlier in disease or at more optimized times to yield best results. 

Our study aims to provide such information so that PD patients might enjoy a higher 

quality of life for longer. First, an overview of studies that have investigated the 

levodopa response as it relates to age and disease duration is necessary.  

1.4.3 Studies Investigating Levodopa Response in PD  

A longitudinal study by Clissold, McColl, Reardon, Shiff and Kempster (2006) followed 

34 PD patients over a mean period of 11.4 years of disease. Patients in the study were 

assessed every 3 years in their defined OFF and ON states. 12 patients were lost due to 

death and other reasons, demonstrating just one of the difficulties in undertaking a 

longitudinal study of this magnitude. Instead of measuring the levodopa response as a 

percent change from OFF to ON, they reported an absolute change in motor score, or 
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simply OFF minus ON.  Their main findings were that the OFF and ON motor scores 

rose in parallel during early stages of disease. However, after early stages of disease 

(after at least 3 years of treatment), they found that the magnitude of response widens 

due to increasing severity of OFF medication motor scores. They concluded that PD 

patients do not lose their capacity to respond to levodopa as you might expect with the 

degeneration of dopaminergic neurons over the course of disease.     

A follow-up report on Clissold et al.’s (2006) longitudinal study was recently 

published in 2013 by Ganga et al. Now, only 8 patients remained of the original 34 with 

a mean disease duration of approximately 18 years. Keeping with the original protocol, 

they reported on the advanced stages of PD with their surviving 8 participants. They 

discussed that from early stages of disease up until approximately 15 years, motor 

disability appears to progress in a linear fashion. However, after 15 years of disease a 

rapid decline was observed, suggesting an exponential deterioration of motor scores in 

advanced PD. Furthermore, they remark that OFF medication motor scores are the best 

indicator of the rate of disease progression in PD, likely linked closely to the level of 

cell death in the SNc. Ganga and colleagues comment on how much of the existing 

literature asserts that axial symptoms like postural instability and gait impairment 

(symptoms which classically progress later in disease) are relatively non-dopa 

responsive (Bonnet, Loria Saint-Hilaire, Lhermitte, & Agid, 1987). Their results 

challenge this assertion, finding that although disabling axial symptoms contribute 

largely to the OFF-phase motor score, the magnitude of axial response to levodopa is 

preserved. Lastly, they found no significant difference in levodopa response between 

tremor-dominant and non-tremor dominant phenotypes. Admitted by the authors, this 

study’s main weakness is an outdated method of motor examination; the ‘modified 

Webster scale,’ that was selected for use when the study commenced over 20 years ago. 

The authors state the preferred UPDRS-III would have been the ideal method for 

tracking motor progression in PD.  

A study conducted by Durso, Isaac, Perry, Saint-Hilaire, and Feldman in 1993 

had 45 PD patients (39 males and 6 females) undergo the levodopa challenge test 

followed by an assessment using the motor examination portion of the UPDRS. To their 
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surprise, they found that the levodopa response (in this case, measured as a percent 

change from OFF to ON) was primarily influenced by age, rather than by disease 

duration. They observed a negative correlation (r = -0.537) between age and magnitude 

of response. They speculated that this negative correlation might be the result of a 

natural loss of nigral cells and striatal dopamine receptors that occurs with age, which is 

of course compounded by Parkinson’s pathology. More specifically, they found that the 

response of rest tremor to levodopa was least influenced by disease duration, as 

compared to bradykinesia, rigidity, and gait. Lastly, they concluded that disease duration 

did not appear to have a significant relationship with levodopa response. 

The most recent study investigating acute levodopa response as it relates to age 

and disease duration was published by Aygun, Kocabicak, Yildiz, and Temel in June of 

2016. This retrospective study evaluated the preoperative levodopa response as a 

measure of percent change in 54 patients with advanced PD who were being considered 

for DBS surgery. Their main findings were that levodopa response was primarily 

influenced by age, rather than by disease duration, which corroborates findings by Durso 

et al. (1993) as was just discussed. No significant correlation was found between disease 

duration and levodopa response, whereas a negative correlation was found between age 

and levodopa response. In addition, they observed no significant difference in levodopa 

response when comparing tremor-dominant with the non-tremor dominant phenotype of 

PD.  

1.4.4 Summary of Current Studies 

Based on the aforementioned studies, it is clear there remains much debate regarding the 

levodopa response as it relates to variables like age and disease duration. The 20-year 

longitudinal study reported on by both Clissold et al. (2006) and Ganga et al. (2013) 

found that the levodopa response is maintained with increasing disease duration, with no 

mention of age. Moreover, they found that levodopa response was significantly larger in 

magnitude after 15 years of PD as compared to earlier in PD (less than 5 years of 

disease). However, they used an outdated method of PD motor assessment (modified 
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Wesbster scale) and only reported on levodopa response as an absolute change in motor 

score from OFF to ON.  

In contrast, studies performed by Durso et al. (1993) and Aygun et al. (2016) 

found that age negatively correlated with levodopa response and that disease duration 

had no influence. Durso and Aygun employed the use of the UPDRS-III but only 

reported levodopa response as a measure of percent change in motor scores. The highest 

n-value of any of the studies was 54; followed by 45 and 34 total PD participants. 

Furthermore, Aygun et al.’s (2016) study (which most closely resembles the body of 

work contained in this thesis) was limited by its retrospective inclusion of only patients 

in advanced stages of PD bound for DBS. Moreover, this lead to all but 2 patients 

recruited having a disease duration of greater than 4 years. Inevitably, Aygun et al. 

(2016) was unable to provide a comprehensive picture of levodopa response as it relates 

to all stages of Parkinson’s disease.     

1.4.5 Hypothesis  

We hypothesize that the motor improvement provided by the short duration response (or 

simply the ‘levodopa response’) will increase in amplitude as disease duration increases 

in PD.   

1.4.6 Objectives  

1) To determine the relationship between levodopa response (measured as both percent 

change and absolute change in motor score) and disease duration, age, OFF motor 

scores and LED (daily levodopa equivalency dose).  

2) To determine how motor severity and the levodopa response for tremor, akinesia, 

rigidity and axial symptoms change from early to advanced stages of disease duration.   
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3) To determine how the results of self-reported questionnaires on depression, cognition, 

confidence in balance, freezing of gait and quality of life relate to motor scores in the 

ON medication state.  
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Chapter 2 

2.1 Methods  

This chapter outlines the methods employed in this study. The study protocol followed 

that of the well-established and clinically validated ‘levodopa challenge test’. The 

UPDRS-III was the clinical rating scale used for assessing the severity of participants’ 

motor symptoms. Self-reported clinical questionnaires were also used to provide insight 

on non-motor symptoms and observed motor findings.   

2.1.1 Study Participants  

Seventy PD participants were recruited from the Movement Disorders Centre, 

University Hospital, London, Ontario, Canada. This study was approved by the Human 

Research Ethics Board (REB #107253) of Western University. Participants were 

included based on the following criteria: 1) have been diagnosed with idiopathic PD for 

at least 2 or more years; 2) be 45 to 85 years of age; 3) have been on stable doses of 

anti-Parkinson medication, including any levodopa preparation; and 4) able to give 

informed consent. Participants were excluded on the following criteria: 1) history of any 

surgical intervention for treating PD (i.e. deep brain stimulation, Duodopa pump); 2) 

extreme physical disability that impairs mobility assessment; 3) history or current 

diagnosis of unstable psychiatric condition; 4) presence of dementia or any other 

condition that prevents the ability of the participant to provide fully informed consent; 

5) pregnant, planning on becoming pregnant or breastfeeding; and 6) deemed unable to 

understand or speak sufficient English.  

2.1.2 Levodopa Challenge Test  

According to the CAPSIT-PD protocol (Defer et al., 1999), participants participated in 

the levodopa challenge test. This test involved participants visiting the Movement 

Disorders Lab in University Hospital after at least 12 hours without antiparkinsonian 

drugs. Participants were typically instructed to take their last dose of PD medication at 

8:00 PM on the night before the study. Their research visit was then scheduled for 9:00 
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AM the following morning so that they arrived in an OFF-medication state. This was to 

allow for an appropriate washout of levodopa.  

Upon arrival, a detailed medical history of the participants Parkinson’s disease 

was completed to corroborate details found in the participant’s clinical chart. This 

involved confirming the patient’s age, gender, date of PD diagnosis, date of first 

intervention with levodopa, and current medications. Current medications were recorded 

as the daily levodopa equivalency dose (LED) which uses conversion factors provided 

by Tomlinson et al. (2010). LED is a convenient way to convert different classes of 

antiparkinsonian drugs to their levodopa equivalent in milligrams. Next, the motor 

examination portion (Part 3) of the Unified Parkinson Disease Rating Scale was 

performed to provide a clinically defined-OFF motor score (when the PD patient has 

been without any antiparkinsonian medications for a minimum of 12 hours). A 

breakdown of the items scored in the UPDRS-III can be found in Table 1. After the 

motor examination was completed, participants were instructed to take three 100/25 mg 

(levodopa/carbidopa) tablets. Participants were then reassessed using the UPDRS-III 

when found to be in their clinically defined-ON medication state (when both the patient 

and clinical rater agree that the individual is receiving the highest level of therapeutic 

benefit from the administered levodopa or approximately 45-60 mins after levodopa is 

given). This provided us with their ON-medication motor score. Individual features and 

specific movements assessed in the UPDRS-III are rated based on specific criteria as 

outlined by the International Parkinson and Movement Disorder Society. Each item is 

scored as either 0 = normal, 1 = slight, 2 = mild, 3 = moderate, and 4 = severe.  

 

Table 1. Features and movements assessed using the UPDRS-III and their respective 

scoring. Higher scores represent increased motor impairment. 

