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Abstract

This dissertation investigates the use of a Kalman filter (KF) to predict, within the

shutdown system (SDS) of a nuclear power plant (NPP), whether a safety parameter

measurement will reach a corresponding trip set-point (TSP). The proposed predictive

SDS (PSDS) designs aim to initiate shutdown actions at a time which is earlier than con-

ventional shutdown initiation. These early detections are, in turn, expected to improve

safety and productivity margins within the NPP.

The KF-based point-PSDS design utilizes a linear time-varying (LTV) system model

to predict mean safety parameter measurements for comparison against the TSP. The KF

considers noise covariances that either have assumed predetermined values, or are esti-

mated online using an adaptive limited memory filter (ALMF). The PSDS is enhanced to

consider, by recursive least squares (RLS) estimation, conditions that are uncertain with

respect to the assumed system model and noise properties. The result is a KF/RLS-based

PSDS that compensates for prediction error by RLS-based estimation of deterministic

disturbances to the system state and measurement. The PSDS is further enhanced to

calculate confidence intervals for the predictions as a function of the propagated error co-

variance. This enhancement results in interval-PSDS designs that consider confidence in

an impending condition by comparing predetermined confidence interval bounds against

the TSP. Finally, an optimal-PSDS design is formulated to adapt the effective prediction,

e.g. horizon or bias, by limiting and minimizing the probability of missed and false trip
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occurrences respectively using hypothesis testing methods and optimal alarm theory. In

this manner, the optimal-PSDS is made aware of the quality of past predictions.

The PSDS designs are compared, through simulation and experiment, against a con-

ventional SDS in terms of response time or time-to-trip for the steam generator level low

(SGLL) safety parameter under various conditions of uncertainty, e.g. parameter error or

unmeasurable signals. MATLAB-based simulations demonstrate that the PSDS designs

are able to reduce time-to-trip. The PSDS designs are then implemented within a Tricon

v9 safety-PLC with a scan time that adheres to current nuclear industry regulations. The

experimental results reveal that a reduced time-to-trip can be achieved for a real-world

system with unknown system-model mismatch.

Keywords: prediction, Kalman filtering, uncertainty, optimal alarm, safety instru-

mented systems
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Chapter 1

Introduction

In general, an unsafe system has the potential for an uncontrolled release of large amounts

of energy. In contrast, a safely operating nuclear power plant (NPP) releases energy in a

controlled manner. Within an NPP, nuclear energy is first converted into thermal energy

within the reactor core by means of fissile material undergoing fission reactions. All NPP

designs utilize nuclear energy to produce electrical power. Within pressurizedwater reactor

andpressurizedheavywater reactorNPPdesigns, the thermal energy is transferred between

the coolants of one or more subsequent heat transport loops to a subsystem known as the

steam generator or boiler. As thermal energy accumulates in the secondary-side coolant

of the steam generator, the coolant boils and the resulting steam is piped out of the top

of the steam generator. For electrical power generation, and within all NPPs, the net

positive kinetic energy of some flowing material is then made to rotate a set of turbines

that are affixed to the rotor of an electrical generator. This rotation results in the kinetic

energy being converted into electrical energy. Finally, electrical power is output from the

generator to a switch-yard where a small portion of the total power is returned to the

station as auxiliary power and the remainder is made available to the grid for transmission,
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distribution, and consumption.

The thermodynamic efficiency of the a nuclear power generating system increases in pro-

portion to the nominal operating thermal power of the reactor core. This nominal amount

of thermal power, in turn, determines the amount of electrical power that is output by the

electrical generator. Thus, in order to improve thermodynamic efficiency, the electrical

power output of a single NPP unit is usually rather large, ranging from hundreds to thou-

sands of megawatts electric (MWe). Large amounts of energy therefore flow between, and

are stored throughout, the subsystems of an NPP. These large amounts of energy increase

the potential for accidents involving uncontrolled releases of energy to occur. In addition,

NPPs utilize a radioactive primary fuel source that, if affected, may significantly increase

the severity of such accidents. NPP designs therefore undergo continual enhancement to

include measures that aid in preventing and mitigating the consequences of severe acci-

dents, i.e. accidents that involve significant core degradation. These enhanced measures

aim to protect workers, the public, and the environment from the harmful effects of the

ionizing radiation that is produced as a result of fission reactions and is to be contained

during a severe accident [1]. The development of these enhanced measures is essential in

reducing the likelihood of future severe accidents like those that have occurred at Three

Mile Island NPP Unit 2 in 1979, Chernobyl NPP Unit 4 in 1986, and Fukushima Daiichi

NPP Units 1, 2, 3, and 4 in 2011.

In line with the concepts of prevention, mitigation, and protection, this dissertation

aims to enhance the decision-making mechanism or logic solver within a shutdown type

of NPP automatic protection system by including the capability of predicting an impend-

ing abnormal condition. This enhancement presents a paradigm shift from the like-for-like
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functional replacements that have historically been performed when replacing existing pro-

tection systemswithmodern computer-based technologies. The predictive shutdownmeth-

ods of this dissertation take advantage of increases in computational power and advanced

functional capabilities that are common to modern industrial computerized technologies.

These methods are, at the same time, constrained by the capabilities of these technologies

when compared against cutting edge computer processors and supercomputers.

In achieving the above aim, it is expected that abnormal conditions will be predicted

at a time which is earlier than conventional shutdown detection. This early detection

is essentially a reduction in the amount of time between a trip inducing fault, failure,

or initiating event and the activation of sufficient protective actions within the reactor

core. It is expected that this reduction in time will, in turn, result in increased margins

of safety between peak surges in energy, inventory, pressure, temperature, and flow, and

the physical limits of the subsystems and components within the NPP. Moreover, these

increased margins of safety are also expected to reduce the likelihood of the NPP dynamics

reachingunsafe, or accident conditions. Thepredictive decision-makingmethods developed

herein are also not limited to shutdown applications or the NPP systems. These methods

may therefore be applied within the logic solvers of a safety instrumented system (SIS)

for a variety of generic applications in order to make early decisions regarding impending

safety-related conditions.

The remainder of this chapter is organized as follows. Section 1.1 introduces industry

specific terminology, establishes context regarding the enhancement of NPP automatic

protection systems, and provides a brief introduction to the prediction methods. Section

1.1 also presents the rationale for enhancing automatic protection systems in order to
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reduce protection system response time and to achieve earlier activations of the related

safety function. Section 1.2 elaborates on the two high-level problems that are investigated

within this dissertation, conceptualizes a predictive shutdown sequence, and segments the

two problems into a list of objectives. Section 1.2 also states the scope of this research,

including high level limitations and assumptions. Section 1.3 describes themain theoretical

and practical contributions, and deliverables that are the result of this study. Finally, the

organization of this dissertation is outlined in Section 1.4.

1.1 Background and Motivation

According to the United States Nuclear Regulatory Commission (US-NRC), shutdown is

a decrease in the rate of fission and heat or thermal energy production within a reactor [2].

Shutdown may also be referred to as: trip, i.e. the activation of a mechanism, or safety

control rod axe man (SCRAM)1, as used during the first controlled release of energy by

nuclear fission at Chicago Pile number 1 (CP-1) [5,6]. The components within an NPP that

are responsible for shutdown are commonly referred to as a shutdown system (SDS) while

reactor protection system (RPS), reactor trip system (RTS), and emergency protection

system (EPS) may also be used [7, 8].

The International Atomic Energy Agency (IAEA) categorizes SDSs within a sub-

category of safety systems known as protection systems. According to the IAEA, a protec-

tion system “encompasses all electrical and mechanical devices and circuitry, from and

including the sensors up to the input terminals of the safety actuation systems and the

1the exact terms used within the scram acronym are often contested [3, 4]
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safety system support features, involved in generating the signals associated with the pro-

tective tasks” [9]. Further, the IAEA states that the purpose of a protection system within

an NPP is to “monitor the operation of a reactor and which, on sensing an abnormal

condition, automatically initiate actions to prevent unsafe conditions” [10]. An SDS is

therefore a collection of electrical and mechanical devices and circuitry that monitor the

operation of a reactor as well as supporting subsystems and, upon sensing an abnormal

condition, automatically initiates actions to decrease the rate of fission and heat or thermal

energy production within the reactor core. Each subsystem is referred to individually as a

system being protected when it is necessary to discern the system that is being protected

from an otherwise unprotected system.

The subsystems of an NPP operate within one of many different operating modes or

conditions; normal, abnormal, unsafe, and emergency or accident. These conditions are

illustrated in Figure 1.1 along with the thresholds that are the boundaries or limits between

the conditions. This conceptual illustration includes conditions that are two-dimensional,

y1 and y2, although the conditions may also be single dimensional or have greater than two

dimensions.

The operation of the various systemsmay follow any of the numbered paths or transients

as provided in Figure 1.1. For example, the system may deviate from (1) an anticipated

operational occurrence (AOO) as the result of a postulated initiating event (PIE) and

approach abnormal (2) and then unsafe (5) conditions. PIEs are those events are are antic-

ipated to cause a safety parameter to operate outside of the normal operating conditions.

Alternatively, a trip occurrence activates a safety function in order to prevent the system

from reaching unsafe conditions (3). The system may then be returned to a normal oper-
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Figure 1.1: Operating conditions/modes, set-points/thresholds/limits, and conceptual
events and system transients, trajectories, or paths of operation.

ating condition, and possibly the original operating point by means of start-up procedures

(4). It is therefore assumed, that a system operating beyond normal conditions will not

recover from the abnormal conditions without some form of safety action being performed.

The systemmay also exhibit unanticipated behaviours while operating under any on the

conditions as is indicated by the uncertain region of Figure 1.1.In Figure 1.1, the numbered

paths do not correspondwith the uncertain condition. It is convenient to consider, however,

that a PIE causes the system behaviour to become uncertain as illustrated in Figure 1.1.

Moreover, paths (5) and (6) may correspond with either a design basis accident (DBA) or

a beyond design basis accident (BDBA) within the nuclear industry. These are postulated

accidents which have respectively been considered and are beyond consideration during

the design of the NPP according to established design criteria [10].

The first shutdown type of nuclear-related automatic protection system was that of

CP-1. This first protection system was responsible for releasing neutron absorbing rods

when signals from ion chambers, a type of sensor to measure nuclear fission reactions,
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exceeded a predetermined trip set-point (TSP) which may also be referred to as a limiting

safety system setting (LSSS) [11]. Upon release, the shut-off rods were pulled into the

reactor pile by a 100lbs weight. The instrumentation for this and other early SDSs was

composed of simple amplifier circuits made up of triodes, diodes, and resistors, as well

as magnetic amplifiers and electro-mechanical relays. In addition, the TSPs for these

SDSs were calibrated to release safety actuators at predetermined values corresponding to

physical properties of the actuating devices, e.g. current to an electromagnet or position of

a solenoid catchmechanism [12]. More generally, the TSPs are the thresholds against which

safety parameters are compared within a protection system in order to detect abnormal

conditions. The TSP is therefore the boundary between normal and abnormal conditions

of Figure 1.1.

Since the days of CP-1, SDS instrumentation has undergone various functional and

technological enhancements. Although the main functionality of SDSs remains as it was in

CP-1, SDSs now include coincidence voting, hysteresis, and seal-in logic, as well as TSPs

thatmay vary as a function ofmajor systemparameters. These enhancements have resulted

in the rewriting of standards, regulations, and best practices, e.g. the extensive review of

software by formalmethods [13]. Further, many safety concepts, including defence in depth,

diversity, redundancy, and other best-practices are now formally defined in a vast number of

safety reports and guides [14,15]. Technologically, SDSs have evolved from a basic electri-

cal, electro-mechanical, direct wired, analog signal form through an electronic, solid-state

form, to in some cases, an electronically programmable, fully computerized, digital form

within a safety-rated distributed control system (DCS) or programmable logic controller

(PLC). Moreover, within the last decade there has been growing interest in replacing the
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software and central processing unit (CPU) of these fully computerized SDSs with an elec-

tronically programmable hardware implementation known as a field programmable gate

array (FPGA) [16, 17, 18].

Given proper safety and hazard analysis and selection of protective actions, enhance-

ments to protection systems are primarily concerned with: true and spurious trip; safety

variables, sensors, and TSPs; response time; environmental and power conditions; and sys-

tem reliability [19]. In fact, these design bases are the safety principles for automatic protec-

tion system development and, in some cases, are ameans of measuring system performance,

i.e. response time, reliability, independence, availability, simplicity, and conformance to

environmental, power, and various other conditions [14, 20].

In general, protection system enhancements aim to improve either safety or productivity

and to maintain a balance between the two. For example, TSPs can be improved by

considering beyond design basis events [21]. In fact, it is common for nuclear utilities to

develop enhancements that reduce margins of uncertainty while maintaining or improving

margins of safety in order to utilize excess electrical generating capacity that was previously

unavailable [22]. For example, an increase in safety sensor accuracy may allow for an

increase in a TSP and subsequent increases in the nominal operating power of the reactor

as well as the electrical power generated by the NPP. The end result is a balanced increase

in safety and productivity, or alternatively, an increase in production while maintaining

safety margins. These two competing results are compared in Figure 1.2 for conventional

and conceptual predictive trip occurrences. The predictive trip of Figure 1.2 results in

an effective TSP that is a time-varying value or threshold equal to the safety parameter

measurement at the time the trip action is initiated. This effective TSP varies with the
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quality of the predictions as well as the length of the forecast window or prediction horizon.

The nuclear power generating industry is very conservative with respect to the concep-

tual modified operations of Figure 1.2 where rigorous analyses of any and all modifications

to protection systems are required to ensure identification and mitigation of any possible

negative impacts on safety [22]. For example, delaying the response time of the SDS may

result in a reduction in the number of spurious protective actions, otherwise known as

spurious or false trips. Reductions in spurious trips, in turn, increase the availability of the

NPP unit to generate electrical power. In this inadvisable example, the NPP has improved

production, or capacity factor, at the cost of reducing margins of safety since the delayed

SDS activation results the peak response of the safety parameter transients being closer to

the established safety limits; see (3) in Figure 1.1.

As previously stated, this dissertation aims to improve safety by detecting abnormal

conditions at a time that is earlier than is possible when using conventional SDSs. More

specifically, this research aims to reduce the amount of time between the occurrence of

9



Sensors

Conditioning
Signals

Amplifier
Trip

computer

Display
computer

Relay
logic

Rod dropRelay delayDecision makingSampling and scan time

!

Fault propagation

S
h
u
t-
o
ff

ro
d
sFault or

failure

Figure 1.3: Sample trip sequence and time-to-trip measure for SDS1 of the CANDU NPP.
Unless stated otherwise, time-to-trip is the total amount of time of these time components.

a trip inducing fault or failure and the insertion of sufficient negative reactivity into the

reactor core without causing a reduction in the margins of safety. This amount of time is

also referred to as time-to-trip, and includes the response time of the trip computer or logic

solver within the SDS. A sample trip sequence and time-to-trip measure are provided in

Figure 1.3 for the Canadian Deuterium Uranium (CANDU) shutdown system number one

(SDS1) design. The proposed SDSmodifications, andmore specifically the early detections,

are expected to provide the advantage of reducing the maximum values of the peak surges

in the parameters of the safety related subsystems as illustrated in Figure 1.2.

In terms of time-to-trip, conventional SDSs have the fundamental limit of, at best, initi-

ating the insertion of negative reactivity into the reactor core at the instant a safety parame-

ter reaches a TSP.Moreover, conventional SDSs are increasingly being implemented within

trip computers that are modern industrial computers, programmable electronic systems,

safety DCSs, PLCs, and even FPGAs. These modern platforms, however, are generally

underutilized in terms of computational power due to the relatively simple functionality re-

quired by protection systems when compared against advanced control system algorithms.

This research therefore overcomes the fundamental limit of conventional shutdown by pre-

dicting the future behaviour of the monitored subsystems and associated safety parameter
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values and making anticipatory, or predictive trip decisions, i.e. a predictive shutdown

system (PSDS).

Prediction and forecasting dates back to over two millennia ago with the rudimentary

prediction of celestial body movements and a growing interest in the field of astronomy

[23]. The mathematical methods that form the foundation of optimal prediction were not

established, however, until 1632 when Galileo investigated the minimization of various

functions of error to help explain his experimental celestial observations [24]. Another

century and a half would pass before the first complete theory of linear estimation, known

as the method of least squares (LS), was formulated by Gauss in 1795. This achievement

in forecasting also centred around the study of celestial body movements, as reported and

independently formulated byLegendre in 1805 [24,25,26]. More recently, modern predictive

algorithms incorporate system models and also account for uncertainty in the model and

signals. For example, the stochastic state-space model assumed within the Kalman filter

(KF) published by Kalman in 1960 [27]. Nowadays, prediction algorithms have even been

used within NPP controls systems [28].

In utilizing a prediction algorithm for shutdown, it is expected that a PSDS will be able

to initiate shutdown actions at the instant a fault, failure, or initiating event is predicted

to result in an abnormal condition. At this limit, anticipatory or predictive shutdown is

conceptually similar to fault detection [29], a field which has numerous applications within

NPP systems [30,31]. Moreover, given the well-established literature regarding prediction

of dynamical systems as well as the availability of capable industrial computer technologies,

it seems natural to investigate the development of a predictive automatic protection system.

It is expected that the predictive protection system will be able to make confident, high
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quality decisions at a time which is earlier than the conventional case without reducing

margins of safety or productivity. It is further expected that these algorithms can be

implemented within modern safety-critical industrial computer platforms given limited

processing and memory resources.

In addition to reducing time-to-trip, the proposed SDS modifications deviate from the

historical practice of like-for-like functional transfer of SDS logic from existing to newly

commissioned technologies by developing, in an evolutionary manner, an advanced safety-

critical decision-making algorithm. Within the nuclear industry, plant life extensions and

related refurbishments have resulted in the replacement of antiquated and obsolescent in-

dustrial computers, programmable digital comparators, analog circuitry, and relay logic

withmodern industrial computer technologies [8,32,33]. These platforms are capable of ex-

ecuting advanced functional, mathematical, and logical capabilities that enable a broader

set of decision-making algorithms to be implemented. Moreover, these algorithms include

well-established filtering and modelling methods that allow for control and protection sys-

tems to consider a larger set of prior knowledge regarding the system being controlled

or protected. For example, the automotive industry has recently developed and imple-

mented collision avoidance systems and automatic predictive braking within a variety of

automobiles [34].

Finally, thiswork considers the consequences of implementing advanceddecision-making

algorithms within safety-critical industrial computers. For example, a given algorithmmay

require additional execution time that may result in delayed decisions. The advanced al-

gorithms investigated herein are therefore designed to anticipate, or predict, impending

conditions. Forecasting and prediction does, however, introduce a new form of uncertainty
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within the safety-critical shutdown task. Thus, in predicting the future behaviour of a

system being protected, the effects of uncertainty and the complexity of the prediction

algorithm on SDS performance, e.g. spurious trip rate, must also be well understood and

taken into consideration within the predictive trip detection mechanism.

1.2 Problem Statements, Objectives, and Scope

Two major problems are investigated within this dissertation. The main problem is the

enhancement of NPP SDSs to utilize the increased computational power as well as func-

tional capabilities of modern industrial computers in an effort to reduce the amount of time

required to activate a safety function. This primary problem is expected to be resolved by

incorporating a prediction algorithm within the SDS. In investigating this main problem, a

secondary problem is encountered. The secondary problem is the development of a predic-

tion algorithm that considers a larger set of prior information or knowledge to accurately

predict impending abnormal conditions even when the dynamic process is operating under

uncertain conditions. In addition, the functionality of the prediction algorithm is modified

to consider the quality of previously calculated multi-step-ahead predictions. These two

problems are expected to be resolved by incorporating prediction error compensation and

statistical quality assessment routines within the SDS.
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1.2.1 Shutdown system enhancement and reduction of

time-to-trip

The primary problem that is addressed within this dissertation is the enhancement of SDS

functionality in an effort to reduce time-to-trip. Within the nuclear power industry, SDS

enhancements aremost often performed to address hardware obsolescence. These enhance-

ments may also, however, be performed to address insufficient electrical energy production

and safety margins. Of these enhancements, those that are due to obsolescence result

in the replacement of existing SDS components with new or more advanced technologies

while trip logic functionality remains largely unchanged. In contrast, those enhancements

that aim to improve energy production or safety generally focus on improving SDS reliabil-

ity, independence, availability, simplicity, or conformance to government regulations and

international standards rather than SDS response time.

The problem is not that these existing and upgraded SDS designs fail tomeet regulatory

requirements for response times which are typically less than a few hundred of milliseconds

in length. The problem is instead that conventional SDSs at best initiate shutdown ac-

tions at the instant a safety parameter is determined to have reached a TSP. Thus, SDSs

currently utilize comparator-based trip functionality even though modern technologies are

capable of executing increasingly advanced model- and data-based prediction, detection,

and decision-making algorithms, many of which are straightforward, well-established and

have been proven through use. There is therefore an opportunity to detect in advance,

with predetermined confidence and without reducing safety or productivity margins, that

a system is approaching an abnormal condition. There are also significant safety, energy
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production, and economic benefits that may be realized by reducing time-to-trip. These

benefits are due to the nominal operating thermal power as well as the electrical power

output of a given NPP unit being functions of SDS response time. More precisely, it may

be possible to increase the operating power and electrical power output of the NPP as a

result of reducing time-to-trip.

A reduction in time-to-trip reduces the magnitude of fault-induced high power surge,

and in turn, the temperature within the reactor core and the potential for critical com-

ponents to be damaged [35]. Achieving near-immediate time-to-trip is essential during

operating conditions when fission reactions within the reactor core may be beyond the

control of the reactor regulating system (RRS) and the heat energy accumulating within

the reactor core may increase exponentially leading to unsafe operation, or even accident

conditions. For these reasons, a reduction in time-to-trip results in increased margins of

safety [36]. In addition, for existing NPPs where increased margins of safety can be guaran-

teed, it may be possible to take advantage of additional electrical power generating capacity

by undertaking power up-rating initiatives [22]. That said, the current state-of-the-art in

terms of SDS functionality is to use an FPGA to compare trip parameter measurements

against a TSP that is most often a constant value, and is at most a function of some major

safety-related system parameter.

By continuing along the path of like-for-like functional replacement of SDS decision-

making algorithms, it is expected that the ability of automatic protection systems to meet

the safety demands of increasingly complex and challenging engineering problems will be

hindered both within and beyond the nuclear power generating industry. In addition, it is

becoming necessary to consider the consequences that proactive, prognostic, and predictive
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decisions have on safety and operability given that these strategies are now being imple-

mented within themonitoring and supporting controllers of potentially hazardous systems.

By considering the effects of predictive functions from the perspective of a safety-critical

system, it is expected that there will be a reduced likelihood of safety being compromised

in order to attain an increase in production value whether within the nuclear power indus-

try or otherwise. In addition, a paradigm shift to a continuing evolutionary enhancement

of automatic protection system algorithms will bring about improvements to safety and

production margins, the efficiency of existing NPP units, and the economic performance

of nuclear power generation in general. More specifically, a reduction in time-to-trip leads

to increased productivity as a direct result of increased margins of safety as illustrated in

Figure 1.2. In one report, it is stated that each additional percentage of increased operat-

ing trip margin increases revenue by a present value of 20 to 40 million dollars per reactor

unit [37].

In response to the SDS enhancement and reduction of time-to-trip problem, Chapter 3

investigates various theoretical methods for advanced and intelligent but well-established

prediction algorithms. These prediction algorithms are utilized to calculate predictions of

the safety parameter measurements that are available within conventional SDSs. Chapter

5 constructs various modular PSDS designs that each aim to reduce time-to-trip. The

predictions are then compared against a corresponding TSP to determine whether a trip

condition is imminent. This TSP is also referred to as an alarm threshold, and the trip

occurrence as a threshold-crossing event. Chapter 5 also aims to re-frameSDS enhancement

and safety-critical decision-making in general, by making accurate predictive decisions

while at the same time considering the computational power of modern industrial safety
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controllers. These considerations are essential for implementation of the PSDS designs

within the Tricon v9 safety-PLC of the experimental platform presented in Chapter 6. By

performing these enhancements in an evolutionarymanner, it is expected that the proposed

PSDS designs will maintain the reliability of the existing conventional SDSs.

1.2.2 Predictive shutdown concept

A conceptual predictive shutdown occurrence is illustrated in Figure 1.4. This figure il-

lustrates for a single safety parameter the measurement, corresponding TSP, as well as

past, present, and future safety parameter predictions. In Figure 1.4, discrete time index

k denotes the current, or present, time-step with units equal to seconds over the sampling

interval Ts, or s/Ts. Time-steps that have values less than k have occurred in the past and

time-steps that have values greater than k are yet to occur in the future. At each time-

step, the prediction algorithm propagates the safety parameter predictions to a prediction

horizon Np time-steps into the future. The predictions are then compared against a corre-

sponding TSP. A predictive trip is initiated if any of the predictions within the prediction

window have reached the TSP. Thus, in the example sequence of Figure 1.4, a predictive

trip occurs at time-step k due to the predicted safety parameter measurements, propagated

to prediction horizon (k +Np), having reached the TSP. Predictive trip therefore results

in a reduction in time-to-trip when compared against a conventional shutdown that occurs

at some future time-step. For example, a reduction in time-to-trip of Np time-steps would

result for a hypothetical conventional shutdown occurring at time-step (k +Np).

Predictive shutdown has the potential for improving two performance margins when
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Figure 1.4: The concept of predictive shutdown, or predictive trip, for a single safety
parameter with a predictive trip occurring at time-step k.

compared against conventional shutdown. These margins are illustrated in Figure 1.4 with

respect to a hypothetical conventional trip occurring at the prediction horizon. The first

margin coincides with the main objective of reducing time-to-trip, where time-to-trip has

been reduced by (kp − kc) time-steps. This is the difference in time between the predictive,

kp, and conventional, kc, times-to-trip. The second margin is the indirect advantage of an

(Ξp − Ξc) increase in the effective TSP that is an approximation of the change to the safety

margin as a result of the reduction in time-to-trip. The effective TSPs are the values of the

safety parameter measurement at the time of trip. These changes to safety and production

margins are similar to those presented in Figure 1.2b).

Within the nuclear industry, margin of safety is defined as the minimum difference in

measurement between a predetermined physical safety limit and the safety parameter mea-

surements during the process fluctuations that follow a trip occurrence [36]. An example

of this is the conceptual safety margin of Figure 1.1. When compared to the case of con-

ventional trip, the predictive trip occurs: i) at a time which is earlier, and ii) where safety

parameter measurements are a greater distance from the physical safety limits. Where

increased safety margin can be guaranteed, one of two benefits may result. Either i) the
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operating power of the NPP remains at the pre-enhancement level with improved safety,

or alternatively, ii) the productivity of the NPP is increased through an increase in electri-

cal power output and the safety margins are returned to the pre-enhancement margins as

illustrated in Figure 1.2.

1.2.3 Prediction of abnormal conditions under uncertainty

A supporting problem that was identified in the course of this dissertation work is the accu-

rate prediction abnormal conditions under uncertainty. The topics of linear and adaptive

prediction are thoroughly covered in the existing literature which includesmodel- and data-

based prediction algorithms. These algorithms provide solutions to the prediction problem

for models that i) possess some inherent randomness and are considered stochastic, ii)

are fully determined by parameter values as well as initial conditions and are therefore

deterministic, or iii) are a mix of stochastic and deterministic components.

Those algorithms that consider stochastic models are preferred since NPP subsystems

are designed to match within some degree of uncertainty the real-world dynamic response

to a dynamic model. In this form, the calculated predictions are defined over a probability

space that, at specific points within the measurement domain, can be interpreted as levels

of confidence with respect to the predicted measurement. More specifically, in the case of

KF-based prediction, the system model is assumed to be linear and the uncertainty in this

model is assumed to be additive white Gaussian noise. The predictions that are plotted

in the conceptual predictive trip of Figure 1.4 may therefore be calculated through the use

of a KF predictor given an assumed model and statistical noise properties or uncertainty

19



descriptions.

KFs are often implemented as estimators and predictors with little attention given to

the effect that various uncertainties have on prediction accuracy and the quality of the

calculated prediction probability distributions. Although the standard KF can be incor-

porated as the prediction algorithm within an SDS, a more advanced KF-based prediction

algorithm is investigated herein in order to make increasingly accurate predictions under

a variety of operational and uncertain conditions.

The problem of predicting an impending abnormal condition becomes more difficult

when the dynamic process changes and the statistical properties that are assumed within

the prediction algorithmno longer represent the true uncertainty. In addition, whenmaking

safety-critical predictive decisions, the prediction algorithm should consider the possibility

that the system is operating under uncertain conditions. The prediction algorithm should

also be aware of the quality or accuracy of past predictions. The standard KF does not,

however, include either of these features.

Uncertainties or discrepancies between the prior knowledge regarding the systemmodel

and signals may arise as a result of a fault, failure or initiating event during the transient

towards the TSP. Under uncertain conditions, the predictions as well as the probability

distributions that describe uncertainty in the predictions may be erroneous. For example,

the assumption of additive white Gaussian noise may no longer hold, or the system may be

being affected by a more deterministic fault, failure, or disturbance. Thus, it is necessary

to compensate for prediction error within the prediction algorithm. The presence of uncer-

tainty and error is addressed by robust prediction algorithms including model predictive

control (MPC) and fault prognostic applications.
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Robust prediction algorithms, however, often require complex application-specific so-

lutions. These algorithms also generally ignore the quality of multi-step-ahead predictions.

It is therefore necessary to develop a relatively simple yet robust prediction algorithm that

includes amechanism formonitoring the accuracy and quality of the calculated predictions.

With respect to making the KF more robust, the offline estimation of noise covariance is

often left to best practices that are not very well defined. Moreover, it may be benefi-

cial to modify a KF-based prediction algorithm to adapt the prediction metrics over the

given prediction window since KF predictors do not inherently take into consideration

multi-step-ahead prediction error.

Without compensating for prediction error, the predictive decision-making algorithm

will not be able to accurately predict the behaviour of the system under uncertain condi-

tions. Moreover, without assessing prediction quality, the decision-making algorithm will

not be aware of whether or not previously predicted safety parameter values are, in fact,

valid. These two factors may result in an impending abnormal condition being missed,

i.e. a missed trip, and the usefulness of the prediction algorithm being degraded. Missed

trips occur when a trip sequence is not initiated but the system has reached an abnormal

condition. In contrast, reductions in time-to-trip by erroneous predictions may result in

an increased number of spurious or false trip occurrences. Spurious trips occur when a

trip sequence is initiated but the system has not truly reached an abnormal condition.

For example, a measurement sample that initiates shutdown may be erroneous due to im-

proper calibration, sensor degradation, electromagnetic interference, etc. These spurious

trip occurrences reduce NPP revenue by at least 50 thousand dollars per hour per non-

operational unit for the CANDU SDS1 design [38]. In one case time-delay functions have
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been included within the logic solver of an SDS to reduce the number of spurious trip oc-

currences [39]. These spurious and missed trip occurrences must be well understood and

taken into consideration within the modified SDS designs.

This research work combines methods from a set of existing publications regarding pre-

diction under uncertainty within Chapter 3, prediction of abnormal conditions in Chapter

4, and the assessment of prediction quality within Chapter 5. The improvement of per-

formance margins by predictive trip requires accurate and high quality predictions. In

practice, however, there may be mismatch between the model used within the KF and the

true model of the physical system. There may also be disturbances within the signals of

the system. KF-based predictors consider these uncertainties in the form of covariances

that allow the estimates to be weighted more heavily either towards measurement, i.e. the

output of the system, or the system model.

In safety system applications with redundant sensors there is usually a high degree of

sensor measurement accuracy. KF-based predictions are propagated, however, using the

model as there are no future measurements on which to correct the predictions. Thus,

in certain cases of system-model mismatch, the predictions diverge from the true future

measurement with each time-step into the future. For this reason, LS estimation is used to

correct the multi-step ahead predictions by estimating a model-based disturbance in the

measurement as presented in Chapter 4. In addition, a recursive form of the LS solutions

known as the recursive least squares (RLS) filter is also formulated in Chapter 4. This

estimation of disturbance inputs provides the added benefit of indicating that the system

response is deviating from that of the model. The result of this LS estimation is a KF/

RLS-based prediction algorithm.
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The statistical assumptions within the KF also allow for the incorporation of statis-

tical and hypothesis testing methods to assess the quality of the calculated predictions.

These testing methods also close the loop with respect to the multi-step-ahead KF-based

predictions and provide a mechanism by which to adapt the effective prediction horizon or

mean prediction error. Hypothesis testing methods can then be used to assess the poten-

tial for impending spurious trip and also missed trip occurrences as these two occurrences

correspond to false positive and negative hypotheses. Finally, optimal alarm theory may

be used to optimize the predictive activation of trip. By enhancing the SDS to calculate

accurate and high quality predictions of impending abnormal conditions, it is expected that

predictive shutdown will achieve reduced time-to-trip while maintaining existing margins

of safety and productivity even when the system is operating under uncertain conditions.

In general, the above-mentioned reductions in time-to-trip are achieved by methods

that do not involve the modification of safety system functionality. In fact, the task of

modifying the software within an SDS requires a significant amount of resources in order

to ensure that the software does not infringe upon the safe operation of the NPP. Thus, it

is important to consider that the addition of predictive trip detection may affect safety. It

is also the case that the predictive shutdown will provide various model- and data-based

metrics and time-series that may be useful in alarm management and operator indication

although these aspects of prediction are considered beyond the scope of this dissertation

work.

Although the KF is a popular tool for model-based prediction and prognostics, the

research presented herein encompasses the first known effort to combine a prediction al-

gorithm with an NPP automatic protection system. In addition, there are only a limited
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number of existing publications that combine prediction with protective functions for dy-

namical systems. A study by Juricek et al. relates closely to the proposed concept of

predictive shutdown wherein a KF is used for predictive monitoring of abnormal situation

management for a mixing or stirring application [40]. In addition, Juricek et al. also con-

sider uncertainty and accuracy in the predictions through the use of confidence intervals

and statistical testing as well as LS estimation to compensate for prediction error caused

by a disturbance to the system state. This solution presented herein, however, formulates

the recursive solution to the RLS problem, and investigates disturbance within both the

system state and measurement.

During preliminary development of an initial KF-based PSDS design, the ability of the

KF to calculate accurate predictions for time-varying systems under uncertainty became of

concern. An extended literature review brought forward an algorithm for noise covariance

estimation, as well as one particular study by Martin combines KF-based prediction with

optimal alarm theory [41]. Martin formulates a probabilistic solution for the prediction

of a two-sided symmetric threshold crossing event over the entire prediction window while

assuming a steady state solution for the Kalman gain. In contrast, the solution presented

herein considers each time-step within the prediction window individually. Moreover,

the abnormal conditions are one-sided and are not symmetric. The optimization of an

alarm threshold within this dissertation does not therefore produce an explicit solution

to the alarm region problem as presented by Martin [41]. The solution presented in this

work instead selected a prediction from within a set of predictions that has the maximal

probability of an abnormal condition given a trip, which in this context may be referred to

as an alarm.
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1.2.4 Objectives

This work investigates the reduction of SDS response time through the use of model-

based prediction algorithms. These prediction algorithms are required, however, to be

accurate under operating conditions that may be uncertain with respect to an assumed

model and signal parameters or properties, and of reasonable computational complexity

for implementation within a commercial off the shelf industry-standard safety-PLC. The

proposed PSDS designs are therefore made to compensate for prediction error, to asses the

accuracy of previous predictions, and to adapt the current predictions accordingly. Given

these criteria, the objectives of this research are as follows:

1. Review the state-of-the-art literature regarding NPP shutdown and reactor trip,

prediction of abnormal conditions under uncertainty, and methods of assessing pre-

diction quality

2. Develop an initial PSDS design

(a) predict future safety parameter measurements

(b) adapt the uncertainty descriptions that are provided to the prediction algorithm

(c) compensate for prediction error

(d) combine prediction algorithm with conventional SDS logic

3. Enhance the PSDS design to consider prediction uncertainty

(a) calculate confidence intervals for the predicted safety parameters

(b) select bound of confidence interval for comparison against TSP

4. Enhance the PSDS design to consider prediction quality

(a) evaluate prediction consistency to assess prediction quality
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(b) reduce Type I and (II) errors, i.e. inactivation (activation) of a safety func-

tion when the potentially hazardous system is actually operating abnormally

(normally), i.e. missed and false trip occurrences

(c) select or adapt optimal effective prediction metrics, e.g. prediction horizon, as

a function of the above statistical measures, for comparison against TSP

5. Implement the SDS and PSDS designs for a single safety parameter within the Tricon

v9 safety-PLC

(a) adhere to functional scan time requirement of 100ms; report PLC scan time

In support of the methods used to achieve the above objectives, this thesis provides com-

parisons of performance, benefits, and drawbacks between the developed PSDS designs and

a conventional SDS through both simulation and experiment. These objectives ultimately

aim to improve upon the state-of-the-art regarding the design of NPP protection systems,

the prediction of abnormal conditions, and prediction under uncertainty in general.

1.2.5 Scope

The scope of this research is segmented into two main categories: those of the methods,

and those of the experimental application. The methods include the fundamental theories

behind the prediction, error compensation, prediction quality assessment, optimal alarm

algorithms, as well as the strategies for enhancing the SDS designs. Review of the history

and state-of-the-art for these methods are included primarily within Section 2.1. In con-

trast, SDS enhancement and the quality assessment strategies are discussed in Section 2.2.

The assessment of prediction quality and optimal alarm theory are included within this
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second section since these methods related to decision rather than prediction theory. The

experimental application includes the development of a predictive shutdown logic solver

based on the CANDU SDS1 design with state-of-the-art for SDS development reported in

Section 2.2. In addition, discussion regarding international standards and national regula-

tions including themore general design of an SIS as well as the industrial design of CANDU

SDS1 are included within Section 2.2. For a more detailed description of assumptions that

relate to the experimental setup refer to Chapter 6.

1.2.5.1 Methodology

The methodologies of this work are divided into four main topics: prediction under uncer-

tainty, prediction of abnormal conditions, safety system enhancement, and the assessment

of prediction quality.

Prediction under uncertainty: This dissertation investigates time-series prediction

methods that support short-term prediction horizons, are computationally simple, and are

relatively well-established within the literature and industrial application. The prediction

methods are to be executed online in real-time for discrete-time linear time-varying dy-

namic processes with partially documented models that include some uncertainty and are

therefore stochastic and potentially nonstationary. In contrast, this thesis does not investi-

gatewhether the system,model, or data are natural or synthetic, univariate ormultivariate,

and clean or noisy.

There are many algorithms that allow for the calculation of predictions, however, this

dissertation only considers those that are based on the KF. The system and uncertainty
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descriptions are therefore limited to those that are considered within the definition of the

standard KF equations, i.e. stochastic state-space model with assumed additive white

Gaussian noise uncertainties in the state and measurement equations. The KF-based pre-

dictor utilizes the error covariances that are calculated within the KF to, in turn, calculate

confidence intervals for the predictions. The distribution of the resulting predictions is also

assumed to be Gaussian. The KF-based predictor therefore considers uncertainties that

can be represented using a Gaussian distribution in order to calculate probability distribu-

tions for the predictions that are also Gaussian. The KF investigated in this work is not

the steady state KF that is common to linear time-invariant (LTI) systems. The KF is the

standard recursive form discrete-time KF including update and predict stages. This work

does not consider nonlinear or non-Gaussian implementations of the KF. The KF-based

predictor is, however, modified to consider a linear-time-varying (LTV) system with po-

tentially linear time-varying statistical noise descriptions. In order to achieve the second

of these objectives, an adaptive limited memory filter (ALMF) is incorporated into the KF

state estimation procedure. Moreover, since the model is assumed to be time-varying, the

future values of the parameters are assumed to be known within the current time-step to

allow for the calculation of predictions. This is also true with respect to the values of the

system input and output signals and other related signals.

Prediction of abnormal conditions: Prediction of abnormal conditions refers, within

this work, to the early detection of a threshold crossing event by an estimate of a future

safety parameter measurement where the alarm threshold is a constant TSP. It is naive to

assume that the systemmodel will match exactly the true conditions of the subsystemwhen
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the dynamic response of the subsystem is approaching a TSP. Thus, this work investigates

the prediction of abnormal conditions, i.e. reaching a TSP, under the uncertain condition

of either system-model mismatch or disturbances within the system signals. In either

case, the uncertainty is modelled as a sustained additive disturbance to either the state

or measurement equation of the state-space model for the subsystem. Within this work,

the disturbance model is limited to represent a ramp or an offset to either the state and/

or measurement equations. Moreover, the estimation of these disturbances are limited

to LS-based algorithms. The LS filter is selected as it allows for a deterministic model

of the disturbance to be considered. The deterministic representation of disturbances

complements that of the stochastic assumptions regarding the state and measurement

equations within the KF. In contrast to the work of Juricek et al. [40], the disturbance

estimation procedure assumes that the time-step of disturbance initiation is unknown. The

initiating time of the disturbance is instead reset or updated at regular intervals during the

course of operation. This work does not investigate the robustness of the LS filter or the

recursive implementation of the LS filter to the selection of the disturbance model. The

disturbances are assumed to be significant and consistent, e.g. a step or ramp change in

input.

Enhancement of shutdown: The enhancement of the SDS is performed in an effort

to reduce time-to-trip. It is expected that this reduction can be achieved by implementing

the aforementioned KF-based prediction algorithm. The resulting PSDS algorithms are

limited to the advanced functionalities that are available in modern programmable elec-

tronic systems. In terms of performance, this dissertation aims to achieve high accuracy
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with low computational complexity. High accuracy is necessary due to the safety-critical

nature of the application whereas reduced computational complexity is required due to the

processing power of the available programmable electronic systems that are qualified for

safety-critical applications within NPPs, e.g. the Tricon v9 safety-PLC.

TheproposedPSDSdesigns are restricted in terms of complexity to bewithin reasonable

execution intervals or scan times, although these scan times are insignificant in comparison

to the prediction horizons, e.g. a 100ms scan time against a 2000ms prediction horizon.

It is expected that the effective prediction horizon can be adapted so that high accuracy

short-term predictions of 300 or 400ms may even be utilized within the predictive trip

decision-making process. It is also possible to use KF-based measurement estimations to

make trip decisions. The use of estimates would not, however, result in a reduction in time-

to-trip. In fact, due to the time required to execute the KF algorithm, the use of filtered

measurement estimates may actually delay the trip decision and increase the time-to-trip.

The purpose of developing the PSDS methods is to prototype the predictive shutdown

concept and to better understand the ability of relatively simple prediction algorithms to

predict impending abnormal conditions. These methods are not, however, developed in

an attempt to qualify for regulatory approval. That said, the complexity of the PSDS

is limited so as to satisfy the scan time functional requirement of CANDU SDS1. The

inclusion of a prediction algorithm within the SDS is expected to benefit existing SDS

implementations. For this reason, the signals that are required by the developed prediction

algorithm are assumed to already be monitored within the target NPP SDS. In this way, no

new cabling or sensors need to be installed. In addition, this research does not investigate

the recalculation of either the safety limit or TSP for the chosen safety parameter. These
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two calculations are complex tasks that involve specific safety analysis codes and thorough

uncertainty analysis with respect to a given set of PIEs.

The PSDS is designed as an evolution of the conventional SDS. Moreover, the conven-

tional SDS logic remains active within all of the proposed PSDS designs. This backup

conventional logic is strongly recommended for real-world PSDS implementations so that

the PSDS does not perform worse, with respect to response time, than the conventional

SDS. These conventional mechanisms are, however, disabled within the simulations and

experiments of Chapter 7. Although the main aim of this research is to reduce time-to-trip,

significant effort is made to prevent these reductions from resulting in increased spurious,

unnecessary or false trip, as well as increased occurrences of missed trip. Thus, beyond

the simple addition of an “open loop” prediction algorithm, this research also investigates

various statistical techniques that are able to assess the quality of the predicted future

safety parameter values. This research does not, however, attempt to cover all possible

impacts on safety that result from either the inclusion of the prediction algorithm or the

reduction in time-to-trip.

Assessing prediction quality: This research is primarily concerned with the calcula-

tion of accurate predictions. In order to achieve this objective, it is expected that KF-based

prediction needs to be “closed-loop” with respect to multi-step-ahead predictions. This

research does not, however, attempt to close this loop within the standard KF algorithm

and equations. This research instead considers the statistical assumptions regarding the

stochastic variables of the KF equations. More specifically, this research investigates the

use of statistical and hypothesis testing methods that are able to quantify the quality of
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previously calculated multi-step-ahead KF-based predictions.

Although various statistical tests may be applied to the quality assessment problem,

this research makes use of three statistical testing methods that are specifically related to

Gaussian probability distributions. The three tests are selected based on the assumption

within the KF that the additive noise terms of the state and measurement equations and

therefore the resulting state and measurement signals being Gaussian. The first test is

referred to as the innovation bound (IB) or Z test. The IB metric assesses whether the

prediction error is bounded within a predetermined interval of the Gaussian probability

distribution. This research also makes use of the one-tailed Z test that is more conducive to

the one-sided threshold-crossing problem of optimal alarm theory. The second test is the

square of the normalized prediction error, normalized innovations squared (NIS), or chi-

square (χ2) test. The NIS metric transforms the Gaussian distribution of the measurement

space into the chi-square distribution with a specified number of degrees of freedom. For an

uncorrelated sequence of samples, the number of degrees of freedom is equal to the length of

the sequence. The third test is referred to as innovation whiteness (IW) and is a measure of

correlation between the prediction errors of different time-steps. This measure is calculated

by taking the convolution of the prediction errors and comparing these convolutions against

an acceptance gate. These three tests assess whether there is any bias within the calculated

predictions, and also whether the calculated uncertainty in the predictions is either wide or

narrowwith respect to the standard deviation of the error covariance. These statistical tests

are not, however, intended to test whether the distribution of prediction errors actually

belongs to the Gaussian distribution rather than an alternate probability distribution.

The above tests are utilized in hypothesis testing to investigate the occurrence of true
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and false positive and negative decisions. These concepts are shared with those of optimal

alarm theory where the probability of an impending abnormal condition is optimized for

the expected probability of an alarm given the calculated predictions. The research of

this dissertation, instead, considers the performance of past predictions of the current

measurementwith respect to the value of the currentmeasurement. The effective prediction

horizon is then selected by optimizing the probability of an impending trip condition given

that a predictive trip occurs, e.g. the true positive rate (TPR) and false positive rate (FPR).

Hypothesis testing therefore provides measures that are related to the spurious and missed

trip occurrences that are to be minimized within the design of NPP SDSs since these two

event occurrences correspond directly with false positive and false negative detections, FPR

and false negative rate (FNR) respectively. This research does not investigate whether the

addition of hypothesis testing or optimal alarmmethods actually reduces spurious ormissed

trip rates under all conditions. The results of this research do, however, demonstrate that

a prediction algorithm can be made aware of the quality of past predictions, and can adapt

current decisions as a function of prediction quality.

1.2.5.2 Experimental verification

This dissertation studies a portion of CANDU SDS1 as an example to demonstrate that

KF-based prediction can improve time-to-trip within CANDUNPPs. This investigation is

limited, however, to a single safety parameter being considered within the SDS and PSDS

designs. In contrast, the full SDS1 implementation considers between ten and twelve

signals, as discussed in Section 2.2. Moreover, the input signals for the model of the

selected system are also assumed to be available to, and measured by, the SDS. These
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signals are not measured within the current implementation of CANDU SDS1; however, it

is anticipated that the necessary system inputs could be estimated given models of related

NPP subsystems as well as the other existing safety parameter signals.

The safety parameter of interest is the steam generator level and the steam generator

level low (SGLL) TSP. The model provided to the KF is therefore the open-loop discrete-

time state-space representation of the steam generator water level dynamic. Although the

steam generator level has a relatively slow dynamic, the complex inverse response charac-

teristic of the steam generator water level provides an interesting case for the predictive

trip problem. In other words, the dynamic of the steam generator level is rather complex

in that it has an initial response that opposes the manoeuvre made by the manipulating

variable. This dynamic is discussed in more detail within Chapter 6. In contrast, SDS

enhancements are usually studied with respect to the faster dynamics of the neutronic trip

parameters and corresponding PIE known as the loss of coolant accident (LOCA). It is

expected that the nonlinear model of the neutronics within the reactor core may be more

suited to an advanced form of the KF as discussed in Section 2.1, but these aspects are

beyond the scope of the current work.

The experiments of this dissertation examine only a single initiating event otherwise

referred to as a PIE. This PIE is, however, investigated for varying degrees of uncertainty

both between the true system and the model and also within the signals that are made

available to the SDS. The specific PIE studied within this work is the loss of secondary side

coolant. The PIE is studied within two normal operating manoeuvres that are referred to

as power transients. This research also considers an unanticipated change or disturbance

in the water level set-point for the steam generator. In terms of uncertain conditions, the
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simulations and experiments of Chapter 7 investigate parameter error or model mismatch

between the true system and the assumed model provided to the KF. Moreover, an unde-

tectable fault in the manipulated variable of the steam generator is also investigated within

the experimental results.

1.3 Contributions

The main contributions of the research performed within this dissertation are summarized

as follows:

1. Application, analysis, and evaluation of the KF towards reducing the time-to-trip

within the SDS of a NPP by predicting the future behaviour of safety parameter

measurements related to a system being protected.

2. Analysis and evaluation of the effect of uncertainty, in the form of noise and error in

the signals and parameters of a stochastic state-space model, on the performance of

the KF-based prediction algorithms.

3. Application of confidence intervals to the safety parameter prediction problem to

achieve an increased level of confidence in the predicted impending conditions.

4. Derivation, application, analysis, and evaluation of KF/RLS-based prediction algo-

rithms towards improving prediction performance by compensating for prediction

error within the KF-based predictions when the system is operating under uncertain

conditions.

5. Integration of the KF and RLS algorithms as well as the confidence-based decision-

making into the conventional SDS structure, i.e. a point-PSDSdesign and an interval-
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PSDS design, while adhering to technological and timing constraints as well as in-

dustry standards.

6. Derivation, application, analysis, and evaluation of three separate statistical tests to-

wards assessing the quality of the KF-based predictions given the assumed stochastic

state-space model of the system as well as additive noise characteristics.

7. Application, analysis, and evaluation of hypothesis testing towards quantifying the

quality of the calculated predictions against the eventual measurements.

8. Derivation of an adaptive decision-making algorithm towards limiting and minimiz-

ing respectively the probability of spurious andmissed trip occurrences by combining

statistical and hypothesis testing with optimal alarm theory.

9. Integration of the optimal decision-making algorithm into the PSDS structure, i.e.

optimal-PSDS, again while adhering to technological constraints and industry stan-

dards.

10. Comparison, analysis, and evaluation, through simulation and experimentation, of

the developed PSDS algorithms as well as a conventional SDS implementation in

terms of time-to-trip and computational complexity.

In addition to the above contributions, the various other deliverables that have been de-

veloped or implemented over the course of this study are summarized as follow:

1. Implementation of the three-element PI controller within a Siemens S7-400 DCS

using the Simatic engineering workstation software and modification of the existing

experimental platform to interface in real-time with various external control systems.

2. Identification of the model for an existing experimental platform.
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3. Application, analysis, and evaluation of the use of a digital filter within a Microchip

PIC micro-controller to analytically compensate the dynamics of the existing exper-

imental platform towards matching the dynamic behaviour of the steam generator

level.

4. Implementation of the digital filter within the Microchip PIC micro-controller using

the MPLAB integrated development environment and modification of the existing

experimental platform by analytical compensation so that the behaviour of the plat-

form mimics that of the steam generator water level dynamics.

5. Construction of a simulation platform for the conventional and predictive shutdown

algorithms using MATLAB.

6. Implementation of the conventional and predictive shutdown algorithms within the

Invensys Triconex Tricon v9 safety-PLC using the Tristation engineering workstation

software.

7. Application, analysis, and evaluation of the operating conditions and initiating events

associated with NPP accident, shutdown, or trip conditions and construction of a

simulation environment for these conditions and events in MATLAB.

8. Development of various other software for data collection and hardware interfacing.

1.4 Organization

Chapter 2 includes a literature review that covers prediction theory, prediction under uncer-

tainty, NPP safety and shutdown, and optimal alarm theory. KF-based prediction is then

investigated in Chapter 3 where ALMF-based noise covariance estimation, and confidence-
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based predictive decision-making are combined within KF-based state and measurement

prediction algorithms. The recursive solution to the LS disturbance estimation problem

is then formulated in Chapter 4 and is also combined with the KF-based prediction algo-

rithm. The prediction algorithms are then incorporated within the PSDS designs through

the modular modification of a conventional SDS design in Chapter 5. These modular modi-

fications result in two PSDS designs referred to as point-PSDS and interval-PSDS whereby

predictive trip decisions are made by comparing either the mean or bound of a confidence

interval against the corresponding TSP. In addition, Chapter 5 formulates methods for

assessing prediction accuracy using various statistical tests for hypothesis testing, as well

as minimization of erroneous predictive decisions. These developments result in an en-

hanced PSDS design known as the optimal-PSDS. Chapter 6 describes the experimental

setup including the dynamic response of steam generator water level. The steam generator

is the target system being protected that is studied within Chapter 7. Chapter 6 also re-

veals the similarities and differences between the simulation and experimental platforms.

The simulation and experimental results are then presented in Chapter 7 where the three

PSDS routines are compared against a benchmark conventional SDS. Finally, Chapter 8

concludes the thesis and recommends potential extensions of this thesis work.
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Chapter 2

Literature Review

This chapter includes two sections; one for each of the two problems stated in Section

1.2. The publications that are reviewed within these sections form a foundation for the

contributions outlined in Section 1.3.

Individually, Section 2.1 establishes the framework for linear, nonlinear, and adap-

tive time-series estimation and prediction of dynamic processes or systems. Section 2.1

also reviews KF-based prediction methods that consider prediction error and prediction

reliability. Section 2.1 then concludes with publications that are directly related to the pre-

diction problem addressed by this dissertation work, i.e. the early detection of abnormal

conditions under uncertainty.

In contrast to prediction, Section 2.2 establishes the framework for safety instrumented

systems as well as safety systems. Section 2.2 also reviews publications that are related

to the enhancement of SDSs, including reductions in time-to-trip, and the development

of computerized safety systems. Section 2.2 includes an overview of one specific NPP
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safety system: CANDU SDS1. This chapter then concludes by connecting safety system

enhancement with the design of optimal alarm systems.

2.1 Time-series Prediction

The following review of prediction methodology includes three sections. Section 2.1.1

presents a background of linear, nonlinear, and adaptive estimation and prediction theory

with a particular focus on the KF. Section 2.1.2 reviews publications that investigate or

advance KF-based prediction methods. Finally, Section 2.1.3 reviews publications that go

beyondKF-based prediction to determine or compensate for prediction error and reliability.

2.1.1 Filtering and estimation

Prediction theory is composed of the fields of linear prediction and adaptive prediction.

Linear and adaptive prediction are in turn specializations within the fields of linear and

adaptive estimation. In the context of linear and adaptive estimation, the term estimation

refers to the extraction of information about a quantity of interest from noisy data [24].

Moreover, estimations are produced by functions that are referred to as estimators. These

estimators are also referred to as filters in reference to the filtering of noise from a signal.

The term adaptive specifies that the algorithms, estimators, or filters include parameters

that are adapted or adjusted as a function of the data that is input to the algorithm. In

other words, standard estimation algorithms calculate optimal approximations of either

unknown parameters or signal values whereas adaptive estimation algorithms update the

unknown parameters while at the same time approximating the signal values.
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Since the onset of estimation and prediction theory, many methods have been inves-

tigated for predicting the future behaviour of a dynamic process. The main purpose for

developing these new methods is to improve prediction algorithms with respect to:

• misadjustment or accuracy,

• rate of convergence,

• tracking for nonstationary processes,

• robustness,

• computational requirements,

• structure, or

• numerical properties

within the context of a given application [24]. Moreover, prediction methods can be cate-

gorized by the following attributes of the dynamic process for which the predictions are to

be made:

• short/long prediction horizon,

• deterministic/stochastic,

• if stochastic:

stationary/nonstationary,

• continuous/discrete-time,

• linear/non-linear,

• time-invariant/time-varying

• documented/structured/blind,

i.e. white-/grey-/black-box,

• univariate/multivariate,

• natural/synthetic system,

• clean/noisy signal,

• one/multiple trial(s),

as well as the computational complexity of the algorithm, andwhether or not the prediction

algorithm is required to be implemented online in real-time or supports offline execution.

These attributes are an extension of the list discussed in [42].

Although there are a vast number of textbooks covering estimation, filtering, and pre-
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diction, the citations and work within this dissertation often refer back to a few well known

texts. These texts are, in no particular order, summarized as follows. The first is by

Goodwin and Sin and presents adaptive filtering, prediction, and control methods for de-

terministic and stochastic processes in two separate parts [43]. The next text is by Haykin

and focuses on adaptive filter theory but dedicates an entire chapter each to the topics of

linear prediction as well as the KF [24]. Haykin also presents an extensive summary of the

history of linear estimation and adaptive filtering theory. The third is by Anderson and

Moore and presents optimal filtering including a chapter dedicated to the discrete-time

KF [44].