UPDRS-Part 3: Motor Examination Scored 

3.1 Speech x/4 

3.2 Facial Expression  x/4 

3.3 Rigidity    

          Neck x/4 
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          Right Upper Extremity x/4 

          Left Upper Extremity  x/4 

          Right Lower Extremity  x/4 

          Left Lower Extremity  x/4 

3.4 Finger Tapping   

          Right  x/4 

          Left x/4 

3.5 Hand Movements    

          Right  x/4 

          Left x/4 

3.6 Pronation-Supination Movements of Hands    

          Right  x/4 

          Left x/4 

3.7 Toe Tapping    

          Right  x/4 

          Left x/4 

3.8 Leg Agility    

          Right  x/4 

          Left x/4 

3.9 Arising From Chair  x/4 

3.10 Gait  x/4 

3.11 Postural Stability  x/4 

3.12 Posture  x/4 

3.13 Global Spontaneity of Movement  x/4 

3.14 Postural Tremor of the Hands   

          Right  x/4 

          Left x/4 

3.15 Rest Tremor Amplitude    

          Lip/Jaw x/4 

          Right Upper Extremity x/4 

          Left Upper Extremity  x/4 

          Right Lower Extremity  x/4 

          Left Lower Extremity  x/4 

    

Rigidity Total (Sum of 3.3)  x/20 

Akinesia Total (Sum of 3.4 - 3.8)  x/40 

Axial Total (Sum of 3.9 - 3.13)  x/20 

Tremor Total (Sum of 3.14 - 3.15)  x/28 

UPDRS-III Total x/108 
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2.1.3 Clinical Questionnaires   

Once all motor assessments were finished, a series of clinical questionnaires were 

completed. All clinical questionnaires used can be found in Table 2. The first 

questionnaire used was the Activities-specific Balance Confidence (ABC) Scale. ABC is 

a self-reported questionnaire inquiring about the individual’s confidence in completing 

daily tasks such as walking up or down stairs. The questionnaire requires the participant 

to assign their balance confidence a value from 0 (no confidence) to 100 (absolute 

confidence) in completing the indicated task. Bello-Haas, Klassen, Sheppard and 

Metcalfe (2011) report that the ABC scale is valid for use in PD populations with good 

test-retest reliability.  

 The freezing of gait questionnaire (FOG-Q) was used to determine if participants 

experienced freezing episodes and disturbances in gait (Giladi et al., 2000). It is a 6-item 

scale with each item ranked from 0 (absence of symptoms) to 4 (most severe) for a 

maximum possible score of 24. Therefore, a higher score represents increased frequency 

and severity of freezing and gait disturbances. The participants were instructed to 

complete the scale while considering their condition over the past week. Giladi et al. 

(2009) found FOG-Q correlated highly with UPDRS-III ratings for gait and mobility 

scores, and confirmed the scale as a reliable tool for assessment in PD.  

The next scale used was the Montreal Cognitive Assessment (MoCA) which 

served as a measure of cognitive impairment. It was used to assess cognitive faculties 

including attention, memory, concentration, language, and visuospatial reasoning. A 

maximum possible score of 30 can be achieved by correctly completing all administered 

sections, with a score of 26 to 30 being considered normal. The MoCA has been 

validated for use in PD and has found to be more sensitive than other cognitive tests in 

identifying early cognitive impairment (Zadikoff et al., 2008).   

The geriatric depression scale (GDS) is a 30-item self-reported questionnaire 

asking yes or no questions to assess an individual’s level of depression. Individual 

scores of 5-10 indicate the possibility of depression, and a score greater than 10 is 



30 

almost always an indication of depression. Ertan and colleagues (2005) recommend the 

use of GDS given its reasonably clear cutoffs and high sensitivity for detecting 

depression when tested in a cohort of 109 PD patients.  

The last scale used was the 8-item Parkinson’s Disease Questionnaire (PDQ-8). 

This questionnaire was used to assess quality of life in PD patients. The scale addresses 

factors like mobility, emotional well-being, communication, bodily discomfort and 

communication. Each self-reported question is answered as either never, occasionally, 

sometimes, often, or always. These answers are then converted to a value of 0, 25, 50, 

75, or 100, respectively. The lower the average value across all 8 questions, the better 

the quality of life as reported by the individual completing the questionnaire.         

Table 2. Clinical Questionnaires completed by all PD participants. 

Clinical Questionnaire: Number of 

Items: 

Maximum 

Total: 

Total Indicates: 

Activities-specific Balance 

Confidence Scale (ABC) 

16 (mean)   

100 

High level of confidence 

Freezing of Gait Questionnaire 

(FOG-Q)  

6 (sum)      

24 

High level of gait/freezing 

impairment 

Montreal Cognitive Assessment 

(MoCA)  

30 (sum)      

30 

Cognitively normal 

Geriatric Depression Scale         

(GDS) 

30 (sum)       

30 

High level of depression 

Parkinson’s Disease Questionnaire 

(PDQ-8) 

8 (mean)   

100 

Low quality of life 
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2.1.4 Statistical Analyses    

GraphPad Prism 7.00 was used for all statistical analyses performed. All data were 

tested for normality. Parametric tests were performed for normally distributed data, 

while non-parametric tests were used for non-normally distributed data. The 

significance threshold was set at p < 0.05 for all statistical analyses performed. 

Spearman’s rank-order correlation was used in Figure 1, 2 and 9. A Kruskal-Wallis H 

test followed by Dunn’s post hoc multiple comparisons test was used in Figure 8. 

Repeated measures two-way ANOVA followed by Tukey’s multiple comparisons was 

used in Figure 3A. A one-way ANOVA followed by Tukey’s post-hoc multiple 

comparisons test was used for Figures 3A, 4, 5, and 7. A z-score or standard score was 

used in Figure 6.   
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Chapter 3 

3.1 Results  

This chapter outlines the results of 70 PD participants who performed the levodopa 

challenge test and completed subsequent clinical questionnaires.  

3.1.1 PD Participants: Clinical Outcomes  

Although 70 PD participants successfully completed the study, it should be noted that a 

total of 85 were recruited. Thus, 15 participants either cancelled on the morning of their 

scheduled study visit or voluntarily removed themselves from the study after its 

commencement. Participants who cancelled on the morning of the study did so due to 

poor driving conditions, fatigue or a high degree of mobility impairment because of 

being OFF-medication for an extended period. Participants who began the study but 

then chose to opt out did so due to pain, fatigue, discomfort, high levels of motor 

disability or a combination thereof. All recorded data from the failed 15 participants 

were excluded from the data set to be examined.  

Seventy PD participants included in the analysis (19 females, 51 males) met the 

inclusion and exclusion criteria. Clinical outcomes for all participants can be found in 

Table 3. Mean age was 66.13 ± 7.2 years with a range of 47 to 82 years while mean 

disease duration was 9.16 ± 4.3 years with a range of 2 to 18 years. Mean levodopa 

duration was 7.49 ± 4.2 with a range of 1 to 17 years whereas mean daily levodopa 

equivalency dose (LED) was 988.42 ± 437 mg (range of 300 to 2200 mg). Motor 

examination provided a mean OFF-medication UPDRS-III total score of 30.64 ± 10.23 

with a range of 6 to 60. Mean ON-medication UPDRS-III total score was 16.57 ± 8.17 

with a range of 3 to 49. Concerning levodopa response measured as absolute change 

(aLR) in UPDRS-III score (OFF-ON), the mean was 14.07 ± 6.07 with a range of 3 to 

29. Mean levodopa response measured as percent change (%LR) in UPDRS-III score 

((OFF-ON)/OFF*100) was 46.80% (±15.03) with a range of 18.33% to 88.88%.  
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Table 3. Clinical measures of the 70 PD participants enrolled.   

Clinical Measure Quantitative Data 

Age: years; mean ± SD 66.13 ± 7.2 

Sex: female/male; n (%) 19/51 (27.1/72.9) 

Disease duration: years; mean ± SD 9.16 ± 4.3  

Levodopa duration: years; mean ± SD 7.49 ± 4.2 

LED: mg; mean ± SD  988.42 ± 437 

OFF : ON UPDRS-III Score; mean ± SD 30.64 ± 10.23 : 16.57 ± 8.17 

Levodopa response: OFF-ON; mean ± SD 14.07 ± 6.07 

Levodopa response: (OFF-ON)/OFF*100(%); ± SD 46.80 ± 15.03 

SD, standard deviation of the mean; Disease duration refers to time since first intervention with 

levodopa; LED, levodopa equivalency dose; LED calculated based on conversion factors provided by 

Tomlinson et al. (2010); OFF refers to the state in which a participant has been without anti-

parkinsonian medication for at least 12 hours; ON refers the state in which both the participant and 

clinical rater agree that the participant is receiving the highest level of therapeutic benefit from the 

administered levodopa or approximately 45-60 mins after levodopa is given. 
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3.1.2 UPDRS-III: Total Motor Outcomes    
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Figure 2. Absolute levodopa response is significantly influenced by disease duration 

and levodopa duration.  

Spearman’s rank-order correlation was used to determine the relationship between 

absolute change in UPDRS-III and disease duration (A), levodopa duration (C) and age 
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(E). There was a statistically significant positive correlation with both disease duration 

(n = 70, r = 0.40, p = 0.0005***) and levodopa duration (n = 70, r = 0.47, p < 

0.0001****). No significant relationship was observed between absolute change in 

UPDRS-III and age (p = 0.85). Spearman’s rank-order correlation was also used to 

determine the relationship between % change in UPDRS-III and disease duration (B), 

levodopa duration (D), and age (F). No significant relationship was observed for B (p = 

0.291), D (p = 0.245), or F (p = 0.325). Spearman’s correlation coefficient is represented 

as ‘r’ on plots A through F. Black line indicates line of best fit. LR; levodopa response. 

 

In Figure 1, the levodopa response measured as a percent change (%LR) in OFF to ON 

UPDRS-III scores did not significantly correlate with disease duration, levodopa 

duration or age. Similarly, %LR did not significantly correlate with levodopa 

equivalency dose or OFF UPDRS-III scores in Figure 2. However, in Figures 1 and 2 

the levodopa response measured as an absolute change (aLR) had a significant positive 

correlation with disease duration (r = 0.40, p = 0.0005), levodopa duration (r = 0.47, p < 

0.0001), LED (r = 0.31, p = 0.0097) and OFF UPDRS-III scores (r = 0.58, p < 0.0001). 

Among those variables correlated with aLR, age was the only one found not to have a 

statistically significant correlation. Per lines of best fit, the aLR increases by 3.6 

UPDRS-III points per year after PD diagnosis. Given that levodopa treatment is often 

started shortly after diagnosis with PD, the aLR similarly increases by 2.97 UPDRS-III 

points per year after initial intervention with levodopa. Furthermore, LED increases by 

21 mg for every 1 point increase in aLR; or LED increases by close to 100 mg every 

year since first intervention with levodopa. Lastly, the aLR increases in approximately a 

1:1 ratio with OFF medication UPDRS-III total scores.  
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Figure 3. Absolute levodopa response is significantly associated with LED and OFF 

motor scores.    