In addition to the above three texts, Sayed presents the fundamentals of adaptive

filtering in [45]. Brown and Hwang cover various practical aspects of the KF including

applications in MATLAB [46]. These concepts are also presented by Grewal and Andrews

where KF theory is applied within MATLAB [47]. These last two texts are at the center of

the KF-based prediction methodology presented in Chapter 3.

Linear estimation

Following the work of Gauss, early contributions to linear estimation theory include the

minimum mean-square estimation of stochastic processes that was performed throughout

the 1930’s and 1940’s by Kolmogorov and Krein [48,49], and independently byWiener [50],

Wiener and Hopf [51], and Levinson [52]. More specifically, Kolmogorov, having been

inspired by the work of Wold [53], developed a solution for the linear prediction of discrete-

time stochastic processes with Krein extending the work of Kolmogorov to derive the

continuous-time filter. In the meantime, Wiener and Hopf had derived an explicit formula,
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known as the Wiener-Hopf equation, for the optimum predictor of the continuous-time

linear prediction problem and had also considered the problem of filtering a process that

was corrupted by additive noise [50]. The discrete-time solution for the Wiener-Hopf

equation was subsequently derived by Levinson in 1946 [52].

The next major contribution to linear estimation and prediction theory occurred in the

late 1950’s when Kalman solved Wiener’s interpretation of the linear estimation problem

and developed what is now referred to as the Kalman filter (KF). To solve Wiener’s prob-

lem, Kalman used a well-known method from probability theory for optimal estimation

and orthogonal projection and then modified the representation of the process to be in the

state-space form in order to solve the linear estimation problem for growing and infinite

memory filters with stationary and nonstationary statistics [27]. The result is a mini-

mum mean squared error one step-ahead predictor for linear systems affected by additive

white Gaussian noise. As a filter, the KF calculates the mean and error covariance of the

state vector under the assumption that the state vector has a Gaussian distribution. This

assumption can, in general, satisfied as a result of the central limit theorem and can be

verified by analyzing the probability distribution of the corresponding signal or residual.

The continuous-time domain treatment of the KF was performed by Kalman and Bucy

and is sometimes referred to as the Kalman-Bucy filter [54].

In the decade that followed Kalman’s original publication, it became common practice

for the state vector to be augmented to include model parameters that are then estimated

along with the state [55]. Although the augmented state vector results in a nonlinear

filtering problem, it allows for the estimation of unknown or time-varying parameters as a

function of assumed additive white Gaussian noise. In addition, the KF was reformulated
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by Kailath et al. [56, 57, 58] in the late 1960s using an innovations approach introduced

by Kolgomorov [48] as well as Bode and Shannon [59]. In Kailath’s approach, the KF is

a causal and causally invertible filter with a white-noise process as input and a stochastic

process as output. Here the term innovation refers to the white-noise input providing

new information to the estimation problem where the input is statistically independent of,

or uncorrelated with, the filter output [24]. Kailath’s method isolates the predictable or

deterministic part of the filter from the new statistical information provided by the current

measurements.

Nonlinear dynamic processes

The KF is an extremely useful tool for many real-world prediction applications due to the

accuracy of the calculated estimations and relative ease in design and programming [60].

For some applications, however, computation of the state error covariance may not be

feasible due to a model that is of high dimension. In contrast, accuracy may be poor due to

nonlinearities from real-world dynamic processes or the assumption of an augmented state

vector. Thus, various extensions to the KF have been proposed to address the nonlinear

filtering problem.

The first modifications to the KF that considered nonlinearities were introduced within

years of Kalman’s original publication. The most prominent of these early modifications

is the class of filters known as the extended Kalman filter (EKF). The EKF propagates

state estimates using given nonlinear system functions in the same manner as the stan-

dard KF. State error covariances, however, are propagated using matrices of time-varying

parameters that are approximated by first- or second-order Taylor series evaluated at the
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current estimate of the state vector. Early contributions to the EKF are often credited

to multiple authors including Smith et al. [61], Kopp and Orford [62], and Cox [63] with

the second-order EKF being credited to Athans et al. [64]. There are now many different

interpretations of the EKF for various applications as discussed in [60] and [65]. No matter

the interpretation, the appeal of the EKF is that, given a nonlinear mathematical abstrac-

tion of system behaviour, it is simple to use a linear approximation to calculate the state

error covariance. Caveats of the EKF, however, include the online calculation of the state-

dependent matrix Riccati equation as opposed to offline calculation for steady state KF

gains, and large errors due to linearization that sometimes cause the filter to diverge [65].

Possible divergence of the EKF has more recently lead to the development of a sampling

approach for propagating the state error covariance where the probability distribution of

the state estimate, with state error assumed to be Gaussian, is approximated using a

mathematical function known as the unscented transform. This approach is included in an

extension to the KF known as the unscented Kalman filter (UKF). The UKF propagates

state estimates in the same manner as for the EKF, however, the state error covariance is

propagated using the given nonlinear system functions as well as a set of carefully chosen

sample points representing the moments of the probability distribution for the state vector.

The UKF was first proposed by Julier and Uhlmann [66]. The appeal of the UKF is

that the state and state error covariance estimates are accurate to the third-order Taylor

series expansion for any nonlinear model representation [65]. Thus, the UKF achieves

superior performance compared to the, at most, second-order accuracy of the EKF. In

addition, the computational complexity of the UKF is roughly the same as for the first-

order EKF [60]. Thus, the UKF has better accuracy than the most accurate EKF and
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requires less computational complexity than the least complex EKF.

Another extension to the KF is the ensemble Kalman filter (EnKF). The purpose of

the EnKF is to avoid calculating and propagating the state error covariance for high-

dimensional processes where the state error is assumed to have a Gaussian probability

distribution. The EnKF instead propagates the state error covariance using the given non-

linear system functions as well as an ensemble set of sample points that then represent the

probability distribution of the state vector. This is similar to the UKF concept except that

in the case of the EnKF the sample points are randomly calculated and are not specifically

the moments of the probability distribution. Calculation of state estimates, however, re-

mains the same as for the EKF and UKF. The EnKF was first proposed by Evensen [67]

and Burgers et al. [68]. The appeal of the EnKF over the EKF is that, like the UKF, the

third- and higher-order moments of the error covariance are not discarded. In addition,

for high-dimensional processes, e.g. those found in meteorology and oceanography, the

sample mean and covariance is calculated from the propagated ensemble sample points.

This results in a reduction in computational complexity to be a function of the number of

ensemble sample points rather than the order of the process [69].

Non-Gaussian probability distributions

For some applications, estimation accuracy may be poor due to the assumption that the

additive noise iswhite andGaussian and that the state vector is aGaussian randomvariable.

For problems of this type, there exist two additional extensions to the KF. The first utilizes

a Gaussian mixture model or a weighted sum of Gaussian probability density functions

to approximate the true state error probability distribution. Essentially, a bank of KFs

46



operate in parallel to obtain a suboptimal estimate of the state error covariance. This

method was developed by Alspach and Sorenson for both linear and nonlinear dynamic

processes [70, 71]. The second extension is referred to as a particle filter and is similar

to the EKF in that there exist many different interpretations of the filter. In general,

the particle filter approximates the non-Gaussian probability density of the state vector

using sample points as in the UKF and EnKF where the sample points, or particles, are

propagated using the given linear or nonlinear system functions. For the particle filter,

however, the sample points are selected in an efficient manner according to weights that

are calculated from an approximation of the state estimate probability distribution known

as a proposal distribution [72]. This sampling within the particle filter takes the form of a

sequential Monte Carlo approach. The particle filter is attributed to the work of Gordon

et al. [73]. For a more thorough review of particle filter development in relation to the KF

refer to Chen [72]. Although these twomethods are the focus of current research efforts, the

Gaussian mixture model or particle filter algorithms are generally more computationally

complex than the previously discussed algorithms that assume a Gaussian probability

distribution for the state error. These methods therefore require more computationally

powerful controllers and computer platforms in order to be implemented.

Adaptive filtering

The theory of adaptive filtering or adaptive estimation developed alongside that of linear

and nonlinear estimation. The difference between linear and adaptive filters is that the

latter are said to be self-designing through recursive updating of parameter estimates. This

feature is necessarywhere prior knowledge of the underlying dynamic process is incomplete.
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Although the parameter update mechanism results in adaptive filters being nonlinear,

adaptive filters are classified as linear if the input-output relationship obeys the principle

of superposition while the parameters are held constant. In contrast, if the linear input-

output relationship is not satisfied then the adaptive filter is classified as nonlinear [24].

In general, there are two primary methods of adaptive filtering. The first is the stochas-

tic gradient approach that includes the least mean square and gradient adaptive lattice

algorithms. These two algorithms are relatively simple and effective for adapting transver-

sal and lattice-based filters respectively. In addition, these algorithms are independent

of the process model, as opposed to the KF that relies on a given model of the pro-

cess. The least mean square algorithm was first proposed by Widrow and Hoff in the

late 1950s [74,75] whereas the gradient adaptive lattice algorithm was introduced by Grif-

fiths in the 1970s [76, 77]. The function of these two algorithms is to recursively iterate

the parameters or weights of the filter in the direction of the gradient of the mean squared

magnitude of error between the desired response and the filter output as a function of the

current parameters. In other words, the parameters are adapted so as to follow an error-

performance surface, e.g. a paraboloid, toward the optimum Wiener solution that is the

minimum point of the surface. Least mean square adaptation is made possible through an

iterative procedure based on themethod of steepest descent to solve theWiener-Hopf equa-

tions. Basically, the updated parameters are equal to the previous parameters summed

with the product of a learning-rate or step-size parameter, an error signal, and the input

to the filter. The appeal of the least mean square algorithm is that it is simple. The least

mean square algorithm does, however, suffer from a relatively slow rate of convergence

and sensitivity to the correlation matrix. These factors result in the least mean square
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algorithm being unsuitable for use with nonstationary, time-varying processes, unless the

input data vary slowly relative to the learning rate of the algorithm [24].

The second well-known adaptive filtering approach is based on the method of least

squares (LS). This approach provides a solution to adapting traversal filters that includes

both a block and a recursive formulation, i.e. the RLS filter. The recursive form of LS

filter is more common as it requires less memory and computational power. The RLS

method is model dependent and is therefore a special case of the KF. The RLS filter was

originally reported by Plackett in 1950 [78] although the algorithm was not popularized

until the work of Godard in 1974 [79]. The RLS filter recursively minimizes the sum of the

weighted squared error between the desired response and the filter output. It is assumed

that the filter weights can be estimated through recursive estimation whereby the updated

parameters are equal to the previous parameters, or weights, summed with the product

of cost minimizing gain vector and the error between the desired response and the filter

output.

The RLS algorithm is more computationally complex than the least mean square algo-

rithm. Various efforts have been made to reduce complexity and improve robustness of the

RLS filter and to relate the RLS algorithm to the KF. Reduction in complexity originated

with the work of Morf and the so-called fast RLS algorithm in 1974 [80]. These fast algo-

rithms take advantage of redundancy in the structure of the input data matrix. Further,

a numerically robust RLS algorithm was achieved through the use of QR-decomposition

for matrix algebra by Gentleman and Kung in 1982 [81]. These filters are also referred to

as square-root adaptive filters as they are the square-root form of the standard RLS algo-

rithm. Finally, in 1994 Sayed and Kailath [82] investigated the use of KF theory toward the
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adaptive filtering problem by demonstrating that the QR-decomposition and fast KF algo-

rithms are special cases of the KF. The RLS algorithm is appealing due to it corresponding

with KF theory and having faster convergence when the process model matches the actual

process behaviour. In contrast, model mismatch within the RLS filter may result in poorer

tracking performance when compared against the least mean square filter [24].

2.1.2 Kalman-filter-based prediction

Linear and adaptive estimation cover three major problem types: filtering, smoothing, and

prediction. Filtering is the calculation of estimates for the current time-step, smoothing

is the calculation of estimates for past time-steps, and prediction is the calculation of

estimates for future time-steps, i.e. forecasting. It is therefore natural for the estimation

methods of Section 2.1.1 to be extended to the prediction problem. When applied within

engineering problems, these three forms of estimation are assumed to be causal. In other

words, the filter output is a function of past and current but not future inputs.

Themost simple form of linear prediction involves the use ofmodel parameters that have

been optimized for predicting the future behaviour of a process given an assumed or derived

model structure, as well as, if necessary, future excitation signals. For systems and signals

that are completely documented with precisely known parameters, i.e. deterministic, the

resulting predictions are exact. In contrast, the predictionmechanism that is inherent to the

structure of the KF algorithm [27] accounts for non-determinism in a stochastic framework

through a measure of uncertainty in the initial state conditions, the model parameters, and

the input and output signals of the system. To calculate predictions, the KF propagates
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estimates of the state vector and error covariance into the future given assumed uncertainty

in the model and signals in addition to the assumptions as described above for the case of

linear prediction. State error covariance is a matrix representation of the multidimensional

variance for the state error including correlations between the variances along the multiple

dimensions. By propagating the state vector and covariance, the KF has a benefit over

deterministic prediction in that it can calculate point-predictions as well as a measure of

uncertainty or confidence interval in the point-predictions as a function of the calculated

standard deviation.

For both the exact and inexact KF-based prediction methods, parameter optimization

is assumed to be performed off-line by linear regression for a model that is at least partially

documented. Thus, neither of prediction method is considered to be adaptive [54]. There

are, however, many adaptive prediction methods that build upon the KF algorithm. This

subsection reviews and categorizes a small subset of related works from the vast number of

publications related to KF-based prediction in order to better understand how KFs may

be used to solve prediction problems.

Linear and nonlinear prediction

An obvious extension of the KF and also the state equation within the state-space model

of a system is to propagate the state vector beyond one time-step. In [27], Kalman states

that his solution to the Wiener problem may be applied to filtering or estimation as well

as smoothing and prediction problems. Kalman does not, however, include specific proce-

dures or equations for propagating the state error covariance within the KF. The following

are example applications of varying complexity that utilize the KF to solve a prediction
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problem. The accuracy of the KF-based predictions are provided for those publications

that quantify error or performance.

One of the earliest uses of the KF for prediction was by Toyoda et al. [83] to calculate

short-term predictions of the future load behaviour for on-line and real-time control of

complex power systems. This use of a KF for multi-step ahead prediction, in turn, cites

the work of Sorenson [84]. More specifically, Sorenson provides an extensive discussion

regarding Kalman filter theory as well as techniques for space navigation problems. In

addition, within the same text, Schmidt discusses prediction within the navigation problem

whereby error between the propagated future state and an impending reference trajectory

determines whether any control actions are required at present [85]. These publications do

not, however, state explicitly themulti-step-ahead prediction problem. At around the same

time as Toyoda et al., Galiana [86] also uses the KF for forecasting the future behaviour of

electric load. Thus, although the trajectories of celestial bodies and space travel may have

motivated solutions to the estimation and prediction problems, these solutions were soon

after adapted to various other applications.

To aid in the landing of aircraft while at sea, Sidar and Doolin [87] design a KF-based

predictor to predict in real-time the motion of an aircraft carrier. The study cites both

Sorenson [84] as well as Kalman and Bucy [54] for the multi-step ahead prediction method.

The strategy is reported to achieve reasonable error bounds of less than 60cm over a time

interval of up to 20s. Prediction quality is assessed by calculating the amount of time that

the actual ship movement differs in sign from that of the prediction. This amount of time

is reported to differ for less than 0.5s over an interval of 60s.

Chung et al. [88] use the KF to estimate a wave-excitation forcing input function in
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order to predict ship motion. Estimation of the forcing input function allows for future

values of the input to be predicted. The predictions are then input to the ship-motion

dynamic model to predict the motion of the ship for exact as well as uncertain parameters.

This method of prediction is referred to as prediction of state via input excitation and is

compared against predictions calculated using a standard KF. A comparison with standard

KF-based predictions reveals that the proposed input prediction method achieves mean

squared errors that are between 50 and 70% of the KF results at prediction horizons of up

to 20s.

Ten Brummelhuis et al. [89] use the EKF for online prediction of the water levels

in tidal estuaries. The EKF is implemented to linearize the model against a discrete

reference state trajectory for errors in the deterministic model. Linearization is performed

at every time-step. The EKF also simultaneously calculates parameter estimates and is

therefore essentially a dual-EKF. The performance of the dual-EKF implementation is

not quantitatively analyzed, although visual inspection of the included plots indicate a

maximum prediction error of under 50cm for peak to peak tides of 400cm.

Chen et al. [90] propose a particle predictor for nonlinear time-varying systems. The

task of fault prediction differs from fault detection in that the former predicts whether

a fault is going to occur at some time in the future whereas the latter detects whether a

fault has already occurred. The particle predictor utilizes sampling importance resampling

which is also known as Bayesian bootstrap filtering. In this manner, the predictor is able

to represent uncertainty in the predictions as a non-Gaussian probability density function.

This representation is achieved using a sequential Monte Carlo technique.

Moradkhani et al. use a dual state-parameter EnKF to estimate and predict streamflow
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given a documented hyrdological rainfall-runoff model [91]. The dual state-parameter

algorithm estimates both the states of the system as well as the parameters of the model.

The study discusses the identification of perturbation factors for ensemble generation and

for selection of ensemble size. The confidence interval for parameter-state estimation can

then be calculated at each time-step.

Mastali et al. [92] use an EKF as well as a dual EKF to estimate and predict the state

of charge for various battery types and configurations within the battery management

system of a hybrid vehicle. In addition, the dual EKF also estimates the parameters of

the battery management system. It is argued that the KF is necessary since the batteries

experience a dynamic operational environment, i.e. time-varying model parameters. The

study incorporates three competing models into the EKFs, the best of which achieves an

agreement of less than 4% error between the predictions and the experimental data.

Adaptive prediction

Alternatively, the KF can also be used to estimate the parameters and structure of an

assumed model to improve prediction quality rather than, or in addition to, propagating

the states of a state-space model. These strategies differ from those above in that the KF

adapts the model parameters and not a non-KF-based supporting parameter estimation

routine.

Sriyananda and Towill [93] augment the state vector within a standard KF to estimate

unknown parameters as well as to predict the future performance of a human operator. The

proposed KF predictor demonstrates that it is possible to calculate accurate predictions

for both time-invariant and time-varying model parameters. In the time-varying case, the
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parameters change in an infrequent and abrupt manner. It is found that large errors due

to erroneous initial conditions rapidly decrease as more data becomes available. The study

also suggests that improved estimations can be calculated through the use of parameter

smoothing. For the time-invariant case, an approximate error of 5% is observed in the

forecast performed on day 17 for day 70. For the time-varying case, there is said to be a

20 day period for readjusting the parameters before the predictions are considered to have

reasonable accuracy.

Heath [94] uses an autoregressive model to predict future heart inter-beat interval and

heart-rate observations with the parameters of the autoregressivemodel estimated by aKF.

The one-step ahead predictions are reported to have a mean squared error of 39.02ms over

a peak to peak range of approximately 70ms within an unspecified number of samples. In

addition, a change detection algorithm is presented. The detection algorithm is a function

of prediction error and the chi-squared distribution and is able to detect nonlinearities in

the autoregressive model following changes in a stimulus.

Mizumura andChiu [95] use an autoregressivemoving averagemodel of various orders to

predict snow melt runoff. The snow melt predictions are calculated for prediction horizons

of one and two time-steps using the optimal parameters as calculated by the KF. It is stated

that the predictions are effective although quantitative analysis of error is not included in

the article.

Hawthorne [96] uses a moving average propagation model to predict the future prop-

erties of an 800 megahertz radio signal for a mobile receiver. The prediction error for the

received signal is reported to have zero mean and a standard deviation of 5.08dB. These

statistics were determined to indicate good agreement between themodel and themeasured
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propagation losses.

Melgaard et al. [97] aim to calculate a maximum likelihood estimate of the system

parameters for a continuous-time model of a four-stroke spark ignition engine for the pur-

pose of predicting engine dynamics. A KF calculates the conditional mean and variance of

the one-step ahead predicted observations for both maximum likelihood estimation of the

model parameters as well as for forecasting the engine dynamics. Although no quantitative

analysis of prediction error is given, the prediction error is stated as well as demonstrated

through a plot to show good agreement with future observations.

2.1.3 Prediction under uncertainty

The above-mentioned publications aim to calculate predictions through the use of a KF.

These predictions may be inaccurate, however, when the model parameters or structure

that is provided to, or calculated by, the KF does not match that of the true system being

modelled, e.g. the system is experiencing uncertain conditions with respect to the nominal

model. Moreover, these uncertaintiesmay lead to, or indicate, impending abnormal, unsafe,

or even emergency conditions. According to Nimmo [98], industrial systems operate in one

of three modes: normal, abnormal, or emergency. The boundaries between these modes are

respectively referred to as alarm and emergency thresholdswithin a systembeing protected,

and more specifically within the nuclear power generating industry as included in Figure

1.1. A system being protected is one that is monitored by a protection system. Upon

detecting an abnormal condition, a protection system activates a sequence of events that

prevent an unsafe or hazardous condition from occurring. In some industries, additional
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protection or mitigation actions may also occur upon detection of unsafe or emergency

conditions.

In the following discussion, the terms abnormal and emergency conditions are not

necessarily interchangeable yet it is possible to predict either an abnormal or an emergency

condition given either threshold. The difference between the two detections being that

the prediction of an abnormal condition can only occur during normal operation whereas

the prediction of an emergency condition may occur within either normal or abnormal

operation. In the context of NPP shutdown, the trip event is initiated as the result of

an abnormal condition being detected. It is imperative, throughout the development of a

predictive safety or protection system, that an impending emergency condition be predicted

whether the system is operating within or beyond the normal operating mode, including

operation under uncertainty conditions. Thus, the effectiveness of the protection system

can only be ensured if the predictions remain accurate while the system is operating under

uncertainty.

Of the publications that address KF-based prediction of abnormal conditions under

uncertainty, that of Juricek et al. [40] is the most similar to the concepts covered within

this dissertation. In fact, the work of Juricek et al. is the foundation for the development

of the KF/LS-based prediction algorithms that are developed within Chapter 4. This is

especially true regarding the consideration of uncertainty due to the presence of abnormal

conditions. Juricek et al. [40] suggest that the following topics are related to the prediction

under uncertain conditions problem: fault detection and diagnosis based on linear process

models; and MPC methods that utilize state estimation and are concerned with assessing

prediction accuracy.
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MPC algorithms are able to optimize control inputs based on predictions of the future

dynamic response and control inputs of the system. These optimizations are performed

over predetermined intervals of time, known as horizons, extending from the present into

the future [99]. KFs have been investigated for use in fault detection algorithms within

the reactor regulating system of an NPP [100] as well as various other applications includ-

ing tracking, navigation, and environmental prediction [47]. The KF has therefore been

extensively studied and proven through use in a predictive application that resembles the

predictive shutdown problem, i.e. the model predictive portion of MPC.

In relating MPC to the prediction under uncertain conditions, Juricek et al. [40] state

that the concept of predicting abnormal conditions could be considered model predictive

monitoring. The prediction under uncertainty problem is therefore addressed through

various robust MPC strategies. That said, MPC has the added benefit of being closed loop

with respect to the system being protected. These methods are often not applicable within

protection systems. For more information regarding MPC refer to [99, 101].

The other suggested topic of fault diagnosis can be extended to fault prognosis given the

predictive nature of the current problem, e.g. early fault detection or predictive diagnostics.

In general, diagnostics and prognostics differ in that the former are performed posterior

to the occurrence of an event while the latter are performed prior to occurrence of the

event. More specifically, diagnostic methods are utilized to classify and possibly isolate

faults whereas prognostic methods predict future conditions and remaining useful life. For

predictive shutdownwithin anNPP, the prediction under uncertainty problem is concerned

with the detection of an impending emergency condition given the potential presence of

an abnormal condition. Thus, both prognostic and diagnostic methods are related to
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the current problem. In other words, prognosis of the impending condition is considered

necessary to achieve an earlier time of detection. The initiating event, however, may

have occurred at some time-step previous to the time of detection, hence diagnostics. An

overview of prognostics is provided at the end of this section.

Prediction and abnormal conditions

In practice, inaccurate predictions result from the inability to obtain an exact model of

the system and environmental conditions, and also from assumptions made during the

modelling and system identification process. These assumptions affect the accuracy of,

and sometimes define, the statistical properties related to the system and signals. More

specifically, inaccurate predictions may be caused by:

1. disturbances in system input, output, and state signals;

2. system-model mismatch due to unanticipated operating conditions, unmodelled dy-

namics, linearization, nonlinearities, aging, degradation, etc.; or

3. erroneous initial conditions or anticipated future signal values.

Each of these causes may be more prominent during abnormal conditions. To improve

prediction accuracy, robust prediction algorithms include mechanisms which compensate

for prediction error or calculate a bounds within which the predictions are expected to

occur.

Juricek et al. [40] state that the following two issues are important when calculating

predictions under uncertain conditions:

• interpreting the predictions with respect to decision-making; and
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• assessing the reliability, herein referred to as quality, of the predictions.

Here, interpretation of the predictions refers to obtaining an understanding of how and

why an individual prediction can be used to make a decision. In addition, quality refers to

both the overall consistency as well as the accuracy of the predictions with respect to the

eventual parameter, measurement, or signal of interest. Having considered the above-listed

issues, Juricek et al. combine a steady state KF with an LS filter to calculate predictions

for a linear stochastic state-space model. The purpose of the KF is to propagate the

state estimates over a prediction horizon, and the purpose of the LS filter is to estimate

an unknown disturbance input that is referred to as a pseudo-disturbance. The resulting

predictions provide a means to determine whether an emergency limit will be violated

within the prediction horizon.

The work of Juricek et al. [40] aims to predict whether future process variables will

reach a predetermined emergency threshold. Predictions are calculated using a KF as

well as a model of the process or system. Prediction accuracy is improved through LS

estimation of an unmeasured disturbance input as a function of prediction error using a

modified form of a fault detection method developed by Basseville and Nikiforov [102].

More specifically, the LS estimation algorithm is a component of the generalized likelihood

ratio method of Basseville and Nikiforov [102]. This LS method differs from conventional

LS methods in that it considers the effect of the disturbance input on the dynamics of

both the system response and the KF-based predictions. LS estimation of the disturbance

inputs accounts for nonrandombias as has also been investigated in [55,103]. The LS filter is

preferred over utilizing anEKFand augmenting the state vector due to the augmented state
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vector requiring that fictitious statistical noise descriptions be specified for an otherwise

deterministic disturbance. A preliminary investigation of the augmented state form of KF

estimation of the disturbance revealed that the predicted outputs were sensitive to the

selected values of uncertainty, or fictitious noise [40].

Regarding the implementation of LS estimation, Juricek et al. [40] state that it is more

important to predict accurate future measurements than to estimate the true disturbance.

The result is a modified set of KF mean and covariance equations which account for the

estimated disturbance input. The bounds or limits of the confidence interval for the pre-

diction are compared against the emergency threshold. Finally, an emergency condition is

detected when both the upper and the lower bounds of the confidence interval reach the

emergency threshold.

The following conditions, assumptions, and constraints apply to the research presented

in [40]. Predictions are calculated after a fault or abnormal situation has been detected.

Prediction error compensation only considers large sustained disturbances, e.g. ramp and

step, as input to the state equation. The use of two forms of disturbances is justified since

they are more likely to cause an emergency limit to be reached. The process is assumed to

be described by a linear stochastic state-space model. Additive noise terms are assumed to

be white and Gaussian. The state vector is assumed to be observable. The future inputs

are assumed to be known and the disturbance estimate is assumed to be constant over the

prediction window. The steady state implementation allows for the LS parameters to be

computed offline. The LS estimation results in more accurate predictions. In simulation,

the initial time-step of the fault is assumed to be known.
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The simulation results presented by Juricek et al. [40] indicate, for a process that can be

described by a linear model, that the combined LS/KF method provides good predictions

under the condition that the model and the noise statistics are known and there is sufficient

data for accurate estimation of the pseudo-disturbance. In contrast, the presence of process

nonlinearities, model mismatch, and nonstationary disturbances may result in erroneous

predictions. Thus, amechanism for detecting erroneous predictions is developed. Juricek et

al. evaluate the accuracy of previously performed predictions through theT2 statistic. This

statistic determines if the residual is zero mean under the assumption that the covariance

matrix is correct. The T2 statistic is then compared against a confidence bound for the

T-squared distribution. Predictions are ignored if the prediction accuracy is determined

not to be suitable. Other statistical tests regarding the forecasting problem are described

in [104]. Although the strategy proposed by Juricek et al. is not suitable for complex

processes with time-varying disturbances, it is suitable for those that are locally linear and

are subject to sustained disturbances, the strategy is useful as long as prediction error and

quality are monitored.

Other related works

The research presented in [105] is a minor extension to the work of [40]. Predictions are

calculated using an EKF as well as a nonlinear model of the process instead of a KF and

a linear model of the process. The first time-step of the unmeasured disturbance input

is then calculated by comparing the covariance of the compensated residual against the

scaled covariance matrices of the additive noise terms. The EKF method is only partially

presented. The LS estimation is derived for a steady state KF and does not consider
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process nonlinearities. Moreover, a measure of prediction reliability is not considered. This

thesis does not consider the extensions presented in [105] since they are not as thoroughly

developed as those of [40].

Lagarias and Aminzadeh [106] solve a linear quadratic Gaussian control problem for

multi-stage planning processes through the use of multi-step ahead KF prediction. The

proposed strategy differs from the linear quadratic Gaussian problem through the use of

matrix weighted linear combinations of KF estimates where the weights account for both

prediction accuracy as well as stability. In other words, the method penalizes forecasts for

a particular instant in time that vary significantly between successive time-steps.

Yang et al. [107] present a predictive maintenance strategy for a DC motor whereby

time of failure is predicted using a KF. The proposed strategy propagates predictions over

a prediction horizon of one and two time-steps with a sampling interval of one hour. Alarm

signals are generated when the KF-based predictions indicate the speed of the DC motor

has reached the predetermined failure threshold. The study finds that there should be

some margin between the failure threshold and the nominal value of the process. Further,

the study finds that the sampling interval should be as short as possible in order to react

to abrupt disturbances. Otherwise, the study determines that the observed prediction

errors are acceptable by comparing the mean prediction error interval for a specific level of

confidence against the prediction horizon.

Prognostics

With respect to prognostics, Juricek et al. cite Nomikos and MacGregor [108] for perform-

ing predictive monitoring of a batch process using multiway principal component analysis.
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A similar strategy is employed for continuous processes by Chen and McAvoy [109]. The

purpose of the multiway principal component analysis method is to detect and eliminate

faults from progressing and to achieve a more consistent production quality. First, the

algorithm extracts information from all historical process variable signals and projects this

information onto a lower-dimensional space composed of principal components. Then, as

in statistical process control, the future behaviour of the process is monitored by comparing

it against limits obtained from past batches that are known to have performed well. This

form of multiway principal component analysis is a data-driven prediction technique that

requires the batch process to have comparable runs and the detected events to be observ-

able. The multiway principal component analysis method does not, however, calculate

time-series predictions of impending conditions in real-time. Moreover, although labelled

as such by Juricek et al., the multiway principal component analysis method is not strictly

a prognostic method since neither the probability of failure or the remaining useful life are

calculated.

More broadly, prognostic methods for dynamic systems are either classified into three

major types: experience-based; data-driven; and model-based, or are a hybrid of two or

more of the listed types [110,111]. With the exception of the research performed byNomikos

as well as MacGregor and Frank, Juricek et al. also cite various publications related to

diagnostics rather than prognostics. A better understanding of the state-of-the-art in

prognostics is obtained in the survey performed by Jardine [29] and the literature review

performed by Butler [110].

Jardine presents a thorough review of machinery diagnostics and prognostics [29]. Jar-

dine states that predictivemaintenance decisions are based on one of twomeasures: remain-
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ing useful life, or probability of operating without a failure over some prediction horizon.

The majority of prognostic papers cited by Jardine relate to measuring remaining useful

life. Further, Jardine categorizes prognostic methods into three categories: statistical,

artificial intelligence, and model-based.

Butler presents a thorough background on condition-based maintenance and prog-

nostic methods [110]. In condition-based maintenance, maintenance activities are only

performed when there is objective evidence of an impending fault or failure condition.

Further, condition-based maintenance takes into consideration safety, reliability, and cost.

Condition-basedmaintenancemay incorporate diagnostic and/or prognostic strategies and

often employ some form of remaining useful life estimation. Thus, as in [29], Butler also

focuses on remaining useful life rather than probability of operating within a safe operating

region. Butler discusses the requirement for prognostics incorporating “real” predictions

that describe the evolution of either a signal of interest or a fault indicator. Butler states

that uncertainty is the primary difficulty for calculating predictions. Moreover, there are

two issues when considering uncertainty: representation andmanagement. Representation

is the ability to model uncertainty in various forms from various sources whereas manage-

ment is the ability to shrink the uncertainty bounds as a fault evolves [111].

As with Jardine, Butler categorizes prognostic methods into three categories by citing

Vachtsevanos et al. [111]: experience-based, data-driven, and model-based approaches.

These categories parallel those listed in Jardine with the artificial intelligence category of

Jardine including hybrid methods that are both data-driven and model-based. Finally,

Butler lists three metrics for comparing the performance of prognostic algorithms as: prog-

nostic horizon, relative accuracy, and Alpha-Lambda performance, i.e. a measure that
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evaluates whether the algorithms remain within the desired performance levels relative to

the actual remaining useful life.

2.2 Safety Instrumented and Shutdown Systems

Within the nuclear industry, safety systems are responsible for:

• ensuring the return to a safe state of a potentially hazardous system;

• removing residual energy from a potentially hazardous system; or

• limiting the consequences of anticipated operational occurrences (AOOs) and design

basis accidents (DBAs) [10].

In other words, safety systems are responsible for actuating fail-safe components that

conform to the “Control, Cool and Contain” principle: control the reactor power level, cool

the residual heat produced by the fission chain reactions, and contain the radioactivity.

Safety systems can be grouped into those that are for protection, actuation, and sup-

port. Protections systems, as introduced in Section 1.1, are those systems that monitor the

operation of the reactor, and, upon detecting abnormal conditions, automatically initiate

actions to prevent unsafe conditions from occurring [10]. In general, protection systems

utilize simple algorithms or functions whenmaking safety-critical decisions, e.g. threshold-

crossing events [112]. That said, the complex task of designing a protection system must

not be understated. Although the functionality within the protection system is simple,

protection system design takes into consideration a variety of other safety-related criteria,

including those of defence in depth. Moreover, the calculation, or best estimate, of thresh-

olds for the detection of abnormal and accident conditions involves complex safety analysis
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code, including thermal-hydraulic and neutron-kinetics codes, as well as uncertainty anal-

ysis [113].

One of the primary objectives of this research is to investigate the functional enhance-

ment of protection systems that are responsible for shutdown. This section presents a

review of literature related to nuclear safety, regulations and standards, the enhancement

of SDSs with respect to response time, and the development and design of CANDU SDS1

protection systems. This section also introduces literature related to optimal alarms, as

these methods can be utilized to assess and improve upon the quality of safety-related

decisions. This material is an extension of the background included in Section 1.1, e.g. the

concepts of safety margins, TSPs, safety limits, and operating conditions.

2.2.1 Regulations and standards

Protections systems can be considered as a form of SIS. These SISs are prominent in the

transportation, energy, aerospace, medicine, and defence industries. An SIS is defined as

“implementation of one or more safety instrumented functions. An SIS is composed of

any combination of sensor(s), logic solver(s), and final element(s) [114].” This defini-

tion is consistent with that of International Electrotechnical Commission (IEC) standard

IEC61508 and IEC61511, with IEC61508 providing general requirements for functional

safety whereas IEC61511 focuses on SISs for the process industry sector [115, 116]. The

definition of SISs ismore complete alongside the definition of a safety instrumented function

(SIF). An SIF is defined as “a safety function with a specified safety integrity level which

is necessary to achieve functional safety [114].” Moreover, a safety function is defined

67



as “a function to be implemented by an SIS, other technology safety-related system, or

external risk reduction facilities which is intended to achieve or maintain a safe state for

the process with respect to a specific hazardous event [114].” It is further stated within

IEC61508 that the logic solver of an SDS may include software and is assumed to be ei-

ther electrical, electronic, or programmable electronic. IEC61508 also provides guidance

regarding the life-cycle requirements for hardware and software of the logic solver, e.g. risk

analysis and system realization.

In addition to the above IEC standards, there exist two standards that are more specific

to the nuclear industry: IEC61513 and IEC62138 [117,118]. IEC61513 provides general re-

quirements for instrumentation and control systems that are important to safety within the

NPP. This standard covers systems that may include hard-wired electro-mechanical, solid-

state, or even computer-based equipment. Moreover, IEC61513 includes requirements that

range from broad recommendations to component level specifications. IEC62138 instead

focuses on the software aspects of computer-based systems that may perform SIFs within

NPPs. More precisely, IEC62138 provides requirements for software that is considered

either category B or C as per IEC62304, i.e. systems for which non-serious injury, serious

injury, or death is possible. These software aspects relate to IEC61513 in the same manner

as the third section of IEC61508 relates to the first section of IEC61508.

Another somewhat related IEC standard is IEC61131 since it specifies requirements for

programmable controllers, including programming languages and functional safety [119].

Although IEC61131 is a more general standard, it is the standard for the programming lan-

guages that are available within the Tricon v9 PLC that is utilized within the experiments

of this dissertation. Thee above IEC standards are generally well agreed upon through-
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out the international nuclear power generating community. The standards are therefore

often reinterpreted within the country-specific regulations and guidelines for NPP design,

development, research, and operation.

The IAEA also provides a number of publications that are specific to the nuclear indus-

try with application to power generation as well as medical isotope production. A variety

of power generation related IAEA publications are cited in Section 1.1. These publications

explicitly define, describe, and discuss all matters related to the appropriate use of nuclear

energy. The publications also include country-specific cases, and experience with all as-

pects of design, development, and operation. For example, safety related instrumentation is

discussed in [9], modernization of instrumentation and control system is covered in [32,33],

the calculation of safety margins in [120], and a glossary of safety definitions is even pro-

vided in [10]. Although there are no technical documents related to the use of prediction

algorithms in SDSs, numerous documents guide the development of instrumentation and

control systems that are important to safety including [121] and one report addresses the

problem of prognostics with respect to structures, systems, and components [31].

2.2.2 CANDU shutdown systems

Within an NPP, control systems may provide some degree of safety protection since these

systems are responsible for maintaining the operation of the plant. Special safety systems,

however, are more specifically defined as systems that implement one or more SIFs and

are composed of a combination of sensors, logic solvers, and final elements, i.e. an SIS as

illustrated in the conventional shutdown logic of Figure 2.1 [7]. There are two shutdown-
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Figure 2.1: The conventional SDS trip logic within the context of safety instrumented
systems (SISs).

related SISs in CANDU NPPs. The primary system, SDS1, consists of mechanical shut-

off rods while the secondary system, SDS2, injects a neutron absorbing solution into the

moderator via liquid poison injection system. Each SDSmonitors a set of safety parameters

that include neutronic as well as process signals. Further, either system is capable of

shutting down the reactor and maintaining shut down for all design basis events [7].

The two shutdown systems, SDS1 and SDS2, of CANDU NPPs are designed in compli-

ancewithCanadianNuclear SafetyCommission (CNSC) regulations. General performance

and design requirements state that the two SDSs are to [7]:

• be independent, diverse, redundant, and testable;

• incorporate diverse, physical and operational independence;

• demonstrate a target unavailability of less than 10−3 years per year including avail-

ability, testing, and maintenance;

• provide shutdown capabilities regardless of electrical power supply condition;

• have consistent safety capabilities in all operating and failure modes, i.e. failed

components must fail to a safe state;

• prevent disabling of manual operator shutdown capabilities, and respond to redun-

dant and remote location manual shutdown; and
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• be effective and independent of normal process, safety, or special safety systems.

Acting alone, each SDS ensures that: the reactor is rendered and maintained sub-critical;

the reference dose limits are not exceeded; and a loss of primary heat transport system

integrity shall not result from any fuel failure mechanism, in the event prompt shutdown is

required. In addition, shaking due to a design basis earthquake must not prevent nor slow

shutdown system actuation beyond predetermined safety analysis limits. This shaking is

not, however, monitored as a safety parameter within the CANDU SDS [122].

SDS1 is the primary method of terminating reactor operation when specific safety pa-

rameters are detected to have reached an abnormal condition. SDS1 reduces the capability

of nuclear fission reactions within the core through the release of spring-assisted gravity-

drop shut-off rods [7]. The shut-off rods are composed of the neutron absorbing material

cadmium. SDS1 has three independent channels designated D, E and F. Each channel is

responsible for detecting an abnormal condition given a predetermined set of safety pa-

rameters. In addition, each channel is responsible for de-energizing a set of relays that

control direct current clutches for the release the shut-off rods into the reactor core. This

triplicated design ensures that a trip occurs even when a component from a single channel

or a power supply fails. By these means, a single failure can not incapacitate or spuriously

initiate shutdown actions. Moreover, the triplicated design allows for periodic testing of

the individual channels [7].

The redundant outputs of the SDS are generally combined using either local or general

coincidence voting. These two voting configurations differ in that k-out-of-n, abbreviated

koon, channels of the SDS must trip via either: k of the same safety parameters; or a

71



combination of any k safety parameters, over the n channels respectively for the local and

general configurations. In referring to coincidence trip logic, the variables k and n are

separate from the definitions provided in the nomenclature. The logic for CANDU SDS1

operates using general coincidence. General coincidence logic requires, prior to initiating

the shutdown procedure, that two out of three (2oo3) channels have detected an abnormal

condition. Moreover, the detected abnormal conditions are not required to occur for the

same safety parameter over the two channels. Thus, if any two parameters are beyond

the corresponding TSPs, SDS1 initiates the shutdown procedure [7]. SDS1 and SDS2

operations differ when more than one trip parameter is beyond normal operating range.

Although both SDS1 and SDS2 use a 2oo3 voting mechanism, SDS2 requires that the

two parameters that indicate and abnormal condition be produced by the same parameter

within each of the separate channels, i.e. local coincidence [7].

The trip signal of SDS1 includes a seal-in logic circuit in order to prevent the trip decision

from being reversed. The seal-in logic is the same as those of ladder logic circuits and is

essentially a latch. For de-energize to trip, a trip input is connected to the normally closed

trip signal. The trip input opens the final trip action contact as well as a corresponding

normally closed seal-in trip contact that is installed in series with the trip signal. Upon

de-energizing the trip signal, the normally closed seal-in trip contact opens and, no matter

the value of the trip signal, the trip action remains de-energized and active. The three

independent channels of SDS1, D, E and F, have completely independent power supplies,

parameter sensors, and other instrumentation, trip computers, and annunciation devices

[7]. Shutdown rods are divided into two banks. Each bank is supplied with redundant

power supplies. The shut-off rods are suspended above the reactor core by energized direct
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Figure 2.2: CANDU SDS1 safety parameters and related subsystems.

current clutches and coincident logic. Each clutch coil is held energized by the contacts of

a separate relay. If a single relay fails, the remainder of the shut-off rods will drop into the

reactor core [7].

The safety parameters that are monitored by SDS1 include neutron power, rate log

neutron, heat transport system flow, heat transport system pressure, reactor building

pressure, pressurizer level, steam generator level, steam generator feed-line pressure, and

moderator level. These parameters and associated systems are illustrated in Figure 2.2.

There are therefore nine measured variables which must remain within predetermined

ranges or corresponding TSPs in order for the NPP to remain in a non-shutdown state.

Moreover, some of these nine parameters include both high and low TSPs. The selection

of these variables is performed to protect against all categories of process failures [7]. In

addition, SDS1 may be activated manually by an operator from the main control room or

secondary control area [123].
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This research focuses primarily on the steam generator level safety parameter as well

as the corresponding SGLL trip condition. The SGLL condition is specifically effective for

protecting against secondary side failures including secondary side heat removal. Without

secondary side heat removal, the energy transfer from the primary heat transport system to

the steam generators, and subsequently the turbines, is disabled. Further, the mechanical

structure of the steam generators may be compromised. This parameter is conditioned out

at low neutron power level.

Within SDS1 and SDS2, one trip computer is utilized per channel. The trip computers

are digital platforms that have replaced analog trip comparators and relay logic used in

previous plants. Final 2oo3 voting, seal-in routines and shut-off mechanism actuation is

performed using various relay circuits [124]. The relay circuits are controlled directly from

the digital outputs of SDS1 and SDS2. The required insertion time of the shut-off rods

following a trip detection is less than or equal to two seconds. Of this total time, the exe-

cution of the software within the logic solver of SDS1 is expected to be less than 100ms not

exceeding 200ms. When SDS1 is in a tripped state, not more than two shut-off rods should

be fully withdrawn. Reactor poison removal procedures and adjuster and mechanical con-

trol absorber withdrawal are disabled to ensure maximum shutdown capabilities. Also the

deuterium moderator system is isolated from the reactor core to prevent the addition of

pure moderator to the poisoned moderator. Conversely, when SDS2 is in a tripped state

the same measures are taken and shut-off rods withdrawal is disabled.
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2.2.3 Time-to-trip and shutdown system response time

Conventional NPP SDSs have relatively simple designs that rarely undergo functional

enhancement. This is true even when the underlying technologies are being replaced or

modernized. There are therefore limited number of events, reports, and studies related

to reductions in time-to-trip or for achieving early shutdown. Although the timely acti-

vation of protection systems has always been considered during NPP design, the earliest

known effort to reduce, or minimize, time-to-trip dates back only to the 1970s where re-

duced time-to-trip was stated as a benefit for modifying existing SDSs to include solid state

devices [125]. Since then, with regards to regulations, a reduction in the technical specifica-

tion for time-to-trip occurred as a result of response time testing at Peach Bottom NPP in

1980. This reduction resulted in excess critical power ratio without subsequent power up-

rating [126]. Another initiative to reduce time-to-trip was the removal of serially-connected

redundant time-delay relays to meet existing technical specifications at Kewaunee NPP in

1992 [127].

During the 1980s, computerized trip computers were introduced within the NPP au-

tomatic protection systems. These computerized SDSs differ in operation from non-

computerized systems in that they execute at predetermined regular intervals known as

scan, or execution, intervals. For example, the computerized SDSs of CANDU SDS1 de-

signs are required to produce a trip decision every 100ms [128, 129] in contrast to the

decisions produced by non-computerized SDSs that include only a propagation delay. In

either case, however, execution intervals and propagation delays demand only a small frac-

tion, approximately 100− 200ms, of the entire amount of time required to insert sufficient
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negative reactivity into the reactor core, between 1500− 2000ms for SDS1. The remainder

of the time is largely required for the mechanical drop or injection of neutron absorbing

materials.

Although computerized SDSs are designed to meet the same regulatory requirements

governing existing SDSs [130], delays in response time became a concern in the 1990s due

to the random nature of hardware failures within the trip computers, and the possibility

of programming errors during development [131]. As a result, verification and validation

(V&V) procedures were established to ensure clarity and traceability of SDS designs. At

the same time, major efforts were undertaken to develop safety-critical fail-safe software

that was of the highest possible quality. One such effort involved the development of SDS1

for the Darlington CANDUNPP [13]. Since then, many studies have investigated methods

for the testing as well as V&V of SDS software and hardware [132].

Most recently, a team of researchers developed a status and risk monitoring system

towards shortening protection system response time at Paks NPP in Hungary [133]. In

addition, anunspecified change in shutdown instrumentationhas been suggested to improve

safety margins with respect to a specific accident and to ultimately ensure an earlier trip

for an advanced CANDU reactor design [22]. Recent SDS research has also focused on

reducing time-to-trip by replacing CPU/software implementations with faster, application

specific FPGA/hardware implementations [18]. These replacements take advantage of the

parallel processing capabilities of FPGAs over the sequential/limited-parallel processing

capabilities of CPUs. Moreover, the use of FPGAs in NPPs has garnered commercial

interest from the company Radiy in Ukraine [134]. The replacement of CPU-based systems

with FPGA-based systems, however, is also generally performed without modification to
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the existing trip decision-making algorithm or structure of the SDS logic [16, 135,136].

Delays in time-to-trip or SDS response time

Although relatively small increases in time-to-trip can result in significant increases in heat

production within the reactor core, no major accidents in the nuclear power industry are

known to have resulted from delays in the shutdown decision-making process. That being

said, the sequence of events for the Chernobyl NPP accident of 1986 did include two events

that are related to time-to-trip. The events are: the intentional disregarding of trip signals

by personnel; and a temporary increase in fission reactions upon insertion of the control

and shut-off rods. Thus, the Chernobyl accident exemplifies the need for fast insertion of

negative reactivity into the reactor core. In fact, the “severe shocks” reported during the

accident occurred less than one minute after the manual trip button was pressed and the

rods became stuck half-way into the reactor core [137].

One far less catastrophic event that was the direct result of an increased time-to-trip

occurred at James A. FitzPatrick NPP in 1996 [138]. The root cause of the increase in time-

to-trip, detected during periodic protection system timing tests, was a generic issue with

the pilot solenoid valves for releasing neutron absorbing rods into the reactor core. The

plant was allowed to return to operation following a five day shutdown for repairs. Another

case of increased time-to-trip due to a generic issue was the slow response of reactor trip

breakers at Calvert Cliffs NPP and Oconee NPP in 1985 [139]. The root causes of these

increases in time-to-trip, which were also detected during response time testing, were the

mechanical slipping of an armature toward a pole face, and the improper replacement of

mounting hardware causing mechanical binding. The amounts of downtime for these cases,
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however, are not known.

2.2.4 Optimal alarms

The combination of prediction and safety critical systems requires the use of highly ac-

curate prediction algorithms. In a study by Martin, a KF-based predictor is combined

with an optimal alarm for detecting level-crossing events, herein referred to as threshold-

crossing events [41]. Optimal alarms are those which produce minimal false alarms for a

fixed detection probability. To accomplish this, Martin finds the optimal area under the

receiver operating characteristic (ROC) curve; ROC is a statistical tool that is used in

hypothesis testing and decisions making theory that essentially relates TPR to FPR. The

optimal alarm condition is a decision boundary based upon a likelihood ratio criterion.

Optimal alarm regions must be approximated since they cannot be expressed in closed

form when considering all of the time-steps within the prediction window. The optimal

alarm condition provides an upper bound on the false alarm probability. It is expected

that the prediction of an extreme value may be an alternative to using a single level based

on a decision rule as with cumulative sum, sequential probability ratio test, generalized

likelihood ratio, etc. The optimal threshold-crossing predictor has a null hypothesis which

includes a predictable critical event whereas, with the three aforementioned tests, the null

hypotheses are constructed to detect abrupt changes in model parameters [102].

This dissertation combines and expands on the two motivating works of Juricek et al.

and Martin towards the development of a predictive automatic protection system that

is able to make confident and reliable decisions. For this, the optimal alarm problem is
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re-framed in a manner similar to that of Martin to consider the ROC space. An optimal

sub-space is then selected as a function of the above-mentioned FPR and corresponding

conditional probability. The TPR is calculated for each prediction within the prediction

window, rather than for a combination of the predictions within the prediction window as

in the case of Martin. This optimization relies on the validity that of the assumption that

the prediction errors have a Gaussian probability distribution.

The foundations of optimal alarm theory for the optimal prediction of catastrophes

with applications to Gaussian processes are formulated by de Mar in [140], although a

KF is not used. The alarm system is said to be optimal if it detects the catastrophic

event with high probability, and simultaneously gives a minimum number of false alarms.

This statement corresponds directly with the current problem of predictive trip protection

for an NPP. The work of de Mar considers the problem of forecasting sea level height.

It is stated that the prediction of catastrophic sea levels alone is not a very interesting

research problem. It is, however, interesting to consider the detection of these catastrophes

without making too many false alarms. The predictive alarms are therefore determined to

either be correct if the catastrophe does actually take place at the prediction horizon, and

incorrect if the catastrophe does not take place. Thus, the predictive detections include a

hypothesis regarding an impending catastrophe. Moreover, the result of this hypothesis

can be measured once the system propagates forward in time to the prediction horizon,

although, to be clear, de Mar does not investigate the relationship between his work and

the theory of hypothesis testing.

Optimal alarms consider the proportion of detected or alarmed events as well as the

proportion of correct alarms [140]. The optimal alarm then finds the predictor process
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and alarm threshold that maximize the conditional probability of the event given the

alarm under the constraint that the detection probability is equal to or greater than some

predetermined value. Here, the detection probability is given as the conditional probability

of the alarm given the event. In other words, with respect to hypothesis testing, the

prediction horizon as well as the effective TSP can be selected as functions of the true and

false positive and negative event occurrences.

AlthoughMartin includes an example optimal alarm design, he does not specify the ap-

plication for the design and instead cites similar optimal alarm research for auto-regressive

moving average (with exogenous input) systems by Svensson [141]. Svensson, in turn, cites

the work of de Mar, and also cites the detection of abrupt changes work of Basseville and

Nikiforov [102]. Optimal alarm theory has more recently been applied or investigated for

various other applications including earthquake prediction in [142], mining alarms in [143],

and general industrial alarms in [144].
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Chapter 3

Prediction under Uncertainty for

Linear-Time-Varying Systems

The fundamental objective of this research is the development of an algorithm that predicts

future values of safety parameter measurements. Safety parameters are the signals that are

transmitted by safety sensors to be monitored by SDSs. The subsystems associated with

the safety parameters are herein referred to individually as a system. In general, prediction

algorithms may be composed of, but are not limited to, any one or a combination of the

linear, nonlinear, adaptive, data-, or model-based algorithms as discussed in Section 2.1.1.

Within this research, preference is given to model-based prediction algorithms that utilize

existing knowledge regarding themathematical models, operating conditions, and dynamic

characteristics of the system and associated safety parameters. Preference is also given

to prediction algorithms that consider stochastic descriptions of uncertainty, i.e. those

uncertainties that are not defined precisely but are instead defined statistically through
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the use of probability distributions. These descriptions of uncertainty, in turn, describe

the uncertain behaviour of the system at current and future time-steps.

It is expected that the above objective will result in a prediction algorithm that is able to

calculate themulti-step-ahead future values of safety parametermeasurements for a system

that may have time-varying parameters while taking into consideration various sources

of uncertainties. Towards this objective, this chapter focuses specifically on prediction

algorithms that are KF-based. TheKF is selected since it conforms to the criteria discussed

in the previous paragraph and is compatible with the state-space form of systemmodelling,

a form that is common within predictive control literature [99]. In addition, the KF is well-

established and is supported by vast bodies of related literature and applications, some of

which are reviewed in Chapter 2.

This chapter introduces discrete-time stochastic state-spacemodelling aswell as discrete-

time KF-based estimation of system states and measurements for a system with LTV

parameters. The KF-based state estimation procedure is then extended to both the multi-

step-ahead state and measurement prediction problems. This extension results in two

separate KF-based prediction algorithms. The first is a point-prediction algorithm that

calculates the mean value of the expected future state and measurement. The second is an

interval-prediction algorithm that calculates both the mean value as well as a confidence

or prediction interval as an upper and lower bound of the expected future state and mea-

surement. The selection of initial conditions for the estimation and prediction problem is

also discussed.

This chapter identifies a number of considerations that are to be addressed when ex-

tending KF functionality to the multi-step-ahead prediction problem. The primary focus

82



of prediction is to obtain accurate descriptions of the uncertainty between the true and

assumed model. This accuracy is improved through the use of the ALMF algorithm to

estimate the state and measurement noise covariance. This chapter also investigates the

effect that these descriptions of uncertainty have on the accuracy of the calculated mean

estimates and predictions as well as the associated covariances, a consideration that is often

overlooked within the KF-based state estimation literature. These considerations prompt

further prediction algorithm development within subsequent chapters.

In summary, this chapter combines KF-based state and measurement prediction as

well as ALMF-based noise covariance estimation to address the multi-step-ahead point-

and interval- prediction problem. This combination of KF andALMF algorithms allows for

the KF to consider time-varying model parameters as well as time-varying descriptions of

uncertainty. The ALMF noise covariance estimation algorithm also provides a mechanism

for ensuring accurate interval-predictions since both the mean value of the estimates as

well as the confidence intervals are functions of the estimated noise covariances. This

is the first known study that applies the ALMF noise estimation procedure within the

multi-step-ahead interval-prediction problem for time-varying systems.