Spearman’s rank-order correlation was used to determine the relationship between 

absolute change in UPDRS-III and LED (A) and OFF-UPDRS-III score (C).  There was 

a statistically significant positive correlation with both LED (n = 70, r = 0.31, p = 

0.0097**) and OFF UPDRS-III (n = 70, r = 0.58, p < 0.0001****). Spearman’s rank-

order correlation was also used to determine the relationship between % change in 

UPDRS-III and LED (B) and OFF-UPDRS-III score (D). No significant relationship 

was observed for B (p = 0.1779) or D (p = 0.8515). LR; levodopa response. LED; 

levodopa equivalency dose in milligrams. Spearman’s correlation coefficient is 

represented as ‘r’ on plots A through D. Black line indicates line of best fit. 
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Figure 4. A) OFF motor scores increase significantly after 13 years of disease while 

ON motor scores remain relatively stable. B) The levodopa response initially 

widens and then plateaus in later stages of disease duration. 

A) There was a statistically significant difference between UPDRS-III scores OFF and 

ON Levodopa at 2-5 years (n = 19, p < 0.0001****), 6-9 years (n = 19, p < 

0.0001****), 10-13 years (n = 17, p < 0.0001****), and 14+ years (n = 15, p < 

0.0001****). A significant interaction was also observed between participants of 2-5 
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years and 14+ years of disease duration OFF levodopa (p = 0.0005***). Repeated 

measures two-way ANOVA and Tukey’s multiple comparisons were conducted. Results 

are reported as the mean ± SEM. B) A one-way ANOVA followed by Tukey’s post-hoc 

test revealed a significant difference between groups 2-5 years and 6-9 years (p = 

0.0115*), 2-5 years and 10-13 years (p = 0.0138*) and 2-5 years and 14+ years (p = 

0.005**). Results are reported as the mean ± SEM. LR; levodopa response   

 

In Figure 3, all 70 participants were further divided into separate groups based on early 

(2-5 years, n = 19), middle (6-9 years, n = 19), late (10-13 years, n = 17) and advanced 

(14+ years, n = 15) stages of disease duration. Mean (± STD) OFF motor scores 

increased at each stage of disease duration; beginning at 24.68 (± 9.1) and then 

increasing to 30.37 (± 9.4), 32 (± 7.3), and finally 37.00 (± 11.9) points. OFF motor 

scores were significantly different (p = 0.0005) when the 3-5 year and 14+ year groups 

were compared. The difference in mean OFF scores between the early and advanced 

group was 12.32 points. Mean (± STD) ON motor scores for early, middle, late and 

advanced stages were 15.00 (± 7.7), 14.95 (± 6.2), 16.53 (± 7.6), and 20.67 (± 10.65), 

respectively. The difference in mean ON scores between the early and advanced stage 

was 5.7; however, no statistically significant differences were found between ON scores. 

When comparing the OFF and ON scores at each stage of disease duration, we can see 

that a significant response to medication is maintained at all stages of disease (p < 

0.0001) (See Figure 3A). The difference in means from OFF to ON (aLR) was taken at 

each stage of disease to produce Figure 3B. The aLR was investigated over the %LR 

due to the %LR’s insignificant findings in Figure 1 and 2. The aLR at 3-5 years (mean ± 

STD; 9.68 ± 3.7) was significantly less than that at 6-9 years (mean ± STD; 15.42 ± 6.3, 

p = 0.0115), 10-13 years (mean ± STD; 15.47 ± 5.6, p = 0.0138), and 14+ years (mean ± 

STD; 16.33 ± 6.4, p = 0.0050). The aLR appears initially to rise and then plateau after 5 

years of disease.   

In Figure 4, the mean (± STD) levodopa equivalency dose at early, middle, late and 

advanced stages of disease was 793.9 mg (± 276.9), 727.0 mg (± 287), 1186 (± 437.3), 

and 1342 mg (± 438.9). Mean LED in the early group was significantly less than both 

the late (p = 0.0097) and advanced (p = 0.0002) groups. Mean LED in the middle group 
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was also found to be significantly less than that of the late (p = 0.0018) and advanced (p 

< 0.0001) groups. Interestingly, we fail to see the same significant jump in OFF-UPDRS 

score from middle to late stages (Figure 3A) as we do in LED from the middle to late 

stage. Hence, after approximately 9 years of disease, a large increase of ~450 mg in 

LED is seen (Figure 4) without a significant increase in OFF motor score (see Figure 

3A). By advanced stages, mean LED increased by a further 165 mg, producing a 615 mg 

difference between middle and advanced stages of disease.    
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Figure 5. Mean daily levodopa equivalency dose significantly increases after 9 

years of PD.    

A significant difference was revealed between groups 2-5 years (n = 19) and 10-13 

years (n = 17) (p = 0.0097**), and between groups 2-5 years and 14+ years (n = 15) (p = 

0.0002***). A significant difference was also observed between groups 6-9 years (n = 

19) and 10-13 years (p = 0.0018**) and between groups 6-9 years and 14+ years (p < 

0.0001****). Results are reported as the mean ± SEM. A one-way ANOVA followed by 

Tukey’s post-hoc multiple comparisons test was completed. LR; levodopa response. 

LED; levodopa equivalency dose in milligrams. 
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3.1.3 UPDRS-III: Motor Subscore Outcomes    
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Figure 6. A) Akinesia significantly worsens after 13 years of disease. B) Tremor 

appears to gradually worsen and then spontaneously improve after 13 years of 

disease. C) Rigidity remains relatively stable throughout disease. D) Axial 

symptoms significantly worsen after 13 years of disease.    

A) Mean UPDRS-III (OFF) subscore for Akinesia in the 2-5 year group (n = 19) was 

statistically significantly lower than the 14+ year group (n = 15) (p = 0.0100*). B-C) No 

statistically significant difference in mean UPDRS-III (OFF) subscores were found 

between any of the disease duration groups for tremor or rigidity. D) Mean UPDRS-III 

(OFF) axial subscores of the 14+ year group (n = 15) were statistically significantly 

larger than the 10-13 year group (n = 17, p = 0.0166*), the 6-9 year group (n = 19, p = 
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0.0091**), and the 2-5 year group (n = 19, p < 0.0001****). Results are reported as the 

mean ± SEM. A one-way ANOVA followed by Tukey’s post-hoc multiple comparisons 

test was completed for A-D. 

 

 

In Figure 5, the total UPDRS-III OFF scores were further broken down into their 

respective subscores for akinesia (x/40), tremor (x/28), rigidity (x/20), and axial (x/20) 

symptoms. In Figure 5A, a general upward trend for akinesia was seen as disease 

duration increased. Mean (±STD) akinesia subscore at 3-5 years (7.68 ± 3.7) was 

statistically significantly less (p = 0.01) than at 14+ years (13.20 ± 5.8). There was an 

increase of ~5.5 points in akinesia from early to advanced stages of disease. In Figure 

5B, no statistical significance was observed; however, a general upward trend is seen 

followed by a sudden recession of mean tremor score after 10-13 years. Mean tremor 

subscore at 10-13 years was 5.94 (±3.9) and at 14+ years it was 3.33 (±2.9), resulting in 

a 2.6-point drop in mean tremor from late to advanced stages of disease. Rigidity 

appears to be the most stable of the symptoms, with a slight upward trend and no 

significant differences between groups (Figure 5C). In early stages, mean rigidity was 

7.00 (±3.1) and by advanced stages rose to 8.60 (±2.7), providing an increase of only 1.6 

points. In Figure 5D, axial symptom subscores increased modestly with increasing 

disease duration, and then increased sharply after 13 years of disease. Axial subscores 

increased by ~3.5 points from 10-13 years (6.41 ± 3.0) to 14+ years (9.87 ± 4.3) of PD. 

Mean advanced stage axial subscore was significantly greater than that of late (p = 

0.0166), middle (mean ± STD; 6.26 ± 3.3, p = 0.0091), and early (mean ± STD; 4.37 ± 

2.1, p < 0.0001) stages of PD.  
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Figure 7. Standardized OFF UPDRS-III subscores for tremor, akinesia, rigidity, 

and axial symptoms at different stages of disease duration.  

All UPDRS-III (OFF) subscores for tremor, akinesia, rigidity and axial symptoms were 

standardized by converting each value to its respective z-score. The z-score represents 

the number of standard deviations a group’s mean is above (positive z-score) or below 

(negative z-score) the sample population mean. The mean of the sample population (n = 

70) is represented as zero for each symptom. See Appendix-C for z-score formula.  
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Given that the UPDRS-III focuses more heavily on subscores like akinesia (x/40) as 

compared to rigidity (x/20), all subscore totals recorded OFF-medication were 

standardized by converting them to a common ‘z-score’ or ‘standard score’. This 

allowed us to group the subscores together and provide a motor profile demonstrating 

which symptoms predominate at each stage of disease duration (See Figure 6). Negative 

z-scores represent how many standard deviations the group mean is below the sample 

population mean, whereas positive z-scores refer to the number of standard deviations 

above the sample population mean. In the 2-5 year group, all symptom subscores fell 

below the sample population means. Akinesia and axial subscores fell well below the 

sample population mean with z-scores of -2.1 and -2.3, respectively. Hence, at early 

stages of disease, individuals appear more affected by tremor and rigidity than akinesia 

or axial impairment. In the 6-9 year group, symptom subscores hovered closely around 

the sample population mean. Only tremor (0.35) and rigidity (0.46) produced positive z-

scores. By 6-9 years of disease, all four symptoms worsened (relative to the early 

disease duration group), with tremor and rigidity predominating once again. In the 10-13 

year group, tremor (z-score = 1.36) and akinesia (z-score = 0.62) dominated the motor 

profile while rigidity (z-score = -0.69) and axial symptoms (z-score = -0.15) fell slightly 

below sample population means. By 14+ years of PD, a radical phenotypic shift in the 

motor profile was observed. In the advanced disease duration group, tremor shifted from 

being the most dominant symptom to the least, receding well below the sample 

population mean (z-score = -1.60). Moreover, axial impairment increased dramatically, 

taking over the motor profile as the most dominant symptom (z-score = 3.50). In 

addition to axial involvement, the advanced stages were also heavily affected by 

akinesia (z-score = 2.50) and rigidity (z-score = 1.41).    
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Figure 8. Tremor, akinesia, rigidity and axial symptom response to levodopa at 

each stage of disease duration.  