In order to be somewhat succinct, this chapter does not cover the vast body of literature

including extended methods, implementation considerations, and applications that are

related to the KF. For a more complete treatment of KF-based estimation and prediction

please refer to one of the following [44,46,47].
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3.1 State-space Modelling, Prediction, and

Uncertainty

This section investigates the relationship between uncertainty descriptionswithin the state-

space form of modelling and the safety parameter prediction problem. This section begins

by introducing state-space models for systems that have LTV parameters. The state-space

model is then applied to the prediction problem. This section concludes with discussion

regarding the effect of the uncertainties on the quality of prediction. These uncertain-

ties include mismatch between the assumed and true system model parameters as well

as discrepancies between the measured and true system signals. The former of these two

uncertainties is often referred to as model mismatch.

Parameters differ from signals in that signals generally transfer variables between com-

ponents of a system, e.g. inputs, outputs, states. In contrast, parameters describe the

attributes of the various components within the system, e.g. amplitude, phase, or fre-

quency of a sine wave. Signals therefore describe the manoeuvres that are provided to, and

actions that are taken by, the components within a system. Signals are assigned values at

all points in time, e.g. measurements. Meanwhile, parameters most often have constant

values, or alternatively, have values that change as a function of some predetermined signal.

Parameters are not necessarily assigned values at all time steps, e.g. parameters that are

globally constant or have constant values that are assigned by operating point or region.

It is first assumed that the system can be modelled in the following discrete-time LTV
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state-space form

x [k + 1] = A [k] x [k] + B [k] u [k] (3.1)

y [k] = C [k] x [k] +D [k] u [k] (3.2)

where k ∈ Z
nk×1 is the discrete time-step or time-index with units s/Ts and Ts is the chosen

sampling time. The state-space signals are as follows: x ∈ R
nx×1 is the system state vector,

u ∈ R
nu×1 is the system input vector, and y ∈ R

ny×1 is the system measurement vector.

Moreover, the state-space parameters are as follows: A ∈ R
nx×nx is the state matrix,

B ∈ R
nx×nu is the input-to-state matrix, C ∈ R

ny×nx is the state-to-measurement matrix,

andD ∈ R
ny×nu is the feed-through matrix. The two equations (3.1) and (3.2) are referred

to respectively as the state and measurement equation. Here, the term measurement refers

to the fact that signal y is generally the output that is transmitted by a physical sensor and

is therefore measurable.

The state and measurement equations are combined in the block diagram of Figure 3.1

where q−1 is the backward time-shift operator. This diagram illustrates the predictive form

of the state equation where the time dependence is between the future state, x [k + 1], and

the current state, x [k], rather than between the current, x [k], and past, x [k − 1], states as is

common within KF literature. One interpretation of the state and measurement equations

assumes that the system matrices represent the following specific system components: A

for the process dynamics, B for the actuator dynamics, C for the sensor dynamics, and D

as a direct feed-through of the manipulating system input, u.

The LTV state-space form of (3.1) and (3.2) differs from the LTI state-space form
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Figure 3.1: Combined state and measurement equations in (3.1) and (3.2) respectively.

that is usually assumed for the standard KF. More specifically, the parameters within the

system matrices, A,B,C, and D, vary with time rather than being time-invariant. The

LTV form is selected for study since it is a generalization of the linear parameter varying

(LPV) system that is the main application studied within Chapter 6 and Chapter 7. In

addition, the LTV form allows for a broader range of dynamic processes to be considered

as a potential system when compared against either the LTI or LPV forms.

LTV systems are generally assumed to have parameters that are known functions of

time whereas LPV systems have time-varying parameters that are dependent on some

exogenous input, e.g. an element of the system input, uθ. Both LTV and LPV systems do,

however, have parameters that vary with time. An equivalence between the parameters of

the LTV and LPV systems can therefore be established. First, the time-varying system

matrices are defined in terms of a time-varying parameter vector. For example, the time-

varying state matrix, A, is defined as a function of the time-varying parameter vector, θ,

as follows.

A [k] , A (θ [k]) (3.3)

The values of the time-varying parameter vector, θu, are then defined as the values of an
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LPV parameter vector, θ, as follows

LTV
︷ ︸︸ ︷

θu [k] ,

LPV
︷ ︸︸ ︷

θ (uθ [k]) (3.4)

where uθ is the exogenous input that determines the values of parameter vector, θ. The rela-

tionship between the LTV state matrix,A, and the exogenous input, uθ, is then established

directly as follows

A [k] = A (θu [k]) (3.5)

where parameter vector, θu [k], is the time-dependent equivalent of the exogenous-input-

based parameter vector, θ (uθ [k]). These definitions and relationships hold for the remain-

ing system matrices, B,C, and D.

In representingLPVsystems asLTV it is not possible to calculate the parameters of LPV

systems in advance if the future exogenous inputs, on which the parameters are dependent,

are not known. This contrasts the parameters of the LTVmodel which are known functions

of time and are therefore able to be calculated within the current time-step, k, for future

time-steps, k + i where i = 1, . . . ,Np and Np is a positive integer representing a number

of time-steps that is the length of the prediction window. It is assumed within this work,

therefore, that the parameters of the LTV system are not explicit functions of time and

cannot be calculated in advance.

Regarding the prediction problem, the state equation in (3.1) inherently provides a

means for propagating the state vector to future time-steps, i.e. state predictions, as
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follows

x [k + i] = A [k + i− 1] x [k + i− 1] + B [k + i− 1] u [k + i− 1]

=
i−1∏

j=0

A [k + i− 1− j] x [k]

+
i−1∑

j1=0

k+i−2−j1∏

j2=0

A [k + i− 1− j2]B [k + j1] u [k + j1] (3.6)

where
∏−1

j=0 = 1 and i = 1, . . . ,Np is the time-step of prediction withNp again representing

the length of the moving prediction window. This final time-step, Np, is also referred to

as the prediction horizon. Given state predictions, it is possible to calculate measurement

predictions by modifying the measurement equation in (3.2) as follows

y [k + i] = C [k + i] x [k + i] +D [k + i] u [k + i] (3.7)

where i is as defined for (3.6).

The difficulty in calculating predictions using (3.6) and (3.7) is that the two equations

are functions of an unknown and unmeasurable state vector, x [k]. In addition, the future

model parameters,A [k + i] ,B [k + i] , etc., are not known because the values of the param-

eters are dependent on unknown future system inputs, uθ [k + i]. It is therefore necessary

to:

• approximate the unknown states of the system at the current time-step;

• make assumptions regarding the future model parameters and system inputs; and

• quantify or describe uncertainties within the state vector predictions that are a result
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of the aforementioned assumptions.

First, given that state-space model of the underlying system can be constructed and

the parameters of the model estimated, it is possible to approximate the unknown state

vector, x [k], through the use of a state observer. More precisely, state observers estimate

the unknown state vector, x̂ [k], as a function of system measurements and model parame-

ters given that the LTV system model meets the following condition for uniform NO-step

observability [145]

rank (O [k]) = rank
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= nx∀k (3.8)

where O is the observability matrix and NO ≥ nx.

The KF is one form of state observer, or estimator, that calculates state estimates which

are optimal in the minimal mean square sense of the state estimation error [27]. Thus, the

KF is introduced within the prediction algorithm as a state observer rather than more

directly as a state or measurement predictor. The function of the KF is then extended to

the state or measurement prediction problem.

In the role of state observer, the KF assumes a system that is similar to the state-

space form of (3.1) and (3.2) but also includes two additional additive noise terms. More

specifically, it is assumed within the KF that the system can be modelled in the form

of the following discrete-time LTV stochastic state-space model with additive state and
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measurement noise sequences

x [k + 1] = A [k] x [k] + B [k] u [k] + vx [k] (3.9)

y [k] = C [k] x [k] +D [k] u [k] + vy [k] (3.10)

where vx ∈ R
nx×1 is the state noise vector, vy ∈ R

ny×1 is the measurement noise vector, and

all other parameters are as defined for the deterministic case in (3.1) and (3.2). Equations

(3.9) and (3.10) are referred to as the stochastic state and stochasticmeasurement equations

respectively. These equations are considered to be stochastic since the two noise terms are

assigned probability distributions rather than being deterministic, or precise, values like

those of the model parameter and the intended system input, u.

The stochastic state and measurement equations are combined in the block diagram

of Figure 3.2. This diagram differs from the deterministic case of Figure 3.1 in that the

two noise terms are added as inputs to the state and measurement signals. This diagram

illustrates that the state noise has a direct influence on the state vector. Alternatively, the

dimension of the state noise is sometimes assumed to differ from that of the state vector.

For example, if the state noise affects the system in the same manner as the system input u,

the state noise is multiplied by the input-to-state matrix B as vx = Bvu where vu ∈ R
nu×1.

Thus, the input noise vu may have different statistical properties than those of the state

noise vx.

The two additive noise terms, vx and vy, enable the KF-based state observer to consider

the following uncertainties:

• a model that may not be an exact parametric or structural representation of the true
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Figure 3.2: Combined stochastic state and measurement equations in (3.9) and (3.10).

system, i.e. model mismatch; and

• system input, state, and measurement signals that may include disturbances or noise

with respect to the true signals of the system.

Within the standard KF, the two additive noise terms are assumed to belong to a white

Gaussian probability distribution. More precisely, the KF is provided only the statistical

properties or moments of the probability distribution for each of the additive noise terms

and not the exact values of the noise samples. In addition, within certain elements of the

state vector, it is not possible to measure the additive noise since the noise signals are

internal to the system, i.e. unmeasurable. Thus, the KF-based state observer utilizes the

structure of the model to estimate the state vector. The observer also uses the statistical

descriptions of noise to filter the uncertaintieswithin in themodel parameters andmeasured

signals with respect to the true system parameters and signals.

Returning to the prediction problem, the multi-step-ahead prediction equation of (3.6)

is able to propagate, in a deterministic manner, an uncertain but optimal KF-based state

estimate to a future time-step, i.e. an uncertain state prediction, x̂ [k + i]. This state

prediction is not optimal, however, due to the predictions being calculated within the

current time-step, k, when the assumed future model parameters and signals are not known
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and may not represent exactly the true future system and signals. The result of these

assumptions is an equation for propagating the state vector that is different than the true

behaviour of the system, i.e. x̂ [k + i] is not expected to be equal to x [k + i]. For example,

state propagation may be performed by assuming that the future system matrices and

inputs are equal to the values within the current time-step, k, as follows.

x̂ [k + i] = A [k] x̂ [k + i− 1] + B [k] u [k] (3.11)

Moreover, measurement predictions calculated using (3.7) are also not optimal, i.e. ŷ [k + i]

is not expected to be equal to y [k + i], for the same reasons as for the state prediction and

also since the measurement prediction is a function of the uncertain state prediction.

The assumptions that cause the predictions not to be optimal are similar to the mod-

elling assumptions that are listed above for the KF-based state observer. In fact, during

state estimation the state estimate x̂ [k] is not expected to be equal to the true system

state x [k]. It is possible, therefore, to extend the functionality and stochastic uncertainty

descriptions of the KF-based state observer to the measurement prediction problem. This

is accomplished in the same manner as for state estimation. In other words, by including

various model and signal uncertainties within the statistical properties that are defined for

the additive noise signals, vx and vy, for the stochastic state-spacemodel of (3.9) and (3.10).

In this manner, the KF is not only able to quantify a probabilistic description of uncertainty

in the state estimates but can also quantify the uncertainties in the propagated state and

measurement predictions. These concepts are formulated in the remaining sections of this

chapter.
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System

State observer (KF)

uncertainty
measurable

unmeasurable

Figure 3.3: Connectivity between the system and a state observer, whichmay beKF-based,
within the context of state estimation.

3.2 Kalman-Filter-Based State Estimation

The KF is able to perform state estimation by minimizing the mean squared error between

the true values and the estimates of the system states. This minimization is a function

of the system input and measurement as well as the model parameters as defined in (3.9)

and (3.10). A simplified diagram of the state estimation problem is included in Figure 3.3.

This diagram identifies the connections that are made between the state observer and the

signals of the system. This diagram also indicates that the state observer is provided model

parameters and receives system signals or variables that are not necessarily exact to the

true system. More specifically, the true parameter and variable symbols are denoted by

a bar accent, •̄, whereas the model parameter and measured signal symbols are included

without accent marks.

KF state estimation accounts for uncertainties in the model parameters and input

signals of the system through state noise covariance Rx ∈ R
nx×nx , and for uncertainties in

the measurement signals through measurement noise covariance Ry ∈ R
ny×ny . These two

parameters are the covariance matrices for the two additive noise terms vx and vy, from
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(3.9) and (3.10) respectively. The effects of input noise vu are assumed to be combined into

vx as a function of the input-to-state matrix,B, as stated in the discussion regarding Figure

3.2. The two noise vectors, vx and vy, are assumed to be white Gaussian noise sequences

that satisfy the following statistical properties

E {vx [k]} = E {vy [k]} = 0

E {vx [k] v′x [j]} =







0 k 6= j

Rx [k] k = j

E
{
vy [k] v

′
y [j]

}
=







0 k 6= j

Ry [k] k = j

E
{
vx [k] v

′
y [j]

}
= 0 for all k and j (3.12)

with expectation operatorE {•}, mean valuesE {vx} andE {vy}, covariancesE {vxv′x} and

E
{
vyv

′
y

}
, cross-covarianceE

{
vxv

′
y

}
, and noise covariancematricesRx andRy respectively.

In addition, •′ indicates the transpose of a matrix or vector.

The noise sequences, vx and vy, are white in that the sequences are composed of serially

uncorrelated samples and the sequence also has zero-mean and finite variance, i.e. a power

spectral density that is constant for all frequencies [24]. Further, the noise sequences are

Gaussian in that the samples within the sequence are statistically independent with a prob-

ability distribution that is completely specified using only the first and second statistical

moments, i.e. mean and variance. The noise sequences are assumed to have Gaussian

probability distributions due to the central limit theorem. In short, the central theorem
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states that the sum of a sufficiently large number of independent random sequences has a

Gaussian probability distribution with mean and variance equal to the sum of the means

and variances of the sequences [146]. For the case where vx and vy are coloured noise, the

structure of (3.9) and (3.10) may be achieved by extracting the coloured noise dynamics

from the noise terms and augmenting the dynamics into the system state vector [46]. In

addition, for non-linear dynamics or non-Gaussian error probability distributions the EKF

and UKF may be utilized as discussed in Section 2.1.2.

KFs execute two stages within each time-step; update and predict [47]. Each stage has

an associated state estimate x̂ ∈ R
nx×1; the updated, or a posteriori, state estimate x̂ [k|k]

and; the predicted, or a priori, state estimate x̂ [k|k − 1]. The notation [k|k − 1] follows

conditional probability where the a priori estimate is conditioned on information that is

available prior to and including time-step k − 1. The covariance of the state estimation

error is then defined as follows

Px̃ [k|k] = E {x̃ [k|k] x̃′ [k|k]} (3.13)

Px̃ [k|k − 1] = E {x̃ [k|k − 1] x̃′ [k|k − 1]} (3.14)

for the a posteriori, x̃ [k|k] = x [k]− x̂ [k|k], and a priori, x̃ [k|k − 1] = x [k]− x̂ [k|k − 1],

state vectors respectively where Px̃ ∈ R
nx×nx . These state error covariances quantify

the second statistical moment or variance of the state estimation error. In other words,

the state estimate quantifies the mean expected value, whereas the state error covariance

describes the probability distribution within the state-space over which the true system

state is expected to belong.
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3.2.1 The Kalman filter

TheKF includes five equations in total. The first three equations update the state estimates

as well as the state error covariances and the latter two equations propagate the state

estimates and error covariances forward in time. Within the update stage, the KF gain,

K ∈ R
nx×ny , is first calculated as follows.

K [k] = Px̃ [k|k − 1]C ′ [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])
−1

(3.15)

This is the optimal gain thatminimizes themean squared estimation error as the trace of the

a posteriori state error covariance, Px̃ [k|k]. The Kalman gain also maps the measurement

space to the state-space. Next, the a posteriori state estimate is calculated as follows.

x̂ [k|k] = x̂ [k|k − 1] +K [k] (y [k]− (C [k] x̂ [k|k − 1] +D [k] u [k])) (3.16)

This equation calculates the optimal state estimate given the error between the newly

acquired systemmeasurements and the a priori KF-basedmeasurement estimates. Finally,

the a posteriori state error covariance matrix is calculated as follows

Px̃ [k|k] = E {x̃ [k|k] x̃′ [k|k]}

= E
{
(x [k]− x̂ [k|k]) (x [k]− x̂ [k|k])′

}

= (I−K [k]C [k])Px̃ [k|k − 1] (I−K [k]C [k])′ +K [k]Ry [k]K
′ [k] (3.17)
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where the covariance is updated as a function of the KF gain, and I is an identity matrix of

appropriate dimension. Of these three equations, only the a posteriori state estimate is a

function of system measurements, i.e. is updated according to the system measurements,

whereas the two remaining equations are functions of model parameters and covariance

matrices only. In other words, the state estimates are updated as a function of the KF-

based state estimation accuracy whereas the elements of the Kalman gain vector and the

state error covariance matrix are not.

The predict stage includes two equations. The a priori state estimate is calculated as

follows.

x̂ [k + 1|k] = A [k] x̂ [k|k] + B [k] u [k] (3.18)

This is the model-based propagation of the a posteriori state estimate one time-step into

the future. The a priori error covariancematrix is calculated in a similar manner as follows.

Px̃ [k + 1|k] = E {x̃ [k + 1|k] x̃′ [k + 1|k]}

= E
{
(x [k + 1]− x̂ [k + 1|k]) (x̂ [k + 1|k]− x̂ [k + 1|k])′

}

= A [k]Px̃ [k|k]A′ [k] +Rx [k] (3.19)

This propagation is also model-based. Thus, the two predict stage equations are based

solely on the parameters of the stochastic state-space system are not optimized or updated.

For the full derivation of theKF-based state estimation equations, please refer to [44,46,47].

The a posteriori and a priori state estimation equations are combined in the block
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Fig.

KF Predict Stage

KF Update Stage

3.5

Figure 3.4: Combined a posteriori and a priori state estimation equations in (3.16) and
(3.18) respectively; the angled arrow indicates an adaptive parameter, in this case K [k].

diagram of Figure 3.4. In addition, the combined Kalman gain calculation as well as a

posteriori and a priori state error covariance equations are included in Figure 3.5. The

connectivity included in Figure 3.4 illustrates that the state estimates are a function of the

error between the system measurements and the a priori estimate of the system measure-

ment. Thus, the minimization performed by the KF, as illustrated in Figure 3.5, causes

the state estimates to track, to some degree, the measurements that are received from the

safety sensors installed within the system.

A summary of the KF-based state estimation procedure is provided in Algorithm 3.1

while an overview of the estimation procedure is illustrated in Figure 3.6. Algorithm

3.1 includes a count of the number of operations per loop (OPL) that are required to be

calculated for a system with a single output or measurement. The measurement vector is

assumed to be scalar for comparison of computational complexity against the algorithms

that are developed in subsequent subsections. In addition, a non-scalarmeasurementwould

require calculation of the covariance matrix and cross covariances between measurements

and also, more importantly, a computationally expensive matrix inverse in (3.15). This

98



KF Update Stage

KF Predict Stage

Figure 3.5: Combined Kalman gain equation in (3.15) as well as the a posteriori and a
priori state estimation equations in (3.17) and (3.19) respectively; (•) indicates where the
input variable is substituted within the equation of the corresponding block.

assumption allows for flexibility in selecting one of various methods for calculating the

inverse within the Kalman gain equation e.g. processing the measurements separately [46].

The OPL tallies the number of multiplication and addition operations for all equation

within the repeated loop of the algorithm. This loop includes only the equations that are

executed within each time-step of the state estimation procedure. The OPL result may

also be referred to as the arithmetic complexity of the algorithm.

A reduction in the number of total multiplication is utilized to improve algorithm

performance when calculating symmetric matrices, e.g. A [k]Px̃ [k|k]A′ [k], where the 2n3
x

multiplications can be reduced to (3n3
x + n2

x) /2 operation and 2 (n3
x − n2

x) additions can

be reduced to (3n3
x − 2n2

x − nx) /2 operations. Moreover, scalar division is assumed to

be performed by the Newton-Raphson method where for double-precision floating-point

arithmetic, i.e. a mantissa of 52 digits plus the dropped leading one, eight multiplications

99



System

Update stage

measurable

unmeasurable

Predict stage

KF

Figure 3.6: Connectivity between the system and the KF-based state estimation procedure
of Algorithm 3.1.

Algorithm 3.1 Kalman-filter-based (KF) state estimation, KFe.

Require: A,B,C,D, u, y,Rx,Ry

Initial conditions: x̂ [0|0] ,Px̃ [0|0]
Result: x̂ [k|k] ,Px̃ [k|k]
k = 0
[Initialization]
x̂ [1|0] = A [0] x̂ [0|0] + B [0] u [0]
Px̃ [1|0] = A [0]Px̃ [0|0]A′ [0] +Rx [0]
{propagate x [0] to x [1]}

loop
k = k + 1
{measure y [k]}
[State estimation (update)]

K [k] = Px̃ [k|k − 1]C ′ [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])
−1

x̂ [k|k] = x̂ [k|k − 1] +K [k] (y [k]− (C [k] x̂ [k|k − 1] +D [k] u [k]))
Px̃ [k|k] = (I−K [k]C [k])Px̃ [k|k − 1] (I−K [k]C [k])′+K [k]Ry [k]K

′ [k]
[State propagation (predict)]
x̂ [k + 1|k] = A [k] x̂ [k|k] + B [k] u [k]
Px̃ [k + 1|k] = A [k]Px̃ [k|k]A′ [k] +Rx [k]
{propagate x [k] to x [k + 1]}

end loop

OPL for scalar y: 6n3
x + 10.5n2

x + 5nx + nxnu + 2nu ∈ O
(

n3
x

)
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and seven additions are performed. The count included in Algorithm 3.1 reveals that the

computational complexity of the KF-based state estimation routine is cubic with respect

to the dimension of the state vector, or KFe ∈ O (n3
x) using big O notation.

For the LTI case, with jointly Gaussian distributed state and measurement, the KF

is a minimum variance unbiased estimator and is therefore considered to be an efficient

estimator [147]. Moreover, under the previously stated conditions, the KF is the best

unbiased estimator. This may not, however, be the true in the case of KF-based state

estimation for an LTV system. The ability of the KF to efficiently estimate the state of an

LTV system must therefore be monitored. It is difficult to monitor directly the efficiency

of the filter as efficiency is generally a relative metric. The ability of the filter to produce

unbiased as well as consistent estimates can be monitored through the use of statistical

testing as is presented in Chapter 5.

3.2.2 Related equations

Aside from the five standard equations, the KF enables the calculation of signals that

provide additional information regarding the quality or accuracy of the state estimations.

These signals also extend the usefulness of the KF to include measurement estimation and

prediction. Three of the additional signals are extracted from the standard KF equations

whereas two signals are alternative a posteriori interpretations of the standard a priori

equations.

The first signal is the a priori measurement error that is embedded in (3.16). The a

priori measurement error is equal to the difference between the current measurement and
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the a priori measurement estimate as follows.

ỹ [k|k − 1] = y [k]− ŷ [k|k − 1]

= y [k]− (C [k] x̂ [k|k − 1] +D [k] u [k]) (3.20)

This measurement error is commonly used in statistical evaluations of KF performance.

More precisely, in the case of optimal KF state estimates, the a priori measurement error

is a white Gaussian sequence. This error is referred to as the innovation, a term that refers

to the fact that new information regarding error statistics can be obtained from (3.20) at

each time-step given independence between subsequent measurement errors.

The second signal is the a priori measurement estimate. This signal is embeddedwithin

the innovation calculation of (3.20) and, in turn, the state update equation of (3.16). The

a priori measurement estimate applies the measurement equation of (3.10) to the a priori

state estimate as follows.

ŷ [k|k − 1] = C [k] x̂ [k|k − 1] +D [k] u [k] (3.21)

This estimate is also a one-step-ahead measurement prediction for time-step k where the

state estimate is calculated using only information that is available prior to and including

time-step (k − 1). Measurement prediction differs from state estimation in that the param-

eters C [k] and D [k] as well as signal u [k] are assumed to be known. The one-step-ahead

measurement prediction can also be calculated within the current time-step, k, for future

time-step, (k + 1), as ŷ [k + 1|k] given again that the future parameters and signals are
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assumed to be known.

The equivalent of the a priori measurement estimate within the update stage of the KF

is the a posteriori measurement estimate. The a posteriori measurement estimate is the

result of applying the measurement equation in (3.10) to the a posteriori state estimate as

follows.

ŷ [k|k] = C [k] x̂ [k|k] +D [k] u [k] (3.22)

The a posteriori measurement estimate is a filtered estimate of the system measurement

that is optimal given that the model parameters and noise covariances provided to the KF

accurately represent the true system and additive noise terms. In other words, the a pos-

teriori measurement estimate provides an estimate of the measurement that is influenced

to some degree by the assumed model on which the KF is based. These properties are also

present within the a priori measurement estimate of (3.21).

The degree to which the estimates are influenced by either the model or the measure-

ments is determined by the values of Rx and Ry. For example, assuming scalar state and

measurement vectors and equal values of innovation, smaller values of Ry, i.e. Ry ≪ Rx

will result in a larger magnitude of correction being applied to the state estimate. This

increase in correction is due to the measurements being more uncertain with respect to the

model as specified by the state noise covariance, Rx. This increase in correction may not

necessarily, however, result in a reduction in error between the measurement estimate and

the true system measurement, ȳ − ŷ, where y is the true system measurement.

The final two related equations are reinterpretations of the state error covariances in
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the measurement domain rather than the state domain. The result is a measurement error

covariance for each of the a posteriori and a priori measurement errors as follows

Pỹ [k|k] = C [k]Px̃ [k|k]C ′ [k] +Ry [k] (3.23)

Pỹ [k + 1|k] = C [k + 1]Px̃ [k + 1|k]C ′ [k + 1] +Ry [k + 1] (3.24)

where Pỹ ∈ R
ny×ny . While measurement estimates quantify mean expected values, the

measurement error covariance matrices describe the probability distribution over which

within the measurement domain the true system measurements are expected to belong.

The a priori measurement error covariance is included in the Kalman gain equation of

(3.15).

3.2.3 Initial conditions, convergence, model selection, and

bumpless transfer

The KF state estimation procedure includes two initial conditions; state, x̂ [0|0], and state

error covariance, Px̃ [0|0] as provided in the calculation of x̂ [1|0] and Px̃ [1|0] in Algorithm

3.1. The initial state estimate is by definition an approximation of the true initial state

within the system, whereas the initial state error covariance is an approximation of the

error covariance that is consistent with the initial state estimate [148].

Due to the recursive form of the calculations within the KF, the initial conditions have

a direct effect on the quality of the KF-based state estimates within the initial time-steps of

estimation. This effect fades, however, with every iterative calculation of the Kalman gain
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given that the estimations are convergent. The criteria for convergence of KF-based state

estimates are discussed by Anderson and Moore [149] where it is stated that the uniform

detectability of the following state and state-to-measurement matrix pair, (A [k] ,C [k]) is

sufficient for there to exist a bounded sequence ofKalman gains,K [k], such that the a priori

state estimates are exponentially stable. In addition, the pair (A [k] ,C [k]) is uniformly

detectable if there exists NO,NO
≥ 0 and constants d, b with 0 ≤ d < 1, 0 < b < ∞ such

that whenever

D =

∥
∥
∥
∥
∥

NO∏

i=1

A [k −N
O
− 1 + i] ζ

∥
∥
∥
∥
∥
≥ d ‖ζ‖ (3.25)

for a given ζ and k, then

ζ ′
NO+1∑

j1=1





(
j1−1
∏

j2=1

A [k −NO − 1 + j2]

)′

C ′ [k −NO − 1 + j1]





2

ζ ≥ bζ ′ζ (3.26)

where constant b > 0, (•)2 = (•) (•)′,∏−1
j=0 = 1. Moreover,NO is the length of the window

over which uniform detectability is calculated which is the same definition as provided for

observability in (3.8), and ζ ∈ R
nx×nx is an arbitrary matrix, e.g. ξ = I [149].

The detectability condition is weaker than the full rank criteria for uniform observability

in (3.8). Thus, under the conditions of either detectability or observability, after the

initial time-steps of convergence, the initial conditions will have little effect on estimation

quality or accuracy. That being said, the computational complexity of calculating uniform

detectability is quartic, i.e. •4, with respect to the dimension of the state vector, or D ∈

O (n4
x), for the minimum possible window length that is equal to the dimension of the
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state vector. It is more common, therefore, to monitor for divergence as a function of

the state error covariance as discussed in Section 3.6 since the complexity of calculating

detectability for an LTV system would add significant complexity to the KF-based state

estimation algorithm [47].

The state estimates of a convergent KF are eventually independent of the initial con-

ditions due to the asymptotic stability of the equations within the update stage as well

as the Kalman gain [47]. That said, the following are recommended best practices for the

selection of initial values for state and state error covariance. Given limited knowledge

regarding the value of the initial state for the system, it is suitable to assign the initial

estimate of the state as the zero-vector with appropriate dimensions as follows.

x̂ [0|0] = 0nx×1 (3.27)

The zero-vector is chosen so as not to excite the free-response of the system in amanner that

contradicts the unknown system conditions. In addition, for a state domain with known

extents or admissible range, xR ∈ R
nx×1, it is possible to assume that the initial state at

the center of state domain space. This case is covered more specifically in the following

paragraphs as it is related to the initial condition for state error covariance.

For a system that is asymptotically stable with a system input that is known to have

been constant for some time, the initial state vector can be approximated by solving the

following set of linear equations associated with the steady state of the system.

x̂ [0|0] = (I− A [0])−1B [0] u [0] (3.28)
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If the assumed conditions are accurate within the true system, the above initial state vector

will result in a reduction in the number of time-steps within which the KF will converge to

the true state.

In contrast, the initial value for the state error covariance must not be equal to zero,

Px̃ [0|0] 6= 0nx×nx . The initial state error covariance represents prior knowledge regarding

the initial state of the system [147]. This concept is supported in [148] where it is suggested

that the initial state error estimate should be at most two times the expected standard

deviation of error, σx̃ ∈ R
nx×1, as follows

x̃ [0|0] ≤ 2σx̃ (3.29)

where for the initial conditions it can be assumed that Px̃ [0|0] = σx̃ [0|0] σ′
x̃ [0|0]. Although

not included in equation form within [147] or [148], these suggestions result in the following

condition regarding the initial state error covariance.

Px̃ [0|0] ≥ 4E
{
(x [0]− x̂ [0]) (x [0]− x̂ [0])′

}
(3.30)

Alternatively, the initial state error covariance can consider a relative amount of error

within the initial state estimate with respect to the admissible range of the state domain,

xR ∈ R
nx×1, as follows

Px̃ [0|0] = r2xxRx
′
R (3.31)

where rx is a scaling parameter representing uncertainties in the initial condition as a
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function of the expected admissible range for the state vector, e.g. rx = 0.001 represents

0.1% full scale error in the assumed initial state.

By considering only the admissible range within the domain of the state vector, the

following relationship can be established

Px̃ [0|0] = r2xxRx
′
R ≥ 22 · E

{
(x [0]− x̂ [0]) (x [0]− x̂ [0])′

}
(3.32)

where for a maximum possible initial state error equal to the admissible range, the scaling

parameter will be equal to two, rx = 2. Alternatively, for known admissible range within

the state domain, xR, an initial state estimate of x̂ [0|0] = 0.5xR results in the initial state

error covariance being one quarter of the case presented in (3.32), or P [0|0] = xRx
′
R. When

compared to using the zero-vector of (3.27), these two sets of initial conditions improve

the ability of the state error covariance to accurately describe the probability distribution

of the true system state over the first few time-steps if there is little knowledge of the true

initial state.

For KF-based state estimation of LTV systems, it is common for the system param-

eters to switch between operating points given some exogenous input to the system, e.g.

the parameter-specifying exogenous input uθ. This switching affects the accuracy of the

KF-based estimates and predictions. For this reason, the developed KF estimation and

prediction algorithms employ a quadratic transition between the previous and current

model parameters that represent the system upon detecting a change, or switch, in the

parameters as a function of the exogenous input. In other words, the KF undergoes a con-

tinuous, smooth, or bumpless transfer during conditions that are otherwise discontinuous,
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potentially disruptive, or misleading.

The transfer is quadratic in that only a fraction of the state estimate for the current

or newly selected parameters is combined with the state estimate for the previous model

parameters. This fraction of the current state estimate increases as a quadratic function of

time over the transfer window whereas the fraction of the previous state estimate decreases

as a quadratic function of time where the sum of the two quadratic functions is equal to

one within each time-step. The length of the window for this transition is a function of

the change in the exogenous input. Thus, the transition window is longer for a parameter

change that occurs during ramp manoeuvres whereas the transition is shorter for step

changes in the exogenous input that is responsible for model selection. This is a simple

form of bumpless transfer that is suitable for use in controllers that are limited in terms of

computational power. For controllers that are more powerful, it may be advantageous to

implement multiple KFs, one for each of the multi-model operating points or ranges.

3.3 Kalman-filter-based point-prediction

It is straightforward to extend the KF-based state observer to both the state and measure-

ment point-prediction problems. In fact, the a priori state estimate equation of (3.18) is

by definition the one-step-ahead prediction of the state estimate, hence the predict stage.

A one-step-ahead point-prediction of the measurement can therefore be calculated directly

from the a priori state estimate as follows

ŷ [k + 1|k] = C [k + 1] x̂ [k + 1|k] +D [k + 1] u [k + 1] (3.33)
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where the future values of C [k + 1], D [k + 1], and u [k + 1] are assumed to be known,

e.g. equal to values at the current time-step k, or C [k], D [k], and u [k]. Here, the term

point-prediction refers to the fact that the predictions are quantified using only a single

value rather than a range of values that have been assigned a probability distribution. In

other words, point-predictions do not consider the error covariances associated with either

the state or measurement estimates or predictions.

State estimates are propagated beyond one time-step, e.g. to a prediction horizon of

Np time-steps, by repeatedly iterating the a priori state estimate equation provided in

(3.18). These repeated calculations result in an i-step-ahead state point-prediction for

each time-step within the prediction window, i = 1, . . . ,Np, as follows

x̂ [k + i|k] = A [k + i− 1] x̂ [k + i− 1|k] + B [k + i− 1] u [k + i− 1] (3.34)

where the values of A [k + i− 1], B [k + i− 1], and u [k + i− 1] are assumed to be known

for i = 2, . . . ,Np. This equation is essentially the deterministic state equation of the state-

space system model given in (3.1). Thus, the minimization of mean squared error that

is performed within the a posteriori stage of the KF is not considered during the predic-

tion process. Nor do the KF-based state estimates consider the state and measurement

predictions that are propagated beyond one time-step into the future.

An i-step-ahead measurement point-prediction can be calculated directly using the

i-step-ahead state predictions for each time-step within the prediction window as follows

ŷ [k + i|k] = C [k + i] x̂ [k + i|k] +D [k + i] u [k + i] (3.35)
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Figure 3.7: The a priori state estimate equation in (3.18) under the assumption that the
future model parameters and system inputs have the same values as for current time-step,
k.

where C [k + i], D [k + i], and u [k + i] are assumed known. As for state propagation, this

equation is essentially the deterministic measurement equation of the state-space system

model given in (3.2).

The state and measurement point-prediction equations of (3.34) and (3.35) are com-

bined in the block diagram of Figure 3.7 under the assumption that the future model

parameters and system inputs have the same values as for current time-step, k. A block

diagram of the more general case of (3.34) and (3.35) can be established through the re-

placement of C [k] and D [k] with values at time-step (k + i), as well as A [k], B [k], and

Rx [k] with values at time-step (k + i− 1). It is not necessary to propagate the state error

covariance in Figure 3.7 since the KF-based state and measurement point-predictions are

independent of these future values.

A summary of the KF-based state and measurement point-prediction procedure is pro-

vided in Algorithm 3.2 under the same assumption of known future model parameters and

system inputs as for Figure 3.7. Moreover, an overview of the point-prediction procedure

is illustrated in Figure 3.8. An algorithm for the more general case of (3.34) and (3.35) can
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Figure 3.8: Connectivity between the system and the KF-based measurement prediction
procedure of Algorithm 3.2.

be established by implementing the changes to time-indices as described for Figure 3.7. In

addition, the state error covariance is not propagated beyond one time-step in to the future

in the predict stage of Algorithm 3.2.

Algorithm 3.2 includes a count of the number of operations, or OPL, that are required to

perform the point-prediction procedure for a scalar measurement. This count reveals that

the computational complexity of the KF-based state and measurement point-prediction

routine remains cubic with respect to the dimension of the state vector, or KFp ∈ O (n3
x).

The complexity of KF-based point-prediction is therefore of the same order as the KF-

based state estimation presented in Algorithm 3.1. In other words, the added complexity

that results from propagating the state vector and calculating the measurement prediction

is relatively insignificant compared to the complexity of KF-based state estimation.

Although convergence is of concern within the KF state estimation portion of the KF-

based prediction algorithm, the prediction equations provide no additional stability or
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Algorithm 3.2 Kalman-filter-based (KF) state and measurement point-prediction, KFp,
under the assumption that the future model parameters and system inputs remain at the
same values as for current time-step, k.

Require: Np,A,B,C,D, u, y,Rx,Ry

Initial conditions: x̂ [0|0] ,Px̃ [0|0]
Result: ŷ [k + i|k] ∀i = 1, . . . ,Np

k = 0
call [Initialization] from Algorithm 3.1
loop
k = k + 1
{measure y [k]}
call [State estimation (update)] from Algorithm 3.1
[Np-step state propagation (predict)]
for i = 1, . . . ,Np do
[ith-step state propagation (predict)]
x̂ [k + i|k] = A [k] x̂ [k + i− 1|k] + B [k] u [k]
ŷ [k + i|k] = C [k] x̂ [k + i|k] +D [k] u [k]

end for
Px̃ [k + 1|k] = A [k]Px̃ [k|k]A′ [k] +Rx [k]
{propagate x [k] to x [k + 1]}

end loop

OPL for scalar y: 6n3
x + 1

2
(4Np + 17)n2

x + (Np + 6)nx +Npnxnu + (Np + 2)nu −Np ∈ O
(

n3
x

)

convergence concerns. This is due to the predict stage effectively being an open-loop

propagation of the state vector to future time-steps. Convergence and stability only become

a concern when prediction error is considered within the prediction algorithm since the

current prediction error can have an destabilizing effect on the future prediction error. The

potential for the modified forms of the KF-based prediction algorithm to become unstable

is discussed further in Chapter 4.

Prediction error

It has been identified that KF-based point-predictions are not updated as a function of

the prediction error for predictions that are propagated beyond one time-step. This lack

of update remains true even after after the previous prediction horizons have passed and
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the measurements corresponding to the predictions have been transmitted by the sensors

and measured by the KF. In short, the KF-based point-prediction algorithm does not

consider or even monitor whether or not the previously calculated predictions agree with

the future system measurements. In contrast, the KF-based state estimates are updated

as a function of the a priori measurement estimation error or innovation. There exists an

opportunity, therefore, to compensate the calculated predictions for the error between the

previous predictions and the future system measurements once measured, even if the cause

of these prediction errors is unknown. Thus, a method for prediction error compensation

is formulated in Section 4.1. In addition, Section 5.3 investigates various methods to

statistically quantify the agreement between the calculated measurement predictions and

the future system measurements.

Prediction with unknown future inputs

The KF-based point-prediction procedure presented in Figure 3.7 and Algorithm 3.2 is

optimal in the mean squared sense with respect to estimation error for the LTI case with

constant model parameter values and known future system inputs. For unknown future

system inputs, however, the resulting point-predictions may no longer be optimal. These

non-optimal conditions also apply when the model parameters are either explicit functions

of time or functions of an exogenous system input, i.e. the LTV and LPV cases. Thus,

the calculated point-predictions are only approximations of the future states or measure-

ments. Given that the calculated predictions are eventually measured, it is possible to

compensate the predictions for the known unknowns that are the assumed future model

parameters and system inputs. This compensation is addressed along with the prediction
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error compensation problem stated in the previous paragraph in Section 4.1.

Confidence in point-predictions

Finally, the measurement predictions returned by Algorithm 3.2 are single-valued mean

estimates that correspond to each time-step within the prediction window. These single-

valued estimates can then be used to make predictive decisions regarding the future be-

haviour of the system. In fact, each point-prediction represents, utilizing knowledge that

is available up to the current time-step k, the value below which 50% of the future states

and/or measurements are expected to occur and also above which 50% of the future states

and/or measurements are expected to occur for each time-step within the prediction win-

dow. In other words, for a point-prediction that is equal to an arbitrary threshold, e.g.

an alarm threshold or TSP, there is a 50% level of confidence at the current time-step, k,

that the true future value will reach the threshold, i.e. that a threshold-crossing event will

occur. There is also a 50% level of confidence at the current time-step, k, that the true

future value will not reach the threshold and a threshold-crossing event does not occur.

Thus, Section 3.4 and Section 3.5 extend the point-prediction problem to instead consider

future state and measurement error covariances in order to make increasingly confident

decisions regarding the future behaviour of the system and the probability of an impending

threshold-crossing event.
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3.4 Confidence and prediction intervals

State error covariances quantify uncertainties in the state estimates, x̂, given that the state

and measurement noise covariances accurately reflect the true uncertainties in the model

and signals. Similarly, the measurement error covariances, Pỹ in (3.23) and (3.24), quantify

uncertainties formeasurement estimates, ŷ. More specifically, state andmeasurement error

covariancematrices include variances fromwhich confidence and prediction intervals can be

calculated for a predetermined and fixed one-tailed significance level, α, and corresponding

percentage confidence level equal to 100 (1− α)%. The significance level is sometimes

referred to as the confidence coefficient, [146].

Confidence intervals, as illustrated in Figure 3.9a), provide upper and lower limits

or bounds for the estimates above and below which, given a population of estimation

samples, it is expected that either 100α% or 100 (1− α)% of the estimated values occur.

Confidence intervals are therefore related to the probability density function (PDF) of a

random variable.

The two confidence intervals that are included in Figure 3.9 have one-tailed significance

levels of α ≈ 2.3% and α ≈ 15.9%. The upper bound of Figure 3.9b) is the value at which

100α% of the estimates are expected to be greater than whereas 100 (1− α)% are expected

to be less than or equal to the bound as indicated by the shaded region. The shaded

area is equal to the value of the cumulative distribution function (CDF) calculated for the

interval between−∞ and the upper bound for the specified significance level. The expected

probability of the estimates occurring above the bound is referred to as the complementary
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Figure 3.9: Confidence intervals of significance levels α ≈ 0.023 and α = 0.159 for the
a) respective outer and inner bounds of a sequence of measurement errors, ỹ, and corre-
sponding b) one-tailed bound as well as, c) two-tailed bound including probability density
function (PDF).

CDF. These two probabilities are respectively calculated for the measurement error as

follows

Pr (ỹ ≤ zασỹ) = 100 (1− α) (3.36)

Pr (ỹ > zασỹ) = 100α = 1− Pr (ỹ ≤ zασỹ) (3.37)

where zα is the score associated with the two-tailed significance level α, Pr (•) is the prob-

ability for the occurrence of event •, σỹ ∈ R
ny×1 is the estimated standard deviation of the

measurement error and σỹσ
′
ỹ = Pỹ. Alternatively, although a lower bound is not included

in Figure 3.9, 100 (1− α)% of the estimates are expected to be greater than the lower limit

of the interval whereas 100α% are expected to be less than or equal to the limit. This lower
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bound example has the following probabilities for the state error

Pr (x̃ > −zασx̃) = 100 (1− α) (3.38)

Pr (x̃ ≤ −zασx̃) = 100α = 1− Pr (x̃ ≤ −zασx̃) (3.39)

with σx̃ as defined for (3.29).

The upper and lower limits are also the bounds within which, given a population of

estimation samples, it is expected that 100 (1− α)% of the estimated values occur, where

α is the two-tailed significance level calculated as follows

α = 2α. (3.40)

The two-tailed confidence interval is illustrated in Figure 3.9c) with the probability of an

estimate being within the bounds represented for measurement error as follows

Pr (−zασỹ < ỹ ≤ zασỹ) = 100 (1− α) (3.41)

Pr (ỹ ≤ −zασỹ or ỹ > zασỹ) = 100α = 1− Pr (−zασỹ < ỹ ≤ zασỹ) (3.42)

where zα is the score associated with the two-tailed significance levelα. These concepts also

apply to the limits of prediction intervals for predictions within a population of prediction

samples. In general, the term confidence interval refers to both the confidence interval

for estimates as well as the prediction interval for predictions. Within this work the term

confidence interval is used in place of prediction interval. This allows for emphasis to be
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placed on the level of confidence in the calculated predictions; this metric is considered

valuable to the predictive decision-making process.

The two-tailed significance level, α, is a statistic that is symmetric about the mean of

the estimate or estimation error. This is in contrast to the one-tailed significance level,

α, that has different probabilities assigned for either the upper or the lower bounds. The

majority of this section therefore refers the two-tailed significance level with the one-tailed

statistic becoming of more importance within the one-tailed confidence calculations of

Chapter 5. Moreover, the score, z, is also a symmetric statistical measure and is therefore

often specified using the two-tailed significance level, zα

For both the a posteriori and a priori state estimates, the upper and lower limits of

the 100 (1− α)% confidence interval are respectively calculated as follows [146]

x̂u,α [k|•] = x̂ [k|•] + zα (Px̃ [k|•])
1
2 (3.43)

x̂l,α [k|•] = x̂ [k|•]− zα (Px̃ [k|•])
1
2 (3.44)

where zα is as defined for (3.42), • is equal to (k − 1) for the a priori case and as k for the

a posteriori case, and (Px̃ [k|•])
1
2 is the square root of the state error covariance that can

be calculated using singular value decomposition (SVD) and/or various other eigendecom-

position methods that utilize eigenvalues and eigenvectors to solve the multidimensional

standard deviation problem [150] e.g. diagonalization or Cholesky decomposition. This

square root is also the solution of σx̃ [k|•] σ′
x̃ [k|•] = Px̃ [k|•], if it exists. In other words,

matrix σx̃ [k|•] is said to be a square root of Px̃ [k|•] is σx̃ [k|•] σ′
x̃ [k|•] is equal to Px̃ [k|•].

For single-dimensional spaces the square root reduces to the standard arithmetic operation,

119



√•.

Within (3.43) and (3.44), the score, zα, represents the number of standard deviations

between the mean state estimate and the upper and lower limits of the confidence interval

within which it is expected that 100 (1− α)% of the estimates occur. The score is therefore

calculated as a function of two-tailed significance level, α, as follows

zα =
√
2erf−1 (1− α) = Φ−1 (1− α

2

)

, (3.45)

where erf−1 (•) is the inverse Gaussian error function and Φ−1 (•) is the inverse cumulative

Gaussian distribution function. The score is a fixed parameter that can be calculated in

advance of executing KF-based algorithms as it is a function of only the fixed significance

level, α.

Upper and lower limits of the 100 (1− α)% confidence interval can also be calculated

for either the a priori or a posteriori measurement estimates as follows [146]

ŷu,α [k|•] = ŷ [k|•] + zα (Pỹ [k|•])
1
2 (3.46)

ŷl,α [k|•] = ŷ [k|•]− zα (Pỹ [k|•])
1
2 (3.47)

where zα and [k|•] are as defined for (3.43) and (3.44). Here, the square root of the

measurement error covariance can, in general, be calculated in the same manner as for

the state interval-estimates as discussed for (3.43) and (3.44). More often, however, the

square root is calculated as the arithmetic square root,
√•, for a single output system with

scalar measurement, or as multiple individual square roots for a multiple output system
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by considering individually each system measurement within the measurement along with

the diagonal elements of the measurement error covariance matrix.

Extension of the confidence interval calculations to multi-step-ahead measurement pre-

diction results in the following calculation for the upper and lower limits of the 100 (1− α)%

prediction interval for the measurements

ŷu,α [k + i|k] = ŷ [k + i|k] + zα (Pỹ [k + i|k])
1
2 (3.48)

ŷl,α [k + i|k] = ŷ [k + i|k]− zα (Pỹ [k + i|k])
1
2 (3.49)

with all variables as defined for 3.47. This extension can also be applied to (3.43) and

(3.44) in order to calculate prediction intervals for the state vector. These i-step-ahead

interval-predictions now require that the a priori state error covariance, Px̃, is propagated

to future time-steps. For the measurement interval-predictions, this propagation is due to

the measurement error covariance, Pỹ, being a function of the state error covariance, Px̃.

In Section 3.3, comparison of point-predictions against alarm thresholds resulted in only

50% confidence of a threshold-crossing actually occurring within the prediction horizon and

an equal 50% confidence of a threshold-crossing not occurring. Using the confidence-based

methods of this section, however, it is now possible to improve the confidence of predictive

decision-making by considering the upper and lower bounds of the prediction interval as

given in (3.48) and (3.47) respectively. In this manner, predictive decisions can be made

with respect to specific levels of confidence as a function of the one-tailed significance level,

α. More precisely, the use of one-tailed significance levels allows the prediction algorithm

to consider, for impending threshold-crossings, levels of confidence that are greater than
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50%. In addition, one-tailed significance levels of confidence that are less than 50% can be

utilized to decide against a particular opposing decision regarding an impending threshold-

crossing.

As in the case of point-predictions, interval-predictive decisions can be made within

the domain of either the state or measurement. Within the state domain, the prediction

intervals are functions of the square root of state error covariance as included in the a priori

state predictions of (3.43) and (3.44). This square root, in turn, requires the calculation of

the computationally complex SVD; SVD computations significantly affect the arithmetic

complexity of the prediction algorithm. That being said, predictive decisions within the

domain of the state are generally able to provide additional information regarding the im-

pending conditions of the system and may be worth the added computational complexity.

In contrast, under the assumption that the ny signals of the measurement vector are inde-

pendent, the matrix square roots included in the measurement predictions of (3.48) and

(3.49) can be reduced to ny individual square root operations, one for each element along

the diagonal of the measurement error covariance matrix, Pỹ. The measurement domain is

therefore the preferred domain for calculation of interval-predictions due to the prediction

algorithm being less computationally complex than that of the state domain.
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3.5 Kalman-filter-based measurement

interval-prediction

To extend theKF-based point-prediction procedure to themeasurement interval-prediction

problem, it is required that the confidence intervals of the multi-step-ahead predictions be

calculated. These intervals are, in turn, a function of the propagated a priori state error

covariance. This propagation is straightforward since the a priori state error covariance of

(3.19) is by definition the one-step-ahead prediction of the state error covariance, i.e. the

predict stage within the KF-based state estimation procedure.

The state error covariance is propagated beyond one time-step, e.g. to a prediction

horizon of Np time-steps, by repeatedly calculating the a priori state error covariance

provided in (3.19). This propagation is similar to that of the a priori state estimate in

Section 3.3. These repeated calculations result in the following i-step-ahead state error

covariance predictions for each time-step within the prediction window, i = 1, . . . ,Np, as

follows

Px̃ [k + i|k] = A [k + i− 1]Px̃ [k + i− 1|k] (A [k + i− 1])′ +Rx [k + i− 1] (3.50)

where the future values of A [k + i− 1] and Rx [k + i− 1] are assumed to be known for

i = 2, . . . ,Np. This equation is a function of the state-space model parameters as defined in

(3.9) as well as the state noise covariance that is provided to the KF-based state observer as

defined in (3.12). Thus, in addition to the multi-step-ahead predictions, the minimization
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of mean squared error that is performed within the a posteriori stage of the KF does

not consider the state or measurement error covariances that are propagated beyond one

time-step into the future.

The upper and lower bounds of the i-step ahead measurement interval-prediction can

then be calculated as given in (3.48) and (3.49) respectively. These bounds are the summa-

tion of the mean KF-based measurement point-prediction, ŷ [k + i|k], and the sign-specific

half-width of the confidence interval; positive for the upper bound and negative for the

lower bound. The half-width of the prediction interval is a function of a fixed significance

level, α, where the upper and lower limits of the interval provide a bounds within which

100 (1− α)% of the predicted values are expected to occur as illustrated in Figure 3.9c).

The half-width is also a function of the measurement error covariance that is calculated for

the i-step-ahead measurement prediction as follows

Pỹ [k + i|k] = C [k + i]Px̃ [k + i|k]C ′ [k + i] +Ry [k + i] (3.51)

where Px̃ [k + i|k] is defined in (3.50) and C [k + i] and Ry [k + i] are assumed known.

Finally, the square root of the measurement error covariance is calculated using multiple

individual square roots for a multiple output system where the system measurements are

assumed to be independent and therefore have corresponding covariances that are the

diagonal entries of the measurement error covariance matrix.

The i-step-ahead state andmeasurement error covariance equations of (3.50) and (3.51)

are combined to calculate KF-basedmeasurement interval-predictions in the block diagram

of Figure 3.10 under the assumption that the futuremodel parameters and system inputs re-
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Fig.

3.7

Figure 3.10: The a priori state error covariance equation in (3.19) under the assumption
that the future model parameters and system inputs remain at the same values as for
current time-step, k.

main at the same values as for the current time-step, k. In addition, the interval-predictions

are a function of the i-step-ahead measurement point-prediction in Figure 3.7. A block di-

agram of the more general case formulated in (3.50) and (3.51) can be established through

the replacement of C [k],D [k], and Ry [k] with values at time-step (k + i), as well as A [k],

B [k], and Rx [k] with values at time-step (k + i− 1).

A summary of the KF-based measurement interval-prediction procedure is provided in

Algorithm 3.3 under the same assumption of known future model parameters and system

inputs as for Figure 3.10. Moreover, an overview of the interval-prediction procedure is

illustrated in Figure 3.11. An algorithm for the more general case that is formulated in

(3.50) and (3.51) can be established by implementing the time index changes as described

for Figure 3.10. In contrast to the point-predictive algorithm, the state error covariance is

now propagated beyond one time-step into the future. In addition, the measurement error

covariance, Pỹ, the half-width of the confidence interval, hy,α, and the upper and lower

bounds of the measurement interval-prediction, ŷu,α and ŷl,α, are also calculated within
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Figure 3.11: Connectivity between the KF-based measurement prediction as well as confi-
dence interval calculation procedures of Algorithm 3.3.

each time-step of the prediction window.

Algorithm 3.3 includes a count of the number of operations, or OPL, that are required

to perform the interval-prediction procedure for a scalar measurement. This count reveals

that the computational complexity of KF-based measurement interval-prediction remains

cubic with respect to the dimension of the state vector, or KFip ∈ O (n3
xNp). The complex-

ity does, however, increase in proportion to the length of the prediction window given as

the prediction horizon Np and is therefore greater than that of either the KF-based state

estimation of Algorithm 3.1 or the KF-based point-prediction of Algorithm 3.2. This in-

crease in complexity is due to the propagation of the state error covariance to the prediction

horizon which alone is O (n3
xNp).

In order to calculate the complexity of the scalar square root operation, the square root

is assumed to be performed using the reciprocal square root form of the Newton-Raphson

method where double-precision floating-point accuracy is estimated to be achieved by
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Algorithm 3.3 Kalman-filter-based (KF) measurement interval-prediction, KFip, under
the assumption that the future model parameters and system inputs have the same values
as for the current time-step, k.

Require: Np,A,B,C,D, u, y,Rx,Ry

Initial conditions: x̂ [0|0] ,Px̃ [0|0]
Result: ŷ [k + i|k] , ŷu,α [k + i|k] , ŷl,α [k + i|k] ∀i = 1, . . . ,Np

k = 0
call [Initialization] from Algorithm 3.1
loop
k = k + 1
{measure y [k]}
call [State estimation (update)] from Algorithm 3.1
[Np-step state propagation (predict)]
for i = 1, . . . ,Np do
[ith-step propagation (predict)]
x̂ [k + i|k] = A [k] x̂ [k + i− 1|k] + B [k] u [k]
ŷ [k + i|k] = C [k] x̂ [k + i|k] +D [k] u [k]
Px̃ [k + i|k] = A [k]Px̃ [k + i− 1|k]A′ [k] +Rx [k]
Pỹ [k + i|k] = C [k]Px̃ [k + i|k]C ′ [k] +Ry [k]

[ith-step interval calculation]

hy,α = zα (Pỹ [k + i|k])
1
2

ŷu,α [k + i|k] = ŷ [k + i|k] + hy,α

ŷl,α [k + i|k] = ŷ [k + i|k]− hy,α
end for
{propagate x [k] to x [k + 1]}

end loop

OPL for scalar y: 3 (Np + 1)n3
x + 5

(

Np + 3
2

)

n2
x + 1

2
(3Np + 13)nx +Npnxnu + (Np + 1)nu + 28Np ∈ O

(

n3
xNp

)
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performing fifteen multiplications and ten additions. The number of required square root

computations is halved, however, by performing a single half-width calculation, denoted

as hy,α, rather than within each of the upper and lower interval equations.

Algorithm 3.3 returns, within each time-step of the prediction window, a range of

measures on which to make decisions regarding the future behaviour of the system. This

range of values is in contrast to the single-value that is produced within each time-step

of the prediction window for the point-prediction algorithm of Algorithm 3.2. The upper

and lower bounds of the interval-predictions are the two values within which 100 (1− α)%

of the measurements are expected to occur as illustrated in Figure 3.9c). This percentage

is also the level of confidence that the future measurement will occur within the upper

and lower limits. In contrast, there is 100α% level of confidence that the measurement

will occur outside the upper and lower bounds of the prediction interval. These are the

confidence levels for a two-tailed symmetric predictive decisionwhere a futuremeasurement

may either be greater than or less than alarm thresholds that are equal to the respective

upper and lower bounds of the prediction interval, as in [41].

More specifically, a two-tailed predictive decision is illustrated in Figure 3.12 for a

significance level of α = 0.0004 and corresponding confidence level of 99.96%. In this

example, the innovations of Figure 3.12a) do not reach the upper or lower bounds. In fact,

at a sample rate of one sample per day, the data confidence intervals plotted in Figure

3.12 correspond with a single sample reaching the confidence interval once every six years.

The upper and lower bounds of the confidence interval provide measures by which to make

decisions regarding an alarm-high as well as alarm-low thresholds. In Figure 3.12b), there

is therefore a 0.04% probability that the innovation will reach either the alarm-high or
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Figure 3.12: Confidence interval of significance level α = 0.0004 and level of confidence
equal to 99.96% for the a) bounds of a sequence ofmeasurement errors, ỹ, and corresponding
b) two-tailed predictive decision problem including probability density function (PDF) and
the value of the cumulative probability outside of the bounds.

alarm-low thresholds.

For one-tailed predictive decisions, however, the upper and lower bounds are assigned

confidence levels that correspond instead with the one-tailed significance level, α. In this

case, the upper and lower bounds can each be assigned either 100α% or 100 (1− α)%

levels of confidence depending on one of two conditions for the decision being made. For

example, there is 100α% level of confidence in a one-tailed decision regarding whether the

future measurement will be less than an alarm threshold that is equal to the lower bound of

the prediction interval. There is also 100 (1− α)% level of confidence in deciding whether

the future measurement will be greater than the same alarm-low threshold.

The lower bound illustrated in Figure 3.13 has a one-tailed confidence interval that

corresponds to the case of Figure 3.12, i.e. one-tailed significance level α = 0.0002 and a

level of confidence of 99.98% that the innovation will be greater than a low-alarm threshold

that is equal to the lower bound. If, however, the alarm threshold is instead equal to
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Figure 3.13: Confidence interval of one-tailed significance level α = 0.0002 and level of
confidence equal to 99.98% for the a) bounds of a sequence of measurement errors, ỹ, and
corresponding b) one-tailed lower bound, as well as c) one-tailed upper bound including
probability density function (PDF) and values of the cumulative probability within and
outside of the bounds.

the upper bound, there are 100 (1− α)% and 100α% levels of confidence that the future

measurements will be less than and greater than the alarm-high threshold respectively. In

this case, the upper bound of Figure 3.13, corresponds with a one-tailed significance level

of α = 0.9998 and a level of confidence of 0.02% that the innovation will be greater than an

alarm-high threshold that is equal to the upper bound. Thus, as stated in Section 3.4, the

one-tailed significance level requires that specific probabilities be assigned for the upper or

the lower bounds with respect to alarm-high and alarm-low thresholds. In Figure 3.13b),

it is very likely that the innovations will reach an alarm-high threshold that is equal to the

lower bound. In contrast, in Figure 3.13c) it is very unlikely that the innovations will reach

an alarm-high threshold that is equal to upper bound.
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Accuracy of state noise covariance, Rx

The KF-based interval-prediction procedure, as presented within this subsection, requires

that the assumed noise covariance values of Rx or Ry represent the true uncertainty within

the states, inputs, and measurements to ensure the calculated error covariances provide

valid probability distributions and confidence intervals. The purpose of these two noise

covariancematrices is to quantify uncertaintieswithin the state andmeasurement equations

respectively. Moreover, the noise covariances also balance, within the KF, the uncertainty

between the assumed model parameters, system inputs, and system measurements. In

general, the diagonal elements of the measurement noise covariance matrix, Ry, can be

calculated as the variances of the individual measurement signals at the output of the

system at steady state or after detrending themeasurement signal to remove any bias, drift,

or other anticipated dynamics. In addition, the off-diagonal elements of this covariance

matrix are equal to zero for independent measurements and are otherwise calculated as the

covariances between each pair of elements within the measurement vector. In contrast, it

is often difficult to calculate the state noise covariance matrix, Rx, due to the fact that the

state noise covariance includes uncertainties for both the inputs as well as the state vector

which is not necessarily entirely measurable [151]. These effects are therefore investigated

in the following section, Section 3.6.
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3.6 Noise covariances and uncertainty

KFs are able to perform state estimation through the use of a model that is a mathematical

abstraction of the true system dynamic. The parameters of the model can be identified

through system identification and parameter estimation procedures for an assumed sys-

tem structure. Moreover, the parameters may also be assigned by first principles from a

theory-based understanding of the individual components of the system or by black-box

modelling and parameter estimation for which there is no assumption regarding system

structure. No matter what method is used, the parameters are often uncertain and may

not necessarily be an exact representation of the actual system parameters. This is espe-

cially true for systems that have LTV parameters where the parameters may be accurate

for one operating condition but differ when the operating conditions change. Moreover,

in the case of prediction, the conditions may differ from those that are anticipated. In

addition to model uncertainties, there may also be uncertainties within the signals that are

provided to, or measured by, the KF. This uncertainty may, for example, be the result of

noise within the process or manipulating signals, poor placement or installation of sensors,

signal processing and quantization, or interference within communication channels. Both

modelling as well as signal uncertainties are annotated in the state observer of Figure 3.3.

As stated in Section 3.2, KF-based state observers account for uncertainties through

the state and measurement noise covariances, Rx and Ry, as defined in (3.12) for the

state and measurement noise vectors, vx and vy respectively. The resulting KF-based

state estimates are optimal in the minimum mean squared sense, given that these noise
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covariances accurately describe the true uncertainty of the identified model parameters

and structure as well as the state and measurement signals. For LTI systems, the state

and measurement noise are generally assumed to be time-invariant. For the LTV model

of (3.9) and (3.10), however, it is more appropriate to consider noise covariances that are

time-varying.

The state and measurement noise covariance matrices establish a respective balance

between uncertainty in the model and inputs to the state equation against uncertainty

in the system measurements and inputs to the measurement equation. This balance can

be evaluated by determining the effect that changes in the magnitudes of the state and

measurement noise covariances have on the resulting state estimates for scalarmeasurement

vector, y ∈ R
1×1. Regarding the system measurements, the state estimate is a function of

the measurement noise covariance, Ry [k] ∈ R
1×1, through the Kalman gain equation in

(3.15). In contrast, the state estimate is effected by the state noise covariance, Rx [k] ∈

R
nx×nx , through the a priori state error covariance equation in (3.19).

Any changes to the elements of theKalman gain vector, ∆K [k], that result from changes

in the scalar measurement noise covariance, Ry [k] to (Ry [k] + ∆Ry [k]), can be defined in

the following as a function of the a priori state error covariance (3.19)

∆K [k] , K∆ [k]−K [k]

= Px̃ [k|k − 1]C ′ [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k] + ∆Ry [k])
−1

− Px̃ [k|k − 1]C ′ [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])
−1

(3.52)

whereK∆ [k] is the modified Kalman gain that results from the change in the noise covari-
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ance. The change inKalman gain can then be simplified by factoring the initialmultiplicand

Px̃ [k|k − 1]C ′ [k], finding a common denominator, and reorganizing the equation, although

this is only possible for the scalar measurement case

∆K [k] = Px̃ [k|k − 1]C ′ [k] ((C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k] + ∆Ry [k])
−1

− (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])
−1
)

= Px̃ [k|k − 1]C ′ [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])
−1

· (−∆Ry [k]) (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k] + ∆Ry [k])
−1

(3.53)

where the change in Kalman gain elements are inverse in sign with respect to the change

in the magnitude of uncertainty in the system measurement, ∆Ry. The modified Kalman

gain is then equal to the summation of the original Kalman gain, K [k], and the change in

Kalman gain of (3.53) as follows.

K∆ [k] = Px̃ [k|k − 1]C ′ [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])
−1

·
(

I−∆Ry [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k] + ∆Ry [k])
−1)

= K [k]
(

I−∆Ry [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k] + ∆Ry [k])
−1)

(3.54)

The elements of the Kalman gain vector,K [k] ∈ R
nx×1 are therefore equal to the elements

of the original gain minus the original gain elements multiplied by a function of the change

in the measurement noise covariance, Ry [k].

Thus, all else equal, an increase in uncertainty in a scalarmeasurement noise covariance,

Ry [k], results in the magnitude of the Kalman gain being reduced and the updated state
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estimate tracking more closely the dynamic of the system model rather than the measure-

ments. This relationship is restated in the following by calculating the limits of (3.54) with

time-indices omitted for readability.

lim
∆Ry→0+

K

(

I− ∆Ry

CPx̃C ′ +Ry +∆Ry

)

= K (3.55)

lim
∆Ry→∞

K

(

I− ∆Ry

CPx̃C ′ +Ry +∆Ry

)

= 0nx×1 (3.56)

Alternatively, an increase in uncertainty in the state noise covariance, Rx [k], results

in the updated state estimate more closely tracking the measurement rather than the

dynamic of the system model. To support this claim, the following equation defines the

change in the Kalman gain, ∆K [k], for a change in the state noise covariance from Rx [k]

to (Rx [k] + ∆Rx [k]) as a function of the a priori state error covariance (3.19) and scalar

noise covariance, Ry [k].

∆K [k] = (Px̃ [k|k − 1] + ∆Rx [k − 1])C ′ [k]

· (C [k] (Px̃ [k|k − 1] + ∆Rx [k − 1])C ′ [k] +Ry [k])
−1

− Px̃ [k|k − 1]C ′ [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])
−1

(3.57)

Moreover, the original state noise covariance term, Rx [k], is embedded within the a priori

state error covariance Px̃ [k|k − 1] as follows

P∆,x̃ [k|k − 1] = A [k − 1]Px̃ [k − 1|k − 1]A′ [k − 1] +Rx [k − 1] + ∆Rx [k − 1]

= Px̃ [k|k − 1] + ∆Rx [k − 1] (3.58)
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where P∆,x̃ is the state error covariance that has been affected by the change in state noise

covariance, ∆Rx. The change in Kalman gain can then be expanded to the following form

∆K [k] = Px̃ [k|k − 1]C ′ [k] (C [k] (Px̃ [k|k − 1] + ∆Rx [k − 1])C ′ [k] +Ry [k])
−1

− Px̃ [k|k − 1]C ′ [k] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])
−1

+∆Rx [k − 1]C ′ [k] (C [k] (Px̃ [k|k − 1] + ∆Rx [k − 1])C ′ [k] +Ry [k])
−1

(3.59)

where for a positive-definite state noise covariance and a change in state noise covariance,

∆Rx, representing an increase in uncertainty within the state, the first two terms reduce

the magnitude of the elements of the Kalman gain vector and the third term negates the

aforementioned reduction. The effects of the three terms in (3.59) are combined in the

following equation.

∆K [k] = ∆Rx [k − 1]C ′ [k]Ry [k] (C [k] (Px̃ [k|k − 1] + ∆Rx [k − 1])C ′ [k] +Ry [k])
−1

· (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])
−1

(3.60)

Thus, for a positive-definite∆Rx [k], themagnitude of each elementwithin theKalman gain

vector is increased with respect to the sign included in the state-to-measurement matrix,

C.

In other words, all else equal, an increase in uncertainty in the state by ∆Rx results in

the updated state estimate trackingmore closely themeasurement rather than the dynamic

of the system model. As in (3.55) and (3.56), this relationship is restated in the following
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by calculating the limits of (3.59) with time-indices again omitted for readability.

lim
∆Rx→0nx×nx

+

K∆ [k] = K + lim
∆Rx→0nx×nx

+

(
Px̃C

′

C (Px̃ +∆Rx)C ′ +Ry

)

+ lim
∆Rx→0nx×nx

+

(
∆RxC

′

C (Px̃ +∆Rx)C ′ +Ry

)

− Px̃C
′

CPx̃C ′ +Ry

= K +
0nx×1

CPx̃C ′ +Ry

= K (3.61)

lim
∆Rx→∞nx×nx

K∆ [k] = K +
1

Ry

− Px̃C
′

CPx̃C ′ +Ry

(3.62)

Thus, as the magnitude of ∆Rx grows, so do the elements of the effected Kalman gain

K∆ [k].

ALMF-based noise covariance estimation

Noise covariances, Rx and Ry, affect the state estimation equation within the standard KF

equations of Section 3.2.1. For the purpose of calculating state point-estimates, however, it

is not essential that the assumed noise covariances reflect the model or signal uncertainties

exactly. This is a result of the KF-based state observer updating the state estimates as a

function of the system measurements [152]. In short, KFs have a structure that causes the

state estimates to converge with the true system states even for gains that are not optimal.

State noise covariances are often therefore assumed to be equal to the covariance of the

input to the system [153], or calculated through trial and error or heuristic procedures [154].

In contrast, accurate noise covariances are essential when KF-based state estimation is

being utilized to obtain an accurate description of the probability distribution for the state

estimates as is required within the KF-basedmeasurement interval-prediction procedure of
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Section 3.5. Various techniques have been developed to address the estimation of state noise

covariance. One technique uses an LS filter to estimate the covariance after calculating the

time-lagged auto-covariance of the operational data [155,156]. Another technique assumes

that the inverse of a function of the state-to-measurement matrix, or (C ′C)−1, exists; an

assumption that is very strong and is rarely satisfied in practice [151]. This research instead

employs the ALMF presented by Myers and Tapley in [157] as it is more computationally

efficient and makes fewer assumptions regarding model structure when compared to the

aforementioned algorithms. Moreover, the ALMF is suitable for systems that have LTV

parameters as well as time-varying noise covariances.

The ALMF includes four equations that estimate the state and measurement noise as

well as the state and measurement noise covariance matrices. These four equations are

supported by four additional equations that are calculated directly from the standard KF

equations. Regarding measurement noise, the first of the two supporting equations is the

a priori measurement estimation error of (3.20). The second supporting equation is the

following modified a priori measurement error covariance that excludes the measurement

noise covariance, R̂y, of the previous time-step, (k − 1).

P y [k|k − 1] = Pỹ [k|k − 1]− R̂y [k − 1] = C [k]Px̃ [k|k − 1]C ′ [k] (3.63)

The next two equations form an ALMF for estimation of the measurement noise co-

variance. First, the mean measurement estimation error is calculated as an estimate of the
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measurement noise, v̂y ∈ R
ny×1, as follows

v̂y [k] = v̂y [k − 1] +
1

Nv

(ỹ [k|k]− ỹ [k −Nv|k −Nv]) (3.64)

where Nv is the length of the window over which the covariance matrices are calculated,

referred to hereafter as the covariance estimation window. The initial value of the mea-

surement noise, v̂y [0], is set equal to zero due to the assumption within the KF that mea-

surement noise is serially uncorrelated or zero mean. This equation is a moving or rolling

average of the a posteriori measurement estimation error over the covariance estimation

window. Given the above estimate, the measurement noise covariance estimation can then

be calculated as follows

R̂y [k] = R̂y [k − 1] +
1

Nv − 1

(
(ỹ [k|k]− v̂y [k])2 − (ỹ [k −Nv|k −Nv]− v̂y [k])2

)

+
1

Nv (Nv − 1)
(ỹ [k|k]− ỹ [k −Nv|k −Nv])

2

− 1

Nv

(
P y [k|k − 1]− P y [k −Nv|k −Nv − 1]

)
(3.65)

where (•)2 represents the square of the variable within the parentheses multiplied by the

transpose of the same variable, or (•) (•)′.

The initial value of the measurement error covariance, R̂y [0], is set equal to the mea-

surement noise covariance that is calculated offline for the standard KF as described in

Section 3.2.3. The following equation introduces the rolling or moving form of unbiased
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estimation for the measurement noise covariance [157].

R̂y [Nv] =
1

Nv − 1

Nv∑

j=1

(

(ỹ [j|j]− v̂y [Nv])
2 − Nv − 1

Nv

P y [j|j − 1]

)

= R̂y [Nv − 1] (3.66)

+
1

Nv − 1

(

(ỹ [Nv|Nv]− v̂y [Nv])
2 − Nv − 1

Nv

P y [Nv|Nv − 1]

)

(3.67)

For the next time-step, the above equation is modified to be recursive by incorporating the

moving estimate as follows

R̂y [Nv + 1] = R̂y [Nv]

+
1

Nv − 1

(

(ỹ [Nv + 1|Nv + 1]− v̂y [Nv])
2 − Nv − 1

Nv

P y [Nv + 1|Nv]

)

− 1

Nv − 1

(

(ỹ [1|1]− v̂y [1])2 −
Nv − 1

Nv

P y [1|0]
)

= R̂y [Nv] +
1

Nv − 1

(

(ỹ [Nv + 1|Nv + 1]− v̂y [Nv + 1])2

− (ỹ [1|1]− v̂y [1])2 +
1

Nv

(ỹ [Nv + 1|Nv + 1]− ỹ [1|1])

−Nv − 1

Nv

(
P y [Nv + 1|Nv] + P y [1|0]

)
)

(3.68)

where the fourth term of 1
Nv

(ỹ [Nv + 1|Nv + 1]− ỹ [1|1]) compensates for the forgotten or

lost mean measurement noise estimate, v̂y [1], in the third term. The above equations

are initialized within the first Nv time-steps as an accumulation of average values. This

initialization procedure is deferred to the algorithms that are presented later on within this

section.

The above ALMF procedure is also performed for the estimation of state noise covari-
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ance. In this case, the first of the two supporting equations is the one-step-ahead state

prediction error calculated as the following difference between the a posteriori and a priori

state estimates

˜̂x [k] = x̂ [k|k]− x̂ [k|k − 1] (3.69)

where ˜̂x is the mean state estimation error. The second supporting equation is a function

of the a priori and a posteriori state error covariances as well as the state noise covariance

estimate, R̂x, from the previous time-step, (k − 1), and is calculated as follows.

P̃x [k] = Px̃ [k|k − 1]− R̂x [k − 1]− Px̃ [k|k] (3.70)

The remaining two equations formanALMF for estimation of the state noise covariance.

The mean state estimation error is calculated as an estimate of the state noise, v̂x ∈ R
nx×1,

as follows

v̂x [k] = v̂x [k − 1] +
1

Nv

(

˜̂x [k]− ˜̂x [k −Nv]
)

(3.71)

whereNv is again the covariance estimation window. Although it is not necessary that the

covariance estimation window for the state noise estimate be equal to the window for the

measurement noise estimate, within the work the two windows are assumed to be equal.

Given the above estimate, the state noise covariance estimation can then be calculated in
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a second equation as follows

R̂x [k] = R̂x [k − 1] +
1

Nv − 1

((

˜̂x [k]− v̂x [k]
)2

−
(

˜̂x [k −Nv]− v̂x [k]
)2
)

+
1

Nv (Nv − 1)

(

˜̂x [k]− ˜̂x [k −Nv]
)2

− 1

Nv

(

P̃x [k]− P̃x [k −Nv]
)

(3.72)

where (•)2 is as defined for (3.65) with this form derived in the same manner as for the

measurement noise in (3.67) and (3.68).

The initial value of R̂x [0] may be calculated to include the known system input noise.

This initial value may also be estimated by considering the a priori measurement error or

innovation as discussed in Section 3.2.3. As with the measurement noise covariance, the

above two equations are also moving averages and are therefore required initialized within

the first Nv time-steps of calculation. This initialization is presented in addition to the

ALMF noise covariance estimation algorithms in the following paragraphs. The diagonal

elements of the estimated covariance matrices are reset to absolute values at every time-

step. This reset is performed due to the potential for negative definite noise covariance

matrices to occur as a result of numerical applications, especially when a small amount of

data has been processed [157].

Summaries of the state andmeasurement covariance estimation procedures are provided

as subroutines in Algorithm 3.4. The two subroutines are called from within any of the

previously listed KF-based algorithms, e.g. state estimation or measurement prediction.

Algorithm 3.4 includes a count of the number of operations, or OPL, that are required to

perform state and measurement covariance estimation for a scalar measurement. These

counts are assumed tobe called from theKF-basedmeasurement interval-prediction routine
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of Algorithm 3.3. A reduction in the number of total multiplication is again utilized when

calculating symmetric matrices, where n2
x multiplications can be reduced to (n2

x + nx) /2

for the calculation of (•)2.

Algorithm 3.4 Adaptive-limited-memory-filter-based (ALMF) measurement ALMFy

and state ALMFx noise covariance estimation

[Measurement noise covariance estimation]
ỹ [k|k − 1] = y [k]− (C [k] x̂ [k|k − 1] +D [k] u [k])
P y [k|k − 1] = Pỹ [k|k − 1]− R̂y [k − 1]
v̂y [k] = v̂y [k − 1] + 1

Nv
(ỹ [k|k]− ỹ [k −Nv|k −Nv])

R̂y [k] = R̂y [k − 1] +
1

Nv − 1

(
(ỹ [k|k]− v̂y [k])2 − (ỹ [k −Nv|k −Nv]− v̂y [k])2

)

+
1

Nv (Nv − 1)
(ỹ [k|k]− ỹ [k −Nv|k −Nv])

2

− 1

Nv

(
P y [k|k − 1]− P y [k −Nv|k −Nv − 1]

)

OPL for scalar y: 17 ∈ O (1)

[State noise covariance estimation]
˜̂x [k] = x̂ [k|k]− x̂ [k|k − 1]
P̃x [k] = Px̃ [k|k − 1]− R̂x [k − 1]− Px̃ [k|k]
v̂x [k] = v̂x [k − 1] + 1

Nv

(

˜̂x [k]− ˜̂x [k −Nv]
)

R̂x [k] = R̂x [k − 1] +
1

Nv − 1

((

˜̂x [k]− v̂x [k]
)2

−
(

˜̂x [k −Nv]− v̂x [k]
)2
)

+
1

Nv (Nv − 1)

(

˜̂x [k]− ˜̂x [k −Nv]
)2

− 1

Nv

(

P̃x [k]− P̃x [k −Nv]
)

OPL for scalar y: 6.5n2
x + 4.5nx + 3 ∈ O

(

n2
x

)

(•)2 = (•) (•)′

The first count reveals that the computational complexity for estimating the measure-

ment covariance of a scalarmeasurement is less than the previously investigated algorithms,

including KF-based state estimation. Moreover, the second count reveals that the com-

putational complexity for estimating the state covariance is quadratic with respect to the

dimension of the state vector, or ALMFx ∈ O (n2
x). Again, this estimation is rather insignif-

icant when compared against the standard KF equations. The subroutines of Algorithm

3.4 do, however, require the storage of 2Nv and Nvn
2
x +Nvnx variables within the memory
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of the controller for measurement and state covariance estimation respectively.

Initialization of the ALMF is performed within the subroutines of Algorithm 3.4 for

both state and measurement covariance estimation. The two subroutines perform the cal-

culations of Algorithm 3.4 but for a window of increasing length up to that of the noise

estimation window, Nv. The initialization procedure begins after the KF gain and state

estimates have somewhat converged from the assumed initial conditions, otherwise, the

covariances will capture uncertainty due to the initial conditions. Thus, the subroutines

are executed for Nv time-steps following the first Nv time-steps of executing the KF-based

prediction algorithm. The number of operations that are required to execute each subrou-

tine are not reported in Algorithm 3.5 since these subroutines are not regularly executed

after the initialization procedure.

Algorithm 3.5 Initialization of the noise covariance estimation subroutines using adaptive
limited memory filter (ALMF)

[Initialize measurement noise covariance estimation]
calculate ỹ [k|k − 1] and P y [k|k − 1] as in Algorithm 3.4

v̂y [k] =
k−1
k
v̂y [k − 1] + 1

k
ỹ [k|k]

R̂y [k] =
k−2
k−1

R̂y [k − 1] + 1
k−1

(ỹ [k|k]− v̂y [k])2 − 1
k
P y [k|k − 1]

[Initialize state noise covariance estimation]
calculate ˜̂x [k] and P̃x [k] as in Algorithm 3.4
v̂x [k] =

k−1
k
v̂x [k − 1] + 1

k
˜̂x [k]

R̂x [k] =
k−2
k−1

R̂x [k − 1] + 1
k−1

(

˜̂x [k]− v̂x [k]
)2

− 1
k
P̃x [k]

(•)2 = (•) (•)′

Along with delaying initialization of the noise covariance estimation procedure for con-

vergence of the KF state estimation, it is also important to select a covariance estimation

window length that satisfies the assumed properties of the stochastic uncertainty between

the model, signals, and system. The state noise window should be relatively long in com-

parison to the dynamic of the process modelled within the KF otherwise the state estimates
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Figure 3.14: Connectivity between KF-based state estimation and the error covariance
procedures of Algorithm 3.5.

will not be able to track the true dynamic response of the system and the estimates will not

converge. In addition, the noise statistics should change relatively slowly in comparison to

the system dynamic. Finally, as illustrated in Figure 3.14, the ALMF and KF work in a

closed loop. Thus, the stability of the combined algorithm is dependent on the convergence

of the KF while using the estimated noise covariances. This stability is a function of the

covariance estimation window length.

A sample implementation of ALMF-based measurement and state noise covariance

estimation within KF-based state estimation is provided in Algorithm 3.6. Moreover, an

overview of the noise covariance estimation procedure is illustrated in Figure 3.14. This

algorithm includes fewer assumptions regarding the noise covariance values in comparison

to the standard KF-based state estimation routine of Algorithm 3.1, where the initial

conditions for the covariance and the noise vector estimates are all that is now required to be

specified. These initial conditions can be estimated by applying theALMFnoise covariance

estimation algorithm to a set of training data. The training data may be obtained by
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monitoring the dynamic response of the system under the different modes of operation for

which estimates or predictions are to be calculated. Alternatively, the algorithm can be

allowed to operate in a stand-alone mode at the onset of execution in order for the noise

covariances to converge to values that are representative of the true uncertainties within

the model parameters, system inputs, and system measurements.

Algorithm 3.6 ALMF/KF-based state estimation

Require: A,B,C,D, u, y,Nv

Initial conditions: x̂ [0|0] ,Px̃ [0|0] , R̂x [0] , R̂y [0] , v̂x [0] , v̂y [0]

Result: x̂ [k|k] ,Px̃ [k|k] , R̂x [k] , R̂y [k]
k = 0
call [Initialization] from Algorithm 3.1
with Rx [0] replaced by R̂x [0]

loop
k = k + 1
{measure y [k]}
if k > Nv then
call [Measurement noise covariance estimation] from Algorithm 3.4

else
call [Initializemeasurement noise covariance estimation] fromAlgorithm 3.5

end if
call [State estimation (update)] from Algorithm 3.1
with Ry [k] replaced by R̂y [k]

if k > Nv then
call [State noise covariance estimation] from Algorithm 3.4

else
call [Initialize state noise covariance estimation] from Algorithm 3.5

end if
call [State propagation (predict)] from Algorithm 3.1
with Rx [k] replaced by R̂x [k]
{propagate x [k] to x [k + 1]}

end loop
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3.7 Monitoring for nonconvergence and divergence

The material of this section is largely based on the discussion regarding the detection and

correction of anomalous behaviours that is included in [47]. These strategies provide an

alternative to calculating observability at each time-step for LTI and potentially also LTV

and LPV systems. Although, in the case of LPV systems, observability may be calculated

offline for all known operating points prior to implementation of the model within the KF.

Convergence is first defined for a sequence of real vectors, denoted η [k], with k > kε for

some kε and |η [k]− η [∞]| < ε, by the following behaviour.

lim
k→∞

η [k] = η [∞] ∀ε > 0 (3.73)

In other words, the sequence of real vectors converges to a limit η [∞] if the norm of the

difference between the limit and the current value of the vector is less than some finite

positive value, ε. For finite length sequences this convergence can instead be represented

by substituting (kε +N) for ∞ in (3.73), where N is a positive integer representing a

number of time-steps. Moreover, two vector sequences are said to converge if the difference

between the sequences approaches the zero vector.

In contrast, divergence is defined for a sequence of real vectors, η [k], and |η [k]| > ε by

the following behaviour

lim
k→∞

η [k] =∞∀ε > 0 (3.74)
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where |η [k]| is said to grow without bound. It is more common, however, that the KF

does not converge, rather than being strictly divergent. Nonconvergence is defined for a

sequence of real vectors, η [k], and |η [k]− η [∞]| < ε by the following behaviour

lim
k→kε+N

η [k] = η [kε +N ] ∀ε > 0 (3.75)

In other words, the sequence of real vectors converges to a limit, η [kǫ +N ], that is different

than the true or desired limit of the sequence.

Within the KF, the following sequences may or may not converge or may even be

divergent: the state vector, x, the mean-squared state, xx′, the state estimate, x̂, the

estimation as well as prediction errors, x− x̂, the error covariances, Px̃,Pỹ, and in the case

of the ALMF filter, the estimated noise covariances, R̂x and R̂y.

For LTI systems, nonconvergence that is due to either the natural behaviour or un-

observability of the system can be predicted by calculating steady state error covariances

using the Riccati equation. The value of the error covariance can then either be determined

to be bounded or to be growing without bound by evaluating the characteristic values of the

covariance. For LTV systems, therefore, monitoring the magnitude of the error covariances

provides a means by which to determine whether a system is diverging. More specifically,

the characteristic values can be calculated by performing eigenvalue-eigenvector decompo-

sition on the error covariances to test for negative values or large condition numbers.

In the case of nonconvergence, the error covariances will not grow without bounds.

Moreover, in practice, it is not possible to measure state estimation error since the ele-

ments of the state vector cannot be measured. This unpredictable nonconvergence can be
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caused by bad data, numerical problems, or mismodelling. For bad data, i.e. misleading

measurements, it is not useful to monitor either the error covariance or Kalman gain since

these values are not affected by the measurements. The innovations, however, can be in-

spected for discrepancies through statistical testing. Then the state noise covariance, Rx,

may be artificially increased to improve recovery from erroneous measurement data if the

erroneous data are not detected before having been processed by the KF.

Numerical problems within the algorithm can be detected by monitoring the behaviour

of state error covariance. For example, larger a posteriori state error covariance than a

priori error covariance is indicative of a numerical problem within the algorithm. These

numerical problems can be remedied by improving the precision of the data within the

KF implementation, e.g. double instead of single precision. There are also various other

modifications to the standard KF equations that are considered to be more numerically

robust, see [47].

The potential for mismatch between the model and the system may also result in non-

convergence. Mismatch due to unmodelled state dynamics can be detected by Fourier

analysis of the innovations and remedied by the addition of fictitious state noise covari-

ance, as was the case for the numerical problems. Mismatch due to parametric modelling

errors can also be detectedwithin the innovation vectorwhere, for time-varying parameters,

either an EKF with unknown parameters as state variables, or the methods of Chapter 4

with the effects of the unknown parameters estimated as disturbance inputs can be utilized.
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3.8 Summary

This chapter presents the state-space form of modelling a system as well as the recursive

form of the KF state estimation equations, including the update and predict stages, for an

LTV system. This chapter also considers the statistical descriptions of uncertainty that are

provided as noise covariances to the KF and how these covariances relate to uncertainties

regarding the operating conditions of the system.

The KF-based state estimation equations are extended to the multi-step ahead pre-

diction problem with a focus on measurement rather than state prediction. The addition

of uncertain future parameter values and signals is considered within the prediction algo-

rithm through interval-prediction and adaptation of the noise covariances or uncertainty

descriptions. Two strategies for KF-based prediction are therefore investigated. The first

calculates only a single point-prediction for each time-step within the prediction window

while the second instead calculates the bounds of the interval-prediction for each time-step.

In utilizing the interval-based measurement prediction, decisions regarding the uncertain

future measurements may be made by considering the bounds of the confidence interval for

the predicted measurements rather than a single point-prediction. The result is a decision

that corresponds with some level of confidence in the predicted measurement.

Adaptation of the noise covariances is achieved through the use of the ALMF noise

covariance estimation algorithm. This adaptation of uncertainty descriptions allows theKF

to consider time-varying uncertainty within the time-varying parameters as well as signals

of the system. In addition, this chapter investigates the effect of state and measurement
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noise and error covariances on the measurement predictions, confidence intervals, and

Kalman gain. These aspects of theKF are often overlooked for the state estimation problem

since the state estimates are, in general, point-estimates, the KF is in the Luenberger

observer form, and the Kalman gain is updated according to the minimum mean squared

error of the updated state error. For safety applications, however, it is essential that the

interval-estimates are an accurate representation of prediction uncertainty as described by

the selected level of confidence.
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Chapter 4

Estimation of Disturbance Inputs

for Prediction Error Compensation

Beyond the stochastic descriptions of system uncertainties that are considered in Chapter

3, it is also possible that the system dynamics are altered in a more deterministic manner.

These deterministic discrepancies may be caused by the occurrence of an initiating event or

unanticipated operations during transient to an abnormal condition. Initiating events are

malfunctions, faults, or failures that result in a specific system dynamic operating beyond

the boundaries of a predetermined region of normal operation. These initiating events

and the resulting changes in the dynamic response of the system can also be considered

abnormal conditions with respect to the model that is assumed within the KF. Moreover,

the abnormal conditions or boundaries on the normal and safe operating regions are defined

by the TSPs and safety-margins that are functions of predetermined physical limits for the

system being protected as discussed in Section 1.1 and Section 2.2. In addition to the
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above disturbances, the system may include time-varying parameters that are not known

in advance and cannot be modelled in a stochastic or probabilistic form, e.g. using mean

and covariance. It may be possible, however, to represent these changes in dynamics due

to the time-varying parameters as deterministic disturbances to either the state or the

measurement.

The objective of this chapter is to compensate the KF-based predictions of Chapter

3 for prediction errors that are the result of abnormal behaviour within the system or

for safety parameter measurements that are otherwise diverging from predicted future

values. This error compensations is made possible by estimating the disturbances that are

affecting the state and measurement. In general, estimation algorithms may include, but

are not limited to, the algorithms discussed in Section 2.1.3. Within this research, however,

preference is given to estimation algorithms that consider deterministic models and signals.

The consideration of deterministic disturbances complements the stochastic modelling of

uncertainties that is considered by the KF-based prediction algorithm presented in Section

3. This concept is illustrated in Figure 4.1.

Althoughdeterministic uncertaintymay seem tobe a contradiction of terms, these terms

are often used together when referring to unknown or unanticipated changes in input and

parameter values that are associated with systems that are defined precisely without the

need for probabilistic descriptions [145]. In other words, stochastic and deterministic un-

certainties are defined respectively as those values that are unknown but may be described

using a probability distribution and those that are unknown but may be described by spe-

cific values [158]. To be clear, the terms stochastic and deterministic uncertainty are not

known to be defined or stated explicitly as part of any standards or regulations and may
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Figure 4.1: Disturbance estimation and prediction error compensation to complement the
KF-based measurement prediction algorithms of Chapter 3.

therefore also be referred to by other names throughout literature.

The result of the above objective is a prediction algorithm that calculates the future

values of safety parameter measurements for a system that may have time-varying param-

eters. This calculation takes into consideration various sources of uncertainties as well

as the possible occurrence of abnormal conditions that may be uncertain with respect to

the nominal system dynamic. In other words, the methods of this chapter allow for the

prediction algorithm to consider that, during transient to an alarm threshold or TSP, the

dynamic of the system may become a modified form of the model that is provided to the

KF.

This chapter focuses specifically on disturbance estimation algorithms that are LS-

based. The LS algorithm is chosen because it conforms to the criteria discussed in the

previous two paragraphs and is compatible with the state-space form of modelling the

system. In addition, LS estimation is a well-established method that is supported by vast
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bodies of related literature and applications, some of which are reviewed in Chapter 2. The

LS filter is combined with the KF in a KF/LS-based prediction algorithm where the LS

disturbance estimates compensate for prediction error. This chapter therefore introduces

a method of compensating for KF-based prediction error through LS-based estimation

of disturbances in both the state and measurement signals of the system. This strategy

is preferred over an augmented KF state or parameter estimation algorithm, as studied

in [55], due to the augmented form requiring the specification of fictitious noise covariances

or statistics, as R• for the KF, for disturbances that are assumed to have deterministic

dynamics.

Of the topics covered in this chapter, the formulation of LS-based disturbance input

estimation is considered a major contribution since it is performed to compensate not only

for possible disturbance inputs but also for the potentially unanticipated changes in the

LTV parameters of the system. In addition, the LS-based estimation is performed from the

perspective of compensating for prediction error as an unknown disturbance signal within

themeasurement equation. This is in addition to the state equation as performed by Juricek

et al. [40]. This LS-based estimation is a simplification of the generalized likelihood ratio

method performed by Basseville and Nikiforov [102].

More specifically, the method of this chapter allows for the originating time-step of

occurrence for the initiating event to be reset rather than solving an optimization problem

for a particular fault occurrence, as in the generalized likelihood ratio algorithm. This

work also presents a solution to the LS estimation problem that considers disturbances

that occur at an unknown time rather than at a known time as considered by Juricek et

al. [40]. In addition, RLS solutions are formulated for the state and the measurement
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disturbance input estimation problems. The two RLS solutions are then combined and

the equations for prediction error as well as error covariance compensation are formulated.

The KF, which is also a recursive algorithm, is considered throughout the development of

the LS disturbance estimation procedures in order to achieve the combined KF/RLS-based

prediction algorithm.

In summary, this chapter combines KF-based state and measurement prediction with

ALMF-based noise covariance estimation and prediction error compensation through RLS-

based disturbance input estimation. This chapter does not attempt, however, to cover the

vast body of literature and applications that are related to the LS methods. For a more

complete treatment of LS estimation of disturbance inputs refer to the text by Basseville

and Nikiforov [102].

4.1 Least-Squares-based Estimation of Disturbance

Inputs

It is expected that estimating and then compensating for prediction error will improve the

accuracy of the predicted measurements and, in turn, the reliability of making predictive

decisions. This section therefore introduces LS-based estimation of disturbances within the

state and measurement equations of a system. More specifically, this section investigates

the use of the LS filter to estimate a disturbance input with an assumed deterministic

disturbance model or profile that is optimal with respect to the LS error between the

current measurement and the a priori measurement estimate or prediction as defined in
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(3.20). The estimated disturbances are then utilized to compensate for estimation error.

These efforts are in support of extending the disturbance estimation problem to estimate

and compensate for prediction error in Section 4.1.2 by propagating the disturbances to

a predetermined prediction horizon. This work does not consider the robustness of the

estimation and prediction error compensation routines to the selection of the disturbance

model. The models are chosen to represent reasonable deviations in the system dynamic

response over relatively short periods of time that may lead an abnormal condition.

Error between a predicted measurement and the true measurement may be caused

by an additive disturbance within either the state or the measurement equation. It is

therefore assumed that the system is modelled as a modified form of the discrete-time

LTV stochastic state-space model in (3.9) and (3.10) that includes additive state and

measurement disturbance sequences as follows

x [k + 1] = A [k] x [k] + B [k] u [k] + vx [k] + Γx [k, kwx
]wx [k, kwx

] (4.1)

y [k] = C [k] x [k] +D [k] u [k] + vy [k] + Γy

[
k, kwy

]
wy

[
k, kwy

]
(4.2)

where Γx ∈ R
nx×nwx and Γy ∈ R

ny×nwy are the assumed deterministic dynamic profiles of

the state and measurement disturbance respectively, wx ∈ R
nwx×1 and wy ∈ R

nwy×1 are

the respective state andmeasurement disturbance inputs, and kw•
is the time-step at which

the disturbance is assumed to have initiated. In addition, system input, u as well as the

disturbance profile, Γ•, are assumed to be deterministic. All other parameters and signals

are as defined for the stochastic state-space model in (3.9) and (3.10). In this form, the

disturbances provide a mechanism for estimating errors that are due to uncertain inputs
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and system parameters, e.g. Ā [k] 6= A [k] and ū [k] 6= u [k], that are not easily described

by probability distributions.

The above disturbance profile and input pairs, Γ• and w•, represent an accumulation

of a set of l ≥ 1 disturbances that can be modelled in the following state-space form for the

state input disturbance

Γ• [k, kw•
]w• [k, kw•

] = Γ•,1 [k, kw•
] γ•,1 [k, kw•

] + · · ·+ Γ•,l [k, kw•
] γ•,l [k, kw•

]

γ•,1 [k, kw•
] =

k∏

j=kw•

Γ•,1 [j, kw•
] γ•,1 [kw•

, kw•
]

+
k−1∑

j1=kw•

k−2−j1∏

j2=0

Γ•,1 [k − 1− j2, kw•
]w•,1 [k, kw•

]

...

γ•,l [k, kw•
] =

k−1∑

j1=kw•

k−2−j1∏

j2=0

Γ•,l [k − 1− j2, kw•
]w•,l [k, kw•

] (4.3)

where
∏−1

j=0 = I, γ•,• ∈ R
n•×1 are the individual disturbance profile components, e.g. bias,

ramp, sinusoid, Γ•,• ∈ R
n•×1 and Γ•,• ∈ R

n•×1 are the individual disturbance models that

are representative of state and state-to-measurement matrices respectively, and w•,• ∈

R
n•×1 are the individual disturbance inputs.

The disturbance profile representation requires that the initial condition for each indi-

vidual disturbance be equal to the zero vector γ = 0n•×1, hence the first term series product

reducing to zero in the latter component of (4.3). These dynamics are written as functions

of free and forced response due to the disturbance profiles including the assumption of

constant input, w [k, kw•
], over the duration of the dynamic response, i.e. from kw•

to k.

The above disturbance models can also be represented in a more familiar state-space form
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as follows

state







γ•,1 [k, kwx
]

γ•,l [k, kwx
]

= Γ•,1 [k − 1, kwx
] γ•,1 [k − 1, kwx

] + w•,1 [k − 1, kwx
]

...

= Γ•,l [k − 1, kwx
] γ•,l [k − 1, kwx

] + w•,l [k − 1, kwx
]

meas.
{
Γ•

[
k, kwy

]
w•

[
k, kwy

]
= Γ•,1

[
k, kwy

]
γ•,1

[
k, kwy

]
+ · · ·+ Γ•,l

[
k, kwy

]
γ•,l
[
k, kwy

]

(4.4)

for the indicated set of state equations and the combined measurement equation.

The disturbance profiles, Γx and Γy, are usually in one of two forms; an offset that

represents bias, or a ramp that represents drift, although any profile that can be modelled

using (4.3) may also be included [40]. For example, the disturbance profile Γx = I injects

an offset in state excitation with magnitude equal to the elements of the estimated state

disturbance input. This profile is equivalent to a single component disturbance model of

Γx,1 = 0nx×nx where the disturbance is equal to the individual disturbance input, w•,•.

In contrast, the disturbance profile Γy =

[

I Ts (k − kw•
) I

]

injects a ramp in the mea-

surement with both the offset and rate of change provided by the estimated disturbance

input. This model is the combination of the previous component for bias disturbance,

Γy,1 = 0ny×ny , along with the ramp component of the disturbance model as Γy,2 = I.

For a system that is operating abnormally or with time-varying parameters the error

between measurement, y, and the compensated measurement estimate, ŷw, can be decom-
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posed into the following three terms

ỹw [k|k − 1] = ỹ [k|k − 1]− ρx [k, kwx
]− ρy

[
k, kwy

]
(4.5)

where ρx ∈ R
ny×1 and ρy ∈ R

ny×1 are the respective cumulative effects of the unknown

state and measurement disturbances on the measurement estimation error, and ỹ is the

a priori measurement innovation or residual that is not necessarily zero-mean due to the

presence of the disturbance. In other words, it is assumed in the above equation that a non-

zero mean measurement innovation, ỹ, is caused by some deterministic modification to the

input of the system. This error is to be compensated for by LS estimation of the disturbance

input where the compensated error is denoted, ỹw. The LS problem is then formulated to

minimize the sum of the squared residuals with the following objective function

S =
k∑

j=kw•

(ỹw [j|j − 1])2 =
k∑

j=kw•

(
ỹ [j|j − 1]− ρx [j, kwx

]− ρy
[
j, kwy

])2
(4.6)

where each of the state andmeasurement disturbance canbe processed individuallywith the

latter of the disturbance estimations taking into consideration the compensation performed

by the former disturbance estimation.

4.1.1 Estimation and estimation error compensation

The disturbance estimation procedures are developed separately formeasurement and state

disturbances within the first and second halves of this section respectively.
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Disturbance to the measurement

In (4.2), the measurement, y, is affected by a known measurement disturbance profile,

Γy, and an unknown measurement disturbance input, wy. This measurement disturbance

affects the a priori measurement estimate as a result of being propagated through the KF

by the state update equation (3.16). The cumulative effect of themeasurement disturbance

on the a priori measurement estimate is therefore a function of known system parameters

as well as the Kalman gain, or

ρy
[
k, kwy

]
= (y [k]− ŷ [k|k − 1])−

(
y [k]− ŷwy

[k|k − 1]
)

= ŷwy
[k|k − 1]− ŷ [k|k − 1]

=

(

Γy

[
k, kwy

]
− C [k]A [k − 1]

·
k−kwy∑

j1=1

j1−1
∏

j2=1

Ay [k − j2]K [k − j1] Γy

[
k − j1, kwy

]



wy

[
k, kwy

]
(4.7)

where
∑0

j=1 = 0nx×nwy , and
∏0

j=1 = I, with the partial cumulative effect of the propagation

through the KF, denoted Ay [k], given in [102] as follows.

Ay [k] = (I −K [k]C [k])A [k − 1] (4.8)

The measurement disturbance is then simplified to be the product of a known time de-

pendent matrix, ρ
y
∈ R

ny×nwy , that represents the cumulative effect of the measurement

disturbance profile on the measurement and the unknownmeasurement disturbance input,
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wy, as follows.

ρy
[
k, kwy

]
= ρ

y

[
k, kwy

]
wy

[
k, kwy

]
(4.9)

The objective function, S, for LS estimation of the measurement disturbance input is

the following sum of the squared error between the a priori measurement error and the

cumulative effect of the measurement disturbance.

S (wy) =
k∑

j=kwy

(

ỹ [j|j − 1]− ρ
y

[
j, kwy

]
wy

[
j, kwy

])2

(4.10)

The solution to theLSdisturbance input estimation problem is then definedby the following

criteria or quadratic minimization

ŵy = arg min
wy

S (wy) (4.11)

where arg min
wy

operates to find the value of wy for which the objective function attains a

minimum value. The solution to this minimization problem for the objective function in

(4.10) is the estimated measurement disturbance input, ŵy, given in the weighted LS form

or the weighted Markov estimator as follows

ŵy

[
k, kwy

]
=





k∑

j=kwy

ρ′
y

[
j, kwy

]
Λk−j

y P −1
ỹ [j|j − 1] ρ

y

[
j, kwy

]





−1

·





k∑

j=kwy

ρ′
y

[
j, kwy

]
Λk−j

y P −1
ỹ [j|j − 1] ỹ [j|j − 1]



 (4.12)
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whereP −1
ỹ scales the estimate with respect to the covariance of themeasurement innovation,

or a priori measurement residual, and Λy is a matrix with time-invariant forgetting factor,

λy, and Λy = λyI. These forgetting factors give exponentially diminishing weight to the

measurement error samples, ỹ, resulting in the most recent sample having the greatest

effect on the LS estimation whereas the sample from time-step kwy
has the least effect.

More precisely, the filter defined in (4.12) is the Markov form of the weighted LS estimator

as it utilizes the a priori covariance matrix, Pỹ, to maximize the probability that the a

priori KF-based measurement residual is equal to zero. This minimal solution considers

each of the a priori measurement estimation errors or innovations over the estimation

window, kwy
, . . . , k.

Having estimated the measurement disturbance input, the KF-based a priori mea-

surement prediction is then compensated as follows to include the cumulative effect of the

LS-basedmeasurement disturbance estimate that is assumed to have initiated at time-step,

kwy
.

ŷwy
[k|k − 1] = ŷ [k|k − 1] + ρ

y

[
k, kwy

]
ŵy

[
k, kwy

]
(4.13)

The combined KF/LS-based measurement estimate is therefore a modified form of (4.5)

whereby only the measurement disturbance term is considered. In other words, the above

compensation ignores for the time-being the cumulative effect of the state disturbance on

the measurement estimation error, ρx [k, kwx
], as included in (4.5). Although the com-

pensated measurement prediction is a more accurate prediction of the true future mea-

surements, the prediction does not replace the a priori measurement estimate, ŷ [k|k − 1],
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within the KF-based estimation and prediction procedure of Section 3.2. This separation of

the compensated and original estimates is necessary for the LS objective function to capture

the accuracy of the a priori KF-based estimates within each time-step of operation.

In addition to compensating themeanmeasurement estimate, the a priori measurement

error covariance of (3.19) is compensated for the newly calculated measurement estimate,

ŷwy
, as follows

Pỹwy
[k|k − 1] = E

{

ỹwy
[k|k − 1] ỹ′wy

[k|k − 1]
}

= E
{(
y [k]− ŷwy

[k|k − 1]
) (
y [k]− ŷwy

[k|k − 1]
)′
}

= E

{(

y [k]− ŷ [k|k − 1]− ρ
y

[
k, kwy

]
ŵy

[
k, kwy

])2
}

= Pỹ [k|k − 1] + ρ
y

[
k, kwy

]
Pŵy

[
k, kwy

]
ρ′
y

[
k, kwy

]

− ρ
y

[
k, kwy

]
Pŵy ,ỹ′

[
k, kwy

]
− P ′

ŵy ,ỹ′

[
k, kwy

]
ρ′
y

[
k, kwy

]
(4.14)

where Pŵy
∈ R

nwy×nwy is the covariance of the estimated measurement disturbance input,

ŵy, and Pŵy ,ỹ′ ∈ R
nwy×ny is the cross-covariance between the estimated disturbance input

and the original a priori measurement innovation, ỹ [k|k − 1]. Here, the cumulative distur-

bance estimate is negative as a result of the disturbance being added to the measurement

estimate and then subtracted from the measurement sample.

The calculation of these covariances is necessary to allow interval estimation and pre-

diction problems to also consider the potential disturbances. The following covariances

represent uncertainties in the estimated disturbance inputs. Thus, although the distur-

bance model or profile is deterministic and no noise statistics are assumed, the estimated
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input has a defined covariance that results from noise within the (k−kwy
) innovations that

are considered over the LS estimation window.

The covariance of themeasurementdisturbance input, ŵy, is formulated for theweighted

Markov estimator as a function of the cumulative measurement disturbance, ρ
y
, in the fol-

lowing equation.

Pŵy

[
k, kwy

]
= E

{
ŵy

[
k, kwy

]
ŵ′

y

[
k, kwy

]}

= E
















k∑

j=kwy

ρ′
y

[
j, kwy

]
Λk−j

y P −1
ỹ [j|j − 1] ρ

y

[
j, kwy

]





−1

·
k∑

j=kwy

ρ′
y

[
j, kwy

]
Λk−j

y P −1
ỹ [j|j − 1] ỹ [j|j − 1]





2





=





k∑

j=kwy

ρ′
y

[
j, kwy

]
Λk−j

y P −1
ỹ [j|j − 1] ρ

y

[
j, kwy

]





−1
(4.15)

In addition, the cross-covariance between the measurement disturbance input, ŵy, and the

a priori measurement estimation error, ỹ [k|k − 1], is calculated as follows

Pŵy ,ỹ′
[
k, kwy

]
= E

{
ŵy

[
k, kwy

]
(y [k]− ŷ [k|k − 1])′

}

= E






Pŵy

[
k, kwy

]

·





k∑

j=kwy

ρ′
y

[
j, kwy

]
Λk−j

y P −1
ỹ [j|j − 1] (y [j]− ŷ [j|j − 1])





· (C [k] (x [k]− x̂ [k|k − 1]) + vy [k])
′






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= E
{

Pŵy

[
k, kwy

]
ρ′

y

[
k, kwy

]
Λ0

yP
−1
ỹ [k|k − 1]

· (C [k] (x [k]− x̂ [k|k − 1]) + vy [k])

· (C [k] (x [k]− x̂ [k|k − 1]) + vy [k])
′
}

= Pŵy

[
k, kwy

]
ρ′

y

[
k, kwy

]
P −1
ỹ [k|k − 1] (C [k]Px̃ [k|k − 1]C ′ [k] +Ry [k])

= Pŵy

[
k, kwy

]
ρ′

y

[
k, kwy

]
(4.16)

where the summation over j is reduced to only the term associated with time-step, k, due to

the measurement innovations at different time-steps being uncorrelated [159]. Moreover,

the measurement innovation covariance cancels with the inverse measurement innovation

covariance.

Disturbance to the state

In (4.1), state, x [k + 1], is affected by a known state disturbance profile, Γx, and an un-

known state disturbance input, wx. The state disturbance also indirectly affects the a

priori measurement estimate as a result of being propagated through the KF by the state

update equation (3.16). The cumulative effect of the state disturbance on the a priori

measurement estimate is calculated as the following function of known system parameters

and KF gain

ρx [k, kwx
] = (y [k]− ŷ [k|k − 1])− (y [k]− ŷwx

[k|k − 1])

= C [k]

k−kwx∑

j1=1

j1−1
∏

j2=1

Ax [k − j2] Γx [k − j1, kwx
]wx [k − 1, kwx

] (4.17)
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where again
∑0

j=1 = 0nx×nwx ,
∏0

j=1 = I
nx×nx , and Ax [k] is calculated as follows [102].

Ax [k] = A [k] (I−K [k]C [k]) (4.18)

This formulation of state disturbance is then simplified to be the product of a known time

dependent matrix, ρ
x
∈ R

ny×nwx , and an unknown state disturbance input, wx, as follows

ρx [k, kwx
] = C [k] ρ

x
[k, kwx

]wx [k − 1, kwx
]

= ρ
x
[k, kwx

]wx [k − 1, kwx
] (4.19)

where ρ
x
is the cumulative effect of the state disturbance profile on the measurement, and

ρ
x
∈ R

nx×nwx is the cumulative effect of the state disturbance profile on the state. The

initial effect of the state disturbance profile on the measurement is as follows

ρx [kwx
+ 1, kwx

] = C [kwx
+ 1] Γx [kwx

, kwx
]wx [kwx

, kwx
] (4.20)

where the cumulative effect of the disturbance profile at time-step (kwx
+ 1) is a function

of the state-to-measurement matrix of the same time-step multiplied by the disturbance

profile and input of the previous time-step as established in (4.1) and (4.5). In addition,

the zero-step-ahead value of the cumulative value is ρx [kwx
, kwx

] = 0ny×nwx , since the

measurement is not affected by the disturbance which is assumed to have initiated at

time-step kwx
.

Although the disturbance input from the previous time-step, wx [k − 1, kwx
], affects
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the measurement, y [k], the estimate of the disturbance input is represented using the

time-step of estimation as ŵx [k, kwx
]. Thus, the current estimate of the state disturbance

input is the expectation of the state disturbance input from the previous time-step, or

ŵx [k, kwx
] = E {wx [k − 1, kwx

]}. The same representations are used for the cumulative

effect of the state disturbances, as ρ
x
and ρ

x
. These relationships are established in the

state equation definition of (4.1).

The weighted Markov estimate of the unknown disturbance input, ŵx, is calculated in

the samemanner as for themeasurement disturbance in (4.12), with the following objective

function

Sx (w) =
k∑

j=kwx

λx [j]
(

ỹ [j|j − 1]− ρ
x
[j, kwx

]wx [j, kwx
]
)2

(4.21)

where λ• is the forgetting factor for each time-step within the estimation window. The

quadratic minimization problem for LS estimation of state disturbance input is therefore

as follows.

ŵx = arg min
wx

S (wx) (4.22)

The unique solution to this minimization problem is the estimated measurement distur-
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bance input, ŵx, given in the weighted LS form as follows

ŵx [k, kwx
] =





k∑

j=kwx

ρ′
x
[j, kwx

] Λk−j
x P −1

ỹ [j|j − 1] ρ
x
[j, kwx

]





−1

·





k∑

j=kwx

ρ′
x
[j, kwx

] Λk−j
x P −1

ỹ [j|j − 1] ỹ [j|j − 1]



 (4.23)

where P −1
ỹ again scales the estimate with respect to the covariance of the measurement

innovation and Λx is a matrix with time-invariant forgetting factor, λx, where Λx = λxI.

This state disturbance estimation procedure is a modified form of the disturbance estima-

tion that is presented for the prediction of abnormal conditions in [40] which, in turn, cites

methods for the detection of abrupt changes in [102].

Having estimated the state disturbance input, the KF-based a priori measurement

prediction is then compensated in the following equation to include the cumulative effect

of the LS-based state disturbance estimate that is assumed to have initiated at time-step,

kwx
.