Tremor’s levodopa response in the 10-13 year group (n = 17) was significantly greater 

(p = 0.0043**) than in the 2-5 year group (n = 19). No significant differences in 

levodopa response were observed within akinesia or rigidity. Axial symptom response to 

levodopa at 14+ years (n = 15) was significantly greater than the response at 2-5 years 

(n = 19, p = 0.0023**) and 10-13 years (n = 17, p = 0.0377*). A one-way ANOVA 

followed by Tukey’s post-hoc multiple comparisons test was completed for each 

symptom. Results are reported as the mean ± SEM. Levodopa response was calculated 

as the mean difference in UPDRS-III subscores from OFF to ON medication.  

 

 

In Figure 7, the aLR was established for each symptom at different stages of disease. 

Trends seen in Figure 7 for the aLR matched closely with those seen for OFF scores in 

Figure 5. Mean (±STD) tremor response was best at 10-13 years of disease (4.47 ± 3.2) 

and significantly greater than the response at 2-5 years (1.53 ± 1.58). The aLR for 

akinesia was not significantly different at any stage of disease, although its response 

maintained a general upward trend. Mean (±STD) aLR for akinesia at 3-5 years was 

3.58 (± 1.2) and at 14+ years it was 5.73 (± 3.9), providing a difference of 2.15 UPDRS-

III points. The aLR for rigidity remained relatively stable with no significant differences 
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between stages of disease duration. The aLR for axial symptoms was highest (5.53 ± 

3.3) in advanced stages, and significantly greater than the response at late (3.29 ± 1.8, p 

= 0.0377) and early (2.58 ± 1.6, p = 0.0023) stages. Interesting to note is the finding that 

axial symptoms remained responsive to medication at 14+ years of PD.    

 

Figure 8 was produced to further isolate what is felt by physicians to best represent axial 

response to medication. OFF medication retropulsion test scores were significantly 

worse (p < 0.0001) in advanced stages (mean ± SEM; 2.00 ± 0.26, mean rank; 52.5) as 

compared to early stages (mean ± SEM; 0.32 ± 0.11, mean rank; 22.05) of disease. No 

significant differences were observed between any other stages of disease. Retropulsion 

test response to levodopa (Figure 8B) was also significantly greater (p = 0.0485) in 

advanced stages (mean ± SEM; 0.93 ± 0.21, mean rank; 44.3) as compared to early 

stages (mean ± SEM; 0.26 ± 0.10, mean rank; 27.66) of disease. No significant 

differences in levodopa response were observed between any other stages of disease. 
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Figure 9. A) Retropulsion test scores OFF medication were significantly more 

severe after 13 years of PD. B) Retropulsion test scores significantly responded to 

levodopa after 13 years of disease.    

A) Retropulsion test scores at 14+ years (n = 15) of disease were significantly greater (p 

< 0.0001****) than those at 2-5 years (n = 19). No significant differences were found 
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between any other disease duration groups. B) Differences in retropulsion test scores 

from OFF to ON medication (levodopa response) at 14+ years (n = 15) of disease were 

significantly greater (p = 0.0485*) than those at 2-5 years (n = 19).  No significant 

differences were found between any other disease duration groups. A Kruskal-Wallis H 

test followed by Dunn’s post hoc multiple comparisons test was used for A and B. 

Results are reported as the mean ± SEM. Retropulsion test also known as UPDRS-III 

item ‘Postural Stability’.  
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3.1.4 Clinical Scales and Self-Reported Questionnaires    
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Figure 10. The relationship between ON UPDRS-III scores and clinical scales 

measuring cognition, freezing of gait, confidence in balance, quality of life, and 

depression.   

A) No significant correlation was observed with the MoCA scale (n = 70, r = -0.19, p = 

0.1176). C) ON UPDRS-III scores were observed to have a statistically significant 

negative correlation with the ABC scale (n = 70, r = -0.51, p < 0.0001). B,D,E) A 

statistically significant positive correlation was found with FOG-Q (n = 70, r = 0.30, p = 
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0.0118), PDQ-8 (n = 70, r = 0.35, p = 0.0026), and GDS (n = 70, r = 0.25, p = 0.0339). 

Spearman’s rank order correlation was used. Spearman’s correlation coefficient is 

represented as ‘r’ on plots A through E. Results are reported as the mean ± SEM. 

MoCA; Montreal Cognitive Assessment. FOG-Q; Freezing of Gait Questionnaire. ABC; 

Activities-specific Confidence in Balance. PDQ-8; Parkinson’s Disease Quality of Life. 

GDS; Geriatric Depression Scale. Black line indicates line of best fit. 

In Figure 9, the results from a series of clinical scales and questionnaires were correlated 

with ON UPDRS-III total scores. They were correlated with ON scores because the 

questionnaires were administered while the patient was ON medication and the 

questionnaires often referred to their average ON motor condition. The Montreal 

Cognitive Assessment was the only scale that did not significantly correlate with ON 

motor scores. Freezing of gait (r = 0.30, p = 0.0118) and depression (r = 0.25, p = 

0.0339) both had a significant positive correlation with ON score, thus demonstrating a 

rise in depression and axial impairment with worsening ON scores. Similarly, the 

Parkinson’s disease quality of life scale also revealed a significant positive correlation (r 

= 0.35, p = 0.0026) with ON scores. However, increasing PDQ-8 scores represent a 

decline in quality of life. The activities-specific confidence in balance scale was the only 

scale that produced a statistically significant negative correlation (r = -0.51, p < 0.0001) 

with ON scores. Thus, confidence in balance declines as motor severity worsens in the 

ON medication state.   
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Chapter 4 

4.0 Discussion    

The levodopa challenge test assessing levodopa response in PD patients remains a 

hallmark step in determining DBS (deep brain stimulation) eligibility. Other important 

factors such as age, disease duration, time since first intervention with levodopa, OFF 

motor scores, and LED are all considered by neurologists when planning for further 

therapeutic intervention (Lang & Widner, 2002). The current understanding is that a 

patient might receive up to the same level of motor benefit from DBS as they would 

from levodopa, but not more. Therefore, if a patient has a 33% response to levodopa, 

DBS may provide up to but not more than a 33% improvement in motor score. This 

underscores the importance of determining a patient’s levodopa response (LR) prior to 

surgery.  

The LR sets a benchmark for the expected motor benefit, providing answers to 

common patient questions like ‘How will my motor symptoms improve with DBS?’. As 

previously stated, there is growing interest in implementing DBS earlier in disease 

stages (Charles et al., 2008; Schuepbach et al., 2013). Preliminary evidence suggests 

early intervention with DBS might even be neuroprotective (Spieles-Engemenn et al., 

2010; Maesawa et al., 2004). It is thought that by stimulating in areas such as the STN 

or GPi, you reduce the workload of the surviving nigrostriatal neurons in the PD brain. 

Sparing SNc neurons earlier in disease from attempting to maintain adequate 

neurotransmission in a depleted system may keep them alive longer. Overworked nigral 

neurons may lead to increased levels of reactive oxygen species and mitochondrial 

dysfunction, further contributing to neurotoxicity and cell death in PD (Spencer et al., 

1998; Tieu, Ischiropoulos & Przedborski, 2003). In the event that early intervention with 

DBS is proved not to be neuroprotective, it is at least expected to introduce and maintain 

a higher quality of life for patients earlier in disease (Schnitzler et al., 2010).  

DBS often reduces the frequency of which patients are required to take their 

medication throughout the day, or eliminates the need for oral anti-parkinsonian 

medications altogether (Schnitzler et al., 2010). Although eliminating the need to 
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swallow pills 3-5 times a day may seem insignificant, it can vastly improve quality of 

life for some. It allows patients to carry on with their day uninterrupted, reduces anxiety 

and reminders associated with taking Parkinson medications, and may help restore 

‘normal’ behaviors. Furthermore, DBS reduces the frequency of motor fluctuations, 

whereby patients experience unpredictable and sudden OFF’s (period where a patient 

does not receive motor benefit) (Østergaard, Sunde, & Dupont, 2002). Motor 

fluctuations can be debilitating and incredibly disruptive to daily routine.  

Before early intervention with DBS can be seriously considered, physicians must 

first understand a patient’s disease trajectory so that informed decisions can be made. 

Part of this understanding stems from knowing a patient’s levodopa response and how it 

relates to the abovementioned factors like age, disease duration and LED.  

4.1 Discussion: Part A  

4.1.1 Reporting the aLR versus the %LR 

The short duration response to levodopa is reported in this research as both an absolute 

value (aLR) and as a percent change (%LR) in motor scores from OFF to ON 

medication. Since 1999, the CAPSIT-PD protocol (Defer et al., 1999) has relied on the 

%LR in screening PD patients for DBS. Hence, the clinical realm tends to rely on and 

make treatment decisions founded on the %LR. One inherent issue with only reporting 

the levodopa response as a percent change is that it often tells a different story.  

For example: a patient early in disease (patient A) with an OFF score of 15 and an ON 

score of 10 has a 33.33% LR, but only a 5 point aLR. A patient with advanced PD 

(patient B) who goes from a score of 30 OFF medication to 20 ON medication also has a 

33.33% LR, but their aLR is twice that of the first patient’s.  

According to the CAPSIT-PD protocol, patient A and B have the same response 

(33.33%); however, according to the aLR, patient B arguably had a greater response to 

medication (10-point difference versus 5). Thus, reporting the %LR alone may be 

misleading. Moreover, in this study the %LR was found not to significantly correlate 

with disease duration, levodopa duration, age, LED or OFF score (Figures 1 and 2). 
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Whereas aLR significantly correlated with all factors except age. The aLR is a 

seemingly more powerful and sensitive means of reporting on the LR. Not only should 

future research studies consider reporting both the %LR and the aLR, but perhaps the 

aLR should be incorporated into clinical protocols as well. Shifting away from the sole 

use of the %LR to paired reporting with the aLR will only enrich data sets of future 

studies and potentially improve clinical outcomes for PD patients.   

4.1.2 The Influence of Age and Disease Duration on the LR 

In figure 1, we showed that the %LR neither correlated with age nor disease duration. In 

a study by Aygun et al. (2016), they also found that %LR did not correlate with disease 

duration, however they did find a weak negative correlation with age. The %LR’s 

correlation with age in their study may have been the result of experimental design 

flaws. Aygun and colleagues acknowledge that their PD cohort consisted mainly of 

individuals of 5-15 years of disease duration and that the retrospective methodology 

naturally resulted in a biased sample population. Their study retrospectively reviewed 

the %LR of 54 candidates who were screened for STN-DBS, skewing the representation 

of the general PD population to those who fit basic criteria for DBS surgery. These 

individuals might have experienced frequent motor fluctuations and exhibited symptoms 

thought to best benefit from DBS. Although only 37 of 54 patients went forward with 

surgery, the cohort likely does not accurately reflect the general PD population. 