ŷwx
[k|k − 1] = ŷ [k|k − 1] + ρ

x
[k, kwx

] ŵx [k, kwx
] (4.24)

The above compensation ignores for the time-being the effect of the measurement distur-

bance to the measurement estimation error, ρy
[
k, kwy

]
, in (4.5). In addition to affecting

the a priori measurement estimate, the state disturbance also affects the a priori state

estimate, x̂ [k|k − 1]. The updated a priori state estimate is therefore compensated as
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follows.

x̂wx
[k|k − 1] = x̂ [k|k − 1] + ρ

x
[k, kwx

] ŵx [k, kwx
] (4.25)

As in the case of estimating the measurement disturbance, the compensated a priori mea-

surement and state estimates remain separate from the standard KF procedure. This state

compensation may be useful when considering the effect of disturbances within the state

domain. It is not necessary, however, to compensate the state estimates while at the same

time compensating the measurement predictions since in doing so the compensation would

be doubled.

The a priori measurement error covariance in (3.19) is compensated for the newly

calculated measurement estimate, ŷwx
, as follows

Pỹwx
[k|k − 1] = E

{
ỹwx

[k|k − 1] ỹ′wx
[k|k − 1]

}

= E

{(

y [k]− ŷ [k|k − 1]− ρ
x
[k, kwx

] ŵx [k, kwx
]
)2
}

= C [k]Px̃ [k|k]C ′ [k] +Ry [k] + ρ
x
[k, kwx

]Pŵx
[k] ρ′

x
[k, kwx

]

− ρ
x
[k, kwx

]Pŵx,ỹ [k]− P ′
ŵx,ỹ [k] ρ

′
x
[k, kwx

] (4.26)

where Pŵx
∈ R

nwx×nwx is the covariance of the estimated state disturbance input, ŵx, and

Pŵx,ỹ ∈ R
nwx×ny is the cross-covariance between the estimated disturbance input and the

original a priori measurement innovation, ỹ [k|k − 1].

The covariance of the state disturbance input, ŵx, is calculated for the weightedMarkov
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estimator as the following function of the cumulative state disturbance, ρ
x
.

Pŵx
[k, kwx

] = E
{
(ŵx [k, kwx

]) (ŵx [k, kwx
])′
}

=





k∑

j=kwx

ρ′
x
[j, kwx

] Λk−j
x P −1

ỹ [j|j − 1] ρ
x
[j, kwx

]





−1

(4.27)

In addition, the cross-covariance between the state disturbance input, ŵx, and the a priori

measurement estimation error, ỹ [k|k − 1], is calculated as follows

Pŵx,ỹ [k, kwx
] = E

{
(ŵx [k, kwx

]) (y [k]− ŷ [k|k − 1])′
}

= Pŵx
[k, kwx

] ρ′
x
[k, kwx

] (4.28)

where, again, the summation over j is reduced to only the term associated with time-step

k and the measurement innovations cancel [159].

4.1.2 Prediction error compensation

In this section, the LS-based disturbance input estimation procedure is extended to esti-

mate and compensate for prediction errors over the prediction window. The development

of disturbance prediction and prediction error compensation procedures are presented sep-

arately for prediction error that is due to a measurement and state disturbances within the

first and second halves of this section respectively.
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Disturbance to the measurement

The objective of prediction error compensation is to predict and compensate i-step-ahead

measurement predictions for the error between the i-step-ahead KF-based measurement

prediction and the corresponding eventual future measurement given an assumedmeasure-

ment disturbance profile. Prediction error compensation is performed in the same manner

as for the compensation of measurement estimation error in (4.13) or as follows.

ŷwy
[k + i|k] = ŷ [k + i|k] + ρ

y

[
k + i, kwy

]
ŵy

[
k, kwy

]
(4.29)

In addition, the propagated cumulative effect of the disturbance profile, ρ
y
, on the mea-

surement prediction is calculated or propagated as follows

ρ
y

[
k + i, kwy

]
= Γy

[
k + i, kwy

]
− C [k + i]A [k + i− 1]

·
k+i−kwy∑

j1=1

j1−1
∏

j2=1

Ay [k + i− j2]K [k + i− j1] Γy

[
k + i− j1, kwy

]
(4.30)

where
∏0

j=1 = I
ny×nx .

For predictions that are beyond one time-step ahead, the Kalman gain is equal to zero,

K [k + i] , 0nx×ny∀i > 1. Thus, the cumulative effect of measurement disturbance profile
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reduces to the following form

ρ
y

[
k + i, kwy

]
= Γy

[
k + i, kwy

]
− C [k + i]A [k + i− 1]

·
(

i−1∑

j1=1

j1−1
∏

j2=1

Ay [k + i− j2]K [k + i− j1] Γy

[
k + i− j1, kwy

]

+

k+i−kwy∑

j1=i

j1−1
∏

j2=1

Ay [k + i− j2]K [k + i− j1] Γy

[
k + i− j1, kwy

]





= Γy

[
k + i, kwy

]
− C [k + i]A [k + i− 1]

·
k+i−kwy∑

j1=i

j1−1
∏

j2=1

Ay [k + i− j2]K [k + i− j1] Γy

[
k + i− j1, kwy

]
(4.31)

where substitution of a KF gain equal to zero has reduced the number of terms within

the series summation by (i− 1). In addition, the remaining series product includes initial

multiplicands, Ay [k], that are equal to A [k − 1], e.g. Ay [k + i− 1] through Ay [k + 1].

This is also due to the Kalman gain in Ay [k + i], as defined in (4.8), being equal to zero.

Thus, the simplified series product and resulting cumulative effect of the measurement

disturbance profile are calculated as follows

i−1∏

j=1

Ay [k + i− j] =
i−1∏

j=1

A [k + i+ j − 1] (4.32)

ρ
y

[
k + i, kwy

]
= Γy

[
k + i, kwy

]
− C [k + i]A [k + i− 1]

i−1∏

j=1

A [k + i− j − 1]

·
k+i−kwy∑

j1=i

j1−1
∏

j2=i

Ay [k + i− j2]K [k + i− j1] Γy

[
k + i− j1, kwy

]
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= Γy

[
k + i, kwy

]
− C [k + i]A [k + i− 1]

i−1∏

j=1

A [k + i− j − 1]

·
k+1−kwy∑

j1=1

j1−1
∏

j2=1

Ay [k + 1− j2]K [k + 1− j1] Γy

[
k + 1− j1, kwy

]

(4.33)

where the system matricesA [k + i− 1] and C [k + i] are assumed to be equal to the values

of the current time-step k. For example, the one time-step ahead cumulative effect of

the measurement disturbance profile is calculated with assumed future system matrices as

follows.

ρ
y

[
k + 1, kwy

]
= Γy

[
k + 1, kwy

]
− C [k]A [k]

·
k+1−kwy∑

j1=1

j1−1
∏

j2=1

Ay [k + 1− j2]K [k + 1− j1] Γy

[
k + 1− j1, kwy

]
(4.34)

The i-step-ahead measurement error covariance of the compensated measurement is

calculated by propagating the a priori measurement error covariance for measurement

disturbance estimation in (4.14) as follows.

Pỹwy
[k + i|k] = E

{(
y [k + i]− ŷwy

[k + i|k]
) (
y [k + i]− ŷwy

[k + i|k]
)′
}

= Pỹ [k + i|k] + ρ
y

[
k + i, kwy

]
Pŵy

[
k, kwy

]
ρ′
y

[
k + i, kwy

]

− ρ
y

[
k + i, kwy

]
Pŵy ,ỹ

[
k + i, kwy

]

− P ′
ŵy ,ỹ

[
k + i, kwy

]
ρ′
y

[
k + i, kwy

]
(4.35)
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The covariance of the measurement disturbance input, Pŵy

[
k, kwy

]
, has the exact same

value as is used for the weighted Markov estimator in (4.15) since the disturbance input

estimate remains a function of the current time-step k. In contrast, the cross-covariance

between the measurement disturbance input, ŵy

[
k, kwy

]
, and the i-step-ahead KF-based

measurement prediction error, ỹ [k + i|k], is required to be propagated as follows

Pŵy ,ỹ

[
k + i, kwy

]
= E

{
ŵy

[
k, kwy

]
(y [k + i]− ŷ [k + i|k])′

}

= E
{

Pŵy

[
k, kwy

]
ρ′

y

[
k, kwy

]
Λ0

yP
−1
ỹ [k|k − 1]

· (C [k] (x [k]− x̂ [k|k − 1]) + vy [k])

· (C [k + i] (x [k + i]− x̂ [k + i|k]) + vy [k + i])′
}

= E

{

Pŵy

[
k, kwy

]
ρ′

y

[
k, kwy

]
Λ0

yP
−1
ỹ [k|k − 1] (C [k] x̃ [k|k − 1] + vy [k])

·
(

C [k + i]
i−1∏

j=0

A [k + j] ((I−K [k]C [k]) x̃ [k|k − 1]−K [k] vy [k])
′

+vy [k + i]

)′}

= Pŵy

[
k, kwy

]
ρ′

y

[
k, kwy

]
P −1
ỹ [k|k − 1]

·
(
C [k]Px [k|k − 1] (I−K [k]C [k])′ +Ry [k]K

′ [k]
)

·
(

i−1∏

j=0

A [k + j]

)′

C ′ [k + i] (4.36)

where the i-step-ahead measurement innovation is rewritten as a function of the a priori

state error, x̃ [k|k − 1], and measurement noise covariance, vx.
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Disturbance to the state

Alternatively, the following extension of the state disturbance estimation procedure results

in a method by which to predict the error between the i-step-ahead KF-basedmeasurement

prediction and the corresponding future measurement given an assumed state disturbance

profile. The i-step aheadKF-basedmeasurement prediction is then compensated to include

the cumulative state disturbance. This extension to the prediction problem is, again,

considered to be relatively straightforward with respect to the estimation procedure. The

following methods are, however, necessary for the eventual development of a recursive

solution to the LS problem as presented in Section 4.2.

Prediction error compensation is performed in the samemanner as for the compensation

of state estimation error in (4.24) and as follows.

ŷwx
[k + i|k] = ŷ [k + i|k] + ρ

x
[k + i, kwx

] ŵx [k, kwx
] (4.37)

where the cumulative effect of the disturbance profile, ρ
x
, on the measurement prediction

is calculated as the propagated form of (4.17), or

ρ
x
[k + i, kwx

] = C [k + i]

k+i−kwx∑

j1=1

j1−1
∏

j2=1

Ax [k + i− j2] Γx [k + i− j1, kwx
] (4.38)

with
∏0

j=1 = I.

To simplify the estimation of prediction error for predictions that are beyond one time-
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step ahead, the cumulative effect of state disturbance profile is expanded as follows.

ρ
x
[k + i, kwx

] = C [k + i]

·
(

k+i−kwx∑

j1=2

j1−1
∏

j2=1

Ax [k + i− j2] Γx [k + i− j1, kwx
] + Γx [k + i− 1, kwx

]

)

(4.39)

Moreover, as is the case during propagation of the measurement disturbance in (4.31),

the series product includes initial multiplicands, Ax [k], that are equal to A [k] due to the

Kalman gain in Ax [k + i] as in (4.18) being equal to zero. Thus, the cumulative effect for

a state disturbance profile is simplified as follows

ρ
x
[k + i, kwx

] = C [k + i]

(
i−1∏

j=1

A [k + i− j]

·
k+i−kwx∑

j1=2

j1−1
∏

j2=i

Ax [k + i− j2] Γx [k + i− j1, kwx
] + Γx [k + i− 1, kwx

]

)

(4.40)

using the equivalent series product of (4.32) where the state-to-measurement matrix,

C [k + i], is assumed to be equal to the value of the current time-step k. For example,

the one time-step ahead cumulative effect of the measurement disturbance profile is calcu-

lated as follows.

ρ
x
[k + 1, kwx

] = C [k]

k+1−kwx∑

j1=2

j1−1
∏

j2=i

Ax [k + 1− j2] Γx [k + 1− j1, kwx
] + Γx [k, kwx

] (4.41)

The i-step-ahead measurement error covariance of the compensated measurement is
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calculated by propagating the a priori measurement error covariance for state disturbance

estimation in (4.26) as follows.

Pỹwx
[k + i|k] = E

{
(y [k + i]− ŷwx

[k + i|k]) (y [k + i]− ŷwx
[k + i|k])′

}

= Pỹ [k + i|k] + ρ
x
[k + i, kwx

]Pŵx
[k, kwx

] ρ′
x
[k + i, kwx

]

− ρ
x
[k + i, kwx

]Pŵx,ỹ [k + i, kwx
]

− P ′
ŵx,ỹ [k + i, kwx

] ρ′
x
[k + i, kwx

] (4.42)

The covariance of the state disturbance input, Pŵx
[k, kwx

], is a function of time-step k and

therefore retains the exact same value as for the weighted Markov estimator in (4.27). In

contrast, the cross-covariance between the state disturbance input, ŵx, and the i-step-ahead

KF-based measurement prediction error, ỹ [k + i|k], is propagated in the same manner as

for the measurement disturbance in (4.36) as follows.

Pŵx,ỹ [k + i, kwx
] = E

{
ŵx [k, kwx

] (y [k + i]− ŷ [k + i|k])′
}

= Pŵx
[k, kwx

] ρ′
x
[k, kwx

]P −1
ỹ [k|k − 1]

·
(
C [k]Px [k|k − 1] (I−K [k]C [k])′ +Ry [k]K

′ [k]
)

·
(

i−1∏

j=0

A [k + j]

)′

C ′ [k + i] (4.43)
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4.2 Recursive Least Squares Formulation of

Disturbance Estimation and Prediction Error

Compensation

This section formulates recursive algorithms for the LS or Markov disturbance estimators

and predictors that are presented in Section 4.1. The recursive form of the LS algorithm

provides the benefit of requiring less computational power and a smaller amount of data

storage; these two resources are limited within the chosen safety-PLC in comparison to

high performance CPUs with near limitless amounts of data storage. The RLS algorithm

achieves reduction in computational requirements by processing the measurement sample

of the current time-step rather than the entire block of (k − kw•
) measurement samples

as performed by the standard LS filter. The RLS algorithm also avoids the calculation of

matrix inverses through the use of the matrix inversion lemma. As a recursive algorithm,

the RLS estimates do, however, suffer from error due to initial conditions as the LS estimate

converges to the optimal solution over the initial estimates.

Although the RLS algorithm is stated in the following, the derivation of the RLS algo-

rithm from the standard LS filter is left to the cited literature [24]. The following sections

instead focus on the extension of the RLS algorithm to the state and measurement dis-

turbance estimation problem. This formulation differs from conventional RLS in that the

given cumulative effect of the disturbance does not inherently support recursion and is

therefore modified. Moreover, the time-step of initiation for the disturbance input is pe-
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riodically reset. This resetting function allows for the disturbance estimation algorithm

to accurately reflect the potential for a disturbance to occur at any time-step. Moreover,

disturbance input resetting is made to coincide with the covariance reset procedure that is

performed within the standard RLS algorithm. An alternating RLS filter configuration is

then developed to eliminate inaccuracies in compensation due to erroneous initial estimates

during filter convergence.

The solution to the LS disturbance estimation problem of Section 4.1.1 is restated in the

following general form for disturbances within either the measurement or state equation,

i.e. • represents either x or y,

ŵ• [k, kw•
] = Pŵ•

[k, kw•
]





k∑

j=kw•

ρ′
•
[j, kw•

] Λk−j
• P −1

ỹ [j|j − 1] ỹ [j|j − 1]



 (4.44)

where Pŵ•
is the covariance of the respective disturbance inputs as defined in (4.15) and

(4.27). Given an initial estimate of the disturbance input, ŵ• [kw•
, kw•

], the Markov esti-

mation problem has the following well-known recursive solution

ŵ• [k, kw•
] = ŵ• [k − 1, kw•

]

+K• [k]
(

P
− 1
2

ỹ [k|k − 1] ỹ [k|k − 1]− ̺• [k, kw•
] ŵ• [k − 1, kw•

]
)

(4.45)

where ̺• is the normalized cumulative effect ̺• [k, kw•
] = P

− 1
2

ỹ [k|k − 1] ρ
•
, and K• is the
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RLS gain matrix [24]. The RLS gain matrix is, in turn, calculated as follows

K• [k] = λ−1• P• [k − 1, kw•
] ̺′• [k, kw•

]
(

I+ λ−1• ̺• [k, kw•
]P• [k − 1, kw•

] ̺′• [k, kw•
]
)−1

(4.46)

where P• is the covariance of the disturbance estimate. Given an initial estimate of the

disturbance estimate covariance, P• [kw•
, kw•

], the covariance is calculated as follows.

P• [k, kw•
] = (I−K• [k] ̺• [k, kw•

]) Λ−1
• P• [k − 1, kw•

] (4.47)

Within the above equations,Pŵ•
andP• are both the covariance of the disturbance estimate,

ŵ•. The disturbance estimate covariance is conveniently calculated within the standard

recursive form of the LS filter as follows

Pŵ•
[k, kw•

] = P• [k, kw•
] (4.48)

and the two variables, Pŵ•
andP•, are therefore interchangeable throughout the remainder

of this work.

4.2.1 Disturbance to the measurement

The recursive nature of the RLS solution to the measurement disturbance estimation prob-

lem is only of value if the various parameters within the RLS solution can also be calculated

in a recursive manner. The cumulative effect of the measurement disturbance profile, as
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established in (4.7) and (4.9), is therefore modified to the following recursive form

ρ
y

[
k, kwy

]
= Γy

[
k, kwy

]
− C [k]A [k − 1]ψy

[
k, kwy

]
(4.49)

where ψy is referred to as the pseudo cumulative effect of the measurement disturbance

profile. More precisely, ψy is the cumulative effect of the measurement disturbance on the

a posteriori state of time-step, (k − 1). The recursive calculation of the pseudo cumulative

effect is then performed as follows

ψy

[
k, kwy

]
=

k−kwy∑

j1=1

j1−1
∏

j2=1

Ay [k − j2]K [k − j1] Γy

[
k − j1, kwy

]

= K [k − 1] Γy

[
k − 1, kwy

]

+ Ay [k − 1]

k−1−kwy∑

j1=1

j1−1
∏

j2=1

Ay [k − j2 − 1]

·K [k − j1 − 1] Γy

[
k − j1 − 1, kwy

]

= K [k − 1] Γy

[
k − 1, kwy

]
+ Ay [k − 1]ψy

[
k − 1, kwy

]
(4.50)

ψy

[
k − 1, kwy

]
=

k−1−kwy∑

j1=1

j1−1
∏

j2=1

Ay [k − 1− j2]K [k − 1− j1] Γy

[
k − 1− j1, kwy

]
(4.51)

where ψy

[
kwy
− 1, kwy

]
= 0nx×nwy , Γy

[
kwy
− 1, kwy

]
= 0ny×nwy and the cumulative effect,

ρ
y
, is now a function of values that are dependent only on the current time-step, k, as well as

the previous time-step, (k − 1). The RLS estimate of the measurement disturbance input
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is then calculated using the general RLS solution of (4.45) as follows

ŵy

[
k, kwy

]
= ŵy

[
k − 1, kwy

]

+Ky [k]
(

P
− 1
2

ỹ [k|k − 1] ỹ [k|k − 1]− ̺y
[
k, kwy

]
ŵy

[
k − 1, kwy

])

(4.52)

where ŵy

[
kwy
− 1, kwy

]
= 0nwy×1.

The recursive calculation of the a priori measurement error covariance,Pỹwy
, is straight-

forward since covariance, Pŵy

[
k, kwy

]
, as well as cross-covariance, Pŵy ,ỹ

[
k, kwy

]
, do not

require any modifications to be calculated in a recursive manner. More specifically, from

(4.48), the covariance of the measurement disturbance estimate, Pŵy
, is given directly

within the RLS filter asPy, (4.47). In addition, the cross-covariance between the measure-

ment disturbance input, ŵy, and the a priori measurement estimation error, ỹ [k|k − 1],

is the product of the disturbance estimate covariance and the cumulative effect of the dis-

turbance profile as established in (4.14) and is not reliant on any parameters prior to the

current time-step k. Thus, this covariance is calculated in the same manner as for the LS

filter using (4.16).

For prediction, the combined KF/LS measurement prediction of (4.29) is a function of

the i-step-ahead cumulative effect of the measurement disturbance profile, ρ
y

[
k + i, kwy

]
.

For the one-step-ahead prediction, the cumulative effect is calculated as the following

propagated form of (4.49) under the assumption that the state-to-measurement matrix

C [k + 1] is equal to that of the current time-step

ρ
y

[
k + 1, kwy

]
= Γy

[
k + 1, kwy

]
− C [k]A [k]ψy

[
k + 1, kwy

]
(4.53)
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where the disturbance profile is assumed known and the one-step-ahead pseudo cumulative

effect is calculated as follows

ψy

[
k + 1, kwy

]
= K [k] Γy

[
k, kwy

]
+ Ay [k]ψy

[
k, kwy

]
(4.54)

with initial value ψy

[
kwy

, kwy

]
= 0nx×nw .

For propagation beyond one time-step, the Kalman gain,K [k + i− 1], is equal to zero

withinAy [k + i− 1] as defined in (4.8). The pseudo cumulative effect reduces, as in (4.33),

to the following form

ψy

[
k + i+ 1, kwy

]
= A [k]ψy

[
k + i, kwy

]
(4.55)

with the future state matrices, A [k + i], replaced by the state matrix of the current time-

step,A [k]. The cumulative effect of the measurement disturbance profile is then calculated

using the i-step-ahead propagated form of (4.49) as follows

ρ
y

[
k + i, kwy

]
= Γy

[
k + i, kwy

]
− C [k]A [k]ψy

[
k + i, kwy

]
(4.56)

where the values of the system matrices are assumed to be equal to those of the current

time-step k.

In the above formulation the current and future values of the disturbance profile are

assumed known. Although not a requirement for propagating the RLS disturbance es-

timates, it may also be assumed that the disturbance profile, Γy, can be calculated in a

recursive manner. For example, the disturbance profile corresponding with a ramp input
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can be recursively calculated as follows.

Γy

[
k + i, kwy

]
= Γy

[
k + i− 1, kwy

]
+

[

0ny×
nw
2 I

]

(4.57)

The i-step-ahead measurement error covariance, Pỹwy
, as given in (4.35), is a function

of the current covariance of the measurement disturbance input estimate, Pŵy

[
k, kwy

]
, as

well as the i-step-ahead cross-covariance between the disturbance input estimate and the

a priori measurement error, Pŵy ,ỹ

[
k + i, kwy

]
. In Section 4.1.2 it was determined that, for

prediction, it is only necessary to propagate the cross-covariance since the measurement

disturbance input covariance is equal to the value of the current time-step. Propagation

of the cross-covariance is made possible by simplifying the series product within (4.36) as

follows

Pŵy ,ỹ

[
k + i, kwy

]
= Pŵy

[
k, kwy

]
ρ′

y

[
k, kwy

]
P −1
ỹ [k|k − 1]

·
(
C [k]Px [k|k − 1] (I−K [k]C [k])′ +Ry [k]K

′ [k]
)

·A ′ [k + i]C ′ [k + i] (4.58)

where the product is replaced by the cumulative effect of the state matrix, A [k + i]. This

cumulative effect of statematrix is essentially the state transitionmatrix over the prediction

window and is calculated recursively using an initial value of A [k] = I as follows.

A [k + i] =
i−1∏

j=0

A [k + j]
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= A [k + i− 1]
i−2∏

j=0

A [k + j]

= A [k + i− 1]A [k + i− 1] (4.59)

Algorithm 4.1 reorganizes the RLS-based measurement disturbance input estimation

and prediction procedures into two stages, update and predict. This structure mimics

that of the KF introduced in Section 3.2 and eliminates redundant calculations whereby

ψy

[
k, kwy

]
, Γy

[
k, kwy

]
, and ρ

y

[
k, kwy

]
are calculated within the predict stage and then

returned to the update stage. The calculation of pseudo cumulative effect is then mod-

ified from (4.50) in an effort to reduce the computational complexity of extending RLS

disturbance input estimation to the recursive prediction error compensation problem as

follows.

ψy

[
k + i, kwy

]
= K [k + i− 1] Γy

[
k + i− 1, kwy

]

+ Ay [k + i− 1]ψy

[
k + i− 1, kwy

]
(4.60)

With this modification, the initial value of the pseudo cumulative effect, ψy, remains as

for the unmodified form since the initial value of the disturbance profile, Γy, is also equal

to zero. The initial value for the cumulative effect of the measurement disturbance pro-

file is, however, modified to be equal to the initial measurement disturbance profile, or

ρ
y

[
kwy

, kwy

]
= Γy

[
kwy

, kwy

]
.

Algorithm 4.1 includes a count of the number of OPL that are required to execute the

algorithm for a system with a single output, or scalar measurement. This assumption
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Algorithm 4.1 Update and predict stages of the recursive least squares (RLS) measure-
ment disturbance input estimation and prediction error compensation procedure, RLSy,ip.

[Measurement disturbance estimation (update)]
ρ
y

[
k, kwy

]
= Γy

[
k + i, kwy

]
− C [k]A [k − 1]ψy

[
k, kwy

]

P ỹ, [k|k − 1] = P −1
ỹ [k|k − 1]

P
ỹ
[k|k − 1] = P

1
2

ỹ, [k|k − 1]

̺y
[
k, kwy

]
= P

ỹ
[k|k − 1] ρ

y

[
k, kwy

]

Ky [k] = λ−1y Py

[
k − 1, kwy

]
̺′y
[
k, kwy

]

·
(

1 + λ−1y ̺y
[
k, kwy

]
Py

[
k − 1, kwy

]
̺′y
[
k, kwy

])−1

ŵy

[
k, kwy

]
= ŵy

[
k − 1, kwy

]

+Ky [k]
(

P
ỹ
[k|k − 1] ỹ [k|k − 1]− ̺y

[
k, kwy

]
ŵy

[
k − 1, kwy

])

Py

[
k, kwy

]
=
(
I−Ky [k] ̺y

[
k, kwy

])
Λ−1

y Py

[
k − 1, kwy

]

OPL for scalar y: 2n3
wy

+ 6n2
wy

+ 2nwynx + 6nwy + 2n2
x + 56 ∈ O

(

n3
wy

)

[Measurement disturbance estimation (predict)]
ψy

[
k + i, kwy

]
= K [k + i− 1] Γy

[
k + i− 1, kwy

]

+ (I−K [k + i− 1]C [k + i− 1])A [k + i− 2]ψy

[
k + i− 1, kwy

]

update Γy

[
k + i, kwy

]

ρ
y

[
k + i, kwy

]
= Γy

[
k + i, kwy

]
− C [k]A [k]ψy

[
k + i, kwy

]

A [k + i] = A [k + i− 1]A [k + i− 1]
Pŵy ,ỹ′

[
k + i, kwy

]
= Py

[
k, kwy

]
ρ′

y

[
k, kwy

]
P ỹ [k|k − 1]

·
(
C [k]Px [k|k − 1] (I−K [k]C [k])′ +Ry [k]K

′ [k]
)

·A ′ [k + i]C ′ [k + i]

ŷwy
[k + i|k] = ŷ [k + i|k] + ρ

y

[
k + i, kwy

]
ŵy

[
k, kwy

]

P ỹwy
[k + i|k] = Pỹ [k + i|k] + ρ

y

[
k + i, kwy

]
Py

[
k, kwy

]
ρ′
y

[
k + i, kwy

]

− ρ
y

[
k, kwy

]
Pŵy ,ỹ′

[
k + i, kwy

]
− P ′

ŵy ,ỹ′

[
k + i, kwy

]
ρ′
y

[
k + i, kwy

]

OPL for scalar y: 4Npn
2
wy

+ 4Npnwyn
2
x + 5Npnwynx + 6Npnwy + 4Npn

3
x + 8Npn

2
x −Npnx ∈ O

(

Npn
3
x

)
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System

Update stage

measurable

unmeasurable

Predict stage (i-step)

KF

Update stage

Predict stage (i-step)

RLS

Figure 4.2: Connectivity betweenKF-basedmeasurement prediction and themeasurement
disturbance estimation and prediction error compensation procedure of Algorithm 4.1.

follows those that were made for the KF in the algorithms of Section 3.2. The count

does not include the operations required for updating the disturbance profile as this value

varies with the profile of the assumed disturbance. The computational complexity of

the RLS-based measurement disturbance interval-supporting estimation, prediction, and

compensation procedure is cubicwith respect to the dimension of the state vectormultiplied

by the prediction horizon, orRLSy,ip ∈ O (n3
xNp). Finally, an overview of the measurement

disturbance estimation and prediction error compensation procedure is illustrated inFigure

4.2.

4.2.2 Disturbance to the state

The formulation of a recursive solution to the LS problem for a disturbance within the state

equation shares many similarities with that of the RLS solution for a disturbance within

the measurement equation presented in the previous section. That said, the equations
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are modified to consider effects of the state disturbance rather than the measurement

disturbance. For example, as in the case of the measurement disturbance, the cumulative

effect of the state disturbance profile established in (4.17) is also modified to be in the

following recursive form

ρ
x
[k, kwx

] = C [k]ψx [k, kwx
] (4.61)

whereψx is referred to as the pseudo cumulative effect of the state disturbance profile on the

measurement estimate. More precisely, ψx is the cumulative effect of the state disturbance

on the a priori state of the current time-step, k. The pseudo cumulative effect can then be

calculated in a recursive manner that is similar to that of (4.50) as follows

ψx [k, kwx
] =

k−kwx∑

j1=1

j1−1
∏

j2=1

Ax [k − j2] Γx [k − j1, kwx
]

= Γx [k − 1, kwx
]

+ Ax [k − 1]

k−1−kwx∑

j1=1

j1−1
∏

j2=1

Ax [k − j2 − 1] Γx [k − j1 − 1, kwx
]

= Γx [k − 1, kwx
] + Ax [k − 1]ψx [k − 1, kwx

] (4.62)

ψx [k − 1, kwx
] =

k−1−kwx∑

j1=1

j1−1
∏

j2=1

Ax [k − 1− j2] Γx [k − 1− j1, kwx
] (4.63)

where ψx [0, kwx
] = 0nx×nw and the cumulative effect, ρ

x
, is now a function of values that

are dependent only on the current time-step, k, as well as the previous time-step, (k − 1).

The RLS estimate of the state disturbance input is then calculated using the general RLS
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solution of (4.45) as follows

ŵx [k, kwx
] = ŵx [k − 1, kwx

]

+Kx [k]
(

P
− 1
2

ỹ [k|k − 1] ỹ [k|k − 1]− ̺x [k, kwx
] ŵx [k − 1, kwx

]
)

(4.64)

where ŵx [kwx
− 1, kwx

] = 0nwx×1.

The recursive calculation of the a priori measurement error covariance, Pỹwx
, has

the same formulation as for the measurement disturbance case. Basically, covariance

Pŵx
[k, kwx

] as well as cross-covariance Pŵx,ỹ [k, kwx
] do not require any modification to be

calculated recursively: the covariance of the disturbance estimate, Pŵx
[k, kwx

] is given as

P [k, kwx
]; and the cross-covariance between the measurement disturbance input, ŵx, and

the a priori measurement estimation error, ỹ [k|k − 1], is calculated in the same manner

as for the LS filter using (4.28).

For prediction, the combined KF/LS measurement prediction of (4.37) is again a func-

tion of the i-step-ahead cumulative effect of the state disturbance profile, ρ
x
[k + i, kwx

]. For

the one-step-ahead prediction, the cumulative effect is calculated as the following propa-

gated form of (4.61) under the assumption that the state-to-measurement matrix C [k + 1]

is equal to that of the current time-step, or as follows

ρ
x
[k + 1, kwx

] = C [k]ψx [k + 1, kwx
] (4.65)
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where the one-step-ahead pseudo cumulative effect is calculated as follows

ψx [k + 1, kwx
] = Γx [k, kwx

] + Ax [k]ψx [k, kwx
] (4.66)

with initial value ψx [kwx
, kwx

] = 0nx×nw .

For propagation beyond one time-step, the Kalman gain,K [k + i− 1], is equal to zero

within Ax [k + i− 1] as defined in (4.18) and the pseudo cumulative effect is instead in the

reduced form of (4.33) as follows

ψx [k + i+ 1, kwx
] = Γx [k + i, kwx

] + A [k]ψx [k + i, kwx
] (4.67)

where it is assumed that the future state matrices,A [k + i], are equal to that of the current

time-step, A [k]. The cumulative effect of the measurement disturbance profile is then

calculated using the i-step-ahead propagated form of (4.61) as follows

ρ
x
[k + i, kwx

] = C [k]ψx [k + i, kwx
] (4.68)

where the values of the systemmatrices are also assumed to be equal to those of the current

time-step k.

The i-step-ahead measurement error covariance, Pỹwx
, as given in (4.42), is a function

of the current covariance of the state disturbance input estimate, Pŵx
[k, kwx

], as well as

the i-step-ahead cross-covariance between the disturbance input estimate and the a priori

measurement error, Pŵx,ỹ [k + i, kwx
]. As in the case of the measurement disturbance, it is

again only necessary to propagate the cross-covariance to future time-steps since the state
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disturbance input covariance is equal to the value of the current time-step. The propagation

of the cross-covariance is made possible by simplifying (4.43) in the same manner as for the

measurement disturbance as follows

Pŵx,ỹ [k + i, kwx
] = Pŵx

[k, kwx
] ρ′

x
[k, kwx

]P −1
ỹ [k|k − 1]

·
(
C [k]Px [k|k − 1] (I−K [k]C [k])′ +Ry [k]K

′ [k]
)

·A ′ [k + i]C ′ [k + i] (4.69)

where the cumulative effect of the state matrix, A [k + i], is defined in (4.59).

Algorithm 4.2 reorganizes the RLS-based state disturbance input estimation and pre-

diction procedures into a two stage structure, update and predict. Aswith themeasurement

disturbance input estimation procedure, the structure of Algorithm 4.2 mimics that of the

standard KF equations introduced in Section 3.2. The calculation of pseudo cumulative

effect is again a modified form of (4.62) to reduce the computational complexity of ex-

tending RLS disturbance input estimation to the recursive disturbance input prediction

problem. Thus, the initial value of the pseudo cumulative effect, ψx [k, kwx
], is also modified

to include the initial value of the measurement disturbance profile, or ψy [k, kwx
] = 0nx×nw .

Algorithm 4.2 includes a count of the number of OPL that are required to execute the

algorithm for a systemwith a singlemeasurement as is the case for the algorithms of Section

3.2. The count does not include the operations required for updating the disturbance

profile as this value varies with the profile of the assumed disturbance. The computational
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Algorithm 4.2 Update and predict stages of the recursive least squares (RLS) state
disturbance input estimation and prediction error compensation procedure RLSx,ip.

[State disturbance estimation (update)]
ρ
x
[k, kwx

] = C [k]ψx [k, kwx
]

P ỹ, [k|k − 1] = P −1
ỹ [k|k − 1]

P
ỹ
[k|k − 1] = P

1
2

ỹ, [k|k − 1]

̺x [k, kwx
] = P

ỹ
[k|k − 1] ρ

x
[k, kwx

]

Kx [k, kwx
] = λ−1x Px [k − 1, kwx

] ̺′x [k, kwx
]

(

1 + λ−1x ̺x [k, kwx
]Px [k − 1, kwx

] ̺′x [k, kwx
]
)−1

ŵx [k, kwx
] = ŵx [k − 1, kwx

]

+Kx [k, kwx
]
(

P
ỹ
[k|k − 1] ỹ [k|k − 1]− ̺x [k, kwx

] ŵx [k − 1, kwx
]
)

Px [k, kwx
] = (I−Kx [k, kwx

] ̺x [k, kwx
]) Λ−1

x Px [k − 1, kwx
]

OPL for scalar y: 2n3
wx

+ 6n2
wx

+ 2nwxnx + 6nwx + nx + 56 ∈ O
(

n3
wx

)

[State disturbance estimation (predict)]
ψx [k + i, kwx

] = Γx [k + i− 1, kwx
]

+ A [k + i− 1] (I−K [k + i− 1]C [k + i− 1])ψx [k + i− 1, kwx
]

update Γx [k + i, kwx
]

ρ
x
[k + i, kwx

] = C [k]ψx [k + i, kwx
]

A [k + i] = A [k + i− 1]A [k + i− 1]
Pŵx,ỹ [k + i, kwx

] = Px [k, kwx
] ρ′

x
[k, kwx

]P ỹ [k|k − 1]

·
(
C [k]Px [k|k − 1] (I−K [k]C [k])′ +Ry [k]K

′ [k]
)

·A ′ [k + i]C ′ [k + i]
ŷwx

[k + i|k] = ŷ [k + i|k] + ρ
x
[k + i, kwx

] ŵx [k, kwx
]

P ỹwx
[k + i|k] = Pỹ [k + i|k] + ρ

x
[k + i, kwx

]Px [k, kwx
] ρ′

x
[k + i, kwx

]

− ρ
x
[k, kwx

]Pŵx,ỹ′ [k + i, kwx
]− P ′

ŵx,ỹ′ [k + i, kwx
] ρ′

x
[k + i, kwx

]

OPL for scalar y: 4Npn
2
wx

+ 4Npnwxn
2
x + 4Npnwxnx + 6Npnwx + 4Npn

3
x + 6Npn

2
x −Npnwx ∈ O

(

Npn
3
x

)
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RLS

Figure 4.3: Connectivity betweenKF-basedmeasurement prediction and themeasurement
disturbance estimation and prediction error compensation procedure of Algorithm 4.1.

complexity of the RLS-based measurement disturbance interval-supporting estimation,

prediction, and compensation procedure is cubic with respect to the dimension of the

state vector multiplied by the prediction horizon, or RLSx,ip ∈ O (n3
xNp). For a scalar

state vector, the measurement disturbance prediction algorithm requires 3Np + 1 more

arithmetic operations than for the state disturbance algorithm. An overview of the state

disturbance estimation and prediction error compensation procedure is illustrated inFigure

4.3.

Common oversights Within both the measurement and state disturbance estimation

procedures, it is imperative that the measurement innovation, ỹ, is calculated using the

unmodified or uncompensated KF-based state estimation procedure. In addition, the

future values of the Kalman gain,K [k + i], must be assigned values of zero as the KF-based

update stage is not executed within the measurement prediction procedures of Chapter 3.
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Compensating for estimation error Although compensation of estimation error

rather than prediction error is beyond the scope of this work, the following provides a

brief outline for compensation. These compensation techniques may be useful within other

non-predictive decision making processes. For the purpose of estimation error compen-

sation, the estimated measurement disturbance input and measurement error covariance

are combined with the a priori measurement prediction and error covariance in the same

manner as for the LS filter using (4.13) and (4.14) respectively. Moreover, it is possible to

compensate the a posteriori measurement estimate and error covariance by reformulating

(4.14). In addition, the recursively estimated state disturbance input and measurement

error covariance may be combined with the a priori measurement prediction and error

covariance in the same manner as for the LS filter using (4.24) and (4.26) respectively.

Please refer to the following section for more information regarding the implementation

of both state and measurement disturbance estimation. Moreover, as with the prediction

compensation procedure, it is imperative that the compensated estimates remain separate

from the closed-loop of the KF procedure.

4.2.3 Disturbances to both the measurement and state

It is possible to estimate state disturbance inputs while also estimating measurement dis-

turbance inputs. These combined estimations require, however, that one of the two dis-

turbances be selected as the primary disturbance, i.e. the disturbance that is to be es-

timated first. Within the combined estimation procedure it is also necessary to consider

the cross-covariance between the estimated state and measurement disturbance inputs.
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In the following, the measurement disturbance is considered to be primary and the state

disturbance secondary.

First, the measurement innovation, ỹ [k|k − 1], that is considered by the secondary or

last calculated estimation is modified to include the estimated compensation of predic-

tion error that is calculated in the primary estimation problem. For the case where the

measurement disturbance is primary, the measurement disturbance is first calculated by

considering the measurement innovation that is equal to the actual measurement minus

the a priori KF-based measurement estimate, or one-step-ahead measurement prediction.

In contrast, the measurement innovation for the secondary state disturbance input estima-

tion routine is offset by the most recently calculated cumulative effect of the measurement

disturbance profile multiplied by the most recently estimated measurement disturbance

input as follows

ỹwy

[
k|k − 1, kwy

]
= ỹ [k|k − 1]− ρ

y

[
k, kwy

]
ŵy

[
k, kwy

]
(4.70)

where the subscript •wy
indicates the inclusion of measurement disturbance input within

the a priori measurement estimation error. This estimation error is equivalent to the error

associated with the compensated a priori measurement estimate of (4.13).

Next, the normalizing covariance of the measurement innovation, Pỹ [k|k − 1], for the

secondary state disturbance estimation algorithm is compensated to consider the covari-

ance of the estimated disturbance input as well as the cross-covariance between the esti-

mated disturbance input and the measurement innovation. The measurement innovation

that is considered by the secondary state disturbance input estimation procedure is there-
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fore equal to the updated covariance, Pỹwy

[
k|k − 1, kwy

]
, that is calculated within the

primary measurement disturbance input estimation procedure, or (4.14).

Estimation of the state disturbance is then performed as formulated in Section 4.2.2.

Moreover, the state disturbance propagation also follows the methods of Section 4.2.2. The

prediction error is then compensated as follows.

ŷw [k + i|k] = ŷ [k + i|k] + ρ
y

[
k + i, kwy

]
ŵy

[
k, kwy

]
+ ρ

x
[k + i, kwx

] ŵx [k, kwx
] (4.71)

The above three modifications to Algorithm 4.2 allow the state and measurement distur-

bance estimation routines to be combined.

In addition, the i-step ahead combined measurement error covariance, P ỹwx
[k + i|k], of

Algorithm 4.2 is modified to consider the cumulative effects of both the state and measure-

ment disturbance estimations for disturbances that are assumed to initiate at time-steps

kw =
{
kwx

, kwy

}
as follows

Pỹw [k + i|k, kw] = E
{(
ỹ [k + i]− ŷwy

[
k + i|k, kwy

]
− ŷwc

[k + i|k, kwx
]
)2
}

= E
{(

ỹ [k + i]− ρ
y

[
k + i, kwy

]
ŵy

[
k, kwy

]

− ρ
x
[k + i, kwx

] ŵc [k, kwx
]
)2
}

= Pỹwy

[
k + i|k, kwy

]
+ ρ

x
[k + i, kwx

]Pŵc
[k, kwx

] ρ′
x
[k + i, kwx

]

− ρ
x
[k + i, kwx

]Pŵc,ỹ [k + i, kwx
]− P ′

ŵc,ỹ [k + i, kwx
] ρ′

x
[k + i, kwx

]

+ ρ
y

[
k + i, kwy

]
Pŵy ,ŵc

[k, kw] ρ
′
x
[k + i, kwx

] (4.72)

where cross-covariance Pŵy ,ŵc
introduces an additional term beyond those of the state and
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measurement disturbance input estimation procedures, cross-covariance Pŵc,ỹ is a modified

form of the cross-covariance established within (4.69), and covariance Pŵc
is calculated in

the same manner as Px within the general RLS equation (4.47).

The cross-covariance between the state disturbance input estimate, ŵc, and the mea-

surement innovation, ỹ, is calculated as follows

Pŵc,ỹ [k + i, kwx
] = E

{
ŵc [k, kwx

] (y [k + i]− ŷ [k + i|k])′
}

= E









Pŵc
[k, kwx

]





k∑

j=kwx

ρ′
x
[j, kwx

] Λk−j
x P −1

ỹc
[j|j − 1]

·
(

ỹ [j|j − 1]− ρ
y

[
j, kwy

]
ŵy

[
j, kwy

])







 ỹ′ [k + i|k]







= Pŵc
[k, kwx

] ρ′
x
[k, kwx

]P −1
ỹc
[k|k − 1]

·
(

(
C [k]Px [k|k − 1] (I−K [k]C [k])′ +Ry [k]K

′ [k]
)

· A ′ [k + i]C ′ [k + i]− ρ
y

[
k, kwy

]
Pŵy ,ỹ

[
k + i, kwy

])

= Pŵx,ỹ [k + i, kwx
]

− Pŵc
[k, kwx

] ρ′
x
[k, kwx

]P −1
ỹc
[k|k − 1] ρ

y

[
k, kwy

]
Pŵy ,ỹ

[
k + i, kwy

]

(4.73)

where the cross-covariance between the estimated measurement disturbance input and the

measurement innovation is zero for time-steps kwx
through (k − 1), and Pŵy ,ỹ is given in

(4.36).

The i-step ahead combined measurement error covariance is then modified to include

the cross-covariance between the estimated state and measurement disturbance inputs.
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The cross-covariance is calculated in the following non-recursive form

Pŵy ,ŵc
[k, kw] = E

{
ŵy

[
k, kwy

]
ŵ′

c [k, kwx
]
}

= E









Pŵy

[
k, kwy

]





k∑

j=kwy

ρ′
y

[
j, kwy

]
Λk−j

y P −1
ỹ [j|j − 1] ỹ [j|j − 1]









·



Pŵc
[k, kwx

]





k∑

j=kwx

ρ′
x
[j, kwx

] Λk−j
x P −1

ỹc
[j|j − 1] ỹ [j|j − 1]

−
k∑

j=kwx

ρ′
x
[j, kwx

] Λk−j
x P −1

ỹc
[j|j − 1] ρ

y

[
j, kwy

]
ŵy

[
j, kwy

]









′




= Pŵy

[
k, kwy

]





k∑

j=kwy

ρ′
y

[
j, kwy

]
Λk−j

y

·
(

I− P −1
ỹ [j|j − 1]P ′

ŵy ,ỹ

[
j, kwy

]
ρ′
y

[
j, kwy

])

·
(

P −1
ỹc
[j|j − 1]

)′ (
Λk−j

x

)′
ρ
x
[j, kwx

]

)

P ′
ŵc

[k, kwx
] (4.74)

where the cross-covariance of the measurement innovation cancels with the inverse co-

variance and the cross-covariance between the measurement innovation and the estimated

measurement disturbance input is given as the transpose of (4.16). It is possible to cal-

culate the above cross-covariance in a recursive manner within the update stage of the

secondary RLS disturbance estimation algorithm by separating the series summation from

the covariance matrices of the current time-step as follows.

Pŵy ,ŵc
[k, kw] = Pŵy

[
k, kwy

]
Ω [k, kwx

]P ′
ŵc

[k, kwx
] (4.75)

The cumulative effect of the state and measurement disturbance profiles on the cross-
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covariance of the estimated disturbance inputs is also calculated recursively as follows

Ω [k, kwx
] = ΛxΩ [k − 1, kwx

] Λ′
x + ρ′

y

[
k, kwy

]

·
(

I− P −1
ỹ [k|k − 1]P ′

ŵy ,ỹ

[
k, kwy

]
ρ′
y

[
k, kwy

])

·
(

P −1
ỹc
[k|k − 1]

)′
ρ
x
[k, kwx

] (4.76)

where Ω [kwx
− 1, kwx

] = 0nwy×nwx .

Algorithm 4.3 combines the RLS-based measurement and state disturbance input es-

timation and prediction procedures into a two stage structure, update and predict. The

updated algorithm also includes the calculation of the necessary cross-covariances. The

number of OPL are not calculated for this algorithm, since the number of operations have

already been tallied for the two estimation in previous presented algorithms.

4.2.4 Resetting the disturbance and RLS covariance

The recursive ability of the RLS filter brings about many advantages to the disturbance

estimation problem, e.g. a reduction in computational complexity and data storage re-

quirements. Through the use of the forgetting factor, Λ•, it is possible for the RLS filter to

operate indefinitely as the algorithm places a higher weight on the most recent data. The

forgetting factor can allow for better adjustment with the compromise of reduced stability.

That said, it is only possible to make the disturbance estimation procedure entirely recur-

sive with respect to the disturbance profile for a subset of the profiles that may support

recursion. Moreover, for those profiles that due support recursion, the computational com-

plexity of the recursions may become limiting. For this reason, this work propagates the
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Algorithm 4.3RLS/KF-basedmeasurement interval-prediction with combinedmeasure-
ment and state disturbance input estimation and prediction error compensation where the
measurement disturbance is considered primary.

Require: Np,A,B,C,D, u, y,Rx,Ry, Λy

Initial conditions: x̂ [0|0] ,Px̃ [0|0]
Result: ŷw [k + i|k] , ŷu,αw [k + i|k] , ŷl,αw [k + i|k] ∀i = 1, . . . ,Np

k = 0
call [Initialization] from Algorithm 3.1
loop
k = k + 1
{measure y [k]}
call [Measurement disturbance estimation (update)] from Algorithm 4.1
call [State disturbance estimation (update)] from Algorithm 4.2
with ỹ and Pỹ replaced by the compensated ỹwy

and Pỹwy

call [State estimation (update)] from Algorithm 3.1
for i = 1, . . . ,Np do
call [ith-step propagation (predict)] from Algorithm 3.3
call [Measurement disturbance estimation (predict)] from Algorithm 4.1
call [State disturbance estimation (predict)] from Algorithm 4.2
call [ith-step interval calculation] from Algorithm 3.3
with ŷ and Pỹ replaced by the compensated ŷw and Pỹw

end for
{propagate x [k] to x [k + 1]}

end loop
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disturbance profile forward in time from an initiating time-step, kw. It is therefore neces-

sary to update this initiating time-step in order to continuously monitor for the occurrence

of a disturbance.

The reset procedure is performed periodically after a given number of time-steps. The

values which are reset include, if necessary, the disturbance profile, Γ•, as well as the initial

value of the disturbance estimate covariance, P• and all of the cumulative variables, ψ•,

ρ
•
, and Ω. The estimated disturbance input is not reset, as the most previously calculated

estimate is considered to be a good initial guess for the reset estimation problem.

The choice of forgetting factor affects the tracking, convergence, and stability of theRLS

filter. This is even more important given the time-varying KF/RLS dual state and input

estimation problem. This work does not establish the criteria for selection of a sufficiently

stable forgetting factor. It is important that the forgetting factor be set at a value that

is relatively near to and less than unity. As the value of the forgetting factor approaches

unity, the RLS filter takes into account more historical data within the estimation problem.

Thus, larger values of forgetting factor generally improve the stability of the RLS filter.

More specifically, the effect of the forgetting factor on the measurement error at time-step

(k − kw) can be calculated as λk−kw . For example, a forgetting factor of 0.99 applies a

weight of 0.366 or 36.6% to the measurement error that was observed at 100 time-steps

into the past.

Alternating dual RLS filter configuration The reset procedure of this section oc-

casionally results in erroneous disturbance estimations due to the initial conditions within

the RLS filter. An alternate strategy to alleviate these errors is to duplicate the distur-
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bance estimation and prediction algorithms and to switch between the dual RLS filters, e.g.

from one RLS filter for measurement disturbance to another RLS filter for measurement

disturbance, and the same for state disturbance. This alternating dual configuration can

be performed for either of, or both of, the state and measurement disturbance estimation

algorithms. A simplified example of this alternating configuration is given in Algorithm

4.4.

The simplest mechanism for switching between the active and inactive RLS filters is

to do so at regular intervals. This switching function is denoted Θ in Figure 4.4 as well

as Algorithm 4.4. In this work, however, a convergence detection algorithm has been

implemented to determine a suitable time-step at which to switch between the filters.

The measurement and state disturbance algorithms are therefore switched at different

time-steps, i.e. not in unison. Upon switching, the RLS covariance of the inactive filter

as well as the initiating time-step of the disturbance are reset. Once the RLS solution

has converged, the algorithm switches back to the original RLS filter. This convergence

detection procedure is repeated indefinitely. Convergence is detected by monitoring the

magnitude of a moving average for the mean squared error in the measurement prediction

that would be achieved through the use of the inactive filter. The remaining details of

this mechanism are not significant to the contribution of this thesis and are therefore not

documented.

203



4.2.5 Adaptive-limited-memory-filter-based noise covariance

estimation

This section considers the combination of the ALMF noise covariance estimation algorithm

within the alternating dual configuration of RLS-based disturbance estimation. This final

configuration combines, in an elegantmanner, all the algorithms that have been formulated

within this work. The ALMF-based noise covariance estimation algorithm determines the

statistical uncertainty in the state and measurement error. These errors are affected by

the RLS-based disturbance estimation. Thus, when used in conjunction with the RLS

filters, the ALMF algorithm is modified to consider the compensated prediction error. The

following modifications are included in Algorithm 4.4.

For the estimation of measurement noise covariance, the ALMF algorithm is modified

to consider the compensated a priori measurement error and error covariance, ỹw and

Pỹw , rather than those that are produced by the KF-based prediction algorithm alone, i.e

ỹ and Pỹ. Thus, the measurement noise covariance considers the compensation that is

performed as a result of estimating the state and measurement disturbances. The result is

that the measurement error covariance more accurately represents the uncertainty in the

compensated errors.

For the estimation of state noise covariance, the modifications to the ALMF are more

involved. The state noise covariance is a function of the error between the a posteriori and

a priori state estimates, x̂ [k|k] − x̂ [k|k − 1]. Although the disturbance is applied to the

true state, as defined in (4.1), the state disturbance affects the state estimates through the

same equation as for the measurement disturbance. In other words, the only means by

204



Algorithm 4.4RLS/KF-basedmeasurement interval-predictionwithALMFnoise covari-
ance estimation, dual combined measurement and state disturbance input estimation and
prediction error compensation where the measurement disturbance is considered primary

Require: Np,A,B,C,D, u, y,Rx,Ry, Λy

Initial conditions: x̂ [0|0] ,Px̃ [0|0]
Result: ŷw [k + i|k] , ŷu,αw [k + i|k] , ŷl,αw [k + i|k] ∀i = 1, . . . ,Np

k = 0
call [Initialization] from Algorithm 3.1
loop
k = k + 1
{measure y [k]}
call [Measurement disturbance estimation (update)] from Algorithm 4.1
call [Alternate-measurement disturbance estimation (update)] from Algorithm 4.1

call [State disturbance estimation (update)] from Algorithm 4.2
with ỹ and Pỹ replaced by the compensated ỹwy

and Pỹwy

call [Alternate-state disturbance estimation (update)] from Algorithm 4.2
with ỹ and Pỹ replaced by the compensated ỹwy

and Pỹwy

evaluate switching function, Θ, and select active disturbance estimates
call [Measurement noise covariance estimation] from Algorithm 3.4
with ŷ and Pỹ replaced by the compensated ŷw and Pỹw

call [State estimation (update)] from Algorithm 3.1
call [State noise covariance estimation] from Algorithm 3.4
with x̂ [k|k] and Px̃ [k|k] replaced by x̂ [k|k] and P x̃ [k|k]

for i = 1, . . . ,Np do
call [ith-step propagation (predict)] from Algorithm 3.3
call [Measurement disturbance estimation (predict)] from Algorithm 4.1
with Ry replaced by R̂y

call [Alternate-measurement disturbance estimation (predict)] from Algorithm 4.1
with Ry replaced by R̂y

call [State disturbance estimation (predict)] from Algorithm 4.2
with Ry replaced by R̂y

call [Alternate-state disturbance estimation (predict)] from Algorithm 4.2
with Ry replaced by R̂y

evaluate switching function, Θ, and select active prediction errors
call [ith-step interval calculation] from Algorithm 3.3
with ŷ and Pỹ replaced by the compensated ŷw and Pỹw

end for
{propagate x [k] to x [k + 1]}

end loop
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which to measure a disturbance in the state is through the measurement, y. Moreover, the

measurement affects the state estimates through the update equation in (3.16). Thus, the

a posteriori state estimate is updated as follows for the purpose of state noise covariance

estimation.

x̂ [k|k] = x̂ [k|k] +K [k]
(

−ρ
y

[
k, kwy

]
ŵy

[
k, kwy

]
− ρ

x
[k, kwx

] ŵx [k, kwx
]
)

(4.77)

This update eliminates the impact of the disturbances on the state estimate without em-

bedding the error compensation routine within the standard KF equations.

When both the state and measurement disturbance estimation routines are active, the

ALMF algorithm is modified to consider the cross-covariance between the two disturbance

input estimates in the same manner as in (4.72) for prediction error compensation. These

covariances are calculated within the update stage of the secondary RLS disturbance esti-

mation algorithm, however, rather than the prediction stage as included in the combined

state andmeasurement disturbanceAlgorithm 4.3. The chosen forgetting factor, λ•, should

allow the RLS-based disturbance estimates to be more responsive to error than the ALMF-

based noise covariance estimates given covariance estimation window, Nv. Moreover, for

LTV systems where the model parameters may be assigned from a multi-model lookup

table, it is imperative that bumpless transfer is included within all of the KF and LS or

RLS equations.

The KF-based measurement interval-prediction, RLS-based disturbance estimation

and prediction error compensation, as well as ALMF-based noise covariance estimation

are combined in Figure 4.4. This overview also includes the dual combined measurement
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Figure 4.4: Connectivity betweenKF-basedmeasurement prediction and themeasurement
disturbance estimation procedure of Algorithm 4.1.

and state disturbance input estimation where the measurement disturbance is considered

primary.

4.3 Summary

This chapter presents the LS solution to the disturbance estimation problem. This esti-

mation procedure is performed in addition to the KF-based state estimation of Chapter

3 in order to consider deterministic changes in the operating conditions or signals of the

system. The LS problem is formulated for additive input disturbances to both state and

measurement of the system. The disturbance model is included within the estimation rou-

tine as a profile as opposed to the alternate method of augmenting the state matrix. This

form of estimation circumvents the selection of fictitious noise covariance for disturbances
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that are considered to be deterministic.

A recursive solution to the LS disturbance estimation problem is also formulated. This

recursive procedure includes the related covariances between the estimated disturbance in-

put and the measurement residual or innovation. The recursive solution does not, however,

include the ability to recursively update the initial time-step for the assumed disturbance.

For this reason, an alternating dual-RLS filter configuration is developed whereby the two

RLS filters switch upon detection of the compensated prediction error converging to within

some margin of accuracy with respect to the measurement signal. The RLS disturbance

input estimation procedure is then combined with the ALMF noise covariance estimation

routine of Chapter 3. The result is a prediction algorithm that incorporates three forms of

estimation and two forms of uncertainty for LTV systems.
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Chapter 5

Predictive Shutdown and

Assessment of Prediction Quality

Chapter 3 and Chapter 4 address many of the prediction-related objectives that make up

this dissertation work. The remaining methodology-related objectives can be separated

into twomain tasks. The first is the development of PSDSs using the algorithms formulated

in Chapter 3 and Chapter 4. The second is the enhancement of the developed PSDS to

consider or assess prediction quality as well as the probability of a true or false impending

trip condition.

Regarding the development of a PSDS, this chapter introduces a benchmark conven-

tional SDS design that is a simplified portion of CANDU SDS1 as introduced in Section

2.2. The conventional SDS is modified to include the KF-based prediction algorithm of

Section 3.2. A block diagram of the basic structure for conventional SDS as well as the

modular addition of the prediction algorithm is illustrated within the context of SISs in
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Figure 5.1a) and Figure 5.1c) respectively. By including KF-based prediction, the PSDS is

able to consider stochastic uncertainty within the system, model, parameters, and signals.

The PSDS is then further modified within this chapter to include the noise covariance es-

timation algorithm of Section 3.6 as well as the prediction error compensation algorithm

of Section 4.1. These modifications are illustrated respectively in Figure 5.1d) and Figure

5.1e). The addition of RLS-based disturbance estimation enables the PSDS to consider

deterministic uncertainty, e.g. errors within the model parameter as well as disturbances

within the system inputs. Moreover, the addition of an ALMF-based noise covariance

estimation algorithm enables the PSDS to consider changes in the statistical descriptions

of the uncertainties that are provided to the KF. Each of the KF-based as well as the

KF/RLS-based PSDS designs is derived using both the point- and the interval-prediction

methods of Chapter 3. This chapter therefore introduces two point-PSDS designs and two

interval-PSDS designs.

In utilizing a KF as the foundation of the prediction algorithm as well as an RLS filter to

compensate for prediction error, the point- and interval-PSDS designs are able to calculate

accurate predictions even though the systemmay be operating under uncertain conditions,

e.g. those conditions that are compatible with the assumed model of disturbance input.

That said, multi-step-aheadKF-based predictions are calculated in an “open-loop”manner

since the prediction algorithm does not take into consideration the value of past multi-

step-ahead predictions. In other words, the KF-based measurement predictions and error

covariances are not functions of the error in predictions that are propagated beyond one

time-step. This is in contrast to the one-step ahead KF-based predictions that affect KF-

based estimates in a “closed-loop” manner through the update of the mean a posteriori
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Figure 5.1: Modular modification of a) conventional SDS logic to include the following
capabilities b) prediction quality assessment and alarm/trip optimization, c) safety pa-
rameter prediction, d) uncertainty or noise covariance estimation, and c) prediction error
compensation, all within the context of safety instrumented systems (SISs).

state estimate as a function of the a priori measurement error within the state update

equation (3.16). Thus, a secondary objective of this chapter is to monitor and asses the

quality of past predictions in an effort to improve the capability of the PSDS designs to

make accurate predictive decisions. This objective differs from that of Chapter 3 in that

the predictions and the prediction algorithm are being tested for quality rather than the

predictions only being compensated for errors.

The algorithms of Chapter 3 do not monitor for bias or drift in the predicted mea-

surements or discrepancies in the measurement prediction error covariances. Given the

assumption of a Gaussian probability distribution for prediction errors within the KF,

however, various statistical tests can be performed on the errors to determine whether

the assumed system model, signal, and noise characteristics match those of the true sys-
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tem [147, 148]. These tests provide a means for assessing prediction quality within each

time-step of the prediction window, as performed in [40]. Those predictions that are con-

sidered to be of sufficient quality given the statistical test criteria are then selected for

comparison against the TSP. The result is an effective prediction horizon that is adapted

as a function of prediction quality. Statistical testing, hypothesis testing, and optimal

alarm theory are then combined in an effort to adapt and optimize trip initiation in a

manner similar to the work of Martin [41]. More specifically, by including optimal alarm

theory, it is possible to not only adapt the effective prediction horizon but also to adapt

a metric that represents expected mean prediction error by maximizing the probability of

an impending trip condition given an alarm or trip. These two features are included in the

prediction quality assessment and trip optimization block of Figure 5.1b).

The above objectives result in a PSDS that is not only able to calculate future values of

safety parameter measurements under uncertain conditions, but is also aware of the quality

of the predictions that are being made. Moreover, the PSDS is able to adapt the effective

prediction horizon and predicted measurement metric so that the shutdown procedure is

activated at a time that is considered to be optimal. In this manner, the probability of

spurious and missed trip occurrences can be minimized. In general, this chapter presents

PSDS designs that emphasize simplicity andmodularity. All of the proposed PSDS designs

include the conventional trip detection mechanism in order to guarantee the occurrence of

a trip decision that cannot, under any circumstances, be made at a time which is later than

that of the conventional SDS. This research considers the well-established IB , NIS , and

IW tests for assessing the statistical properties of the predictions that are calculated by

the KF and RLS algorithms [147]. The hypothesis testing methods t investigated within
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this research include the calculation of TPR and FPR . These two rates are closely related

to the ROC that is utilized within some optimal alarm research [41] as well as the false

positive, Type I, and false negative, Type II, errors that correspond to spurious or missed

trip activations within SDS. The PSDS designs also incorporate a prediction selection

function that is responsible for adapting the prediction horizon or metric that is to be

compared against the TSP.

Of the topics covered in this chapter, the formulation of the point- and interval-PSDS

designs is considered a major contribution since these designs are the first known predictive

methods within the application of NPP shutdown. In addition, this chapter presents the

first known investigation into the relationship between the ROC space of optimal alarm

theory and the NPP shutdown decision-making procedures. Finally, the PSDS designs of

this chapter achieve the main aim set out within the motivation of this dissertation work.

In summary, the first two sections of this chapter introduce a conventional SDS design

and then combine the algorithms of Chapter 3 and Chapter 4 to achieve PSDS designs

of varying capabilities and functionalities. The third section of this chapter enhances

the PSDS design to assess the quality of the predictive decisions. The third section also

presents the adaptation of prediction horizon as well as the metric that is to be compared

against the TSP. This adaptation is optimized with respect to the quality of the predicted

measurements. This chapter does not attempt to cover all aspects of SDS design or the vast

body of literature related to applied probability, and statistical and hypothesis testing. For

a more complete treatment of NPP safety and SDSmethods please refer to one of the many

safety-related IAEA technical documents [1] or international standards including those of

the IEC [117, 118]. Alternatively, for a review of applied probability, as well as statistical
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and hypothesis testing refer to the text by Papoulis [146,148] or Bar-Shalom [148], and the

course notes of Reid [147].

5.1 A Conventional Shutdown System Design

The structure of a conventional SDS logic solver is included in the context of SISs in Figure

5.2. A conventional trip occurs upon detecting a threshold-crossing event that involves a

safety parameter reaching a corresponding TSP. Conventional SDS logic solvers generally

include signal conditioning and validation logic as well as a comparator and corresponding

hysteresis threshold. The conditional logic of the comparator most often considers a TSP

that is constant, but TSPs may also be varied linearly with respect to some major system

parameter, e.g. another signal received by the SDS that is related to the system being

protected. The logic solver also incorporates, or is supported by, coincidence voting and

seal-in logic components, as reviewed in Section 2.2.2 [129]. The voting/seal-in block is

located at the edge of the logic solver since these functions may either be included within

the trip logic, or implemented using relay logic or other technologies that are external to

the trip computer.
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The SDS illustrated in Figure 5.2 includes an isolated logic solver that makes trip de-

cisions for a single safety parameter measurement, y, according to either a high or low

alarm-threshold or TSP, Ξ. In contrast, conventional SDSs generally include multiple

instances of this trip logic for safety parameter measurements that represent many NPP

subsystems. These logic solvers are connected between the same sensors and final elements,

and therefore have access to a number of safety-related signals or safety parameter mea-

surements. For example, although included in Figure 5.2, safety parameter measurement,

u, is not directly considered within the trip logic of the current safety parameter, y.

The sensors included in Figure 5.2 are the safety-related devices that provide the safety

parameters measurements, y and u, from the NPP subsystems. In contrast, the final ele-

ments or trip actions are the physical means by which, upon shutdown, negative reactivity

is introduced to the reactor core to stop the fission chain reactions, e.g. shut-off rods or

neutron poison. In addition, the trip actions are usually divided into two or more groups.

For example, each shut-off rod may be assigned to one of two banks where all rods of the

same bank are release using a single electrical signal that controls the electro-mechanical

clutch that keeps the rods suspended above the reactor core.

The function of the comparator block within the trip logic is to compare the safety

parameter measurement, y, of the current time-step against a corresponding TSP, Ξ ,

{Ξh, Ξl}. For software-based SDSs, the logic is executed on a time-interval known as an

execution interval or scan time, e.g. 100ms. If the safety parameter is found to be equal

to or beyond either a high or a low TSP, Ξh or Ξl, the trip signal, ξ , {ξh, ξl}, is de-

energized. The SDS therefore detects a threshold-crossing event. The conditional logic for
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conventional trip is defined as follows

ξh [k] =







1 y [k] < Ξh

0 otherwise

, ξl [k] =







1 y [k] > Ξl

0 otherwise

(5.1)

where ξh and ξl are the resulting high and low trip signals respectively. Here, a trip signal

equal to 1 indicates continued operation without trip whereas a signal equal to 0 indicates a

trip occurrence, i.e. de-energize to trip. In Figure 5.2, the notations Ξ and ξ indicate either

a high or low TSP and corresponding trip signal for high and low trip logic respectively.

In practice, the TSP can vary as a function, Ξ (u), of some major system parameter, e.g.

u. Although this feature is included in Figure 5.2, the TSPs of this study have constant

values.

The comparator block of Figure 5.2 includes a hysteresis offset that is combined with

the TSP. The hysteresis offset prevents jitter within the trip signal that may be caused

by fluctuations in the safety parameter measurement. For example, measurement fluctua-

tions may result in a down-crossing and subsequent up-crossing of a low TSP. Under these

conditions, the SDS will not de-energize and then re-energize without a significant reversal

in the dynamics of the system that provides the measurement. The measurements that are

input to the SDS may be acquired from multiple redundant sensors for the same physical

variable. In some cases, these input signals undergo filtering, compensation, and/or aver-

aging prior to being compared against the TSP. These features are include in Figure 5.2 as

the validate/signal condition block. All safety parameter measurements are monitored to

be within the valid range of the electrical signal characteristics for the safety transmitter,
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e.g. a 4− 20mA sensor that is transmitting 3.0mA. Safety parameters that are detected to

be invalid result in the parameter being de-energized within the voting logic. This validity

or error check is performed through the use of the validation trip signal, ξ. A fault in the

sensor of a safety parameter therefore results in an increased probability of spurious trip

for the multi-channel SDS.

5.2 Predictive Shutdown System Designs

KF-based point-predictions, as formulated in Section 3.3, are a function of prior informa-

tion that specifies a model and uncertainty for a given system and corresponding signals.

This information provides a KF predictor the ability to anticipate the mean trajectory

of a given system over a prediction window to some prediction horizon. When KF-based

point-predictions are calculated for safety parameter measurements within a system being

protected, this ability provides a means for making trip decisions at a time which is earlier

than for the case of conventional decision-making systems since the conventional systems

wait for the occurrence of the impending event. These mean anticipated trajectories or

point-predictions are therefore the foundation of the point-PSDS design.

The KF also has the ability, as a stochastic filter, to describe the anticipated trajectory

in terms of a probability distribution. This probability distribution can be interpreted as a

measure of confidence in the calculated predictions within each time-step of the prediction

window. KF-based interval-predictions, as formulated in Section 3.5, include the sameprior

information as the KF-based point-predictions but also assign specific levels of confidence

to the bounds of an interval of the anticipated trajectories. KF-based interval-predictions
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result in trip decisions that occur earlier than for conventional decision-making but also

have a certain level of confidence in the occurrence of an impending abnormal condition.

In comparison, trip decisions that are made using the mean prediction values of the point-

PSDShave a level of confidence in the impending trip condition of 50%. Interval-predictions

are therefore utilized to calculate the upper and lower bounds of a confidence-interval, one

of which corresponds to a level of confidence that is greater than 50%. The greater of the

two bounds is the inner bound with respect to the domain of safe operating conditions.

Confidence-interval-based decisions are expected to counteract spurious trips that may be

encountered when using the point-PSDS design.

RLS disturbance estimation and prediction error compensation provide an additional

means of enhancing the point- and interval-PSDS designs. The main aim of either the

point- or interval-PSDS designs is to predict abnormal conditions that would eventually

be detected by the conventional SDS. It is therefore important that the predictions accu-

rately represent the future dynamic response of the model and the potential occurrence of

uncertain conditions that may arise during the transient to an abnormal condition. In com-

pensating the predictions for the estimate of the prediction error, the predictions are forced

to follow the safety parameter measurements more closely than the response of the model

that is provided to the KF or even the optimal KF-based predictions. Error compensation

therefore benefits the PSDS by allowing the prediction algorithm to be more accurate with

respect to impending abnormal conditions. This is especially true for uncertain conditions

that are deterministic in nature and can be modelled as some form of additive disturbance

input.

Within the nuclear industry, strict regulations regarding sensor quality as well as sensor
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redundancies help to ensure that the sensor measurements are reliable. This has a direct

impact on the uncertainties assumed within the KF since it is less likely for the measure-

ments to be uncertain. For example, an averaging function or voting mechanism applied

to four high quality redundant steam generator level sensors results in a very reliable mea-

surement that has low uncertainty. For industries that have less sensor reliability and

increased uncertainty measurement, the above configuration can be modified to compare

both the compensated as well as the uncompensated measurement predictions against the

corresponding TSP. This modified design is subject, however, to a potential increase in

spurious trip occurrences due to the addition of a parameter being compared against the

TSP. That said, the potential for model-based trip is not included within the trip coverage

of the conventional SDS. Although the KF-based predictions are assessed within the results

of this work, a PSDS design that compares both the KF and KF/RLS-based predictions

against a TSP is considered to be beyond the scope of this study.

It is also possible to perform KF-based prediction for multiple safety parameters within

the SDS. It is recommended, however, that each of the safety parameters be considered

independent of the remaining parameters in order to reduce computational complexity as

well as the interconnection between the safety parameter calculations. This strategy should

not have any impact on the independence of the SDS since the predicted safety parameters

are those that were already monitored by the SDS. Moreover, the KF algorithm does not

rely on any single common variable between the parameters.
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5.2.1 Point-PSDS: point-predictive shutdown system

The structure of the point-PSDS is included in the block diagram of Figure 5.3. A point-

predictive trip occurs upon predicting a threshold-crossing event that involves the mean-

value of a predicted measurement reaching a corresponding TSP, Ξ. This TSP is the same

value as is used for conventional trip. In this configuration, the logic solver is modified to

include a KF-based prediction algorithm that considers a system model as well as various

constraints and uncertainties. Point-predictive decisions are made by comparing safety

parameter measurement predictions against the conventional TSPs. The structure of the

point-PSDS is a modular evolution of conventional SDS that does not require additional

sensors or hardware modifications. This requirement does, however, assume that the sys-

tem input to the KF, u, is available as a safety parameter measurement or can be calculated

as a function of others parameters. The conventional trip logic remains active within all

of the proposed PSDS designs as a backup to the predictive trip mechanism, i.e. measure-

ments are also compared directly to the TSPs. The conventional trip logic is implemented

within the point-PSDS design in the same manner as described for the conventional SDS

in Section 5.1. The upper limit of time-to-trip is therefore guaranteed to be equal to that

of the conventional SDS given that the PSDS has an equivalent scan time. In other words,

the addition of the point-prediction algorithm is only able to improve upon the response

time of the conventional SDS.

Safety parameter measurements are predicted using the KF prediction block of Figure

5.3 and the KF-basedmeasurement point-prediction equations of Algorithm 3.2. Although

the measurement predictions are propagated to prediction horizon, Np, the a predictive
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trip occurs if any of the measurement predictions within the prediction window reach either

a high or low TSP, Ξh or Ξl. Thus, a maximum or minimum of the predictions within the

predictionwindow is selected to be compared against either a high or a lowTSP respectively.

The selected prediction is the output of the selection function block, and function S, as

follow

ŷ [k] = S (ŷ [k + i|k]) =







max (ŷ [k + i|k]) for Ξh

min (ŷ [k + i|k]) for Ξl

, ∀i = 1, . . . ,Np (5.2)

where max and min return the maximum and minimum of the point-predictions that are

calculated within the prediction window. If the selected safety parameter point-prediction,

ŷ, is equal to or beyond either a high, Ξh, or a low TSP, Ξl, then the trip signal, ξp ,

{ξp,h, ξp,l}, is de-energized. The conditional logic for this point-predictive trip is defined as

221



follows.

ξp,h [k] =







1 ŷ [k] < Ξh

0 otherwise

, ξp,l [k] =







1 ŷ [k] > Ξl

0 otherwise

(5.3)

In addition, the conditional logic for the backup conventional trip that remains active

within the point-PSDS are defined in (5.1).

The presence of system-model mismatch or input disturbances can cause the KF-based

measurement predictions to deviate from the future measurements. This is the case for

many practical dynamical systems where the model parameters may be time-varying or

when disturbances are present. Error compensation is made possible by performing RLS-

based estimation of disturbance inputs for an assumed disturbance profile as included in

Algorithm 4.1 and Algorithm 4.2. These algorithms are included in Figure 5.3 as the

optional RLS error compensation block. Functionally, the algorithms propagate the esti-

mated disturbance models over the prediction window in order to compensate error within

the safety parameter predictions. The compensated predictions are denoted ŷwxy
, ŷwy

, or

ŷwx
for the respective state and measurement, measurement, and state disturbance input

cases. As in the case of the KF-based point-PSDS, the maximum or minimum compen-

sated prediction value is then selected within function S of (5.2) where ŷ is replaced by the

corresponding compensated safety parameter predictions ŷwxy
, ŷwy

, or ŷwx
.

The ALMF covariance estimation block of Figure 5.3 allows for the KF to consider state

and measurement noise covariances, Rx and Ry, that are unknown or time-varying. This

is often the case for the state noise covariance since this covariance is not easily measured.

Many studies therefore approximate covariance values through trial-and-error, or utilize
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other methods that are referred to as being ad-hoc. In contrast, the ALMF-based noise

covariance estimation routine, as included in Algorithm 3.6, estimates the noise covariance

as a function of state andmeasurement errors that are calculatedwithin theKF.TheALMF

algorithm also provides a mechanism for detecting divergence within the KF whereby

specific values within the two noise covariances may be growing without bounds. It is

recommended that these conditions be monitored and the covariance estimation routine

either reset or constrained if the covariance values approach the limits given the model of

the system.

When both the RLS and the ALMF algorithms are included, the ALMF-based mea-

surement noise covariance estimation algorithm is modified to consider the compensated

a priori measurement prediction and measurement error covariance whereby ỹ [k|k − 1]

is replaced by (y [k|k − 1]− ŷw•
[k|k − 1]) and P y [k|k − 1] by Pỹw•

with w• indicating

either the state or measurement disturbance. Moreover, the ALMF-based state noise

covariance estimation algorithm is similarly modified whereby ˜̂x [k] is replaced by ˜̂x [k] +

K [k] (ŷw•
[k|k − 1]− y [k|k − 1]) while the state error covariance equation remains unmod-

ified.

5.2.2 Interval-PSDS: interval-predictive shutdown system

The interval-PSDS uses KF-based stochastic descriptions of prediction uncertainty to

make confidence based decisions regarding impending abnormal conditions. An interval-

predictive trip occurs upon predicting a threshold-crossing event that involves the bounds

of a predicted confidence-interval reaching a corresponding TSP, Ξ. This TSP is the same
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value as is used for point-predictive and conventional trip. The structure of the interval-

PSDS is included in the block diagram of Figure 5.4. Interval-predictive decisions are made

by comparing the upper or lower bounds of a confidence interval for the safety parameter

measurement predictions against the conventional TSPs. As is the case for the point-PSDS

design, the structure of the interval-PSDS is a modular evolution of the conventional SDS

which does not require additional sensors or hardware modifications. Moreover, the con-

ventional trip logic is implemented within the interval-PSDS design in the same manner

as described for the point-PSDS and conventional SDS in Section 5.1. The addition of the

interval-prediction algorithm is, again, only able to improve upon the response time of the

conventional SDS.

That said, the interval-PSDS does result in a delayed trip when compared against the

point-PSDS design. This is a result of the interval-PSDS waiting for a specific level of

confidence in an impending abnormal condition to be achieved. The point- and interval-

PSDS designs have the potential, therefore, to result in increased false and missed trip

occurrences respectively. These occurrences should be considered prior to implementation,
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in order to reduce conflict with existing standards and regulations.

Safety parametermeasurements andmeasurement error covariances are predicted using

the KF prediction block of Figure 5.4 as well as the KF-based measurement interval pre-

diction equations of Algorithm 3.3. The interval-PSDS design differs from the point-PSDS

designs in that the state error covariance is propagated to the prediction horizon, Np, and

the measurement error covariance, Pỹ, is calculated at each time-step within the prediction

window. These measurement predictions and error covariances are then combined within

the confidence interval block of Figure 5.4 for a specific one-tailed significance level, α, and

corresponding two-tailed significance level, α, as introduced in Section 3.5. The result is a

set of confidence-based prediction values, ŷα , {ŷl,α, ŷu,α}, that bound the measurement

predictions within each time-step of the prediction window.

For a high TSP, Ξh, the lower bounds represent a level of confidence that is greater than

50%. In contrast, for a low TSP, Ξl, the upper bounds correspond to a level of confidence

that greater than 50%. For example, a low level trip with a two sided significance level of

α = 5% results in an upper bound being compared against the TSP. This upper bound

is expected to be higher in value than 97.5% of the expected future safety parameter

measurements within the corresponding time-step of the prediction window. Thus, when

the upper bound reaches the low TSP, the interval-PSDS has a level of confidence greater

than or equal to 97.5% that the measurements will also reach the low TSP within that

specific time-step of the prediction window.

The interval-predictive trip logic is designed to trip if any of the either lower or upper

bound values within the prediction window reach either a high or low TSP respectively.

This functionality is equivalent to the S function within the point-PSDS design, but for
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different prediction values. Thus, a maximum or minimum of the specific bound within

the prediction window is selected within S function block as follows, and is to be compared

against either a high or a low TSP respectively.

ŷ [k] = S (ŷα [k + i|k]) =







max
(
ŷl,α [k + i|k]

)
for Ξh

min (ŷu,α [k + i|k]) for Ξl

, ∀i = 1, . . . ,Np (5.4)

If the selected bound of the safety parameter interval-prediction, ŷ, is equal to or beyond

either a high, Ξh, or a low TSP, Ξl, then the trip signal, ξp, is de-energized. The conditional

logic for an interval-predictive trip is therefore defined as it was for the point-PSDS in (5.3).

In addition, the conditional logic for the backup conventional trip is as defined in (5.1).

Compensation of prediction error can also be included within the interval-PSDS design

by including the RLS-based disturbance input estimation as formulated for both state and

measurement disturbance inputs in Algorithm 4.3. Otherwise, the state or measurement

disturbance input estimation routines can be performed separately by individually imple-

menting Algorithm 4.2 or Algorithm 4.1 respectively. These algorithms are included in

the RLS block of Figure 5.4. Functionally, the algorithms propagate the estimated distur-

bance model and the calculated cross-covariances over the prediction window in order to

compensate error within the safety parameter predictions as well as the error covariance

that provides a probability distribution for the safety parameter predictions. The compen-

sated predictions are denoted ŷwxy
, ŷwy

, or ŷwx
for the respective state and measurement,

measurement, and state disturbance input cases.

For interval-prediction, the disturbance estimation algorithmcalculates the auto-covariance
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of the estimated disturbance input as well as the cross-covariance between the estimated

input and the a priori measurement estimation error. These two covariances are then

combined with the measurement error covariance of the KF within the confidence interval

block so that the distribution of the compensated predictions is accurate given the sec-

ondary estimation problem. The confidence interval block then calculates the upper and

lower bounds and the maximum or minimum compensated prediction bound is selected

using theS function of (5.2) where ŷα is replaced by the corresponding compensated bound

of the safety parameter prediction.

Covariance noise estimation has a more significant role in improving the quality of the

interval-predictions than it does for the point-predictions. The reason for this increased

role is that KF-based point-predictions are minimum variance estimates of the state or

measurement under a variety of model-mismatch and disturbance conditions. Moreover,

the point-predictions are optimal when the model matches the system and the noise within

the state and measurement equations is white and Gaussian. In contrast, the performance

of the error covariances is not so well defined and may even be erroneous. These errors

are often overlook in the literature since the KF is most often utilized for point-estimation

purposes. In other words, although the point-estimates are optimal given that the infor-

mation provided to the KF is accurate, this is not the case for the state and measurement

error covariances. These covariances may not reflect the true uncertainty within the state

or measurement estimates or predictions. The erroneous covariances occur as a result of

insufficient or misleading state or measurement noise covariances being provided to the KF.

More precisely, small variations in the assumed noise covariances have minimal impact on

the quality of the KF-based prediction, but profound impact within the descriptions of un-
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certainty regarding these predictions. Thus, when implementing the interval-PSDS design

it is recommended that some form of covariance noise estimation be performed or, in the

least, that a formal method for calculating the state error covariance be employed.

The primary benefit of the interval-PSDS is the ability of the consider uncertainty

regarding the calculated predictions. Where the point-PSDS produces a trip upon the

point-prediction reaching the TSP, the interval-PSDS instead waits until the TSP has

been reached with a predetermined level of confidence. The interval-PSDS therefore ben-

efits safety-critical decisions that have high productivity losses associated with alarm or

shutdown. That said, measures of confidence in decision-making, whether calculatedwithin

the interval-PSDS or otherwise, quantify the belief that is held by a decision-making mech-

anism given a specific set of prior information or knowledge, that an impending condition

is going to occur. Both the point- and interval- PSDS, however, remain unaware of the

performance or accuracy of past predictions. Thus, the remainder of this chapter aims to

assess the quality of previously calculated predictions in order to establish a PSDS design

that is aware of the prediction algorithm performance.

5.3 Prediction Quality Assessment

The point- and interval-PSDS designs, as formulated in Section 5.2, consider prior knowl-

edge and prediction uncertainty but do not consider prediction quality. This section aims

to determine the quality of the predictions that are calculated using the prediction, error

compensation, and noise estimation algorithms of Chapter 3. The quality of the calculated

predictions is assessed according to a predetermined significance level, α or α, through the
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use of statistical tests and hypothesis testing methods. The significance level in turn spec-

ifies the false positive or Type I error rate, FPR. The statistical tests assess whether or not

the prediction errors are zero mean, or unbiased, and white with an accurately estimated

measurement prediction error covariance [147,148]. The results of the tests are utilized to

optimize the performance of the predictive decision-making mechanism with respect to the

probability of an impending abnormal condition. These methods allow for enhancement

of both the point- and interval-PSDS designs by adapting the effective prediction horizon

as well as prediction bias within the optimal-PSDS design of Section 5.3.3.

Within the point- and interval-PSDS designs, the prediction algorithms are provided

models of the system as well as the disturbances that may be affecting the state or mea-

surement signals. The accuracy of the calculated predictions relies on the validity of these

assumed models as well as the assumed, or calculated in the case of the ALMF, statis-

tical properties regarding uncertainty in the signals and the model parameters. More

precisely, these uncertainties are the state and measurement noise covariances, Rx and Ry

respectively. Section 5.3.1 investigates three statistical tests that can be utilized to assess

the validity of these assumptions as a function of measurement prediction error and er-

ror covariance for each time-step within the prediction horizon. If these assumptions are

erroneous, the prediction error may either be biased or time correlated, or have a covari-

ance descriptions that are either too wide or too narrow. In being able to identify these

erroneous properties of the predictions, the predictive decision-making mechanism of the

PSDS design can then be enhanced to consider prediction quality at each time-step within

the prediction window.

In general, predictions are unbiased if the mean of the error distribution is equal to zero.
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Those predictions that are either unbiased or biased slightly toward the TSP provide the

benefit of reducing the probability of amissed detection with the drawback of increasing the

probability of false detection. Those predictions that are unbiased or lead themeasurements

toward theTSP therefore improve safety. In contrast, predictions that are biased away from

the TSP and toward the center of the normal operating region may decrease safety since

these biases result in a delay to the predictive trip decision, a reduction in the probability

of false detection, and an increase in the probability of a missed detection. Biases affect

point- and interval-based predictive decisions equally since both the point-prediction as

well as the bound of the confidence-interval are affected by the offset that is the bias. It

is beneficial, therefore, to either reduce or detect bias within each of the PSDS designs in

order to prevent the occurrence of a false or missed trip events.

Regarding covariance quality, the measurement prediction error covariance is consid-

ered exact if the variance of the measured prediction errors is equal to the predicted error

covariance. For interval-PSDS designs that utilize levels of confidence greater than 50%,

an estimated covariance that is wider than the measured covariance results in an increased

probability of missed detection with the benefit of decreasing the probability of false trip.

This is due to the confidence intervals of the prediction being wider than the confidence

associated with the actual covariance of the error and not representing the true uncertainty

in the eventual measurements. In contrast, for interval-PSDS designs that utilize levels of

confidence that are less than 50%, the wider estimated covariance causes increased prob-

ability of false detections and decreased missed detections. The quality of the predictive

decisions within the interval-PSDS design are therefore a function of level of confidence

in the predictions. This level of confidence is, in turn, a function of the error covariance.
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Thus, it is important, when using the interval-PSDS, that the observed variance of predic-

tion error is approximately equal to the expected variance.

In addition to prediction quality, Section 5.3.3 investigates the extension of hypothesis

testing to optimal alarm theory. In general, hypothesis testing aims to determine the

outcomes of statistical tests that lead to a rejection of the null hypothesis according to a

pre-specified level of significance, α, e.g. the probability that the predicted measurement

will occur outside a confidence interval of some significance level. Within this work, the

hypothesis tests consider the null hypothesis of an impending abnormal condition and the

alternate hypothesis of continued operation under normal conditions, see Figure 1.1. In

this manner, it is then possible to quantify the ability of the statistical test outcomes to

either “not reject” or to “reject” the null hypothesis of the impending abnormal condition.

This ability is measured through the calculation of true and false positive rates, TPR and

FPR [41].

By quantifying the performance optimizing rates within each time-step of the prediction

window and for a set of hypothetical mean predictions errors, the PSDS designs are able to

not only adapt the effect prediction window but also the score associated with the bounds

of the confidence interval. These adaptations are discussed with respect to the ROC space

that is constructed with TPR and FPRmetrics as axes. The PSDS design is then enhanced

by means of optimal alarm theory to consider an upper bound on the probability of false

trip within each time-step of the prediction window.
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5.3.1 Hypothesis testing

This section introduces three statistical tests that are each able to determine, for a given

level of significance, α, whether a sequence of random variables, or measurement prediction

errors, correspond with a given covariance, e.g. the measurement error covariance. It is

expected that performing these tests prior to initiating shutdown will result in an increase

in the accuracy of the predictive trip decisions. This increase in accuracy is achieved by

adapting the effective prediction window to consider only those predictions that are within

time-steps of the prediction window that are assessed not to be beyond a sufficient level of

quality. Moreover, hypothesis testing relates significance level, α, to Type I or false positive

errors. The performance of the prediction algorithm is therefore made to have an upper

bound on the probability of a false positive event. Within the nuclear industry, this event

corresponds to a missed trip occurrence; false positive is a false detection of the normal

condition.

Hypothesis testing involves a sequence of testswith respect to a null hypothesis,H0, that

is considered the default condition and an alternate hypothesis, H1, that is the condition

to be proven. The null hypothesis either fails to be rejected, reject′, or is rejected, reject, by

means of some statistical test. The results of a series of hypothesis tests can be organized

using an error matrix or contingency table as included in Table 5.1 [160]. Error matrices

provide a means for quantifying the results of a hypothesis test within one of four of the

following outcomes: TP are those conditions that are hypothesized to be alternate and are

actually alternate, FP are those conditions that are hypothesized to be alternate and are

actually null, FN are those conditions that are hypothesized to be null and are actually
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Table 5.1: Error matrix.

True condition

H0 H1
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p
ot
h
es
is

reject′ (H0)
True Negative (TN)

(1− α)
False Negative (FN)

Type II error

reject (H0)
False Positive (FP )
Type I error (α)

True Positive (TP )

alternate, and TN are those conditions that are hypothesized to be null and are actually

null. Of these values, TP and TN correspond with correct decisions whereas FP and FN

are incorrect. These values may either be percentages or rates, as is common in hypothesis

testing, or a tally of a number of outcomes, as is more often used for binary classification.

This table is referred to as the error matrix due to the FP and TN outcomes representing

errors in the hypothesis testing procedure [160].

As stated previously, FP outcomes correspond with Type I errors or those events where

the null hypothesis is true, H0, but is rejected, reject (H0). This type of error corresponds

with a false alarm since the test statistic indicates that the null condition is false when it is

actually true. For NPP SDSs, an FP is referred to as a missed trip, i.e. the presence of an

abnormal condition without any trip action being activated. In contrast, the FN outcome

corresponds with a Type II error or those outcomes where the null hypothesis is true, H1,
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but is rejected, reject′ (H0). This type of error corresponds with a missed alarm since the

test statistic indicates that the null condition is true when it is actually false. For NPP

SDSs, an FN is referred to as false trip, i.e. a trip action being activated while operating

under normal conditions.

The errormatrix introduces variousmetrics that are functions of TP , FP , FN , and TN

rates from within the error matrix [160]. Of these metrics, optimal alarm theory focuses on

the TPR, FPR that make up the domain of the ROC [41], with the latter rate the metric

over which optimal alarms are optimized. Optimal alarm theory also considers a third

metric known as the negative preditive value (NPV). First, the TPR and FPR metrics are

conditional probabilities and corresponding ratios: for TPR as follows

PTPR = P (reject (H0) |H1) =
P (reject (H0) ∩H1)

P (H1)
=

TP

TP + FN
(5.5)

and for FPR as follows.

PFPR = P (reject (H0) |H0) =
P (reject (H0) ∩H0)

P (H0)
=

FP

FP + TN
(5.6)

The TPR is therefore the probability of rejecting the null hypothesis given that the true

condition is the alternate hypothesis. The TPR is also the ratio of TP outcomes to the

total number of occurrences for which the alternate hypothesis is determined to be true. In

contrast, FPR is the probability of rejecting the null hypothesis given that true condition

is the null hypothesis. The FPR is the ratio of FP occurrences to the total number of

occurrences that are the null hypothesis. In addition, the NPV metric is the following
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conditional probability and corresponding ratio.

PNPV = P (H0|reject′ (H0)) =
P (H0 ∩ reject′ (H0))

P (reject′ (H0))
=

TN

TN + FN
(5.7)

The NPV is therefore the probability of a null hypothesis given that the null hypothesis

was predicted or, more formally, not rejected. The NPV is the ratio of TN outcomes to the

total number of null hypotheses that were not rejected.

The above hypothesis tests are made possible through the statistical tests of the follow-

ing sections. These tests are commonly used for Gaussian probability distributions. The

tests are the result of likelihood ratio tests that identify the distribution or score against

which the calculated tests statistics are to be compared. The tests of the following sections

are performed for a predetermined test window of length, Nt, and either the one-tailed

significance level, α, or two-tailed significance level α. The tests are implemented in either

a moving average or a cumulative sum form. Themoving average forms are straightforward

for the IB and IW tests with the cumulative form of the NIS test being transformed to a

moving average by dividing the test result by the length of the test window. The mov-

ing average implementation of these algorithms is realized in the same manner as for the

basic strategy of estimating noise in Algorithm 3.4 with initialization given in Algorithm

3.5. Alternatively, each of the IB and IW tests can be transformed into a cumulative form

whereby the averaging operations are removed from the recursive equations of Algorithm

3.4 and the cumulative sum is divided by the length of the test window.

In addition to verifying prediction quality, the following statistical tests can be inter-

preted as predictive hypotheses regarding the eventual safety parametermeasurement error
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with respect to the probability distribution of the safety parameter prediction. These hy-

potheses correspond to events within the above error matrix that quantify the ability of the

prediction algorithm to predict the statistical conditions of an impending safety parameter

measurement. The hypothesis testing methods essentially determine whether the value of

the eventual measurement satisfies, with some predetermined probability, the predicted

condition. This determination is performed for each time-step within the prediction win-

dow. This hypothesis testing procedure is then re-framed within the context of optimal

alarms for predictive shutdown in Section 5.3.2.

The length of the statistical test window,Nt, is selected as a function of the significance

level, α, within the statistical test while also considering the maximum rate of change of

the dynamic response. The length of the window maintains a balance between detection

precision and the potential for delay or lag within the test results. For example, a statistical

test with a significance level of 5% and test window of length, Nt = 10000 requires the

calculated test metric of 9374 samples to be within specific bounds in order for prediction

quality to be validated. After determining that prediction is not of sufficient quality, the

test may return an insufficient result for the remainder of the 10000 time-steps. On the

other hand, in the case of a test window of length,Nt = 100, only 94 of the 100 samples are

required to be within the bounds. In comparing the two configurations, the first example

has lower sensitivity in deciding that the predictions may be inaccurate whereas the second

example has a higher rate of rejecting potentially anomalous deviations from the assumed

probability distribution of the predictions. The test window must be sufficiently long in

order to allow for a reasonable estimate of the full precision for the selected significance

level, e.g. with Nt = 100, the estimate of 94 samples is similar to the full precision value of

236



93.74 samples. Longer test windows are therefore required for higher significance levels.

Within this study, the test window is assumed to be of sufficient length that the number

of degrees of freedom within the samples do not have an impact on the distribution of

the errors. For smaller sample sizes the Student’s t-distribution and t-test as well as

the F-distribution and Hotelling’s T2-test are recommended in place of the Z- and χ2-

tests [40, 161].

5.3.1.1 Innovation bound or Z test

The first of the three statistical tests is referred to as the IB test but is also known as

either the one- or two-tailed Z test. The two-tailed IB is also a form of the innovation

magnitude bound test [147]. The IB test determines within each time-step of the prediction

windowwhether there is any bias in the calculated predictions. The test is performed over a

sequence of lengthNt by calculating the Z statistic that is equal to themean prediction error

divided by the mean standard error of the predictions. The Z statistic is then compared

against critical values that are the scores associatedwith a predetermined one- or two-tailed

significance level, α or α. These scores have the same underlying principle as the z• scores

calculated for the confidence intervals in Section 3.4.

The test metric, TZ, captures the boolean result of a two-tailed IB test performed over

a range of Nt time-steps prior to the current time-step k as follows

T
Z
[k, i] =

1

Nt

k∑

j=k−Nt+1

ỹ [j|j − i]
√

Pỹ [k|k − 1]/
√
Nt

=
1√
Nt

k∑

j=k−Nt+1

ỹ [j|j − i]
√

Pỹ [k|k − 1]
(5.8)
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TZ [k, i] =







1 otherwise

0







if TZ [k, i] ≤ −Z (α)

or TZ [k, i] ≥ Z (α) for a two-tailed test

(5.9)

with the one-tailed IB test as follows

TZ [k, i] =







1 otherwise

0







if TZ [k, i] ≤ −Z (α) for a lower one-tailed test

if TZ [k, i] ≥ Z (α) for an upper one-tailed test

(5.10)

where Z (•) are the critical values against which the test metric is compared for a pre-

determined significance level, and i is the time-step within the prediction window. In

addition, ỹ [j|j − i] is the prediction innovation, or the prediction error made i time-steps

into the past, as defined in (3.20) or for the disturbance input estimation problem in (4.5),

and Pỹ [j|j − i] is the innovation covariance for a single measurement signal, also made i

time-steps into the past, as defined in (3.24) and modified for the disturbance estimation

problem in Section 4.2. The T
Z
metric is the z-score of the observed measurement predic-

tion error and error covariance pairs averaged over the test window. The square root of the

measurement error covariance in (5.8) is calculated for each measurement of a non-scalar

measurement vector separately using the diagonal values of the covariance matrix.

The two-tailed IB test returns a true value if the mean prediction error for a specific

time-step of the prediction window is within the bounds of the confidence interval at a

rate of 100 (1− α)%. Alternatively, the one-tailed IB test returns a true value if the
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Figure 5.5: IB or Z test statistics and critical values for unbiased prediction error as well
as positive and negative biases that are introduced at time-step 250.

mean prediction error is either less than or greater than the upper and lower bounds of the

confidence interval at a rate of 100 (1− α)%. For both one- and two-tailed tests, an average

z-score that is greater than the upper critical value indicates, with probability greater than

or equal to 100 (1− α)%, that the predictions have a positive bias. In contrast, if the

average z-score is less than the lower critical, there is greater than or equal to 100 (1− α)%

probability that the predictions errors have a negative bias. These concepts are included

in the scores and critical values that are illustrated in Figure 5.5.

5.3.1.2 Normalized innovations squared or chi-squared χ2 test

The second statistical test is known as the NIS test but is also known as either the one-

or two-tailed chi-squared, χ2, test [147]. The NIS test determines whether the calculated

predictions are unbiased and have an accurately described variance within a predetermined

probability or significance level, α for the one-tailed test and α for the two-tailed test. The

NIS test is performed by calculating, for each time-step of the prediction window, the time-

average of the normalized innovation or predicted measurement error squared over a given
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sequence of prediction errors that are assumed to be time-independent. The average is

then compared against critical values that are the confidence interval of the χ2 distribution

with a number of degrees of freedom, Nχ, equal to the dimension of the measurement

vector multiplied by the length of the given innovation sequence. In the case of RLS-based

disturbance input estimation, the number of degrees of freedom is reduced by the number of

estimated disturbance input parameters,
(
nwx

+ nwy

)
. TheNIS test uses theχ2 probability

distribution rather than the Gaussian distribution of the Z-test due to the fact that the

normalized square of Gaussian distributed random variables are distributed according to

the chi-squared distribution.

Test metric Tχ2 captures the boolean result of a NIS test performed over a range of Nt

time-steps prior to the current time-step k for time-step i within the prediction window as

follows

Tχ2 [k, i] =
k∑

j=k−Nt+1

ỹ′ [j|j − i]P−1
ỹ [j|j − i] ỹ [j|j − i] (5.11)

Tχ2 [k, i] =







1 otherwise

0







if Tχ2 [k, i] < χ2
(
α

2
,Nχ

)

or Tχ2 [k, i] > χ2
(
1− α

2
,Nχ

)
for a two-tailed test

(5.12)

or for the one-tailed test as follows

Tχ2 [k, i] =







1 otherwise

0







Tχ2 [k, i] < χ2 (α,Nχ) for a lower one-tailed test

Tχ2 [k, i] > χ2 (1− α,Nχ) for an upper one-tailed test

(5.13)
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where ỹ, i andPỹ are as defined for the IB test in (5.9). Further,
[
χ2
(
α
2
,Nt

)
,χ2

(
1− α

2
,Nt

)]

are the critical values of the test statistic or the confidence interval for the χ2 distribution

withNχ degrees of freedom, two-tailed significance level,α, and one-tailed significance level,

α. TheTχ2 metric is the cumulative normalized innovation squared. This cumulative value

is distributed according to the χ2 probability distribution and can therefore be directly

compared against χ2 distribution for Nχ degrees of freedom. Alternatively, the time-

averaged metric, Tχ2/Nt, can be compared against critical values that are divided by the

number of time-steps, χ2/Nt.

The NIS test returns a true value for a specific time-step within the prediction window

if the mean normalized innovations squared are within the specified confidence interval of

the χ2 distribution. More specifically, for the two-tailed test, if the calculated average of

the test statistic is within the confidence interval of the χ2 distribution, the predictions

are determined with a probability equal to the value (1− α) to be unbiased and to have

accurate prediction error covariance. Otherwise, the predictions are determined either be

biased or to have an erroneous covariance. If the calculated average of the test statistic is

less than the upper critical value of theχ2 distribution, the predictions are determined, with

a probability equal to the (1− α), to be unbiased and to have a prediction error covariance

that is sufficiently large with respect to the observedmeasurement errors. For test statistics

that are greater than the lower critical value, the predictions are determined to have a

prediction error covariance that is sufficiently small according to the observed prediction

errors, again with a probability equal to the (1− α). In other words, the lower critical

value determines whether the prediction error covariance is too large and not whether any

prediction bias is present. The NIS test does not therefore distinguish between covariance

241



av
er
a
g
e
N
IS
(

T
χ
2

N
t

)

time-step (k)

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800 900 1000

normal +ve bias -ve bias wide cov. narrow cov. critical values χ2

Figure 5.6: NIS or χ2 test statistics and critical values for unbiased prediction error as well
as positive and negative biases, and over and underestimated error covariances that are
introduced at time-step 250.

conditions and the presence of bias within the predictions. These concepts are included in

the NIS and critical values that are illustrated in Figure 5.6. In Figure 5.6, the biases do

not cause the test statistic to reach the critical values of the χ2 distribution. The NIS test

is therefore not as sensitive to bias as the Z test.

Combining the IB and NIS tests results in the ability to determine whether predictions

are either biased or include a wide or narrow estimated error covariance. The combined

test results and corresponding conditions are summarized in Table 5.2. The NIS is, in

general, more capable at detecting changes in covariance as is observed in Figure 5.6 where

the biases of Figure 5.5 are not detected by the NIS test but are by the IB test.

5.3.1.3 Innovation whiteness or autocovariance test

The final statistical test is referred to as the IW or autocorrelation test [147]. This test

is computationally demanding since it calculates auto-covariance through self-convolution

of the prediction error signal for each time-step of the prediction horizon. The IW test
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Table 5.2: Condition table for combination IB and NIS tests.

Condition IB NIS

Wide error
covariance

n/a one-tailed (lower)

Narrow error
covariance

n/a one-tailed (upper)

Positive bias one-tailed (upper) one-tailed (upper)

Negative bias one-tailed (lower) one-tailed (upper)

determines whether or not the prediction errors are serially correlated. The test is per-

formed by calculating the autocorrelation vector of a given sequence of prediction errors

for each time-step within the prediction window. The autocorrelation vector is then nor-

malized using the zero-lag autocorrelation. The IW test involves calculating the ratio of

the number of entries in the autocorrelation vector that are within the bounds of a specific

confidence interval to the total number of total number of entries in the autocorrelation

vector, excluding the zero-lag autocorrelation result. The bounds of the interval are, once

more, a function of the two-tailed significance level, α, and corresponding value, (1− α),

i.e. the level of confidence of the autocorrelation vector entries being within the interval.

The computed ratio is then compared against the expected value, (1− α). If the two values

are similar, the prediction errors are determined to be serially uncorrelated, or white.

The following test variable TIW captures the boolean result of an IW test performed
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over a range of Nt time-steps prior to the current time-step k as follows,

TIW [k, i] =







1 otherwise

0 if 1
Nt

Nt−1∑

τ=0

(∣
∣
∣
r(k,τ ,i)
r(k,0,i)

∣
∣
∣ ≤ zα√

Nt

)

< (1− α)2
(5.14)

where

r (k, τ , i) =
1

Nt

k−τ∑

j=k−Nt+1

(ỹ′ [j|j − i] ỹ [j + τ |j + τ − i]) , (5.15)

with the other parameters as defined for both the IB and NIS tests in (5.9) and (5.12)

respectively. The IWtest is equal to one unless, given a predetermined number of time-steps

and maximum lag over which to calculate the autocorrelation, the autocorrelation vector

entries either do not peak at a lag equal to zero, i.e. τ = 0, or the remaining entries occur

outside the predetermined confidence interval at a rate that is greater than 100 (1− α)%.

The IW test is not investigated any further within the PSDS designs as the convolution of

the prediction error sequences is expected to increase the scan time within the predictive

logic solver of the PLC implementation. In other words, the computational complexity

of the IW test will force the PSDS designs to exceed current industry requirements for

time-interval between subsequent trip decisions.

5.3.2 Optimal alarms

Optimal alarms optimize the effective alarm-threshold for a potential threshold-crossing

event. Within the context of NPP SDSs, an alarm instance may be considered a TSP
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Figure 5.7: Receiver operating characteristic (ROC) space.

and the threshold-crossing event a trip occurrence. The alarms may also be considered as

various other messages, indications, and warnings that are presented to NPP operators.

The application of optimal alarm theory within NPP SDSs may then be considered as

optimal trip. More generally, the use of the term alarm within optimal alarm theory is

independent of the severity of the corresponding threshold-crossing event.

Within optimal alarm theory, the TPR and FPR metrics provide a measure by which

to compare the performance of competing prediction algorithms. For this, the ROC graph

of Figure 5.7 depicts relative trade-offs between benefits or TP outcomes and costs or FP

outcomes that correspond to the performance of statistical tests in predicting an impending

condition. The ROC space is defined between 0 and 1 on both the horizontal axis of FPR

and the vertical axis of TPR. The dashed line that divides the ROC space in upper left and

lower right triangular halves represents a fair coin-flip or a random guess between one of

two events.

The upper left half of the ROC space, e.g. “A” in Figure 5.7, represents favourable per-

formance as the high values of TPR correspond with high probability of correctly detecting

an alternate hypothesis while the low values of FPR correspond with low probability of
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incorrectly detecting an alternate hypothesis. In other words, for high values of TPR there

is high probability in predicting the alternate hypothesis given a true alternate hypothesis

condition. Alternatively, for low values of FPR there is low probability in predicting the

alternate hypothesis given the null hypothesis condition.

In contrast to high TPR with low FPR, the upper right corner of the ROC space, e.g.

“B” in Figure 5.7, represents high TPR along with high FPR. This combination of rates

indicates a rather high probability in predicting the alternate hypothesis given that the

null hypothesis condition is present, i.e. high probability of false alarm or missed trip.

Moreover, the lower left corner of the ROC space, e.g. “C” in Figure 5.7, represents low

TPR along with low FPR, or low probability in predicting the alternate hypothesis given a

true alternate hypothesis condition. It is straightforward to refer to false andmissed alarms

as Type I and Type II errors respectively, since the connotation of false or missed alarm

events is counter-intuitive with respect to the SDS application. Moreover, by specifying

error type rather than false and missed alarm, the definitions of the mistaken conditions

are directly related to the hypotheses.

Hypothesis testing metrics like TPR, FPR, and FNR make it possible to determine,

through the use of statistical tests, whether a prediction algorithm is accurate. These

hypothesis tests can then be utilized to determine whether those predictions that have

reached the TSP are: correct and an abnormal condition occurs, a true trip; are erroneous

and an abnormal condition does not occur, a false trip or Type II error, or are; erroneous

and an abnormal condition does occur, a missed trip or Type I error. The hypothesis tests

are reformulated within optimal alarm theory whereby the hypothesis is referred to as an

alarm and the eventual event is referred to as a catastrophe. Within the nuclear industry,

246



these events correspond respectively to trip and abnormal conditions as follows

PTPR = P (T′|A′
b) (5.16)

PFPR = P (T′|Ab) (5.17)

= P (reject (H0) |H0) (5.18)

PFNR = P (T|A′
b) (5.19)

= P (reject′ (H0) |H1) (5.20)

PTNR = P (T|Ab) (5.21)

whereT is the trip event,Ab is the abnormal eventwith subscript “b” included to distinguish

this symbol from the alarm symbol “A” that is common within optimal alarm theory, also

•′ indicates the logical complement of the boolean variable substituted in place of •. A

false negative e predictive event is therefore the correct rejection of an abnormal condition

whereas the false positive predictive event is the incorrect predictive acceptance of a normal

condition.

Optimal alarm theory is utilized in [41] to optimize and alarm region or decision bound-

ary that results in the fewest possible false alarms for a fixed detection probability [141].

This optimization process places a constraint on the FPR while maximizing the NPV.

Within [41], optimal alarm theory is then applied to the case of a symmetric two-sided

threshold-crossing event. In other words, a parameter that is monitored and alarms on

high and low alarms that are symmetric about a mean value. In addition, Martin assumes

a steady state solution to the KF. An optimal alarm region is then calculated considering
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the probability that a threshold-crossing event will occur within a prediction window. This

probability is calculated as the complement of the intersection for the individual probabili-

ties that the threshold-crossing events do not occur within each time-step of the prediction

window. The optimal alarm region is then defined as the region within which an impending

threshold-crossing event has a probability of occurrence that is greater than some critical

value. This optimization considers the intersection of the Gaussian distributions of pre-

diction error within each time-step of the prediction window for which an approximate

solution is found. The performance of optimal alarm conditions is then compared against

red-line and predictive alarm systems in terms of TPR and FPR as well as the area under

the curve within the ROC space. It is determined that the optimal alarm system performs

better than either of the other two alarm systems.

The shutdown problem considered within this work is a one-sided threshold-crossing

problem. Rather than calculating an optimal alarm region, this work aims to identify opti-

mal predictions and corresponding time-steps within the prediction window as a function of

the TPR and FPR. This work differs from that of [41] in that the complexity of the optimal

alarm algorithm must adhere to certain constraints regarding computational power. This

work also considers the online solution of the KF for time-varying systems rather than the

simplified steady state solution of the KF. This work does not calculate the intersection

of multivariate Gaussian distributions within an online KF-based prediction algorithm, as

the computational complexity of these operations are considered beyond the capabilities

of the intended industrial computer platform or safety-PLC.

Alarm systems are accurate if the rate of correctly detected normal conditions against

all normal conditions is near to one. In other words, the TPR is approximately equal to

248



one. If at the same time, the rate of correct abnormal conditions against all hypothesized

trips is at a maximum, the alarm system is said to be optimal. This rate is the NPVmetric.

This work therefore identifies the optimal or most effective of the time-steps within the

prediction window. Thus, the optimal alarm adapts the effective prediction horizon at

which predictive decisions are made.

In designing the optimal alarm, the FPR is first specified by the significance level, α,

of the statistical test where PFPR = α for a one-tailed test. This optimal range constrains

the maximum upper bound regarding the probability of Type I error or missed trip. This

constrained range is included in the ROC space of Figure 5.8. The NPV is then calculated

for each combination of time-step within the prediction window and hypothesized mean of

the prediction error. The optimal value of NPV is identified as a function of the prediction

error and error covariance. This optimization is performed as follows

PNPV [k] = max
i

(PNPV [k + i|k]) (5.22)

where PNPV is the optimal TPR within the current prediction window. The relationship

between NPV and TPR is then established by solving for FN in (5.7) as follows

FN =
TN (1− PNPV)

PNPV

(5.23)

with the result substituted into (5.5) in the following equation.

PTPR =
TP

TP + FN
=

TP

TP + TN(1−PNPV)
PNPV

(5.24)

249



o
p
ti
m
a
l
→

False positive rate (FPR)

T
ru
e
p
o
si
ti
ve

ra
te

(T
P
R
)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fair coin-flip
Constrained region
Significance level (α, α)

Figure 5.8: Constrained region and optimal behaviour of the optimal alarm within the
receiver operating characteristic (ROC) space.

Since the aim of the optimal alarm is to maximize PNPV, the following limit demonstrates

the effect of optimization on PTPR.

lim
PNPV→1

PTPR =
TP

TP + 0
= 1 (5.25)

Thus, the optimal alarm not only maximizes PNPV but also PTPR. By maximizing the

probability of an abnormal condition given a trip decision, the predictive decision-making

algorithm is forced to the upper left corner of the ROC space as is illustrated in Figure 5.8.

In contrast to FPR or missed trip rate, the design of NPP SDSs also considers the false

trip rate. False trip occurrences are Type II errors that are captured by the FNR metric

within hypothesis testing. Optimal alarm theory specifies a maximum FPR for Type I

errors. There is no such maximum imposed on the FNR. The relationship between NPV

and FNR can be established, however, by substituting FN of (5.23) into the following
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equation.