Furthermore, approximately only 2 patients were included with less than 5 years of PD. 

In our study, 11 patients with less than 5 years of PD were included and patients were 

randomly selected in efforts to reduce sample bias. A study by Durso et al. (1993), 

similarly to Aygun et al. (2016), also found a negative correlation between age and the 

%LR in a sample size of 47. To the best of our knowledge, there has only been 3 studies 

(including this thesis) investigating age as it relates to the %LR. Perhaps future studies 

are warranted to settle the effects of age on the %LR.  

Concerning the aLR, our results showed response improves with increasing 

disease duration, levodopa duration, LED, and OFF scores (Figures 1 and 2). This 

corroborates results found in the 20-year longitudinal study reported on by Clissold et al. 



53 

(2006) and Ganga et al. (2013) as they also concluded that the aLR increases with 

disease duration. These researchers found that a significant response to levodopa was 

seen at all stages of disease, matching our results in Figure 3A. The question then is, 

what mechanisms allow for the maintenance in amplitude of the levodopa response 

throughout disease?   

The levodopa response is likely maintained in part through upregulation of 

postsynaptic striatal D2 receptors. In a condition known as Parkinson plus syndrome 

(PPS), both the striatum and the SNc degenerate (Kägi, Bhatia & Tolosa, 2010). 

Imaging has shown significant loss of pre- and postsynaptic striatal D2 receptor binding 

in PPS (Berti et al., 2011; Ishii, 2014). Given the striatal degeneration seen in PPS, it is 

well established that these patients have a poor response to levodopa. In contrast, the 

striatum of PD patients does not degenerate. Positron emission tomography studies have 

shown an upregulation of striatal D2 receptors in PD patients (Berti et al., 2011). 

Opposed to PPS, the intact striatum in PD patients is likely responsible for providing a 

good response to levodopa as nigral terminals degenerate (Brooks et al., 1990). 

Upregulated striatal D2 receptors allows OFF motor scores to return to relatively stable 

ON scores (Figure 3A) following single doses of levodopa. This may be why no 

significant differences in ON scores were found between groups of different disease 

duration (Figure 3A). Moreover, it has been suggested that OFF-motor scores best 

represent the level of SNc degeneration (Lees, 2009). This would explain the gradual 

increase in OFF scores observed in Figure 3A and resultant widening of the aLR in 

Figure 3B.  

4.1.3 The Short and Long Duration Response to Levodopa 

Ganga et al. (2013) showed that the short duration motor response to levodopa 

widens in amplitude after 3 years of disease due to accelerated worsening of OFF scores 

and relatively stable ON scores. Although our study was cross-sectional in nature, 

results displayed in Figure 3A and B produced the same pattern of response over the 

disease course. Our original hypothesis stated that because the LDR is known to decline, 

we predicted that the SDR to levodopa will increase in amplitude (i.e. the aLR will 
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increase) as disease duration increases. Our results (Figure 3B) showed that the SDR 

does increase in amplitude, but appears to plateau after 5 years of disease and increase 

only modestly thereafter. This matches closely to the results seen in Figure 1A, where 

all 70 participants’ aLR was plotted against disease duration. The correlation was only 

moderate (r = 0.40) due to interindividual variability in the aLR for similar disease 

durations. In other words, many participants of similar disease durations produced 

largely different aLRs, lowering the correlation coefficient. This leads us to question 

what might account for this variability.  

Consider this example: two participants enrolled in our study were 11 years into 

disease at the time of assessment. One had an OFF score of 30 and an ON score of 10 

(patient X) while the other (patient Y) had an OFF score of 20 and an ON score of 10. 

Therefore, patient X had the ‘better’ 20-point response while patient Y only had a 10-

point response. What underlying mechanisms allows patient X to have a response twice 

the amplitude of patient Y’s when both participants are 11 years into disease?  

Although difficult to confirm without pathological imaging, we can theorize that 

patient Y may still be experiencing a higher level of motor benefit from the LDR 

compared to Patient X. After at least 12 hours without medication, patient Y’s OFF 

score was considerably better (~33.33%) than patient X’s. From this, we can infer that 

corticostriatal neuroplasticity as a result of the LDR may be more pronounced in patient 

Y than patient X. This pronounced LDR manifests as a reduction in the motor severity 

of the OFF state in periods of extended medication withdrawal. When patient Y is then 

given 300 mg as part of the study, their motor improvement does not seem as drastic as 

patient X’s due to LDR compensation in a levodopa starved state.  

In contrast, patient X arrives the morning of the study in a more severe OFF 

medication state. We can conjecture that with the same disease duration, patient X is 

experiencing a more rapid degeneration of nigral neurons and experiencing less motor 

benefit from the LDR. When patient X is then given 300 mg of levodopa, a larger 

amplitude of change in motor score is seen relative to patient Y. Hence, patient X 

experiences a larger SDR contribution than LDR contribution to overall motor 
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improvement. This explains why aLR only mildly correlates with disease duration 

(Figure 1A; r = 0.40) but more strongly correlates with total OFF score (Figure 2C; r = 

0.58). The OFF score is more representative than disease duration of nigral cell loss and 

the LDR. In conclusion, it is partly due to the intricacies of the SDR and LDR that PD 

patients of the same disease duration can have vastly different levodopa challenge 

results. The aLR therefore does not increase linearly with disease duration but rather 

increases and then plateaus due to variability in degeneration between participants.  

4.1.4 Nigral versus Extra-nigral Control Systems 

With supposedly far fewer nigral terminals remaining in patient X relative to patient Y, 

how is a significant SDR to levodopa still generated? Where patient Y likely still relies 

on a primarily nigral regulation and release of dopamine, patient X may now largely 

depend on extra-nigral systems. In addition to nigral dopaminergic innervation of striatal 

medium spiny neurons, there exists ‘extra-nigral’ histaminergic and serotonergic 

neurons, striatal interneurons, and microglia (Melamed, Hefti, Liebman, Schlosberg & 

Wurtman, 1980; Tashiro et al., 1989; Mura et al., 1995; Lopez-Real et al., 2003). These 

extra-nigral neuronal and non-neuronal systems have the capacity to take up exogenous 

levodopa, but lack the sophistication to properly regulate its conversion and release as 

dopamine (Mosharov et al., 2015). Nigral neurons regulate an intricate process of 

synthesizing, storing, releasing and reuptaking dopamine to disinhibit the thalamus so 

that movement can occur. When these dopaminergic neurons degenerate, this complex 

responsibility may be handed off to surrounding extra-nigral systems with the 

expectation that they can successfully perform the same job. They are likely unable to 

appropriately regulate dopamine release, generating further motor complications such as 

motor fluctuations and levodopa-induced dyskinesias (LIDs) (Carta & Bezard, 2011). 

Levodopa-induced dyskinesias (abnormal involuntary movements) are often seen in PD 

after 5-6 years of disease (Ahlskog & Meunter, 2001). The occurrence of LIDs is 

suggestive of a switch to extra-nigral control systems (Cenci & Lundblad, 2006). 

Mosharov et al. (2015) discusses how extra-nigral serotonergic (5-HT) neurons increase 

in density in advanced stages, perhaps to compensate for the loss of nigral neurons. 



56 

They further suggest that the dysregulated release of dopamine from striatal 5-HT 

receptors may be responsible for LIDs.  

Although adaptive, extra-nigral systems were simply not designed to synthesize 

and store dopamine as effectively as SNc neurons once did in the PD brain (Mosharov et 

al., 2015). This means that PD patients who have made the switch to largely extra-nigral 

control systems lack the benefits of nigral buffered dopamine and its highly regulated 

release. These patients rely on more frequent administration and higher doses of 

levodopa throughout the day to manage motor symptoms (Mosharov et al., 2015). This 

might explain the sudden significant increase in LED observed after 9 years of disease 

(Figure 4).  It may be that up to approximately 9 years of disease, a predominately nigral 

control system is still in place, and a significant LDR to levodopa remains. Patients at 

this stage are effectively managed with lower daily doses of levodopa (6-9 year LED; 

727.0 mg ± 287). However, by 10-13 years of disease (LED; 1186 mg ± 437.3) a switch 

from nigral to largely non-nigral control systems would explain the sudden needed 

increase (~450 mg) in LED. Patients at this stage now require an increase in both 

frequency and dose of levodopa to provide the same level of motor benefit received by 

those in the 6-9 year group.  

Although a large aLR has generally been considered a ‘good’ thing in PD 

patients, it may be an indicator that a patient has switched from a largely nigral control 

of dopamine release to a poorly regulated extra-nigral control system. Some PD patients 

in this study complained that they don’t ‘feel any different’ after taking a single dose of 

levodopa, frustrated that they are seeing little to no benefit from the drug. In contrast, 

other participants could identify the exact moment they came ‘ON’, receiving significant 

and immediate motor benefit shortly after taking their scheduled PD medications. If 

these patients are of similar disease durations, it might be a relatively good thing if your 

response is minimal. As discussed, it may indicate that you are still benefitting from the 

long duration response, relying primarily on a well-regulated nigral control of 

dopamine, and are experiencing a slower rate of degeneration. Rethinking the levodopa 

response could have large implications for its use in screening DBS candidates.      
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Typically, PD patients with a high magnitude of levodopa response are selected 

for DBS so that the surgery might provide a similar level of benefit (Defer et al., 1999). 

Based on our conjecture, selecting a patient with a high aLR means implementing DBS 

in a patient that has already switched to an extra-nigral control system. Clearly, this is 

needed to help manage those already suffering from unfortunate side effects like 

levodopa induced dyskinesias and motor fluctuations. However, neurologists may want 

to start considering implementing DBS in patients with smaller responses to levodopa. 

DBS in patients exhibiting smaller responses early in disease means including those still 

dependent on a largely nigral control of dopamine. Early DBS intervention could 

theoretically delay the switch to an extra-nigral control system by reducing the workload 

of the surviving nigral system early on.    

4.2 Discussion: Part B 

4.2.1 Akinesia 

Akinesia has been shown to serve as the best clinical marker of progression in PD. 

Among all the cardinal PD motor symptoms, akinesia correlates most highly with 

nigrostriatal dopaminergic degeneration as demonstrated by Fluorodopa-PET imaging 

(Vingerhoets, Schulzer, Calne & Snow, 1997). Furthermore, ON akinesia scores have 

been shown to increase in severity with disease duration (Pålhagen et al., 2006; Louis et 

al., 1999; Goetz, Stebbins & Blasucci, 2000). However, the influence of disease duration 

from early to advanced stages on akinesia in the OFF state has not been closely 

investigated until now (Maetzler, Liepelt & Berg, 2009). Like ON scores, we 

demonstrated that akinesia scores OFF medication progressively worsen with disease 

duration (Figure 5A), mirroring the deteriorating nigra. It is also clinically relevant to 

note that akinesia remains dopa-responsive at all stages of disease (Figure 7). Although 

expected, this provides patients with peace of mind knowing that their slowness will 

continue seeing benefit from levodopa even after 13 years of disease. Furthermore, we 

demonstrated that akinesia is a dominant feature of a patient’s motor profile after 13 

years of disease (Figure 6), significantly contributing to motor impairment in the OFF 

medication state.  
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4.2.2 Rigidity 

Rigidity, after bradykinesia, has been shown based on Fluorodopa-PET imaging to 

correlate second most highly with SNc cell death in PD (Vingerhoets et al., 1997). Louis 

et al. (1999) demonstrated that rigidity in the ON medication state is expected to 

increase with disease duration, which was later corroborated by Pålhagen et al. in 2006. 

However, in studies by Goetz et al. (2000) and Ransmayr et al. (1995), they found that 

in PD patients with a mean disease duration over 8 years, ON state rigidity no longer 

significantly correlated with disease duration. Thus, Maetzler and colleagues (2009) 

suggest that rigidity rapidly worsens early in disease, and after 8 years of disease 

duration only gradually increases in severity. Maetzler et al. (2009) also found that few 

studies have comprehensively covered rigidity progression OFF medication. In our 

study, we demonstrate that the severity of rigidity in the OFF-medication state remains 

relatively stable throughout disease, with a slight but insignificant upward trend (Figure 

5C). Similar to OFF scores, rigidity’s improvement following levodopa administration 

remained relatively stable at each stage of disease duration (Figure 7). Relative to other 

symptoms, rigidity did not have a dominant presence in the PD motor profile until 14+ 

years of disease (Figure 6). Given that rigidity and akinesia best represent nigral 

degeneration, it fits that these symptoms would contribute largely to motor impairment 

in advanced stages of disease.   

4.2.3 Tremor 

In contrast to rigidity and akinesia, tremor does not correlate with nigral degeneration as 

shown by various imaging techniques (Vingerhoets et al., 1997; Benamer et al., 2003; 

Eidelberg et al., 1994). Tremor also does not correlate in its progression or severity with 

other cardinal motor symptoms and responds poorly to levodopa in comparison with 

rigidity and bradykinesia (Louis et al., 2001). Furthermore, tremor is peculiar in that it 

has been shown to improve late in disease (Helmich, Hallet, Deuschl, Toni, & Bloem, 

2012; Toth, Rajput M & Rajput A, 2004; Lees, 2007; Hughes et al., 1993). In figure 5B, 

we showed that tremor severity appeared to suddenly decline after 13 years of disease. 

In addition, we demonstrated that relative to akinesia, rigidity, and axial symptoms, 

patients are least affected by tremor in advanced stages of PD. Thus, our study supports 
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previous findings that in some patients, tremor improves late in disease. The spread of 

Lewy pathology to cortical areas thought to be responsible for producing tremor may 

explain its spontaneous remission in advanced stages of disease (Berardelli et al., 2001). 

Tremor may have initially appeared in an attempt to overcome an akinetic state.  

Tremor has been proposed as a compensatory mechanism in the face of akinesia 

(Hallett & Khoshbin, 1980; Rivlin-Etzion et al., 2006; Helmich et al., 2012). Given that 

voluntary movement is produced in phase with tremor, tremor itself may develop as a 

means of facilitating movement initiation in an akinetic state (Hallett et al., 1977). This 

is further supported by evidence in MPTP induced parkinsonian primate models. In 

MPTP lesioned primates, symptoms of akinesia and rigidity presented first, followed by 

tremor several days after (Zaidel, Arkadir, Israel & Bergman, 2009). Presumably, tremor 

emerges as a cerebral compensatory response to dysfunctional basal ganglia output.  

In the akinetic/bradykinetic state, there is an insufficient and slow recruitment of 

muscle force. This is thought to be due to underactivity in the supplementary motor 

cortex (SMA) (Berardelli et al., 2001). If the resting state SMA activity of an akinetic 

individual is low, areas elsewhere in the motor cortex may be compensating via 

overactivity (Berardelli et al., 2001). Tremor provides this solution by increasing 

cortical resting state activity, allowing faster recruitment of muscle force to help 

overcome akinesia. Furthermore, per Braak’s staging, Lewy body pathology is known to 

progress to the primary motor cortex in advanced stages of PD (Braak et al., 2003). This 

may disrupt the cortical areas responsible for producing tremor. Hence, previously 

healthy cortical areas compensating for akinesia (via tremor) experience 

neurodegeneration late in PD; and thus, an explanation for the disappearance of tremor 

at this stage.   

4.2.4 Axial Symptoms 

Axial symptoms including gait and balance impairment usually do not significantly 

progress until late stages of PD (Wenning et al., 1999; Curtze et al., 2015). This supports 

our finding that OFF axial scores did not significantly worsen until 14 years of disease 

(Figure 5D). Many axial symptoms have been found refractory to levodopa treatment, 
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thought to manifest because of non-nigral pathology in PD (Bryant et al., 2011; Lord, 

Baker, Nieuwboer, Burn & Rochester, 2011). Balance and gait are further complicated 

by their control via several overlapping and distinct neural circuits (Lord et al., 2011). 

This has resulted in many studies providing conflicting results regarding axial response 

to levodopa. Imaging studies have shown lesions in locomotor areas of the brainstem, 

cortex, and cerebellum in addition to the basal ganglia (Jahn et al., 2008; Fling et al., 

2013). This offers support for why some features of gait and balance respond well to 

levodopa while others do not. Curtze et al. (2015) suggests that beyond levodopa, 

pharmacological therapies with aims of alleviating axial symptoms should consider 

targeting non-nigrostriatal pathways.  

In Figure 7, we demonstrated that axial response to levodopa was significant 

even after 13 years of PD. However, this axial improvement may be indirectly driven by 

dopa-responsive appendicular symptoms like akinesia and rigidity. Reduced slowness 

and stiffness following levodopa administration may allow for appendicular 

compensation of gait and balance impairment. To ensure that appendicular 

compensation was not the sole reason for the apparent improvement in axial subscores, 

retropulsion test results were isolated (Figure 8). The retropulsion test is a component of 

the axial subscore which assesses balance. It is thought to be least influenced by 

bradykinesia and rigidity and therefore best represent axial response (Bloem, 

Grimbergen, Cramer, Willemsen & Zwinderman, 2001; Adkin et al., 2003). Hence, any 

improvement in the retropulsion test can be attributed to a purer axial response 

mechanism. Interestingly, the retropulsion test indicated a significant response to 

levodopa after 13 years of PD. This suggests the involvement of the nigrostriatal 

pathway in axial control systems responsible for maintaining balance. Furthermore, it 

demonstrates that PD patients with postural instability can still benefit from levodopa 

late in disease, in accord with findings by Curtze et al. (2015).   

4.2.5 Summary of Motor Symptoms 

As disease duration advances, we have demonstrated (per Figures 5, 6, and 7) a shift in 

phenotype towards a highly akinetic-rigid state accompanied by disabling axial 
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symptoms. This shift may be explained by our theory of a switch from primarily nigral 

to extra-nigral control systems later in disease. Early in disease, akinesia and rigidity 

scores are low in the OFF-medication state, and have minimal responses to levodopa.  

This suggests that these dopa-responsive symptoms are still seeing motor benefit from 

the LDR and are under a primarily nigral control of dopamine. As the long duration 

response wanes and nigral degeneration increases, there is a shift to extra-nigral control 

systems. Extra-nigral control systems are unable to provide the same motor benefit for 

rigidity and akinesia in the OFF state, and so we see significantly increased scores in 

advanced stages of disease. A switch to primarily extra-nigral control systems means 

significant degeneration has likely occurred not only in the nigra, but in the cortex as 

well. This is supported by our findings of a sudden decline in tremor and significant 

worsening of axial symptoms after 13 years of PD.  

4.2.6 Clinical Questionnaires 

In Figure 9, we found that an increase in ON scores was significantly associated with a 

decline in confidence in balance (C) and increased freezing of gait (B). A decreased 

confidence in balance supports our finding of retropulsion test scores and axial 

symptoms being most severe in advanced stages of disease, when ON scores are highest. 

Confidence in completing simple everyday tasks demanding balance and gait likely 

diminishes as patients begin to suffer from disabling axial symptoms later in disease. 

Increased axial impairment leading to a lack of confidence may contribute to the 

significant increase in depression and reduced quality of life shown in D and E of Figure 

9. However, depression and perceived quality of life was only weakly associated with 

ON scores, suggesting other factors at play. Although motor symptom progression late 

in disease likely contributes, quality of life and emotional well-being are likely also 

dictated by social factors such as family support, financial security, and independence 

(Schrag, Jahanshahi & Quinn, 2000). Further investigation into these factors may 

explain some of the variability in the non-motor questionnaires.  
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4.3 Discussion: Part C 

4.3.1 Limitations 

Although 70 participants were included in this study, a higher n-value may be needed to 

provide a better representation of the general Parkinson’s population. A higher n-value 

would also have afforded us the ability to potentially group participants based on several 

different phenotypes. Furthermore, 73% of the participants included in this study were 

male, although the incidence of PD is higher among males than females. Hence, our 

results may provide more insight into the levodopa response in males than females. 

However, it is unclear at this time if Parkinson’s disease mechanisms differ between 

genders (Haaxma et al., 2007). A further limitation may have been the exclusion of 

patients with severe walking difficulties and high levels of cognitive impairment. This 

may have excluded patients at the extreme end of the disease spectrum, suffering from 

incredibly widespread neurodegeneration. Finally, the cross-sectional nature of the study 

is inherently weaker than a longitudinal study. A longitudinal study following the same 

set of patients would have provided more power in drawing conclusions about the 

levodopa response over the disease course.    

4.3.2 Future Directions 

Future studies should consider reporting both the aLR and the %LR so that a more 

comprehensive understanding of the motor response to levodopa is provided. 