PFNR =
FN

FN + TP
=

TN(1−PNPV)
PNPV

TN(1−PNPV)
PNPV

+ TP
=

TN (1− PNPV)

TN (1− PNPV) + PNPVTP
(5.26)

As for the PTPR, the optimal or maximal PNPV effects PFNR by the following limit.

lim
PNPV→1

PFNR =
0

0 + PNPVTP
= 0 (5.27)

Thus, the optimal alarm not only maximizes PNPV and PTPR, but also minimizes Type

II errors and the FNR, PFNR. The remaining tasks as well as details regarding optimal

prediction shutdown are left to the optimal-PSDS design of Section 5.3.3.

5.3.3 Optimal-PSDS: optimal predictive shutdown system

Hypothesis testing provides a means to consider the quality of a specific prediction algo-

rithm and to optimally adapt the predictive decision-making mechanism within an ad-

vanced combined point- and interval-PSDS design. The structure of one such optimal-

PSDS design is included in Figure 5.9. This design includes the capability tomake decisions

using either point- or interval-predictions, and to select an effective prediction horizon and

prediction bias in an optimal manner. In this optimal design, the logic of the KF and CI

block are as described for the interval-PSDS design of Section 5.2.2. The statistical and

hypothesis testing block and optimal alarm functions are added to the design. The struc-

ture of the optimal-PSDS design is again a modular evolution of conventional SDS which

does not require additional sensors or hardware modifications. Moreover, the conventional
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Figure 5.9: KF/RLS-based optimal-predictive shutdown system (optimal-PSDS) in the
context of safety instrumented systems (SISs) with the option for activating RLS or ALMF
algorithms.

trip logic remains active within the optimal-PSDS design and is implemented as described

in Section 5.1. The addition of the optimal-prediction algorithm is, again, only able to

improve the response time of the conventional SDS.

For interval prediction with statistical testing, the measurement predictions and error

covariances are combined within the CI block of Figure 5.9 for a specific one-tailed signif-

icance level α and corresponding two-tailed significance level α. This results in a set of

confidence-based prediction values, ŷα ,
{
ŷl,α, ŷu,α

}
, that bound the measurement predic-

tions within each time-step of the prediction window. The predictions are then processed

by one or more of the statistical tests described in Section 5.3.1. When more than one sta-

tistical test is performed, a logical function, F, for combining the multiple tests is defined

as is described in the experimental setup of Section 6.6. The statistical tests are performed

using the same significance level, α orα, that corresponds with the bounds of the confidence

interval in Section 3.4. The result of the statistical testing procedure is a subset, ŷαT , of

the confidence interval bounds including only the values from those time-steps within the

prediction window that are within the constrained region of the ROC space. The subset of
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verified bounds is defined as follows for interval-predictions

ŷ•,α
F

[k + i] =







ŷ•,α [k + i|k] if F (T•)

y [k] otherwise

, ∀i = 1, . . . ,Np (5.28)

where ŷ•,αT is a subset over the prediction window of either point-predictions or upper or

lower bounds depending on the configuration of the optimal-PSDS. The •,α notation is

included for the upper and lower bound to be indicated whereas T• indicates the chosen

test or set of tests. For point-predictions, the above equation is simplified to the following

form.

ŷF [k + i] =







ŷ [k + i|k] if F (T•)

y [k] otherwise

, ∀i = 1, . . . ,Np (5.29)

The optimal alarm then considers the identified subset of prediction values. The supremum

of the entire set of prediction values is the prediction within the constrained subset that has

the minimum value inside bound of confidence interval. Here, inside refers to the bound

being on the side of the normal operation with respect to the point-prediction, e.g. the

upper value for a low TSP. This is essentially the same functionality as the S function

provides within the interval-PSDS design. Thus, a maximum or minimum of the subset of

bound values is selected to be compared against either a high or a low TSP respectively

using the output of the S function block as in (5.4).

It is not only possible to use the optimal alarm to adapt the effective prediction horizon

but also to adapt a bias in the prediction that is to be compared against the alarm-threshold
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or TSP. For example, the statistical tests of Section 5.3.1 can be modified to consider a

mean prediction error, ỹb, that is equal to some value other than zero. For example, a mean

prediction error equal to one standard deviation in the positive and negative directions of

the measurement domain. The statistical tests are then able to provide boolean decisions

that select a subset of the time-steps within the prediction window that are satisfied for a

specific mean prediction error. The subset of the prediction window for which the predic-

tion time-steps and assumed mean prediction errors or biases are found to be valid is then

calculated as ŷỹbF [k + i] in the form of (5.29). Moreover, the maximum NPV and therefore

TPR can be calculated for each time-step of the prediction window as well as the assumed

mean prediction biases. These concepts can even be extended to consider multiple covari-

ances and distributions other than the Gaussian distribution although these extensions are

beyond the scope of this work.

The optimal-PSDS design is the final of the PSDS designs proposed within this disser-

tation. It is the successful culmination of the methodology-related objectives outlined in

Section 1.2. By incorporating hypothesis testing within the PSDS design, the predictive

decision-making mechanism gains an awareness as to the quality of the predictions that

are being made. The decision-making mechanism is also able to monitor the occurrence of

false positive and false negative decisions, i.e. Type I and Type II errors in the predictions.

Finally, hypothesis testing provides the ability to quantify the probability that the pre-

diction algorithm is able to either correctly or incorrectly predict an impending condition

whether the shutdown procedure is activated, or otherwise.
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5.4 Summary

Three enhanced PSDS designs are developed within this chapter. In addition, a conven-

tional SDS design is also presented. Each of the PSDS design includes a conventional SDS

mechanism as a backup to the predictive decision-making algorithm. The following is a

summary of each individual PSDS design.

The first design, or point-PSDS, calculates KF-based point-predictions with the option

of utilizing the RLS disturbance estimation algorithm of Chapter 4 and the ALMF noise

covariance estimation algorithm of Chapter 3. The point-PSDS design compares each

point-prediction within the prediction window against the alarm-threshold or TSP in order

to make a predictive decision regarding an impending condition.

The second design is the interval-PSDSwhich calculates KF-based interval-predictions.

Within this design, the inner bound of the confidence interval for a specific significance level

is compared against the TSP for each time-step of the prediction window. The inner bound

is the bound that is on the normal operating side of a point-prediction, e.g. an upper bound

for a low level TSP. These inner bounds correspond to confidence levels that are greater

than 50% in the future measurement. The interval-PSDS may also make use of the RLS

and ALMF algorithms, as is the case for the point-PSDS. In fact, it is recommended that

the ALMF algorithm be implemented for the state noise covariance and levels of confidence

to have improved accuracy. This recommendation is due to the confidence interval of the

predictions being a direct function of the measurement error covariance.

The third design is the optimal-PSDS that utilizes either the point- and interval-
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predictions. The optimal alarm constrains the probability of a Type I error or missed

trip occurrence to the rate of significance level α. The prediction window is therefore

adapted to include only those time-steps or values that adhere to the aforementioned con-

straint. The optimal alarm then selects the prediction that has the maximum probability

for correctly identifying normal operating conditions. The point- or interval-prediction

of the selected time-step within the prediction horizon is compared against the TSP. The

optimal alarm process, including hypothesis testing, are developed within this chapter.

These functionalities enable the predictive algorithm to consider the quality of previously

calculated predictions.
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Chapter 6

Experimental Setup

This chapter describes and distinguishes between the simulation and experimental plat-

forms that have been constructed for evaluation of the PSDS designs proposed in Chapter

5. For each of the two platforms, the conventional and predictive SDSs monitor and pre-

dict the dynamic response of the water level within the steam generator subsystem of an

NPP. The SDSs also make trip decisions regarding abnormal conditions that are related

to the steam generator system being protected. This subsystem is one of a collection of

subsystems that transmit safety parameter measurements to the NPP SDSs as reviewed in

Section 2.2.

The purpose of a steam generator within an NPP is to transfer thermal energy from the

reactor core to the turbines of an electrical generator. The steam generator also accom-

modates the conversion of thermal energy into kinetic energy while maintaining physical

separation between the coolants of the primary and secondary heat transport loops, i.e.

the reactor and steam generator coolants. In order to accomplish these two tasks in a safe

257



water
level

steam outlet

feedwater
inlet

reactor
coolant
outlet

reactor
coolant
inlet

downcomer

u-tubes

admissible
range

Figure 6.1: U-tube steam generator with admissible range, yR.

manner, the steam generator water level is regulated within a narrow range of the steam

generator tank height between low and high TSPs. This narrow range of operation that

is considered to be valid is known as the admissible range, yR. The admissible range is

therefore the range of operation within which the steam generator water level is expected

to remain under normal operating conditions. The structure of a generic u-tube steam

generator is provided in Figure 6.1 including primary and secondary side inlets and outlets.

This steam generator form is referred to as a u-tube generator due to the heat exchanger

tubes being formed in an inverted “U” shape, as labelled in Figure 6.1.

Of the two TSPs, the high steam general level TSP prevents excess steam moisture

as this may cause damage to the turbine blades. Thus, water level measurements that

meet or exceed the high TSP cause the SDS to trigger a turbine trip. In contrast, water

level measurements that are equal to or lower than the low TSP cause the SDS to trigger

a reactor trip. This low TSP prevents the NPP from operating with reduced capability
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for removing heat from the reactor core. This low TSP also prevents the heat exchanger

u-tubes from becoming uncovered as this hazardous condition is likely to cause damage

to the heat exchanging tubes. In order to prevent these potentially hazardous conditions,

the steam generator level high (SGLH) and low (SGLL) safety parameters are included

in the SDSs of various NPP designs including SGLL within SDS1 of the CANDU reactor

design [162].

Although the SGLL trip parameter is of interest within this study, it is more often the

case that the neutronic safety parameters are used to determine SDS response time speci-

fications [163]. That said, there are three primary justifications for applying the proposed

predictive shutdown methods to the SGLL condition rather than those that correspond

with the neutronic parameters. The first justification is the complex inverse response char-

acteristic that is exhibited by the steam generator water level dynamic. In other words, the

steam generator water level has a dynamic response that is non-intuitive and potentially

difficult to forecast without the use of a mathematical model for reference. The second

justification is the vast body of literature regarding control and modelling of steam gener-

ator water level dynamics. This body of literature includes the application of predictive

algorithms to perform model-based prediction and the construction of simulation and ex-

perimental test facilities or platforms. The final justification is the ability to implement

the PSDS designs for the SGLL parameter within an actual safety PLC and physical ex-

perimental platform. The result of this implementation is the evaluation of a modern yet

computationally constrained PLC-based PSDS that monitors a real-world physical system

being protected. Thus, by considering the SGLL safety parameter, both the simulated as

well as physical or real-world performance of the PSDS algorithms are analyzed.
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Another reason for not studying the neutronic parameters is that those parameters

would require the construction of a much more elaborate experimental setup and physical

experimentation would not have been possible. In addition, the nonlinear dynamics of the

neutronic reactions within the reactor core are expected to be beyond the capabilities of

the standard KF, and may require the use of the EKF or UKF as well as a more powerful

computational platform. It is expected that these computational requirements may be

satisfied through the use of an FPGA or a graphical processing unit. These more powerful

platforms are, however, beyond the scope of this study.

The simulation and experimental platforms are illustrated in Figure 6.2a) and Figure

6.2b) respectively. The simulation platform includes discrete-time MATLAB implemen-

tations of: a magnitude and frequency scaled model of the steam generator water level

dynamic known as the Irving model; a three element proportional integral (PI) controller

for steam generator water level regulation; and conventional SDS as well as the proposed

PSDS designs. In contrast, the experimental platform replaces the simulated components

with a physical system as well as industry-standard process and safety controllers. The

physical system is known as the plate level system (PLS) with level dynamics compensated

to match a scaled form of the Irving steam generator model. For experimentation, the

three element PI closed-loop water level controller is implemented within a Siemens PCS-7

DCS and the conventional SDS and PSDS designs are implemented within a Tricon v9

triple modular redundant safety PLC. Pictures of each of the PLS, the PLC, and the DCS

are included in Figure 6.2b). Each of these components is described in more detail in the

subsequent sections of this chapter.

The PLS, the water level controller, and the safety PLC communicate through hard-
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Figure 6.2: The a) simulation and b) experimental platforms.

wired individually shielded twisted pair cables using industry standard 4− 20mA signals.

These signals are annotated as u and y in the experimental platform of Figure 6.2. Within

the nuclear power generating industry, safety parameter sensors and signals are physically

independent of those of the process control systems. This is especially true for the signals

that provide the safety parameters to any of the SDSs. Thus, the two sets of feedwater

flow-rate and level sensors are assumed to be wired separately. This separation is included

in Figure 6.2 with the process control set of signals indicated by an asterisk, e.g. system

input u∗ and system output or measurement, y∗. In reality, the PLS of the experimental

platform has only a single laser level sensor that measures the distance from the top of the

tank to the floating plate. It is therefore assumed within this work that the safety and
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process measurements, y and y∗, are transmitted by the same level sensor. To alleviate this

assumption, this study does consider experimental cases where the safety system input

u deviates from the process control input u∗. These case are referred to as having an

unmeasured initiating event in Chapter 7.

Upon shutdown, the trip signal, ξ, that is output by the SDS or PSDS has no effect on

steam generator water level, whether simulated or experimental. This assumption does not

hinder the ultimate objective of the trip procedure which is to activate, in a timely manner,

the insertion or injection of negative reactivity via the shutdown mechanisms, e.g. shut-off

rods or neutron poison, into the reactor core. In other words, all events that occur after the

actuation of the shutdown procedure are irrelevant to the timing analysis performed within

this study. This work does not, therefore, study of the impact that reductions in time-to-

trip have on specific safety margins. The time response for activating trip, or the shutdown

procedure, is the primary characteristic of interest within this study. Although the steam

generator water level does undergo shutdown-related manoeuvres, these manoeuvres do

not effect the insertion or injection of negative reactivity into the reactor core.

Within the simulation platform, the trip signal is captured as a boolean variable for time-

to-trip analysis. The experimental platform, however, includes two indicator lamps, one

for conventional shutdown, and one for predictive shutdown. These lamps are individually

de-energized by the Tricon v9 safety PLC when a trip condition has been detected within

the either the conventional or predictive SDS. The trip signals generated by the PLC are

also acquired as a 10-bit integer with values that represent which of the four types of trip

are active: conventional, point-predictive, interval-predictive, or optimal-predictive.

The remainder of this chapter presents details regarding the design and implementation
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of each component within the simulation and experimental platforms. The chapter begins

with a description of the physical experimental plant or PLS in Section 6.1. Section 6.2

then introduces the steam generator subsystem that is the system being protected studied

throughout the remainder of this dissertation work. Section 6.2 also introduces the open-

loop dynamic response of the steam generator water level. Section 6.3 discusses closed-loop

control of the steam generator water level while the scenarios or operating modes under

which the shutdown systems are tested are discussed in Section 6.4. The initiating events

that cause abnormal conditions or thewater level to drop to the SGLLTSPwithin the steam

generator of the simulation and experimental platforms are then discussed in Section 6.5

respectively. The chapter then concludes by presenting the considerations for implementing

the SDS and PSDS designs. This final section also discusses expectations regarding the

performance of the SDS and proposed PSDSs within the simulations and experiments of

Chapter 7.

6.1 Physical System

The original purpose for constructing the PLS was to allow for the testing of various control

system algorithms and industrial communication protocols using modern DCS and PLC

platforms. Mechanically, the PLS consists of a cylindrical tank containing an aluminum

plate that is manoeuvred vertically along a central rod by changes in pressure within the

volume of air below the plate. Operationally, the plate level is controlled by manipulating

a solenoid valve which affects the feed air flow-rate into the bottom of the tank. Further,

a laser displacement sensor measures the level of the plate for feedback into a level control
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system.

A picture of the PLS is included in the experimental setup of Figure 6.2. In addition, a

more detailed functional diagram of the original or nominal PLS provided in Figure 6.3a).

The PLS of Figure 6.3a) includes a solenoid valve driver or signal amplifier that converts

the 4 − 20mA signals to pulse width modulated (PWM) signals that are appropriate for

manipulating the solenoid valve. Figure 6.3a) also includes the pressures in pounds per

square inch (PSI) units at the supply and the regulator as well as the atmospheric pressure

(ATM) at the outer side of the vent orifice.

The dynamic response of the nominal PLS is that of a single integrator requiring an

offset input for steady state operation. In other words, the plate will steadily rise or fall

given the feed air flow-rate input deviates from a particular value at which the plate floats.

The PLS can therefore be thought of as a water tank with a leak of constant flow-rate. For

the purpose of this research, the single integrator dynamic response of the plate level is
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modified, or compensated, to mimic an industry-standard model of steam generator water

level response known as the Irving steam generator model. This matching of dynamic

water level response is achieved through the design and implementation of an open-loop

compensator within a Microchip PIC micro-controller (µC). The µC is installed in-line

with the control signal to the solenoid valve driver of the feed air valve.

The open-loop compensator introduces a second manipulated variable and imposes

a more complex non-minimum phase, or inverse response, characteristic within the level

dynamics of the PLS. The feedwater and steam flow-rate signals are combined within the

compensating µC after being output from the two digital filters, Fe and Fv respectively.

These filters produce a feed air flow-rate that forces the plate-level to match the level

dynamics of a scaled form of Irving steam generator model by manipulating the single feed

air flow-rate valve. Aside from compensating for the steam generator level dynamics, the

µC is also utilized to linearize the response of the nominal physical system. More precisely,

the dynamic response of the plate level has a maximum rate of falling, or decrease, that is

equivalent within the Irving model to a loss in water level of 443mm/s. Thus, the rate of

rise, or increase, is constrained not to exceed the falling rate by restricting the operating

range of feed-air valve.

Although the compensator is open-loop, it is installed within a closed-loop control sys-

tem and is therefore able to be calibrated. The calibration sequence is performed during

closed-loop control of the nominal PLS at steady state for a level set-point of 50%. During

calibration a “float” offset variable is set equal to an average of over 200 samples of the

feedwater flow-rate control signal. This calibration allows for a more accurate dynamic

response with respect to the target steam generator model. These calibrations are per-
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formed periodically to mitigate changes in the dynamic response of the nominal plant that

are caused by variations in the mechanics or temperature of the solenoid valve.

A picture of the modified PLS is included within the experimental platform of Figure

6.2. In addition, a detailed functional diagram of the modified PLS including the two

digital filters of the open-loop compensating µC is provided in Figure 6.3b). In Figure

6.2, input variable u includes both the feedwater flow-rate, qe, and steam flow-rate, qv,

manipulated variables. The feedwater flow-rate is the output of the closed-loop water level

control system whereas the steam flow-rate is a function of the current operating power

level within the NPP. Figure 6.3b) illustrates these two signals separately. The feedwater

flow-rate, steam flow-rate, and plate-level signals form the basic requirement for steam

generator water level control. These signals also enable KF-based prediction of the open-

loop steam generator system. The additional valve that exits the top of the tank remains

closed within this work.

6.2 The Scaled-Irving Model

The dynamic response of the steam generator water level can be characterized by the

Irving steam generator model as introduced in [164]. The Irving model is a fourth-order

LPV model which exhibits a complex inverse response characteristic known as swell and

shrink [28,165]. The dynamic response of the plate level within the PLS is compensated to

match a scaled form of the Irvingmodel. This scaling is performed in order to accommodate

the size and dynamic response of the nominal PLS. The scaled-Irving model is defined in

the following frequency domain LPV transfer function that includes the standard Irving
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Table 6.1: Irving model parameters, steam flow-rates as well as control intervals, and
controller gains at specific power levels.

Θ (%) 5 15 30 50 100

qv(kg/s) 57.4 180.8 381.7 660 1435

G1 0.058

G2 9.63 4.46 1.83 1.05 0.47

G3 0.181 0.226 0.310 0.215 0.105

τ1 41.9 26.3 43.4 34.8 28.6

τ2 48.4 21.5 4.5 3.6 3.4

Υ 119.6 60.5 17.7 14.2 11.7

model modified by two scaling gains

Y (s) = Km

(
G1

s
− G2 (Θ)

τ2 (Θ) s+Kf

)

(Qe (s)−Qv (s))

+
KmG3 (Θ) s

s2 + 2Kfτ
−1
1 (Θ) s+K2

f

(
τ−2
1 (Θ) + 4π2Υ−2 (Θ)

)Q
e
(s) (6.1)

where s is the complex Laplace variable and frequency parameter, Y (s) is the water level

with units mm, Q
e
(s) is the feedwater flow-rate with units kg/s, Qv (s) is the steam flow-

rate with units kg/s, Kf is a frequency scaling gain, Km is a magnitude scaling gain, and

the remaining parameters are given in Table 6.1.

The Irving model is frequency scaled by a factor ofKf = 10 to better match the steady

state rate of change of the water level to dynamics of the plate level. This factor of frequency

scaling results in the ability to investigate the performance of the prediction algorithms for

a system with faster dynamics than those of the relatively slow steam generator water level

response. In addition to frequency scaling, the magnitude of the Irving model is scaled by
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a factor ofKm =
yR,PLS

yR
= 0.0525Kf as a function of the admissible range of the water level

within the steam generator, yR = 4000mm, and that of the PLS, yR,PLS = 210mm, as well

as the frequency scaling gain of the target steam generator,Kf = 10. The frequency scaling

gain is included in the calculation of the magnitude gain due to the frequency scaling gain

causing the magnitude of the output to be modified by a multiplicative factor of 1/Kf . The

admissible range of the steam generator water level is therefore assumed to be equivalent

to the range of plate level range within the PLS. Thus, the maximum 210mm of water

level height within the PLS is assigned the maximum range of operation within the steam

generator, i.e. 4000mm while 0mm is chosen the bottom of the admissible range for both.

The original Irving model parameters are provided in Table 6.1 as given in [164]. These

parameters are scale independent due to the inclusion of the magnitude and frequency scal-

ing gains, Kf and Km, in (6.1). The model parameters are linearly interpolated between

reactor power levels, Θ, and steam flow-rates, qv, in real-time within both the simulation

and experimental platforms. For experimentation, interpolation is performed within the

compensating µC with the two open-loop compensator filters of Figure 6.3 calculated as

Fe (s) = Y (s)HPLS (s) /Qe
(s) and Fv (s) = Y (s)HPLS (s) /Qv (s), discretized with a sam-

pling time of 10ms, inverted, and subtracted from the forcing feedwater or steam flow-rate

input to ensure the stability of the modified PLS. Here,HPLS is the continuous-time trans-

fer function form of the nominal PLS. It is also possible to discretize the continuous-time

Irving steam generator and nominal PLS models and then perform the above calculations

for the digital filter directly. For more on the analytical compensation technique that was

performed to design the open-loop compensating digital filter, refer to [166].

The open-loop step response of the Irving model is included in Figure 6.4a) for a 10kg/s
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Figure 6.4: Open-loop response of the scaled-Irving model to a 10kg/s step increase in a)
feedwater flow-rate, q

e
, and b) steam flow-rate, qv.

or 0.5% step increase in feedwater flow-rate and also in Figure 6.4b) for a 10kg/s or roughly

0.7% step increase in steam flow-rate at each of the five operating points, power levels, or

steam flow-rates, qv, that are included in Table 6.1.

The inverse response characteristic occurs for both an increase and a decrease in either

feedwater or steam flow. For changes in feedwater flow, the characteristic is the result of

the difference in temperature between the feedwater and the inventory water. For changes

in steam flow, the characteristic is the result of the difference in pressure between the steam

and the bubbles within the inventory water. A change in either flow-rate causes bubbles

to expand and contract, hence swell and shrink. In addition, as in Figure 6.4a), the step

response due to a change in feedwater flow includes an oscillatory term. This oscillation is

the result of feedwater and condensing water mixing in the downcomer. The non-intuitive
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inverse response characteristic is the dynamic that complicates the prediction problem and

is one of the justifications for studying the SGLL safety parameter within the SDS.

Although the PLS is made to mimic the above scaled-Irving model through open-

loop compensation, the simulation platforms utilizes a discrete-time state-space form of

the scaled-Irving model. The scaled-Irving steam generator model of (6.1) is therefore

converted, as in [167], to the following continuous-time state-space representation

ẋ (t) = KmA (Θ) x (t) + B (Θ)







qv (t)

qe (t)







(6.2)

y (t) =

[

1 1 1 0 0

]

x (t) (6.3)

where

A (Θ) =



















0 0 0 0 KmG1

0
−Kf

τ2
(Θ) 0 0 −KmG2(Θ)

τ2(Θ)

0 0
−2Kf

τ1
(Θ) Kf KmG3 (Θ)

0 0 −Υ (Θ) 0 0

0 0 0 0 −Km
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









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,B (Θ) =


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
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


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

(6.4)

and Υ (Θ) =
(
τ−2
1 + 4π2Υ−2 (Θ)

)
Kf , x5 (t) = q

e
(t), Q

e
(s) = Qe(s)

s+1
is a filter acting on the

feedwater valve, y (t) is the steam generator water level, qv (t) is the steam flow-rate, and

qe (t) is the feedwater flow-rate control signal.

The continuous-timemodel is thendiscretizedbybi-linear transformation to thediscrete-

timeKF-compatible state-space form of (3.9) and (3.10) where the systemmatricesA,B,C
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andD are functions of Θ rather than continuous-time t, or discrete-time k, i.e. an LPV sys-

tem. The initial condition for the state vector is assigned as x [0] = [0, 0, 0, 0, 0]′. The effects

of these initial conditions on the simulation results are eliminated, however, by allowing the

system to settle to an initial steady state operating point prior to experimentation. Thus,

any initial transient behaviour within the response of the scaled-Irving model occurs in the

time-steps prior to the plotted simulation and experimental data sets.

6.3 Closed-loop Control

This section provides a design overview for a gain scheduled three-element PI controller

to control steam generator water level [28, 165, 167, 168]. The controller is implemented

within both MATLAB as well as a DCS. The controller has three inputs: water level, y,

feedwater flow-rate, qe, and steam flow-rate, qv. The relationship between these variables

is represented in the frequency domain by following transfer function

Qe (s) =
KC (Θ) (KI (Θ) s+ 1)

2KI (Θ) s+ 1

·
(

Qv (s) +
KCO (Θ) (KIO (Θ) s+ 1)

2KIO (Θ) s+ 1
(R (s)− Y (s))

)

(6.5)

where R (s) is the control set-point, and the remaining parameters are given in Table 6.2.

The continuous-time controller in (6.5) is discretized with a sampling time of Ts =

100ms to satisfy the two control intervals listed as TCI in Table 6.2. The controller is then

tuned to be asymptotically stable using the gains listed in Table 6.1. In addition, the

feedwater flow-rate is limited in magnitude from 0 to 2000 kg/s and the steam flow-rate
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Table 6.2: Control intervals, and controller gains for the discretized controller within power
level operating ranges.

Θ (%) 5 15 30 50 100

qv(kg/s) 57.4 180.8 381.7 660 1435

q∗v(kg/s) 119.1 281.25 520.85 1047.5 1435

TCI (s) 0.5 0.2

KI 3.5τ2 τ2

KC 5.0 1.0

KCO 0.100 0.315 0.266 0.460 1.000

KIO 0.2KI 5.0KI

from 0 to 1435kg/s within both the simulation and experimental platform. Inputs qe and qv

are both included in the deterministic input u∗ of Figure 6.2. The discretized control logic

is programmed using structured text within a function block of the Siemens PCS-7 DCS.

The controller design also includes an additional integral gain at the level error input in

order to reduce steady state error at low power levels due to the plate level system having

a relatively large dead band surrounding the floating point. For consistency, this integral

gain is also implemented within the simulation platform.

During normal operation, the control intervals and the controller gains are selected as

a function of mid-point steam flow-rate q∗v . For example, a gain of KCO = 0.1 is active

in the steam flow-rate range 0 to 119kg/s. It is assumed that measurement and process

noise level are constant over all power levels, e.g. Rx and Ry do not change with q
∗
v . If this

assumption does not hold, the various prediction algorithms of Chapter 3 can be extended

to consider different noise levels for power level, q∗v , by substituting the assumed values into

the covariance matrix calculations.
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Figure 6.5: Swell-based set-point function, steam generator level low (SGLL) trip set-point
and level high (SGLH) alarm threshold.

The reference level of the steam generator, denoted r, is a function of the mid-point

steam flow-rates given as q∗v in Table 6.2. This set-point function is known as the swell-

based set-point function and is plotted in Figure 6.5 [165]. The use of a function rather

than a constant benefits heat transfer from the primary to secondary side of the NPP and

reduces the potential for reaching alarm levels and TSPs that are also included in Figure

6.5, e.g. the SGLL TSP denoted as Ξl.

6.4 Operating Modes

The steam generator operates within one of two manoeuvres, known as power transients,

at the time of injecting an initiating event for an eventual shutdown. The two manoeuvres

provide a realistic operating scenario for the study of SDS performance. The following

power transients are based on those studied in [28]:

a) step-wise power increase (SWPI) (5 to 40%): a series of step-increases in power

demand from 5% to 40% at steps of 5% power incrementing every 150s once above

15% and 250s otherwise; and
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b) power ramp-down (PRD) (30 to 5%): a ramp-down in power from 30% to 5% at an

approximate rate of 5% per minute.

The above percentages are with respect to full power where full power refers to both the

operating point of the nuclear reactor core and the operating point for steam flow to the

high pressure turbine otherwise referred to as the steam flow-rate. For the experimental

platform, the operating modes are programmed within a reference function block in the

Siemens controller using structured text. The scenarios are activated manually after the

PLS settles to steady state given the initial power level and water level set-point, e.g. 5%

for SWPI and 30% for PRD.

The closed-loop step responses of the two power transients are included in Figure 6.6

where ysim is the simulated steam generator water level, yexp is the experimental steam

generator water level, r is the reference water level, and Ξl is the SGLL TSP. The power

transients are initiated 10s into each scenario. Moreover, time-step zero is the time-step

at which the system has been determined to have achieved a stable steady state condition

at the initial power level. All data previous to time-step zero is omitted from the plotted

results and analyses. The closed-loop responses of Figure 6.6 demonstrate good control

performance and relatively tight control when compared with the MPC results of [28].

In addition to the above two power transients, this work also investigates the perfor-

mance of the predictive shutdown routines under the conditions of an unanticipated change

in the water level set-point. This transient is referred to as the set-point disturbance (SPD)

and is made to occur at an initial power level of 30%. The set-point steps to one of two

values. The nontrip-SPD scenario causes the steam generator water level to nearly reach
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Figure 6.6: Steam generator water level responses to power transients a) step-wise power
increase (SWPI) from 5% to 40%, and b) power ramp down (PRD) from 30% to 5% initiated
at 10s.

the SGLL TSP whereas the trip-SPD scenario causes the water level to only barely reach

the SGLL TSP. This operating mode differs from the power transients in that the steam

generator water level is not being forced to an abnormal condition of operation, but instead

either nearly or just reaches the TSP.

The closed-loop step response for the nontrip-SPD is included inFigure 6.7. For nontrip-

SPD, the value of the water level set-point is offset from the calculated swell and shrink

set-point of 62.24% to the near-trip value of 29.1%. In contrast, although not included in

Figure 6.7, a modified set-point of 29% is used in the alternative case that does result in a

trip condition, i.e. trip-SPD. To emphasize that the set-point offset is a disturbance, the

water level set-point of Figure 6.7 is plotted at the unmodified level of 62.24% over the
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Figure 6.7: Steam generator water level response to an unanticipated step change in water
level set-point at a power level of 30% with set-point made equal to 29.1% at 10s. This is
the nontrip-SPD transient.

entire duration of the simulation. The two SPD scenarios are not investigated within the

experiments of this study. Although it is possible to implement the SPD scenarios within

the experimental platform, the impact of the SPD scenarios is best observed through

simulation. The SPD scenarios are, however, recommended for future experimental study

in order to better understand the capabilities of the PSDS design with regards to false- or

spurious- and missed-trip occurrences.

6.5 Postulated Initiating Event

The power transients and set-point function of the previous sections are designed to prevent

the steam generator water level from reaching the level high and low TSPs, SGLH and

SGLL. It is therefore necessary to force the water level to the boundary between normal

and abnormal conditions. This is achieved by activating an initiating event that causes the

steam generator level to transient to the boundaries of the admissible range, beyond the

TSPs. Postulated initiating events are those which are hypothesized during or known from

the NPP design process to cause a specific trip occurrence. A postulated initiating event
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for the SGLL trip condition is the loss of feedwater flow into the steam generator. Although

this is not the only PIE for the SGLL trip condition, the loss of feedwater flow-rate has a

direct effect on the steam generator water level. This specific PIE is able to be implemented

within the physical PLS of the experimental platform as included in Figure 6.2.

The loss of feedwater PIE is also referred to as a loss of secondary side cooling. This

is due to the feedwater on the secondary side of the steam generator being at a lower

temperature than that of the inventorywithin the steamgenerator. The feedwater therefore

provides cooling to the steam generator water inventory. Without secondary side cooling,

the inventory continues to be heated by the high temperature primary side heavy water

that flows through the heat exchanger tubes at the base of the steam generator. After

some time, the temperature within the steam generator rises and more steam is produced.

The inventory within the steam generator is then reduced and the heat exchanging tubes

may become uncovered. This uncovering, in turn, results in more significant temperature

increases and the potential for damage to the steam generator tubes. It is assumed within

the Irving model, and therefore within the simulation and experimental platforms, that the

water exits the steam generator as steam only. Within an NPP, this steam is directed to

the high power turbine, discharged to the atmosphere, or re-routed to the condenser having

bypassed the turbine. In other words, within this investigation, there is no mechanism to

reduce the water level by allowing water to flow out of the steam generator tank.

For both simulation and experiment, the loss of feedwater PIE is injected by activating a

flowmalfunction within the feedwater valve of the secondary side heat transport loop. The

malfunction is realized through a linear scaling back, or reduction, of feedwater flow-rate by

1.0%/s at themanipulated variable of the closed-loop level controller. The PIEmalfunction
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is activated exactly 200s after the first power transient manoeuvre that is a step in the case

of SWPI and the first manoeuvre within the ramp of PRD. This PIE is not utilized for

the SPD transients since the SPD transient investigates predictive shutdown for a system

that is not being forced to an abnormal condition. In other words, the unanticipated

step causes the system to approach the SGLL TSP. For the experimental platform, the

PIE functionality is programmed within a PIE function block using structured text. The

PIE function block is then triggered by the aforementioned reference function block that

specifies the power transient manoeuvres.

6.6 Shutdown Systems

The PSDS designs that are proposed in Chapter 5 are compared against a benchmark

conventional SDS within the simulations and experiments of Chapter 7. This section

outlines the design criteria that are shared by each of the conventional and predictive

SDSs, e.g. TSP Ξl, or are specific to each of the predictive SDSs, e.g. prediction horizon,

Np, and significance level, α.

Most significantly, the conventional and predictive SDSs utilize a SGLL TSP, Ξl, that

is equal to 10% of the admissible range as included in Figure 6.5. This use of a constant

TSP differs from practice where the SGLL TSP is a function of the reactor power level, Θ.

Here, the TSP is held constant to reduce the complexity of analyzing the performance of

the PSDS designs. The use of a variable TSP requires that the prediction algorithms are

modified to compare predictions against an expected future TSP. Although relatively sim-

ple to implement, the expectation of the TSP introduces additional uncertainty within the
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predictive shutdown problem and is therefore beyond the scope of the current investigation.

Both the conventional and predictive shutdown algorithms are implemented without

the use of redundant shutdown channels or trip computers. For example, simulated as well

as experimental conventional shutdowns occur when the level measurement reaches 10% of

the admissible range within a single SDS logic solver; the SGLL TSPs are therefore 400mm

and 21mm for the Irving steam generator and the PLS respectively. In practice, the relay

logic of the trip chain has a k-out-of-n configuration of either local or general coincidence

as discussed in Section 2.2. This investigation instead focuses on the time response for a

single safety parameter within a single SDS channel that does not include coincidence logic.

This simplification does not impact the relevance of the results since each of the channels

within a specific SDS generally make trip decision using equivalent SDS functions or logic.

The shutdown logic that is implemented within the experimental function block for the

conventional SDS is a port of the FORTRAN code that provides the shutdown mechanism

within the Darlington NPP training simulator that is maintained by Ontario Power Gen-

eration (OPG). Upon shutdown, the trip signal at the output of the SDS is de-energized.

The comparator and TSP of the SDS function block operate with a hysteresis equal to 1%

of the admissible range of water level. The hysteresis prevents jitter within the trip signal

that is output by the comparator block as discussed in Section 5.1. The conventional SDS

comparator block is also implemented within the PSDS designs where the prediction values

are input to the comparator. In this manner, each of the prediction components is added

to the PSDS as a modular extension of the conventional SDS logic. It is recommend that

the PSDS designs of Chapter 5 include conventional SDS logic so that the safety parameter

measurements can be compared directly against the TSP. This backup conventional SDS
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function is, however, removed within the simulation and experimental results of Chapter

7 so that the performance of the prediction algorithms can be assessed independent of

conventional SDS functionality.

The PSDS designs are expected to provide trip decisions at a time which is earlier than

that of the conventional SDS. Moreover, the PSDSs are designed as modular extensions

of the conventional solution to the SDS problem. Thus, the experimental SDS and PSDS

implementations are limited to scan times or execution intervals of 100ms. This particular

scan time is chosen as it is within the design requirement for SDS1 of the CANDU NPP.

The scan times are reported within the experimental platform by the Tricon v9 safety PLC.

These time are documented for each of the conventional and predictive SDS algorithms in

Section 7.2. The simulation platform includes full implementations of each prediction and

shutdown algorithm from Chapter 3 and Chapter 5 respectively with no restrictions on

the amount of time taken to complete the required calculations. Within the experimental

platform, however, the above scan times result in the RLS estimation algorithm being

implemented in a less complex form. These and other SDS and PSDS specific design

criteria are described in the following sections.

6.6.1 Predictive shutdown, the Kalman filter, and

point-prediction

In general, each of the PSDS designs consists of a combination of the following three

components:

a) calculation of the safety parameter measurement predictions or confidence intervals
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by some form of KF-based prediction;

b) compensation of prediction error or error covariance by RLS-based estimation of

disturbances to the state and measurement equations of the prediction model; and

c) assessment of prediction quality by statistical and hypothesis testing and selection

of an optimal safety parameter prediction.

The point- or interval-predictions are then input to a comparator in the same manner

as for the conventional SDS logic and a trip decision is made. The functionality of the

PSDS therefore responds as though the prediction were a sample of the safety parameter

measurement signal.

Within all PSDS designs, the KF includes the following reduced-order state-space form

of the scaled-Irving steam generator water level model introduced in (6.2) and (6.3)

ẋ (t) =


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(6.6)

y (t) =

[

1 1 0

]

x (t) (6.7)

where x3 (t) = qe (t), all other signals are defined as in (6.2) and (6.3), and all parameters

are defined in Table 6.1. This continuous-time model is then discretized by bi-linear trans-

formation to the discrete-time KF-compatible state-space form of (3.9) and (3.10) where

the system matrices A,B,C and D are functions of Θ as opposed to being functions of

time. The parameters of the state-space model are active within the KF over the range

leading up to the mid-point steam flow-rates, q∗v . Moreover, these parameters, as well as
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the deterministic input to the system, u, are assumed constant with values of time-step, k,

over the prediction window, time-steps (k + 1) to (k +Nh).

The reduced-order model of (6.6) and (6.7) is implemented in favour of the full-order

Irvingmodel to conserve computational power within the Tricon v9 safety PLC. The Tricon

v9 does not inherently support matrix operations. Thus, discrete-time implementations of

the KF equations are first realized within MATLAB. The equations are then converted to

structured text by iterating through and outputting structured text compatible equations

for each of the KF and other required matrix calculations. Use of the third rather than fifth

ordermodel, therefore, saves a significant number of addition andmultiplication operations

and allows the scan time of the safety-PLC to be reduced.

The initial conditions of the KF state estimate and state-error covariance for the

reduced-order state-space representation are respectively chosen as x̂ [0|0] = [0, 0, 0]′, and

Px̃ [0|0] = 100I3×3. The initial state value matches that of the state-space Irving model in

(6.2) and (6.3). To keep the initial conditions from affecting the simulation and experimen-

tal results, the water level response as well as the KF are allowed to settle to steady state

prior to beginning the power transient sequence. In other words, within all simulation and

experimental results, the dynamic water level response of the steam generator system as

well as KF gain are at steady state at time-step zero, k = 0. Thus, any initial transient

behaviour of the system or the KF estimates and predictions occurs in the time-steps prior

to the plotted data sets.

Output y of the scaled-Irving model is the steam generator water level. The steam

generator level signal is a standard safety parameter within SDSs, includingCANDUSDS1.

This signal is the safety parameter measurement prediction that is output by the KF
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prediction block in Figure 5.3. Input u and qv of the scaled-Irving model are the steam

generator feedwater and steam flow-rate and are the two inputs from the sensors illustrated

in Figure 5.3. In this work, it is assumed that the steam generator feedwater and steam

flow-rates are available to the SDS although this may not always be the case in practice,

and is not the case for CANDU SDS1. It is therefore assumed that the feedwater and steam

flow-rate variables are available to the SDS, or can be calculated as a function of other safety

parameters. In addition, the PLS of the experimental platform does not include a feedwater

flow-rate sensor device. The feedwater flow-rate is therefore calculated as a function of the

manipulated variable transmitted by the process controller. This assumption has little

impact on the timing study as it is likely that the process and safety instrumentation in a

NPP would have similar values for a given set of signals.

Within all PSDS designs, the KF propagates the state and state error covariance pre-

dictions to a prediction horizon of up to twenty time-steps into the future, or Nh = 20.

This horizon is equal to that 2.0s that is the expected total amount of time between the

time of trip detection and insertion of sufficient negative reactivity into the reactor core for

SDS1 of the CANDU NPP design. This study also investigates the use of various other,

shorter, prediction horizons down to three time-steps, or Nh = 3. This lower limit is one

time-step longer than the required maximum time interval between subsequent trip deci-

sions. In other words, a predictive trip detection at a prediction horizon of three time-steps

results in the shutdown procedure being activated prior to the time of detection within the

conventional SDS. In addition, within the optimal-PSDS design, the prediction window is

adapted to have an effective prediction horizon as a function prediction quality and proba-

bility of an impending abnormal condition. In the end, the ultimate objective of this work
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is tomake accurate predictions using short horizons rather than speculative and potentially

erroneous predictions using long horizons.

6.6.2 Noise covariances, stochastic uncertainty, and the

adaptive limited memory filter

It is assumed within the KF that the system being protected includes additive noise terms

within both the state andmeasurement equations as vx and vy respectively, i.e. the stochas-

tic state-space form of (3.9) and (3.9). These additive noise terms represent uncertainty

in the estimation and prediction procedure with respect to the real-world measurement

and input signals, as well as system-model mismatch, e.g. parameter error. The additive

measurement noise terms represent the variations that are present within the 4 − 20mA

signal transmitted by the laser level sensor. This noise is not, however, present within

the simulated measurements. An additive measurement noise term, vy, with covariance

Ry = 6.24mm2 is therefore added to themeasurement equation (6.3) of the simulated steam

generator system in MATLAB. This value ofRy is estimated off-line from steady state PLS

level measurements. The measurement noise of the simulation platform therefore matches

that of the experimental platform and the above value of Ry is assumed within the KF of

both platforms.

The value of the state noise covariance for the PLS is not as easy to estimate as the

measurement noise covariance, given PLS measurements. This is due to the fact that the

true system states cannot be measured. What is known is that there exists system-model

mismatch between the dynamic response of the PLS and that of the scaled-Irving model
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and the state noise covariance is not equal to zero. Thus, the state noise covariance is

approximated by bounding the a priori measurement estimate within the first standard

deviation confidence interval of the a priori measurement error covariance. In other words,

the state noise covariance is approximated to satisfy the probability distribution of the a

priori measurement prediction error or measurement innovations. This approximation is

possible due to the a priori measurement prediction, y [k|k − 1], being a function of the

state noise covariance, Rx [k − 1], with known measurement noise covariance, Ry [k], as

defined in (3.19), (3.46), (3.47), and (3.24).

The simulation state noise covariance matrices are calculated to have the values listed

in Table 6.3 for each of the five operating ranges. These values are calculated by analyzing

the covariance of the a priori prediction error while utilizing the RLS-based measurement

disturbance estimation algorithm. More specifically, the covariance values correspond to

a 10% expansion of the measurement error covariance, Pỹ, during normal operation prior

to and after a 5% step change in steam flow-rate that crosses the nominal power levels of

the five different operating points. These relatively large magnitudes in comparison to the

measurement noise variance, Ry indicate that the KF considers the provided model to be

more uncertain than the measurements.

For the simulation platform, state noise is not added to the state equation of the steam

generator system as was the case for the measurement noise. This is due to the simulation

platform already including system-model mismatch. That being said, the model mismatch

within the system is known and as a result the state noise covariances for simulation have

values that are less than those of the experimental platform. The state noise covariances

for simulation are listed in Table 6.3. These values are calculated in the same manner as for
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Table 6.3: State noise covariance estimates for use without ALMF.

Θ (%) 5 15 30 50 100

Simulation R̂x diag(95.2) diag(96.7) diag(109.2) diag(113.9) diag(115.4)

the experimental platform but without the use of the RLS-based disturbance estimation

algorithm.

The state noise covariance also accounts for uncertainty in the effect of the future system

input, u [k + 1] on the measurement equation, as in (3.10). As for the measurement noise,

there is no noise present within the simulated system inputs. An additive input noise term,

vu, with covariance Ru = 0.624kg2/s2 is therefore added to the system input, u [k], of

the simulated steam generator system. For experimentation, the ALMF noise covariance

estimation algorithm is utilized without estimation of the state noise covariance matrices.

The above procedures are considered to be superior to the trial-and-error approach that

is utilized in many studies for the offline estimation of state noise covariance. The state

noise covariances are still, however, offline estimates of time-varying parameters. These

parameters are therefore erroneous during operating conditions that are different than those

that were present when the covariances were estimated. To counteract this problem, the

ALMF procedure of Section 3.6 is utilized. The ALMF algorithm utilizes initial conditions

for the state and measurement covariances that are equal to the low power estimations of

Table 6.3. Thenoise covariance estimates for both themeasurement and state are calculated

over an estimation window of length Nv = 100. The window length for noise covariance

estimation is chosen as a function of the dynamic response and expected trajectories of

the steam generator system. In other words, the noise covariances, which change with the
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dynamics of the system, are not expected to vary significantly over a period of 10s. Noise

covariance estimation is not performed until after the KF has converged within the initial

time-steps of simulation or experiment. This delay in calculation prevents the covariances

from becoming artificially large and potentially triggering an unnecessary trip.

6.6.3 Disturbance inputs, deterministic uncertainty, and the

recursive least squared filter

In addition to the use of the KF for prediction, prediction error is compensated by RLS

estimation using (4.9). For simulation and experimentation, the disturbance is assumed

to be a ramp function with a disturbance profile defined as Γ [k + i, kw] =

[

1 iTs

]

for i = [1, . . . ,Np]. Unlike for the KF, the RLS estimation in (4.9) does not support a

fully recursive implementation. For this reason, the RLS algorithm considers a specific

instance of a disturbance that initiated at time-step kw. In other words, the initialization

of the disturbance does not move forward in time at each time-step. The time-step of the

disturbance initializationmay therefore be 100 time-steps into the past, i.e. kw = (k − 100).

At the next time-step the disturbance will have initiated (k − 101) time-steps into the past.

In order to reset the disturbance initialization time-step, a dual RLS algorithm is pro-

posed in Section 4.2.4. In this configuration, a duplicate RLS algorithm performs the

same disturbance estimation as the original RLS algorithm. The disturbance estimation

algorithm then switches between the two RLS algorithms at the time-step in which the

duplicate RLS estimation and corresponding measurement prediction error estimate have

been determined to have converged to a steady state solution of a predetermined accuracy.
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This switching mechanism is described in the following equation

ŵ =







ŵ2 if ŵ1 and Fc

(

ρ
y

[
k + i, kwy,1

]
ŵy

[
k, kwy,1

])

ŵ1 if ŵ2 and Fc

(

ρ
y

[
k + i, kwy,2

]
ŵy

[
k, kwy,2

])
, ∀i = 1, . . . ,Np (6.8)

where ŵ1 and ŵ2 are the duplicate disturbance estimates, and kwy,1
, kwy,2

are the time-steps

of the disturbance initialization considered by the original and duplicate RLS algorithms

respectively. Moreover, Fc is the function that determines whether or not the estimated

prediction error has converged within either the original or duplicate algorithm.

The RLS disturbance estimation algorithm is of the exponentially weighted LS form.

These weights help the algorithm to better respond to changes in the deterministic uncer-

tainty and also the changes that are due to the LTV parameters of the system. Thus,

the RLS estimation considers recently measured prediction errors more heavily. The

RLS algorithm uses a forgetting factor for the measurement disturbance estimate that

of λy = 0.99 where Λy

[
k, kwy

]
= diag

(

λ
k−kwy
y , . . . ,λy

)

. In contrast, the state distur-

bance estimation algorithm utilizes a forgetting factor of λx = 0.995 where Λx [k, kwx
] =

diag
(

λ
k−kwx
x , . . . ,λx

)

. These forgetting factor values are chosen to be very near to unity in

order to reduce the possibility of instability within the disturbance estimation procedure.

Moreover, the forgetting factor for the state disturbance responds more slowly to changes

in the disturbance than the measurement disturbance, again, to reduce the possibility for

instability within the algorithm. When combining the KF, the ALMF, and RLS filter it is

essential to consider the possibility for the three estimates to become unstable. Within this

work, the stability of the combined filter is verified first through the use of the MATLAB
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based simulation while taking into account the precision of the PLC operations. More

specifically, the functional blocks of the PLC pass single-precision floating-point values

with double-precision values utilized within the structure text of any given function block.

For experimentation, only the measurement disturbance estimation, RLSy, is imple-

mented. This reduction in functionality is due to the increased computational complexity

that would be required by the state disturbance estimation procedure. Although it is pos-

sible to implement the state disturbance estimation procedure, RLSx, within the Tricon v9

PLC, the scan time of the controller exceeded the regulatory limit of 100ms. That said, a

more directed effort that aims to optimize the arithmetic within the RLS algorithm may

result in the possibility of implementing the complete algorithm. This effort is, however,

beyond the scope of this study. The RLS-based state disturbance estimation procedure is

instead implemented and investigated alongside the measurement disturbance estimation

algorithm through simulation only.

6.6.4 Point-, interval- and optimal-predictive shutdown

system designs

The point-PSDS design calculates predictions up to a prediction horizon of Np time-steps

into the future. Two different values ofNp are investigated in Chapter 7 in order to analyze

the reduction in time-to-trip that is possible via point-predictions within the predictive

decision-making process. A point-predictive trip does not necessarily, however, occur at

the prediction horizon. This is due to the fact that any point-predicted threshold-crossing

event over the entire prediction window will result in a predictive trip, e.g. ŷ [k + 3|k] ≤ Ξl
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withNp = 10. For simulation, the point-PSDS is studied while including the ALMF-based

noise covariance estimation algorithm. The point-PSDS is also studied in combination with

the RLS-based state and measurement disturbance estimation algorithm. For experiment,

the point-PSDS is always investigated in conjunction with the RLS-based disturbance

estimation for the measurement error as well as ALMF-based estimation of the noise co-

variances. This combination of KF and RLS algorithms is necessary during experiment in

order to accommodate for deterministic uncertainty and system-model mismatch.

The interval-PSDS design shares many of the same criteria that have been established

for the point-PSDS above. For example, the interval-PSDS design calculates predictions up

to a prediction horizon of Np time-steps into the future. Moreover, a number of prediction

horizons are investigated. In addition, the confidence interval of the interval-PSDS design

has a two-sided significance level of α = 0.05 or 5%. This is equivalent to a one-tailed sig-

nificance level of α = 0.025 or 2.5%. Thus, an interval-predictive trip occurs when there is

a level of confidence equal to 97.5% in impending abnormal condition. For simulation, the

interval-PSDS is studied without modification and is also modified to include the ALMF-

based noise covariance estimation algorithm and the RLS-based state and measurement

disturbance estimation algorithm. More specifically, interval-PSDS simulation results in-

vestigate the additional functionality of ALMF-based noise covariance estimation since the

noise covariances have a direct effect on the calculated intervals. During experiment, the

interval-PSDS is again always investigated in conjunction with the RLS-based disturbance

estimation. The experimental interval-PSDS results also provide insight into the accuracy

of the predicted intervals when utilizing the ALMF noise covariance estimation algorithm.

The optimal-PSDS design operates under different criteria than those of the point- and
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interval-PSDS designs. The optimal-PSDS design makes use of statistical tests to assess

the quality of the previously calculated predictions. The simulations and experiments of

Chapter 7 use the one-tailed IB or Z test as well as the one-tailed NIS or χ2 test. The

experimental results, however, implement only the Z test. The IB test is the lower one-

tailed test since the error is defined as the measurement minus the prediction and the

decision is being made for a low-valued TSP, Ξl. These tests are described in Section 5.3.1.

In assessing prediction quality, the optimal-PSDS is able to adapt the effective prediction

horizon. Predictions are calculated to a prediction horizon ofNp time-steps into the future

and the results of the statistical tests are then utilized form a subset of the predictions that

are assessed to be of sufficient quality with respect to a given Type I error rate also known

as the FPR. The Type I error rate of this study is also the two-tailed significance level of

α = 5%. An optimal-prediction is then selected from the subset of quality predictions as a

function of the mean measurement prediction and the measurement error covariance.

The adaptive and optimized abilities of optimal alarm theory are extended to consider,

through statistical testing, whether the meanmeasurement predictions have non-zero error

or are biased. More specifically, the optimal-PSDS design not only considers each time-step

within the prediction window, but also multiple possible mean prediction biases for each of

the prediction time-steps. The biases are calculated as a function of the measurement error

covariance. For simulation and experiment, the following set of standard deviations for

possible bias are investigated, ỹb = −2,−1, 0, 1, 2, where ỹb is the set of assumed prediction

biases. The optimal-PSDS is also studied with only the zero-valued assumption for mean

prediction error.
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6.7 Summary

This chapter presents the assumed system, operating conditions, events, and shutdown

configurations for the simulations and experiments performed in Chapter 7. The physical

system being protected is the steam generator or boiler within the NPP. A model of the

steam generator water level is given as the Irving steam generator model. This model is

scaled in frequency and magnitude to better support an existing physical experimental

platform known as the plate level systems. The physical platform involves a plate level

being vertically manipulated along a rod within an acrylic tank. A closed-loop controller is

developed for the control of the non-minimum phase Irving steam generator model as well

as the scaled-Irving physical plate level system.

The steam generator is assumed to be operating within one of three modes. The first

two modes are common power transients for increases and decreases in the power level of

the reactor core and steam flow rate into the turbines of the electrical generator within

the NPP. More specifically, the two power transients are step-wise power increase or SWPI

and power ramp down or PRD. The third mode is an unanticipated change in the steam

generator water level set-point. This mode of operation is referred to as a disturbance in

the set-point, or SPD. An abnormal condition is forced within the steam generator as the

results of a PIE known as the loss of secondary side coolant or feedwater flow, and also

the set-point disturbance. The timing of this initiating event, and the rate of decrease in

feedwater flow are consistent over all simulations and experiments.

All SDSs, including the PSDS designs, utilize the sameTSP equal to 10% of the admissi-
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ble range of operation for the steam generator. The prediction algorithms within the PSDS

design consider a reduced-order scaled-Irving model. Moreover, the various assumptions

and initial conditions regarding the KF, the ALMF, and the RLS filter are discussed in Sec-

tion 6.6. This chapter closes by describing each of the point-, interval-, and optimal-PSDS

configurations that are to be investigated in Chapter 7.
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Chapter 7

Results and Analysis

This chapter investigates the use of the PSDS designs that are developed in Chapter 5

within the simulation and experimental platforms of Chapter 6. More specifically, the fol-

lowing results and analyses investigate the ability of the PSDS designs to detect abnormal

conditions within a system being protected at a time which is earlier than that of a bench-

mark conventional SDS design. This investigation therefore aims to determine whether

the predictions and detections are accurate under a variety of uncertain conditions. This

investigation also aims to determine whether the enhanced PSDS designs can minimize the

occurrence of erroneous predictive decisions, i.e. spurious and false or missed trip detec-

tions. The following results are an extension of the KF/LS point-PSDS results presented

in [169].

The results of this work demonstrate that, given a short-term prediction horizon and

low uncertainty in future values of the model parameters and deterministic inputs, the

proposed predictive SDS achieves a reduced time-to-trip. Further, this work demonstrates
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that it is possible to implement the proposed PSDS design within an industry standard

safety PLC while meeting current scan time requirements, although an FPGA might be

beneficial for a multiple parameter PSDS design. Finally, although the proposed predictive

SDS takes into consideration the possibility of a spurious trip occurring, the ability of the

shutdown algorithm to compensate for an anticipated spurious trip is considered to be

beyond the scope of this dissertation. This functionality would also go against the regu-

latory requirements of initiating shutdown procedures upon detecting a safety parameter

reaching a TSP.