Performing a similarly designed study complemented by CNS imaging techniques to 

corroborate the motor findings and theories proposed in this body of work would be 

ideal. In addition, a study with a levodopa washout period of days instead of hours 

would assist in isolating the short duration response to levodopa at each stage of disease 

duration. However, asking patients to refrain from treatment for days may prove 

unethical. Lastly, it would be of great interest to follow the progression of early disease 

participants with smaller aLRs in this study who go for DBS. Observing clinical 

outcomes of early deep brain stimulated patients would provide evidence either in 

support of or against the theories proposed in this thesis.     
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4.3.3 Summary 

In this body of work, we improve upon the existing literature in the following ways: 1) a 

total of 70 PD participants were recruited with more than 15 participants in each group 

of early (2-5 years), middle (6-9 years), late (10-13 years) and advanced (14+ years) 

stages of disease duration; 2) the most commonly used and highly recommended scale 

for motor examination in PD was used (UPDRS-III); 3) the short duration response to 

levodopa is reported as both a measure of percent change (%LR) and absolute change 

(aLR) in motor scores from OFF to ON; 4) the levodopa response as it relates to age, 

disease duration and OFF scores is included; 5) levodopa response for UPDRS-III 

subscores are reported (this includes tremor, rigidity, bradykinesia, and axial symptom 

subscores) as they relate to disease duration; and 6) lastly, self-reported questionnaires 

were completed by participants to help provide us with further explanation and clarity 

regarding the observed motor scores. Note that only individuals equal to or greater than 

2 years of disease duration were included in the study. Pahwa and Lyons (2010) report 

that in its early stages, Parkinson’s disease is commonly mistaken for other neurological 

conditions like multiple systems atrophy, progressive supranuclear palsy, Lewy body 

dementia, corticobasal degeneration, and essential tremor. Hence, PD patients diagnosed 

within the last 2 years were not included in our study to avoid the risk of including 

misdiagnosed individuals. The aLR and %LR measured in this study are just different 

ways of reporting motor improvement as a result of the SDR. 

We suggest that future research and perhaps even clinical protocols should consider 

reporting both the aLR and %LR. This provides a more complete picture from which to 

draw conclusions. The aLR was found to be significantly associated with disease 

duration, levodopa duration, LED and OFF motor scores but not age. The aLR 

correlated more strongly with OFF motor scores than with disease duration likely 

because OFF motor scores are more representative of the degenerative state and LDR 

contribution. Participants of similar disease durations may be on different trajectories of 

nigral degeneration, explaining variability in their aLR. Further explaining variability in 

the motor response to levodopa at different stages of disease is the relative contribution 

of the LDR:SDR. We hypothesized that as the LDR declines with advancing disease 
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duration, the amplitude of motor change (aLR) provided by the SDR will increase. The 

aLR was found to rise quickly after 5 years of disease, but then plateau and increase 

only modestly thereafter. However, the aLR was still found to be significant at all stages 

of disease duration. We conjectured that in a state of gradual nigral cell death, extra-

nigral control systems eventually take over in order to maintain a significant response. 

This is further supported by our findings of a large increase in LED required after 9 

years and a phenotypic shift to an akinetic-rigid state accompanied by disabling axial 

symptoms in advanced stages.  

 Akinesia in the OFF state was found to increase in severity with disease duration 

while rigidity remained relatively stable. Both akinesia and rigidity remain responsive to 

levodopa throughout disease. Tremor progression is much less predictable, found to 

decline in severity in advanced disease. Axial symptoms did significantly worsen until 

14 years of disease, dominating the motor profile at this time. The retropulsion test was 

found responsive to levodopa even in advanced stages, providing relief for those 

suffering from postural instability. Non-motor clinical questionnaires suggest axial 

impairment affects an individual’s confidence in balance, and perhaps other affective 

domains like depression and perceived quality of life.   

 These findings will allow physicians to make more highly informed treatment 

decisions for their PD patients. Rethinking the levodopa response may be necessary so 

that patients early in disease might be considered in the screening process for DBS. 

Individuals in early PD who have a minimal response to levodopa may be still be 

receiving motor benefit from the LDR and relying on a primarily nigral control system. 

Waiting for patients to switch to a poorly regulated extra-nigral control system 

characterized by further motor complications before initiating DBS may be too late. 

Early stimulation could prove neuroprotective, sparing the surviving nigral neurons 

from being overworked and thereby slowing the rate of degeneration. This study 

provides support for the implementation of DBS earlier in disease. Moreover, it provides 

a deeper understanding of how the cardinal motor symptoms of PD progress and 

respond to levodopa at each stage of disease. We hope that these findings can be used by 
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clinicians to optimize treatment so that patients suffering from Parkinson’s disease 

might enjoy a higher quality of life.   
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Appendices  

Appendix A: Letter of Information and Consent 

 

 

Letter of Information and Consent- PD Patient group 

 

Study Title 

Normative whole-body kinematic data of responsivity to levodopa in a Parkinson 

disease cohort. 

 

Principal Investigator 

 

Dr. Mandar Jog, MD Neurology, London Health Science Movement Disorders Clinic 

University Hospital (XXX) XXX-XXXX ext. XXXX 

 

 

This consent form explains the research study you are invited to join as part of the 

Parkinson disease (PD) patient group. Please ask the study doctors or the study 

personnel to explain any words or facts that you do not understand. You should keep a 

signed copy of this consent form. You may wish to discuss this study with your family 

and friends before making your decision. If you decide to take part in the research study, 

you must sign this form before you have anything done for this research study. 

 

Study Doctors and Personnel 

 

• Dr. Mandar Jog    • Ms. Adrianna Tsang  

• Dr. Rajni V. Patel    • Ms. Shahbazi Mahya 

• Dr. Philippe Rizek    • Mr. Farokh Atashzar 

• Dr. Niraj Kumar    • Mr. Christopher Ward 

• Mr. Marcus Pieterman   • Ms. Lauren Tindale  

• Mr. Greydon Gilmore   • Mr. Mitchell Adamson 

• Mr. Navid Baktash    • Ms. Carly Jackson 

• Mr. Jai Patel  

 

Background and Purpose of Study  
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The gold standard of care for Parkinson disease (PD) is the use of levodopa to 

manage common motor symptoms associated with the disorder. Common motor 

symptoms include tremor, slowness of movement, rigidity and postural instability. 

However, in advanced stages of PD, the efficacy of levodopa can decline and motor 

symptoms fluctuate throughout the day. As these motor fluctuations occur, significant 

impact to the individual’s quality of life makes treatment difficult. After 5 years of oral 

levodopa treatment, more than half of all individuals with PD develop levodopa-related 

complications, such as motor fluctuation and dyskinesia’s (involuntary muscle 

movements).  

 

Our observational project will study 80 participants with PD and 80 control 

participants.  It is considered an observational study because no therapeutic intervention 

is involved. PD participants will be further divided into disease duration cohorts to 

examine motor fluctuations at various stages in PD. A combination of clinical rating 

scales and full-body kinematic measurements will be used to assess motor symptoms in 

participants. By using motion sensors that are miniaturized and non-intrusive, these 

wearable devices will accurately measure motor symptoms. PD participants will be 

assessed OFF (where therapy is not providing benefit in terms of stiffness and mobility) 

and ON (where therapy is providing benefit in terms of stiffness and mobility) levodopa. 

In this study, a participant is to be considered OFF levodopa when it has been 12 or 

more hours since their last dose of levodopa medication has been taken. A participant is 

to be considered ON levodopa at approximately 45 minutes after taking their normal 

dose of levodopa. By assessing PD participants in the ON and OFF state, responsivity to 

the drug can be defined at different points in the disease duration. This will assist in 

characterizing which motor symptoms become more or less responsive to levodopa as 

PD progresses. Furthermore, insight into the evolution of motor symptoms in response 

to levodopa in PD participants will assist physicians in optimizing levodopa treatment at 

each point in disease duration. 

 

Study Procedures 

 

Based on your screening information, the study doctor will determine if you are eligible 

to join this study.    

 

If you decide to join, you will be asked to sign this consent form and you must agree to 

follow the instructions given by the research staff during the study. 

 

This study requires you to attend 1 visit (approximately 3 hours) at the research facility. 

The visit will require you to come to Dr. Jog’s research facilities located in Thomson 

Hall Engineering Building at Western University in London, Ontario. Please note that 

the participant must be OFF all levodopa medication for 12 hours prior to the visit. The 

last dose taken by the participant should be the evening before the visit at no later than 

8:00 PM.  

 

You will undergo the following procedures and tests during your visit: 
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• You will be asked about your medical history, any ongoing medical conditions you 

may have and specific information about the history of your Parkinson’s disease. You 

will be asked to provide your current medications with specific information about the 

length of time you have been on your PD medications.  

 

• You will be asked to use a haptic device to perform a task in a virtual environment 

displayed on a monitor.  

 

• You will be asked to perform a walking task with sensors placed on your leg and 

shoes.  

 

• You will be asked to use an assistive writing device while writing.  

 

• You will be asked for your height and weight, and specific limb measurements will be 

taken (i.e. Foot length). 

 

• You will be videotaped from the neck down. Videotape recordings help to corroborate 

and validate the kinematic recordings to actual participant state during analysis. 

Videotape recordings will be kept for 5 years.   

 

• A UPDRS test will be performed in both ON and OFF state.  This UPDRS test is 

commonly used to assess Parkinson’s motor symptoms and includes assessments of 

your speech, facial expressions, balance, and arm and leg movements.  

 

• You will be asked to place a motion capture suit over your regular clothes in order to 

conduct various motor tasks.  

 

• You will be asked to perform sitting tasks such as arms at rest, arms held up in front of 

your body and turning each hand over in a pronation-supination motion. Following this, 

you will be asked to walk around a 25 meter walkway at your normal pace, four times. 

You will then be asked to walk at your fast-as-possible pace around the track, four 

times. Finally, you will be asked to walk backwards for 10 meters, twice.  

 

• You will be asked to perform speech tasks into a microphone which will involve the 

repetition of certain lingual sounds and the reading of passages aloud.  

 

• You will be asked to complete all motor and speech tasks during both your OFF and 

ON medication state.  

 

• You will be asked to take your normal dosage of medication mid-way through the 

visit.  

 

• You will complete several clinical scales including: geriatric depression scale, 

Montreal cognitive assessment, unified dyskinesia rating scale, activity balance 

confidence scale, speech assessment scale, Parkinson’s disease questionnaire and 
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freezing of gait questionnaire.    

 

At the end of your visit you will resume your usual PD medication schedule. 

 

Potential Benefits 

 

There may be no direct benefit from taking part in the study, but the information gained 

from this study may help to better treat patients with Parkinson’s disease in the future. 

 

Risks and Discomforts 

 

The full body suit is a light weight and fully portable technology for collecting 

information about your mobility. There is a minimal risk associated with wearing such a 

suit as the system only uses simple sensors that are attached to the suit. Some study 

participants may experience discomfort such as itching and sweating while wearing the 

suit.   
Some study participants may experience minor emotional distress with completing the scales 

and questionnaires. Scales will be administered by an experienced researcher trained in 

administering items in a sensitive manner. You will be allowed rest periods as necessary during 

the scales and questionnaires to facilitate comfort. 

 

Some study participants may experience fatigue with the laboratory walking tasks. The 

walking tasks are simple walking and turning tasks that do not contain any obstacles or 

barriers. The tasks are not designed to evaluate falling. Therefore, the risk of falling will 

be equal to the risk of falling during routine walking and turning in everyday life. The 

data is collected wirelessly, so there are no intrusive wires in the walking path. 

  

 

Voluntary Participation 

Participation in this study is voluntary. At any point during the study, you may refuse to 

participate, refuse to answer any questions or withdraw from the study with no effect on 

your future care. 

 

Any new information learned during your participation in the study that may affect your 

decision to partake in the study will be relayed to you.  

 

You are free to withdraw from the study at any time. 

If you withdraw from the study, we will need to use the data collected up to your 

withdrawal (data will not identify you).  

 

Physical Injury Resulting from Participation 

 

You should report any discomforts, problems, or research related injuries immediately 

to Dr. Mandar Jog at XXX-XXX-XXXX Ext. XXXXX. If you are injured and that 

injury was caused by direct participation in the study, your doctor will provide usual 
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medical care. If this occurs, you will not be financially responsible for medical 

expenses.   

 

Participation Discontinuation 

 

You may be asked to leave the study if you do not follow directions or if the study 

shows signs of causing medical harm to you.  If you are asked to leave the study, the 

reasons will be discussed with you.  

 

Compensation 

 

You will not receive any monetary compensation for your participation in this study. 

 

Study-related Communications 

 

In order to participate in the program we will ask for you to provide your phone number 

to the study team and to advise the study team if your phone number changes during the 

study. 

 

Data Collection, Use of information and Confidentiality 

 

The data collected from you for the study will be kept electronically and securely using 

the LHSC computer network.  No information identifying you will be sent outside of the 

hospital. The study doctor and staff will keep all study data in a secure and confidential 

location for 15 years. A list linking your study number with your name will be kept by 

the study doctor in a secure place, separate from your study file. 

 

Information and data obtained in the study will not be labeled with any of your personal 

information that will be collected (name, initials, partial date of birth, medical record 

number, etc.). To help ensure that your information is kept confidential, you will be 

assigned a unique participant number, a number special to you for this study. Only 

research study staff will be able to access this number and link it with your personal 

information. .  

 

Representatives from University of Western Ontario Health Sciences Research Ethics 

Board and Lawson’s Quality Assurance and Education Program may have access to 

study related information in order to ensure the study is following the proper laws and 

regulations. De-identified information (all identity will be blacked out & not revealed) 

from your health records may be copied and used to confirm the study procedures. Your 

records will be kept as private as possible under the law.  Total privacy cannot be 

promised.  By signing this consent form, you are allowing someone to review your 

records.  

 

Conflict of Interest 
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All of the doctors treating you have an interest in completing this study. Their interests 

should not influence your decision to participate in this study. 

 

Questions about the Study 

 

For more information about this research study, or if you believe that you may have a 

research related injury or experienced any side effects as a result of participating in this 

study you may call Dr. Mandar Jog at XXX-XXX-XXXX.  If you have questions about 

the conduct of the study or your rights as a research participant, you may call Dr. David 

Hill, Scientific Director, Lawson Health Research Institute at XXX-XXX-XXXX. 

 

 

You do not waive any legal rights by signing the consent form. You will receive a copy 

of the letter of information for your records. 

 

 

 

 

 

 

 

Consent to Participate- PD Patient Group 

 

I have read the Letter of Information, have had the nature of the study explained to me 

and I agree to participate. All questions have been answered to my satisfaction. 

 

 

 

_______________________________________________________________________ 

Signature of Research Participant  Printed Name  Date  

 

 

 

_______________________________________________________________________ 

Signature of Investigator   Printed Name  Date  

 

 

 

_______________________________________________________________________ 

Signature of Person Obtaining Consent Printed Name  Date  
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Appendix B: Ethics Approval 
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Appendix C: Z-Score Formula 

 

 

Z-score = (SM – PM) / (STD of PM/ √n)  

 

Where: 

SM; sample mean  

PM; population mean  

STD; standard deviation  

√; square root  

n; sample size  
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Appendix D: Montreal Cognitive Assessment (MoCA) Scale 
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Appendix E: Activities-specific Balance Confidence (ABC) Scale 

 

Instructions to Participants:   

For each of the following, please indicate your level of confidence in doing the activity 

without losing your balance or becoming unsteady from choosing one of the percentage 

points on the scale form 0% to 100%. If you do not currently do the activity in question, 

try and imagine how confident you would be if you had to do the activity. If you 

normally use a walking aid to do the activity or hold onto someone, rate your confidence 

as it you were using these supports. If you have any questions about answering any of 

these items, please ask the administrator. The Activities-specific Balance Confidence 

(ABC) Scale* For each of the following activities, please indicate your level of self-

confidence by choosing a corresponding number from the following rating scale:  

0%    10 %  20%    30%   40%   50%   60%   70%    80%    90%  100%  

no confidence          completely confident  

“How confident are you that you will not lose your balance or become unsteady when 

you…  

1. …walk around the house? ____%  

2. …walk up or down stairs? ____%  

3. …bend over and pick up a slipper from the front of a closet floor ____%  

4. …reach for a small can off a shelf at eye level? ____%  

5. …stand on your tiptoes and reach for something above your head? ____%  

6. …stand on a chair and reach for something? ____%  

7. …sweep the floor? ____%  

8. …walk outside the house to a car parked in the driveway? ____%  

9. …get into or out of a car? ____%  

10. …walk across a parking lot to the mall? ____%  

11. …walk up or down a ramp? ____%  

12. …walk in a crowded mall where people rapidly walk past you? ____%  

13. …are bumped into by people as you walk through the mall?____%  

14. …step onto or off an escalator while you are holding onto a railing? __%  

15. … step onto or off an escalator while holding onto parcels such that you 

cannot hold onto the railing? ____% 16.   …walk outside on icy sidewalks? ____%  

*Powell, LE & Myers AM. The Activities-specific Balance Confidence (ABC) Scale. J Gerontol Med Sci 1995; 

50(1): M28-34 
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Appendix F: Geriatric Depression Scale (GDS 

 

Please indicate ‘Yes’ or ‘No’ for the following questions: 

1. Are you basically satisfied with your life? ______  

2. Have you dropped many of your activities and interests? ______  

3. Do you feel that your life is empty? ______  

4. Do you often get bored? ______  

5. Are you hopeful about the future? ______  

6. Are you bothered by thoughts you can’t get out of your head? ______  

7. Are you in good spirits most of the time? ______  

8. Are you afraid that something bad is going to happen to you? ______  

9. Do you feel happy most of the time? ______  

10. Do you often feel helpless? ______  

11. Do you often get restless and fidgety? ______  

12. Do you prefer to stay at home, rather than going out and doing new things? _____  

13. Do you frequently worry about the future? ______  

14. Do you feel you have more problems with memory than most? ______  

15. Do you think it is wonderful to be alive now? ______  

16. Do you often feel downhearted and blue? ______  

17. Do you feel pretty worthless the way you are now? ______  

18. Do you worry a lot about the past? ______  

19. Do you find life very exciting? ______  

20. Is it hard for you to get started on new projects? ______  

21. Do you feel full of energy? ______  

22. Do you feel that your situation is hopeless? ______  

23. Do you think that most people are better off than you are? ______  

24. Do you frequently get upset over little things? ______  

25. Do you frequently feel like crying? ______  

26. Do you have trouble concentrating? ______  

27. Do you enjoy getting up in the morning? ______  

28. Do you prefer to avoid social gatherings? ______  

29. Is it easy for you to make decisions? ______  

30. Is your mind as clear as it used to be? ______  
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Appendix G: Freezing of Gait Questionnaire (FOG-Q)  

 

1. During your worst state—Do you walk: _____  

0 Normally  

1 Almost normally—somewhat slow  

2 Slow but fully independent  

3 Need assistance or walking aid  

4 Unable to walk  

2. Are your gait difficulties affecting your daily activities and independence? 

_____  

0 Not at all  

1 Mildly  

2 Moderately  

3 Severely  

4 Unable to walk  

3. Do you feel that your feet get glued to the floor while walking, making a turn or 

when trying to initiate walking (freezing)? _____  

0 Never  

1 Very rarely—about once a month  

2 Rarely—about once a week  

3 Often—about once a day  

4 Always—whenever walking  

4. How long is your longest freezing episode? _____  

0 Never happened  

1 1–2 s  
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2 3–10 s  

3 11–30 s  

4 Unable to walk for more than 30 s  

5. How long is your typical start hesitation episode (freezing when initiating the 

first step)? _____          

0 None  

1 Takes longer than 1 s to start walking  

2 Takes longer than 3 s to start walking  

3 Takes longer than 10 s to start walking  

4 4 Takes longer than 30 s to start walking  

6. How long is your typical turning hesitation: (freezing when turning) _____  

0 None  

1 Resume turning in 1–2 s  

2 Resume turning in 3–10 s  

3 Resume turning in 11–30 s  

4 Unable to resume turning for more than 30 s  
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Appendix H: Parkinson’s Disease Quality of Life Questionnaire (PDQ-8) 

 

1. Had difficulty getting around in public?  

Never Occasionally Sometimes Often Always  

2. Had difficulty dressing yourself?  

Never Occasionally Sometimes Often Always  

3. Felt depressed?  

Never Occasionally Sometimes Often Always  

4. Felt embarrassed in public due to having Parkinson's disease?  

Never Occasionally Sometimes Often Always  

5. Had problems with your close personal relationships?  

Never Occasionally Sometimes Often Always  

6. Had problems with your concentration, e.g. when reading or watching TV?  

Never Occasionally Sometimes Often Always  

7. Felt unable to communicate with people properly?  

Never Occasionally Sometimes Often Always  

8. Had painful muscle cramps or spasms?  

Never Occasionally Sometimes Often Always 
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Appendix I: Unified Parkinson Disease Rating Scale 
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