7.1 Simulation Results

The following simulations compare the proposed PSDS algorithms against a benchmark

conventional SDS design. The simulations are organized into separate sections where each

section investigates a specific case of uncertainty in terms of either: the model mismatch

between the true system and the predictive model provided to the KF within the PSDS;

or anomalous signals that are available within the PSDS. More precisely, the first case

includes normal conditions for the system, model, and related signals with relatively little

uncertainty. The second case, however, includes an uncertain condition regarding the

system and assumed model. The KFs of all the PSDS designs are provided the reduced-

order model introduced in Section 6.6. The additional uncertainties for each case are

specified as follows.

• Case 1: multi-model selection with ideal signal availability

• Case 2: parameter error multi-model selection with ideal signal availability
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Multi-modelmatching refers to themodel parameterswithin the prediction algorithmbeing

equal to those of the nearest operating point. This nearest operating point is a function of

the exogenous steam flow-rate input that is assumed to be available as a safety parameter

within the SDS.The parameters within theKF therefore differ from the systems parameters

that vary linearly between the operating points. Ideal signal availability specifies that both

the feedwater and steam flow-rate inputs are available to the PSDS.

Table 7.1 provides a summary of the PSDS designs that are investigated within each of

the above cases. PIEs and subsequent SGLL trip occurrences are simulated for each of the

proposed PSDS and conventional SDS methods during two normal operating modes: once

while operating within the SWPI power transient, and again while operating within the

PRD power transient. The performance of each PSDS is also studied during an unantici-

pated control manoeuvre referred to as the SPD transient. The ∗ symbol indicates that the

ALMF covariance estimation algorithm is active within all PSDS methods with the effect

of the algorithm specifically investigated for the KF-based interval-PSDS of Case 1.

The following simulation results provide insight into the performance of the proposed

PSDS designs within a controlled environment and under conditions that are not possible

within the experimental platform. Moreover, the selected operating modes and uncertain

conditions include a realistic yet broad set of conditions for evaluating the performance of

the proposed PSDS designs. Within all simulations, the time-to-trip values do not include

signal processing, relay activation, or the physical displacement of the neutron absorbing

materials, e.g. dropping of the shut-off rods or injection of neutron poison. In other words,

the processing time within the logic solver of all simulated SDSs, both conventional and

predictive, is assumed to be instantaneous.
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Table 7.1: Summary of the PSDS methods that are investigated within each simulation
case. ∗ indicates both with and without the ALMF

Case 1: reduced-order multi-model

a) KF point-PSDS

b) ,c) KF interval-PSDS∗

d) KF optimal-PSDS

Case 2: reduced-order multi-model with parameter error

a) KF point-PSDS

b) KF/RLS point-PSDS

c) KF/RLS interval-PSDS

d) KF/RLS optimal-PSDS

The dynamic response of steam generator water level is first illustrated for a loss of

feedwater flow PIE during SWPI and PRD power transients in Figure 7.1a) and Figure

7.1b) respectively. Within these figures, y is the water level, r is the control set-point,

Ξl = 10% is the SGLL TSP, ke is the initial time-step of the PIE, kd is the time of trip

detection by the conventional SDS, and ∆kc = kd − ke is the conventional time-to-trip, or

the difference in time between the time of detection and the time at which the initiating

event was initiated.

In Figure 7.1, the SWPI and PRD power transients both begin at 10s with the PIE

injected 200s later at ke = 210s. The occurrence of the PIE results in inverse response

characteristics in addition to those that are due to only the power transient manoeuvres

as illustrated in Figure 6.6. These inverse response characteristics have a significant and

non-intuitive effect on the amount of time required for the water level to transient to the

TSP. For example, although the decreasing water level observed during the PRD suggests
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Figure 7.1: Benchmark: simulated conventional SGLL trip occurrences due to loss of
feedwater flow PIE during a) SWPI and b) PRD power transients.

that the level will reach the TSP in less time than for the SWPI power transient, the inverse

response characteristic causes the opposite to occur. In the following results, the PSDS

designs are expected to accurately anticipate these complex dynamic responses so as to

avoid false and missed trip occurrences.

The dynamic response of steam generator water level is also illustrated for the trip-

SPD transient in Figure 7.2. This is the response to an unanticipated step change in water

level set-point from a nominal value of 62.24% to an anomalous value of 29.0%. The trip-

SPD transient results in a response similar to that of the nontrip-SPD case as previously

illustrated in Figure 6.7 except that in this case the safety parameter reaches the SGLL

TSP. In the following results, the various PSDS designs are expected to discern the subtle
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Figure 7.2: Benchmark: simulated conventional SGLL trip occurrences due to a distur-
bance in the water level set-point from a normal value of 62.24% to an anomalous value of
29.0%.

difference in the minimum measurement value for the trip-SPD and nontrip-SPD cases.

7.1.1 Benchmark: Conventional shutdown

Conventional SDSs trip when a safety parameter measurement, y [k], reaches the corre-

sponding TSP, Ξl. This event is also referred to as a down-crossing of the steam generator

water level with the low trip threshold or TSP Ξl. Conventional time-to-trip is measured

from the time-step of injecting the PIE to the time-step when the safety parameter mea-

surement reaches the TSP.

The time-to-trip results of the simulated conventional trip occurrences are 65.7s for

SWPI and 183.9s for PRD as observed in Figure 7.1 and also 21.2s for trip-SPD as observed

in Figure 7.2. These results are the benchmarks against which the simulated PSDS time-

to-trip results are compared. For ease of reference, the benchmarks are restated along with

all other simulation results in Table 7.3 at the end of this section.

The time-steps immediately surrounding the conventional trip detections of Figure 7.1

299



Time (s)

W
a
te
r
le
v
el

(%
)

∆kc = 65.8s

kd →

9

10

11

275 275.5 276 276.5275 275.5 276 276.5a)
Time (s)

W
a
te
r
le
v
el

(%
)

∆kc = 183.9s

kd →

9.6

9.8

10

10.2

393 393.5 394 394.5b)

Time (s)

W
a
te
r
le
v
el

(%
)

∆kc = 21.2s

kd →

9.9

10

10.1

10.2

10.3

10.4

30.5 31 31.5 32c)
y Ξl

Figure 7.3: Benchmark: time-steps surrounding conventional SGLL trip occurrences plot-
ted for a) SWPI as in Figure 7.1a), b) PRD as in Figure 7.1b), and c) trip-SPD as in Figure
7.2.

and Figure 7.2 are highlighted in Figure 7.3a), Figure 7.3b) and Figure 7.3c) respectively.

These plots provide visual verification of the time-step of conventional trip detections, kd.

This is the time-step of the down-crossing event of the steam generator water level for the

alarm-threshold that is the TSP. As expected, the conventional trip detections occur at the

same time-step in which the water level measurement reaches the SGLL TSP.

Shutdown decisions are maintained through the use of a hysteresis threshold. This trip

is prevented from deactivating as long as the variations in safety parameter measurement

remain beyond the hysteresis threshold. For example, the trip decision in Figure 7.3c) is

not reversed upon the later up-crossing event of the TSP.

The time of trip for the conventional shutdown decision and the time-to-trip are both
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affected by the variation or noise within the measurement signal. In other words, the

time of trip decision could vary by a number of time-steps depending on the magnitude

of the variance for the measurement noise. This variation in time-to-trip is not directly

analyzed within this work, but does have an effect on the benchmark analysis. This work

instead focuses on comparing single instances of conventional and predictive trip to observe

the fundamental capabilities of the predictive trip mechanisms. In addition, KF-based

prediction removes this variability by filtering the measurement signal. Depending on the

magnitude of the state and measurement noise covariances, the KF effectively reduces the

variance of the predicted signal. Thus, it is not essential to evaluate the variation in time-

to-trip to observe the relative benefits of the point-, interval-, and optimal-PSDS designs.

It is, however, recommended that a study of the variation in time-to-trip be performed

prior to implementation.

7.1.2 PSDS Case 1: Reduced-order multi-model

This first predictive shutdown case considers reduced-order multi-model matching between

the simulated scaled-Irving model and the predictive models within the KFs of the various

PSDS designs. More specifically, the model parameters of the simulated system are inter-

polated between the operating points of Table 6.1. In contrast, the model within the KF

of the PSDS uses the nearest operating point in terms of power level or steam flow-rate,

qv [k], to select the corresponding set of model parameters from Table 6.1. The nearest

power level operating points, Θ, are documented for all possible steam flow-rates in Table

7.2. The modelling conditions for this case have the least uncertainty of all the simulation
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Table 7.2: Power level selection by steam flow-rate to determine the active scaled-Irving
parameters within the KF of the PSDS.

qv(kg/s) 0-119.1 119.1-281.25 281.25-520.85 520.85-1047.5 1047.5-1435

Θ (%) 5 15 30 50 100

cases in terms of model mismatch. Moreover, all safety parameter signals including steam

and feedwater flow-rate as well as steam generator water level are made available to the

KF within the PSDS, i.e. ideal signal availability.

7.1.2.1 Case 1a: KF-based point-predictive shutdown

The KF-based point-PSDS design detects an abnormal condition when either the mean

value of the safety parameter prediction, ŷ [k + i|k] ∀i = 1, . . . ,Np, or the safety parameter

measurement, y [k], reach the corresponding TSP, Ξl. The sensor measurement is included

in the proposed trip decision-making procedure of Chapter 5 to avoid a delay in trip beyond

the trip that occurs due to a detection by the conventional SDS. Within the following

simulations, however, the point-PSDS design of Figure 5.3 is modified to include only the

predictive trip algorithm and not the conventional backup. Thus, the following simulations

evaluate the effect that the various prediction algorithms have on the time-to-trip. For

point-prediction, time-to-trip, ∆kp, is measured from the time-step of injecting the PIE to

the time-stepwhen a point-prediction reaches theTSP, i.e. a point-predicted down-crossing

of Ξl.

KF-based point-predictions are plotted alongside the dynamic response of the steam

generator water level in Figure 7.4a) and 7.4b) for a loss of feedwater flow PIE during

SWPI and PRD power transients respectively. The point-predictions are calculated to a
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prediction horizon ofNp = 3 time-steps or 0.3s into the future and are observed to follow the

dynamic response of the water level and also the expected inverse response characteristic.

The length of the selected prediction horizon allows for investigating the ability of the

KF to calculate accurate prediction at short prediction horizons. More specifically, this

prediction horizon is one time-step longer than the length of the regulated maximum time

for decision making within CANDU SDS1. In other words, the minimal prediction horizon

in order to achieve a time of trip detection that is earlier than the conventional time of

detection when the safety parameter measurement reaches the TSP. The KF-based point-

predictive time-to-trip results, ∆kp, are 65.5s for SWPI and 183.4s for PRD. Time-step

kd now represents the time of point-predictive trip detection rather than conventional trip

detection.

KF-based point-predictions are also plotted for the trip-SPDandnontrip-SPD scenarios

in Figure 7.5a) and Figure 7.5b) respectively. These point-predictions also use a horizon

of Np = 3. As in the case of the PRD and SWPI transients, the point-predictions are

observed to follow the dynamic response of the water level. The KF-based point-predictive

time-to-trip for the simulated trip occurrence is 21.0s. In contrast, there is no detection

of trip within the non-trip SPD scenario plotted in Figure 7.5b). Again, these results are

restated along with all other simulation and benchmark results in Table 7.3 at the end of

the section after all simulation cases have been presented.

The time-steps surrounding the point-predictive trip detections of Figure 7.4 andFigure

7.5 are highlighted in the four plots of Figure 7.6. These plots focus on the time of trip

detection in the same manner as for the detailed plots of the conventional results. These

plots also illustrate that the KF-based prediction filters the instantaneous noise variations
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Figure 7.4: Case 1a: simulated KF-based point-predictive SGLL trip occurrences due to
loss of feedwater flow PIE during a) SWPI and b) PRD power transients under multi-model
matching conditions.

from the measurement signal. This filtering is a result of the predictions relying more on

the provided model rather than the measured safety parameters and is a function of the

state and measurement noise covariances. The covariances of these point-predictive results

are calculated by the ALMF algorithm. A balance between the model and measurement

uncertainty is observed in Figure 7.6b) where the predictions do not necessarily correspond

with the spikes in noise values. In other words, if themodel were considered to be uncertain,

a large state noise covariance, the predictions would include variations that are similar to

the noise within the measurement signal.

The detailed plots of Figure 7.6 include the hypothetical time-step at which the mea-
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Figure 7.5: Case 1a: simulated KF-based point-predictive SGLL trip occurrences due to a
disturbance in the water level set-point from a normal value of 62.24% to disturbed values
of a) 29.0%, and b) 29.1% under multi-model matching conditions.

surement reaches the TSP, denoted kc. This would be the time-step of conventional trip

occurrence if the conventional trip logic was active within the PSDS. This time-step, and

corresponding time-to-trip, are also the benchmarks against which the predictive shutdown

activations are compared.

The point-predictions of Figure 7.6 are plotted at the prediction horizon Np time-steps

after the time-step in which the predictions are calculated. The predictive trip detections,

denoted kd, are, however, illustrated at the time-step of detection, up toNp = 3 time-steps

prior to the apparent trip inducing point-prediction value. The variable time-based offset

of trip detection is due to the fact that any point-prediction within the prediction window

may cause a predictive trip, e.g. (kd + 2).
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Figure 7.6: Case 1a: time-steps surrounding the simulated KF-based point-predictive
SGLL trip occurrences for a) SWPI, b) PRD, c) trip-SPD, and d) nontrip-SPD under
multi-model matching conditions.

For the SWPI power transient, the point-predictive trip detection occurs Np = 3 time-

steps prior to the down-crossing of the measurement with Ξl. Point-predictive trip provides

a 0.3s improvement or reduction in time-to-trip for the SWPI power transient when com-

pared against benchmark conventional shutdown. For the PRD power transient, it is also

the point-prediction at the prediction horizon that first reaches the TSP, but in this case

the point-prediction does not coincide with the down-crossing of the safety parameter mea-

surement and the TSP. An improvement in time-to-trip of 0.5s is therefore observed during

the PRD transient when compared against conventional SDS results. For the trip-SPD

scenario, it is again the point-prediction at the prediction horizon, (kd +Np), that first
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reaches the TSP. This predictive trip event results in a 0.2s reduction in time-to-trip with

respect to the conventional SDS. Finally, in the nontrip-SPD scenario of Figure 7.6d), the

point-predictions correctly avoid a predictive trip occurrence.

In the case of Figure 7.6c), the point-predictive reaches the TSP prior to the time of

conventional trip. In Figure 7.6c) and Figure 7.6d), however, the minimum measurement

within the range of plotted measurements is observed to be less than the minimum of the

point-prediction. This discrepancy indicates that an alternate value of set-point distur-

bance may result in a missed trip occurrence causing either a delayed trip or continued

operation without a trip occurrence at all. Missed point-predictive trips may therefore

occur due to the filtering of measurement noise that is performed by the KF-based predic-

tions, i.e. the instantaneous noise values of the measurement may result in a conventional

trip occurrence. Thus, given a relatively accurate model of the system, KF-based point-

predictions favour continued operation over the activation of the shutdown procedure. In

other words, point-predictions favour productivity over safety.

Additional plots whereby the point-predictions are propagated from the KF-based esti-

mates of the current time-step, k, through to the prediction horizon, (k +Np), are included

in Figure 7.7a), Figure 7.7b), and Figure 7.7c) for SWPI, PRD, and trip-SPD transients

respectively. The sets of point-prediction propagations are plotted everyNp+2 time-steps

leading up to the interval-predictive trip detection, hence the spacing between the sets of

marked points. The propagation follows the dynamic response of the system, indicating

that the KF-based point-estimates are also accurate. The nontrip-SPD scenario is not

included in this set of plots since no impending abnormal condition was detected.

The plots of Figure 7.7 emphasize the time-step of occurrence for the point-predictive
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Figure 7.7: Case 1a: KF-based point-predictions being propagated over the prediction
window, i = 0, . . . , 3, while approaching the SGLL trip occurrence during a) SWPI, b)
PRD, and c) trip-SPD transients under multi-model matching conditions.

trip detection relative to the predicted down-crossing of the TSP. More specifically, the trip

inducing point-prediction of Figure 7.7c) is observed to be the two-step-ahead, (kd + 2),

value within the prediction window rather than the value of the prediction horizon, Np.

7.1.2.2 Case 1b: KF-based interval-predictive shutdown without ALMF

The KF-based interval-PSDS design detects an abnormal condition when either the up-

per bound of the confidence interval for a safety parameter prediction, ŷu [k + i|k] ∀i =

1, . . . ,Np, or a sensormeasurement, y [k], reaches a lowTSP,Ξl. While the point-predictions

of the previous case are optimal with respect to the mean squared error of the estimations,
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the expected value of the future measurements are defined over a probability distribution.

In being defined over a probability distribution there is a percentage probability within

each time-step of the prediction window that the true measurement is either greater or

less than the point-predicted value. Thus, at the time-step of point-predictive trip there

could be as little as 50% probability that the measurement will actually reach the TSP.

The interval-PSDS design instead utilizes the confidence interval metric to attain a higher

level of confidence in an impending abnormal condition.

In the following results, the bounds of the two-tailed 95% confidence interval are used,

i.e. a significance level of α = 0.05. This is equivalent to a one-tailed confidence interval

of 97.5% and significance level α = 0.025. Thus, when the upper bound of the confidence

interval reaches the low TSP there is 97.5% probability that the future safety parameter

measurement will reach the TSP. As with point-prediction, the interval-PSDS design of

Figure 5.4 is modified for the following simulations to include only the predictive trip action

without conventional trip. Thus, interval-predictive time-to-trip, ∆kp, is measured from

the time-step of injecting the PIE to the time-step when the upper bound of the interval-

prediction reaches the TSP, i.e. a high confidence interval-predicted down-crossing of Ξl.

This is in contrast to to a low confidence interval-predicted down-crossing which would

potentially cause an increase in the false trip occurrences that are already experienced

during point-predictive trip.

The interval-PSDS design utilized in the following results does not include the ALMF

noise covariance estimation algorithm of Section 3.6. Instead, the measurement noise

covariance estimate is assumed to be equal to the true covariance, R̂y = Ry = 6.24. The

diagonal elements of the state noise covariance are assigned the values listed in Table
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6.3, with the off-diagonal elements of the covariance assumed to be equal to zero, i.e.

R̂x = diag (•). These values are chosen due to the actual uncertainty not being known,

e.g. model mismatch. In this manner, the model assumed within the KF is considered less

certain than the steam generator water level measurement.

The time-steps surrounding the interval-predictive trip detections are highlighted in

Figure 7.8a) and Figure 7.8b) for the SWPI and PRD power transients respectively. As

with the point-predictions, the interval-predictions are calculated to a prediction horizon of

Np = 3 time-steps or 0.3s. Moreover, the interval-predictions are plotted at the time-step

for which the predictions have been calculated, i.e. the prediction horizon Np time-steps

after the predictions are calculated. The interval-predictive time-to-trip results for the

simulated trip occurrences are 65.6s for SWPI and 184.0s for PRD.

The interval-predictions observed in Figure 7.8 demonstrate a 0.2s reduction in time-

to-trip during the SWPI power transient. In contrast, the interval-predictions fail to detect

a trip condition at an time that is earlier than that of conventional trip for the PRD power

transient where the time-to-trip is instead increased by 0.1s. This missed trip occurrence

is the result of the upper bound of the predicted confidence intervals not reaching the

TSP prior to the down-crossing of the SGLL TSP by the steam generator water level

measurement. Perhaps, if a longer prediction horizon were used, the interval would have

reached the TSP prior to the conventional trip. The interval-predictions also fail to detect

the trip condition for the trip-SPD transient since the upper bound of the confidence interval

never reaches theTSP. Thus, missed trip events occur in both Figure 7.8b) andFigure 7.8c).

These two missed trip occurrences demonstrate that the interval-PSDS favours continued

operation over the activation of the shutdown procedure when compared against the point-
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Figure 7.8: Case 1b: time-steps surrounding the simulated KF-based interval-predictive
SGLL trip occurrences due to a loss of feedwater flow PIE during a) SWPI and b) PRD, c)
trip-SPD, and d) nontrip-SPD transients under multi-model matching conditions without
ALMF-based noise covariance estimation.

predictions. Finally, the interval-PSDS correctly avoids the detection of an impending trip

condition as observed in Figure 7.8d) for the nontrip-SPD transient.

The confidence intervals are propagated from the KF-based estimates through to the

prediction horizon in Figure 7.9a) and Figure 7.9b) for SWPI and PRD power transients

respectively. The confidence intervals are observed to bound the measurement signal

throughout the prediction window. The confidence interval is observed to expand as the

predictions are propagated forward in time. This limited expansion is a result of the

state noise covariance being relatively small in comparison to the admissible range of the

system measurements. More precisely, the square root of the diagonal elements within
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Figure 7.9: Case 1b: KF-based point-predictions being propagated over the prediction
window, i = 0, . . . , 3, while approaching the SGLL trip occurrence during a) SWPI, and
b) PRD power transients under multi-model matching conditions without ALMF-based
noise covariance estimation.

the state noise covariance matrix can be compared against the admissible range as follows;

√
96.7 = 9.83mm≪ 4000mm at 15% power level. The effect of the state noise, as indicated

in the previous standard deviation, is also further reduced by the state-to-measurement

matrix, C.

The following simulations investigate the effect of state noise covariance on the per-

formance of KF-based interval-predictions within the current case. Confidence intervals

for two alternate and fictitious values of state noise covariances are propagated from the

KF-based estimates through to the prediction horizon in Figure 7.10a) and Figure 7.10b)

for the SWPI power transient. The diagonal elements of the state noise covariance are

assigned respective values of R̂x = 0.1 in the first case and R̂x = 3120.0 in the second case

with the off-diagonal elements of the covariance set equal to zero.

In Figure 7.10a), the model that is assumed within the KF is considered to have less

uncertainty than the safety parameter measurement. This lesser uncertainty is a result of
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Figure 7.10: Case 1b: KF-based point-predictions being propagated over the prediction
window, i = 0, . . . , 3, while approaching the SGLL trip occurrence during an SWPI
power transient with assumed state noise covariances of a) R̂x = diag (0.1), and b)
R̂x = diag (3120.0).

the small value that is assumed for the state noise covariance. In contrast, the KF that is

utilized in the results of Figure 7.10b) assumes that the model is more uncertain than the

measurements. This increase in uncertainty is a result of the larger value that is assumed for

the state noise covariance. These are the two competing filtering considerations within KF-

based estimation and prediction: trust the model or trust the measurement, as discussed in

Section 3.6. In the case of shutdown, where a trip occurrence is defined as the measurement

reaching the TSP, it is beneficial to trust the measurement. That said, in this work the

noise covariances are adapted by the ALMF so that the KF may either trust the model or

measurement depending on performance of the filter.

The interval-predictive time-to-trip results for the simulated trip occurrences are 65.3s

for the relatively uncertain measurement of Figure 7.10a) and 65.9s for the relatively un-

certain model of Figure 7.10b). Neither of these results are particularly favourable since

the interval-predictions of Figure 7.10a) are erroneous with respect to the measurement,

and those of Figure 7.10b) are late with respect to the conventional SDS trip occurrence.
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That said, large uncertainty in the assumed model with respect to the measurement does

result in the one-step-ahead predictions following the measurement more closely.

For a shutdown system that is concerned with the measurement prediction problem,

more uncertainty in the model results in short term predictions that are more accurate to

the measurements. In this case, long term predictions are less likely to be accurate given

that themulti-step-ahead predictions are only based on themodelled response of the system

yet it has been decided that the model is uncertain. For interval-prediction, an increase in

model uncertainty with respect to measurement uncertainty causes increased delay in the

decision-making process. Thus, the size of the noise covariances affect the ability of the

point- and interval-PSDS design differently.

7.1.2.3 Case 1c: KF-based interval-predictive shutdown with ALMF

The following interval-predictions are calculated by including the ALMF noise covariance

estimation algorithm of Section 3.6 within the interval-PSDS design. The time-steps sur-

rounding the interval-predictive trip detections are highlighted in Figure 7.11a) and Figure

7.11b) for the SWPI and PRD power transients respectively. The interval-predictive time-

to-trip results for the simulated trip occurrences are 65.7s for SWPI and 183.7s for PRD.

The interval-predictions observed in Figure 7.11 demonstrate 0.1s and 0.2s reductions

in time-to-trip during the SWPI and PRD power transients respectively. As in the previous

case that does not utilize the ALMF algorithm, the interval-predictions again fail to detect

the trip condition for the trip-SPD transient since the upper bound of the confidence interval

never reaches the TSP. Thus, a missed trip event occurs in Figure 7.11c) for the trip-SPD

transient. Moreover, the interval-PSDS again correctly avoids an impending trip condition
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Figure 7.11: Case 1c: simulation of KF-based interval-predictive SGLL trip occurrences
due to a loss of feedwater flow PIE during a) SWPI, b) PRD, c) trip-SPD, and d) nontrip-
SPD transients undermulti-modelmatching conditions withALMF-based noise covariance
estimation.

in Figure 7.11d) for the nontrip-SPD transient.

The confidence intervals are propagated from the KF-based estimates through to the

prediction horizon in Figure 7.12a) and Figure 7.12b) for SWPI and PRD power transients

respectively. The confidence intervals, including the predictions up to time-step (k +Np)

bound the dynamic of the system in the majority of time-steps. This is especially true for

the SWPI power transient of Figure 7.12a)where the bounds appear to bewide in relation to

the measurement noise. This discrepancy in bounds is due, in part, to the loss of secondary

side feedwater flow PIE transient causing a larger negative rate of change in the water level

315



Time (s)

W
a
te
r
le
v
el

(%
)

kd →

9

10

11

275 275.5 276 276.5275 275.5 276 276.5a)
Time (s)

W
a
te
r
le
v
el

(%
)

kd →

9.6

9.8

10

10.2

393 393.5 394 394.5393 393.5 394 394.5b)
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Figure 7.12: Case 1c: examples of the KF-based interval-predictions iterating over the
entire prediction time-interval, i = 0, . . . , 3, while approaching the SGLL trip occurrence
during a) SWPI and b) PRD power transients under multi-model matching conditions with
ALMF-based noise covariance estimation.

during the SWPI power transient at the time of trip. The difference in rate of change in

water level is illustrated in Figure 7.4a) and 7.4b). In addition, the SWPI power transient

includes discontinuous steps in water level set-point that affect the accuracy of the a priori

KF-based measurement estimates with respect to the one-step-ahead measurement. The

ALMF noise covariance estimation algorithms capture these inaccuracies as uncertainty,

hence the wider bounds.

The ALMF noise covariances result in the confidence intervals of Figure 7.12 not ex-

panding over the prediction window. This absence of expansion indicates that the state

noise covariance is relatively small with respect to measurement uncertainty. The smaller

value of noise covariance aids the interval-based decision-making process in reducing time-

to-trip. These results can be compared directly against those of Figure 7.9 where a missed

trip occurred for the PRD scenario.

Although the interval-PSDS design provides the benefit of considering a higher con-
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fidence in an impending abnormal condition, the interval-based decisions tend to favour

continued operation or productivity rather than safety. The interval-PSDS design also in-

creases the rate of missed trip occurrences when compared against the point-PSDS design.

The confidence intervals of the predictions do, however provide additional information

about the probability, and these metrics may provide benefit to some safety-related appli-

cations given proper modelling as well as a thorough investigation regarding the selection

of prediction horizon.

7.1.2.4 Case 1d: KF-based optimal-predictive shutdown

TheKF-based optimal-PSDS design detects an abnormal condition by selecting an optimal

prediction horizon or bias as a function of confidence in an impending measurement for

a safety parameter prediction, ŷo [k + i|k] where i = 1, . . . ,Np, or a sensor measurement,

y [k], reaches the corresponding TSP, Ξ. Either an interval-prediction, upper or lower, or

a point-prediction may be used, although the point-predictions are recommended since

the confidence is considered through statistical testing. The selection of an optimal and

effective prediction horizon or mean bias rather allows the PSDS to consider the quality

of the previously calculated predictions. The optimal-PSDS then uses this information to

determine the quality of the current predictions.

Although the interval-predictions allow for the confidence of an impending abnormal

condition to be considered by the PSDS, the intervals are also calculated using assumed

distributions, or statistics that describe the noise. The consequence of performing open-

loop predictions with assumed probability distributions is that the prediction algorithm

is not aware as to whether or not these distributions are accurate. Thus, at the time-step
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of interval-predictive trip the PSDS could be misled into believing that the measurement

belongs within the bounds of the confidence. The optimal-PSDS design instead adapts the

mean bias of the confidence interval and the prediction horizon to optimal values given the

past performance of the prediction algorithm.

The optimal-PSDS selects a subset of the measurement predictions from within the

prediction window that are considered to be of sufficient accuracy for comparison against

the TSP. If no predictions are considered of sufficient quality or accuracy, the optimal-

PSDS resorts to comparing the measurement against the TSP. Thus, in this case of poor

prediction quality, the optimal-PSDS design regresses to the conventional SDS design.

The optimal-predictive time-to-trip is measured from the time-step of injecting the PIE

to the time-step when the either the optimal-prediction or measurement reaches the TSP,

i.e. the optimally predicted down-crossing of Ξl. The following optimal-predictions are

calculated by combining the IB and NIS tests of Section 5.3.1. Predictions are considered

of sufficient quality if both the IB and NIS tests are successful. In other words, if either of

the tests indicates that the predictions are not accurate, the corresponding prediction is

not considered within the optimal subset.

The time-steps surrounding the optimal-predictive trip detections are highlighted in

Figure 7.13 for the SWPI, PRD, and SPD transients. The interval-predictive time-to-trip

results for the simulated trip occurrences are 63.8s for SWPI, 181.7s for PRD, and 21.0s

for trip-SPD. In addition, the non-trip condition of the nontrip-SPD scenario is correctly

avoided by the optimal-PSDS design. These detailed plots illustrate the prediction that

is considered to be optimal. This optimal point-prediction is connect by a horizontal line

to the time-step in which the prediction was calculated. In this manner, the variations
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Figure 7.13: Case 1d: simulation of KF-based optimal-predictive SGLL trip occurrences
due to a loss of feedwater flow PIE during a) SWPI, b) PRD, c) trip-SPD, and d) nontrip-
SPD transients under multi-model matching conditions.

in effective prediction horizon is visible in the plotted results. The effective predictions

horizons are also denoted in the lower right corner of the individual plots as Npe .

The optimal-predictions observed in Figure 7.13 demonstrate 2.0s and 2.2s reductions

in time-to-trip during the SWPI and PRDpower transients respectively. These large values

for optimal prediction horizon indicate that the prediction algorithm is able to accurately

predict impending measurement and potential conditions. Moreover, the model provided

to the KF is likely to be accurate. The ability of the optimal-PSDS design to adapt the

prediction horizon is observed in the lines that are connected to the ŷo of Figure 7.13c) for

the trip-SPD transient. Here, the effective prediction horizon is reduced to four time-steps
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at the time of trip with only a 0.2s reduction in time-to-trip.

In utilizing point-predictions, the optimal-PSDS favours safety over continued oper-

ation. In contrast to point-prediction, however, the optimal point-prediction is not only

sufficiently accurate with respect to some significance level, but this value has an upper

maximumFPR ormissed trip rate. The optimal-PSDS alsomaximizes TPR andminimizes

FNRor false trip ratewithin the subset of selected accurate predictions. The optimal-PSDS

therefore has the advantage of considering confidence in an impending measurement value

without waiting for some function of the probability distribution to reach the alarm thresh-

old or TSP.

7.1.3 PSDS Case 2: Reduced-order multi-model with

parameter error

The second simulation case considers the same reduced-order multi-model matching be-

tween the simulated scaled-Irving model and the predictive models within the KFs of the

PSDSs as in the first case. This case also, however, includes an erroneous parameter within

the scaled-Irving model. The presence of parameter errors within the identified model

simulates the real-world condition where the model of a system is inaccurate to the true

system. These parameter errors are assumed to be a result of poor system identification

or modelling. Parameter error may also occur under an uncertain condition whereby the

parameters of the true system deviate from those that are included in the model of the

PSDS. The PSDS designs are therefore modified to include the disturbance estimation and

prediction error compensation algorithms of Chapter 4.
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More specifically, the erroneous parameter, G1 = 0.029, is assumed within the model

that is provided to the KF and RLS algorithms rather than the true parameter within

the steam generator system, G1 = 0.058. The erroneous parameter is shared across all

steam flow-rates, qv, and is selected to be one half of the value of the nominal parameter.

ParameterG1 is the gain associated with the main integrator within the dynamic response

of the system, as illustrated in (6.1). The assumed model therefore misrepresents the rate

of response of the integrator component as half the rate of the true system. The modelling

conditions for this case represent a relatively large uncertainty in terms of model mismatch.

This uncertainty adds to the reduced-order and multi-model matching uncertainties inves-

tigated in Case 1. In regards to signal availability, all safety parameter signals including

steam and feedwater flow-rate as well as steam generator water level are made available to

the KF within the PSDS. This is the same signal availability assumption as for Case 1.

7.1.3.1 Case 2a: KF-based point-predictive shutdown

The time-steps surrounding the point-predictive trip detections for the uncertain case of

parameter error are highlighted in the four plots of Figure 7.14 for the SWPI, PRD, trip-

SPD, and nontrip-SPD transients. In the case of SWPI and PRD transients in Figure

7.14a) and Figure 7.14b) respectively, the predictions are completely erroneous. Although

these results include the use of the ALMF algorithm for noise covariance estimation, the

predictions do not follow the dynamic response of the measurement. This is one of the

primary reasons for investigating the use of the RLS filter for disturbance input estimation.

The point-predictive trip decisions of Figure 7.14c) and Figure 7.14d) for trip-SPD and
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Figure 7.14: Case 2a: time-steps surrounding the simulated KF-based point-predictive
SGLL trip occurrences for a) SWPI, b) PRD, c) trip-SPD, and d) nontrip-SPD under the
model parameter error condition.

nontrip-SPD transients do not have as large a magnitude of error with respect to the future

measurements. The point-predictive trip decision is even somewhat accurate in the case

of the trip-SPD. The result is a reduction in time-to-trip equal to 0.5s. The predictive

trip decision for the nontrip-SPD transient, however, results in a false or spurious trip

occurrence. Thus, the point-predictions mislead the point-PSDS to activate the shutdown

procedure when, in fact, the system continues to operate within the boundaries of normal

operation. For accurate models and assumed statistics, it is expected that the point-

predictions favour early trip conditions or safety. Under model mismatch, this property

of the point-PSDS is not necessarily observed whereby the point-predictions lead to an
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Figure 7.15: Case 2a: time-steps surrounding the simulated KF-based point-predictive
SGLL trip occurrences for a) SWPI and c) trip-SPD under the model parameter error con-
dition with only ALMF-based state noise covariance estimation and constant measurement
noise covariance, R̂y = 6.24.

increase in either spurious or missed trip rates. Thus, under the conditions of this case, the

inaccurate point predictions are detrimental to the safety critical decision making process.

One alternate idea is to force the known measurement noise covariance to be constant

and to calculate the state noise covariance using theALMFalgorithm. The result is that the

measurements are always considered to be of some predetermined constant uncertainty and

the ALMF decides the accuracy of the assumed model as R̂x. The time-steps surrounding

the point-predictive trip detections for the uncertain case of parameter error are highlighted

in the four plots of Figure 7.15 for the SWPI and trip-SPD transients. In the case of SWPI

and trip-SPD transients in Figure 7.15a) and Figure 7.15b) respectively, the measurement

noise covariance remains constant, R̂y = 6.24, and as a result the predictions are now more

accurate to the dynamic response of the measurement. In fact, the modified form of the

algorithms results in time-to-trip reductions of 0.1s and 0.4s for the SWPI and trip-SPD

transients respectively.
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Figure 7.16: Case 2b: time-steps surrounding the simulated KF/RLS-based point-
predictive SGLL trip occurrences for a) SWPI and b) PRD under the model parameter
error condition.

7.1.3.2 Case 2b: KF/RLS-based point-predictive shutdown

The time-steps surrounding the point-predictive trip detections for the uncertain case of

parameter error are also highlighted in the two plots of Figure 7.16 for the SWPI and

PRD power transients. These point-predictions include error compensation using the RLS

filter to estimate both a state and measurement disturbance input with an assumed model

representing a ramp input. The prediction error compensation algorithm results in point-

predictions that are more accurate than those of Figure 7.14. In fact, the KF/RLS-based

point-PSDS design performs equivalently under parameter error uncertainty to the KF-

based point-PSDS of Case 1. Reductions in time-to-trip of 0.3 and 0.5 are observed for

SWPI and PRD transients respectively. Thus, the RLS-based disturbance estimation and

prediction error compensation algorithms of Chapter 4 have been demonstrated to improve

the accuracy of the multi-step-ahead predictions within these specific transients.

The time-steps surrounding the point-predictive trip detections for the uncertain case

of parameter error are highlighted in Figure 7.17 for the trip-SPD transient. These point-

324



Time (s)

W
a
te
r
le
v
el

(%
)

0

20

40

60

80

0 50 100 150
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Figure 7.17: Case 2b: simulated KF/RLS-based point-predictive SGLL missed-trip occur-
rence during the trip-SPD transient under the model parameter error condition.

predictions also include prediction error compensation by the RLS filter to estimate both a

state and measurement disturbance input with the assumed ramp input model. The RLS-

based disturbance estimation algorithm is unable to compensate for both the parameter

error and the disturbance in the level set-point. The result is that the point-PSDS misses

the trip condition completely. In this particular case, it is not imperative that the shut-

down system be activated since the system returns, relatively quickly, to normal operating

conditions. This event is a missed trip occurrence, however, and reveals that there is a limit

to the capabilities of the RLS-based prediction error compensation algorithm.

The RLS algorithm is only able to compensate for a subset of uncertain conditions.

These are the conditions that are compatible with the predetermined disturbance model.

Moreover, although the RLS algorithm provides prediction error compensation, the point-

PSDS design is unaware of the predicted futuremeasurement quality. In addition, although

the RLS filter is recursive, the disturbance estimation procedure must reset periodically

and therefore only considers disturbances that initiate at relatively infrequent points in

time. This reset procedure is inhibited under multiple faults or failures. More specifically,
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Figure 7.18: Case 2c: time-steps surrounding the simulated KF/RLS-based interval-
predictive SGLL trip occurrences for a) SWPI and b) PRD under the model parameter
error condition.

in the presence of multiple disturbances, or even a single incompatible disturbance, the dis-

turbance estimates may not converge, and the assumed initial time-step of the disturbance

may be prevented from being reset.

7.1.3.3 Case 2c: KF/RLS-based interval-predictive shutdown

The time-steps surrounding the interval-predictive trip detections for the uncertain case of

parameter error are highlighted in the two plots of Figure 7.18 for the SWPI andPRDpower

transients. Simulation results for the trip- and nontrip-SPD transients are similar to those

of Figure 7.17 but with the bounding confidence interval values included. These interval-

predictions include error compensation using the RLS filter to estimate both a state and

measurement disturbance input with assumed model. The interval-predictive decisions

suffer from the same problems as the interval-predictions of Case 1. More precisely, the

interval-predictions again introduce a delay in activating the shutdown procedure. The

interval-predictions also therefore increase the missed trip rate.
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Figure 7.19: Case 2d: time-steps surrounding the simulated KF/RLS-based optimal-
predictive SGLL trip occurrences for a) SWPI, b) PRD, and, c) trip-SPD under the model
parameter error condition.

7.1.3.4 Case 2d: KF/RLS-based optimal-predictive shutdown

The time-steps surrounding the optimal-predictive trip detections for the uncertain case of

parameter error are highlighted in the three plots of Figure 7.16 for the SWPI, PRD, and

trip-SPD transients. Simulation results for the nontrip-SPD transient are similar to those of

Figure 7.17. These optimal-predictions are point-predictions that have been compensated

for prediction error using the RLS disturbance estimation algorithm.

In the case of the SWPI transient, the effective prediction horizon is observed to adapt

from the nominal horizon of Np = 20 to the effective horizon of Np = 6. For the PRD
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transient, the nominal horizon is maintained. Thus, each of the SWPI and PRD transients

are determined to have accurate predictions within the prediction window as specified by

the significance level and FPR, α. Reductions in time-to-trip of 0.7s and 2.1s are observed

for the SWPI and PRD transients respectively. In contrast, the optimal-PSDS reverts to

the conventional mechanism of comparing the measurement against the TSP for the trip-

SPD transient. This is due to all of the predictions within the prediction window being

considered of insufficient quality.

It is also possible for the optimal-predictions to include a set of possible mean biases in

terms of prediction error that may satisfy the corresponding hypothesis tests. The results

of Figure 7.20 consider the following set of mean biases for prediction error, [−2,−1, 0, 1, 2]

standard deviations from zero mean. The result is that the optimal-predictions are able

to adapt an estimate of mean bias in prediction error as the result of hypothesis testing

in addition to the deterministic compensation of prediction error. This is beneficial under

uncertain conditions that are not able to be accurately predicted using the combination

KF/RLS algorithm as well as the ALMF noise covariance estimation.

For the SWPI transient, the optimal-prediction has a mean prediction bias equal to−1

standard deviations of the prediction error at the time of optimal-predictive trip. Moreover,

the optimal or effective prediction horizon for this mean prediction error is equal to the

nominal full length prediction horizon, Np = 20. The point-predictions are therefore

determined by the statistical tests to have a mean bias that is best represented by a value

other than zero. In contrast, for the PRD transient, the optimal-prediction is the nominal

one of zero-mean with prediction horizon, Npe = 20 as included in Figure 7.19b). For the

PRD transient, the mean prediction bias is observed to adapt, however, in the time-steps
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Figure 7.20: Case 2d: time-steps surrounding the simulated KF/RLS-based optimal-
predictive SGLL trip occurrences for a) SWPI, b) PRD, and, c) trip-SPD under the model
parameter error condition.

leading up to this optimal-predictive decision.

7.1.4 Summary

In Section 7.1.2, reduced time-to-trip is observed while utilizing the point-PSDS design

and a reduced-order multi-model of the system. Reductions in time-to-trip are therefore

possible given a short-term prediction horizon as well as an accurate model. The point-

predictions are found to favour early trip. Under some conditions, however, the point-

predictions favour continued operation when compared against conventional activation

of trip. This property of the point-PSDS design is due to the filtering of noise from the

measurement by the KF, hence noisy measurements may cause a trip occurrence whereas

the filtered prediction may not. A comparison of the simulated time-to-trip results against

benchmark conventional time-to-trip is provided in Table 7.3 for each configuration within

the three simulation cases.
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Table 7.3: Summary of simulation time-to-trip, kc or kp, and effective prediction horizon,
Npe , results.
∗ - a false trip occurs for nontrip-SPD

Prediction
horizon,

Time-to-trip, ∆kc|∆kp [∆kp −∆kc] (s)

Np (s) SWPI PRD trip-SPD

Conventional SDS n/a 65.8 183.9 21.2

Case 1: reduced-order multi-model

a) KF point-PSDS 0.3 65.5
[−0.3]

183.4
[−0.5]

21.0
[−0.2]

b) KF interval-PSDS 0.3 65.6
[−0.2]

184.0
[+0.1]

no-trip

c) with ALMF 0.3 65.7
[−0.1]

183.7
[−0.2]

no-trip

d) KF optimal-PSDS 2.0 63.8
[−2.0]
Npe = 20

181.7
[−2.2]
Npe = 20

21.0
[−0.2]
Npe = 4

Case 2: reduced-order multi-model with parameter error

a) KF point-PSDS 0.3 late-trip late-trip 20.7∗

[−0.5]
b) KF/RLS point-PSDS 0.3 65.5

[−0.3]
183.4
[−0.5]

no-trip

c) KF/RLS interval-PSDS 0.3 65.7
[−0.1]

183.9
[0.0]

no-trip

d) KF/RLS optimal-PSDS 2.0 65.2
[−0.7]
Npe = 6

181.8
[−2.1]
Npe = 20

21.2
[−0.0]
Npe = 0

330



The interval-PSDS design is then investigated both with and without the ALMF noise

covariance estimation algorithm. A reduction in the accuracy of the predictions with

respect to the future measurements is observed for fictitious state noise covariances. In

addition, expansion of the confidence interval over the prediction window is observed for

larger values of state noise covariance. This expansion is in contrast to the constant width of

the confidence interval for smaller covariance values. With orwithout theALMFalgorithm,

the interval-predicted trip occurrences are observed to reduce time-to-trip by less time than

the point-PSDS design. This decrease in reduction of time-to-trip is a drawback of having

increased confidence in an impending abnormal condition. In some cases, the interval-

predictive trip occurs after the conventional trip, i.e. an increase in time-to-trip rather

than a reduction. In another case, the abnormal condition is never detected by the interval

prediction. The interval-PSDS design is therefore subject to an increase in missed trip

occurrences or Type I errors. Moreover, in order to reduce time-to-trip, the interval-

predictions are required to be calculated further into the future than the point-predictions.

The optimal-PSDS combines the benefits of point-PSDS with the statistical assessment

property of the interval-PSDS. In addition, the optimal-PSDS can consider longer predic-

tion horizons without concern for inaccuracies to occur within the predictions of these far

reaching horizons. By using the point-prediction as the metric to be compared against the

TSP, the optimal-PSDS is able to match the ability of the point-PSDS to balance safety

and productivity while being aware of the quality of past multi-step-ahead predictions.

The RLS disturbance estimation algorithm is able to compensate for prediction error

given that the model of the disturbance is accurate. The error compensation performs

best for large and consistent disturbances as mentioned in the formulation of the filter in
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Chapter 4. In addition, the RLS disturbance estimation has difficulty when more than

one uncertain condition is affecting the system. This problem was observed in Case 2a

where the dynamic response that resulted from both parameter error and the set-point

disturbance was not accurately compensated by the RLS filter.

7.2 Experimental Results

The following sections analyze the performance of a conventional SDS and the PSDS al-

gorithms of Chapter 5 when implemented within an industry-standard safety PLC. Ex-

periments are performed by subjecting the scaled-Irving PLS to a loss of feedwater flow

PIE during each of the SWPI and PRD power transients within the experimental platform

described in Chapter 6. These results provide a means for evaluating the performance of

the various PSDS methods under uncertain conditions that are common to real-world pre-

diction and forecasting problems. These results also aid in validating the simulation results

of Section 7.1. The following experimental cases are investigated within this section.

• Case 1: parameter error or model mismatch, multi-model selection with ideal signal

availability

• Case 2: parameter error or model mismatch, multi-model selection with unmeasured

initiating event

All cases utilize the reduced-order model introduced in Section 6.6. The term unmeasured

initiating event refers to a specific scenario regarding the PIE wherein the loss of feed-

water flow-rate is not measured by the SDS. In Case 2, the predictive model is therefore

being misled by measurements that indicate the feedwater flow-rate is either increasing or
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holding steady at an erroneous flow-rate when, in actuality, the flow-rate is being reduced.

The following experiments do not include the SPD transient that was investigated in the

simulation results. Instead, the uncertain conditions of an unmeasured initiating event is

studied in combination with the parameter error that is inherent to the experimental setup

as well as most real-world applications and physical systems.

The dynamic response of the plate level is illustrated in Figure 7.21 when affected by the

PIE at 200s into each of the two power transients where Ξl = 10% and the remaining entries

are as defined in Figure 7.1. Unlike simulation, time-to-trip results for the experimental

SDS include the amount of time required for signal conditioning and decision-makingwithin

the programmable electronic system. This is due to the predictions being calculated in real-

time within the Tricon v9 PLC. As in the simulation, however, experimental time-to-trip

results do not include the amounts of time required for relay activation and rod travel or

dropping of the shut-off rods since there are no physical shutdown mechanisms included

within the experimental PLS.

7.2.1 Benchmark: Conventional shutdown

Conventional SDSs trip when a safety parameter measurement, y [k], reaches the corre-

sponding TSP, Ξl. This is the same conventional trip procedure as for the simulations.

Conventional time-to-trip is therefore measured from the time-step of injecting the PIE to

the time-step when the safety parameter measurement reaches the TSP. The experimental

SDS designs also utilize a hysteresis threshold to prevent deactivation of the trip sequence.

The experimental times-to-trip for conventional shutdown are 62.0s for SWPI and 86.0s
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Figure 7.21: Benchmark: experimental conventional SGLL trip occurrences due to loss of
feedwater flow PIE during a) SWPI and b) PRD power transients.

for PRD as plotted in Figure 7.21. These conventional time-to-trip results are the bench-

marks against which the first case of experimental predictive trip detection routines are

compared. Subsequent cases have similar benchmarks that are calculated for the specific

instance of trip initiation as well as the dynamic response of the physical system. The

reason for these separate benchmarks is the variation in the shutdown transient between

successive experimental runs. In addition, it is not possible, within the current data acqui-

sition system, to collect the decisions from each of the three PSDS designs within a single

experimental iteration. The scan time for the partial SGLL implementation of conventional

SDS within Tricon v9 is 22ms with a surplus of 78ms within the required 100ms interval.
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7.2.2 PSDS Case 1: Reduced-order multi-model with

measured PIE

This first experimental predictive shutdown case considers reduced-order multi-model

matching between the simulated scaled-Irving model and the predictive models within

the KFs of the various PSDS designs. As in the case of the simulations, the model pa-

rameters of the simulated system are interpolated between the operating points of Table

6.1. The modelling conditions for this case are therefore more uncertain than those of the

first simulation case. This added uncertainty is the result of parameter errors in the model

that is provided to the KF. These parameter errors are assumed during experimentation

since the dynamic model that represents the PLS is only a mathematical abstraction of

the actual system behaviour. All safety parameter signals including steam and feedwater

flow-rate as well as steam generator water level are made available to the KF within the

PSDS, i.e. ideal signal availability.

7.2.2.1 Case 1a: KF/RLSy-based point-predictive shutdown

The KF/RLSy-based point-PSDS design detects an abnormal condition when either the

mean value of the safety parameter prediction, ŷ [k + i|k] ∀i = 1, . . . ,Np, or the safety

parameter measurement, y [k], reach the corresponding TSP, Ξl. These point-predictions

include prediction error compensation using the RLS filter to estimate only a measurement

disturbance input with assumed ramp input model. By only utilizing the measurement

disturbance estimation algorithm, RLSy, the complexity and scan times for the PSDS

implementations are reduced. Point-predictive time-to-trip, ∆kp, is measured from the
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time-step of injecting the PIE to the time-step when a point-prediction reaches the TSP,

i.e. a point-predicted down-crossing of Ξl. As in the simulations, the point-PSDS design

of Figure 5.3 is modified to include only predictive trip activation and not the conventional

trip logic.

The time-to-trip results for experimental point-predictive shutdown are 61.4s for SWPI

and 85.8s for PRD as illustrated in Figure 7.22. The point-predictions are calculated to a

prediction horizon of Np = 5 time-steps or 0.5s for both SWPI and PRD power transients.

This prediction horizon differs from that of the simulation results in order to investigate

the ability of the KF to calculate accurate prediction at various horizons. This prediction

horizon is equal to two times the length of the regulated maximum time for decision making

within CANDU SDS1. As in the simulation results, predictive trips occur at the time-

step in that the predictions were calculated which is Np time-steps prior to the plotted

measurement predictions.

For the SWPI power transient, the point-predictive trip detection occurs two time-steps

prior to the down-crossing of themeasurement with Ξl. Point-predictive trip provides a 0.6s

improvement or reduction in time-to-trip for the SWPI power transient when compared

against benchmark conventional shutdown. The PRD power transient, on the other hand,

provides an improvement in time-to-trip of 0.2s compared against conventional SDS results.

These values of reduction are consistent with respect to the prediction horizons and also

reflect the uncertainty that is inherent in the real-world experimental prediction problem.

The scan time for the SGLL implementation of predictive SDS within Tricon v9 is 67ms

with a surplus of 33ms for a prediction horizon of Np = 5. This scan time jumps to 85ms

for the prediction horizon of Np = 20. Thus, the Tricon v9 is capable of executing the KF
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Figure 7.22: Case 1a: experimental point-predictive trip due to SGLL during power tran-
sients a) SWPI and b) PRD under model mismatch.

prediction algorithm as well as the RLS measurement disturbance estimation algorithm

within the allotted 100ms time interval. Scaling this functionality up to the full set of ten

or more safety parameters will, however, require a more powerful technological platform,

e.g. an FPGA.

7.2.2.2 Case 1b: KF/RLSy-based interval-predictive shutdown with ALMF

The KF/RLSy-based interval-PSDS design incorporates the same prediction and distur-

bance estimation algorithms as for the point-predictive case, except that the upper bound

of the interval is compared against the TSP. The time-steps surrounding the interval-

predictive trip detections under the uncertain case of parameter error are highlighted in the
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Figure 7.23: Case 1b: interval-predictive trip due to SGLL during power transients a)
SWPI and b) PRD under model mismatch.

two plots of Figure 7.23 for the SWPI andPRDpower transients. These interval-predictions

include error compensation using the RLS filter to estimate the measurement disturbance

input given an assumed model. The interval-predictions again, as in the simulation re-

sults, introduce a delay in activating the shutdown procedure. The interval-predictions

also therefore increase the missed trip rate.

Interval-predictive trip provides a 0.2s improvement or reduction in time-to-trip for

the SWPI power transient when compared against benchmark conventional shutdown.

This time of trip is 0.4s later than for the point-predictive case. In contrast, the PRD

power transient results in a missed trip occurrence with an increase in time-to-trip of 0.6s

compared against conventional SDS results. In comparing this PRD result against the
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point-predictive case, the error covariance for the predicted measurements is expected to

be relatively wide since the change in time of trip experiences a large delay. Moreover,

this large change in time-to-trip between point and interval results indicates that the error

covariance for the PRD transient is also larger than that of the SWPI transient.

7.2.2.3 Case 1c: KF/RLSy-based optimal-predictive shutdown

The experimental results of the optimal-PSDS design demonstrate a time-to-trip of 58.9s

for SWPI and 71.3s for PRD as illustrated in Figure 7.24a) and Figure 7.24b) respectively.

These are 1.3s and 0.2s less than the corresponding conventional SDS time-to-trip. The

conventional SDS against which these values are compared is not the response included in

Figure 7.21 but is rather another instance of the results with specific times tabulated in

Table 7.4. Experimental optimal-predictions are selected using only the IB or Z test, and

not the NIS test as included in the simulation results.

The effective prediction horizon,Npe for the optimal-predictions are included for SWPI

and PRD transients in Figure 7.25a) and Figure 7.25b) respectively. These plots illustrate

the adaptive nature of the effective prediction horizon. The predictions for the SWPI

transient are accurate for large prediction horizons up to a few time-steps prior to predictive

shutdown. In the case of the PRD transient, however, the effective prediction horizon is

much shorter over the entire simulation.
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Figure 7.24: Case 1c: optimal-predictive trip due to SGLL during power transients a)
SWPI and b) PRD under model mismatch.

7.2.3 PSDS Case 2: Reduced-order multi-model with

unmeasured PIE

The second experimental case considers the same reduced-order multi-model matching

between the simulated scaled-Irving model and the predictive models within the KFs of

the PSDSs as in the first experimental case. This case also includes inaccuracies in the

parameters with respect to the scaled-Irving model due to the dynamic response of the PLS

not being an exact match to the scaled-Irving model. This case does not, however, include

the assumption that all safety parameter signals, including steam and feedwater flow-rate

as well as steam generator water level, are made available to the KF within the PSDS.
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Figure 7.25: Case 1c: interval-predictive trip due to SGLL during power transients a)
SWPI and b) PRD under model mismatch.

Thus, the decrease in feedwater flow-rate by 1.0%/s is an uncertain condition whereby

the feedwater valve reduces flow while the manipulated variable or safety parameter for

the feedwater flow-rate that is provided to the PSDS indicates that the flow is normal or

increasing.

7.2.3.1 Case 2a: KF/RLSy-based point-predictive shutdown

The times-to-trip for experimental point-predictive shutdown are 59.5s for SWPI and 77.3s

for PRD as illustrated in Figure 7.26. These point-predictions include error compensation

using the RLS filter to estimate the measurement disturbance input given an assumed

model. The RLS algorithm is now compensating for both parameter error as well as the

unmeasured disturbance to the system input. The point-predictions are calculated to

a prediction horizon of Np = 5 time-steps or 0.5s for both the SWPI and PRD power
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Figure 7.26: Case 2a: point-predictive trip due to SGLL during power transients a) SWPI
and b) PRD under model mismatch and unmeasured initiating event.

transients. The conventional SDS against which these values are compared is also not the

response included in Figure 7.21 but is rather another instance of the results as tabulated

in Table 7.4.

The point-predictive trip detection occurs seven time-steps prior to the down-crossing

of the measurement with Ξl for the SWPI power transient. Point-predictive trip therefore

provides a 0.7s improvement or reduction in time-to-trip for the SWPI power transient

when compared against benchmark conventional shutdown. The PRD power transient, on

the other hand, provides an improvement in time-to-trip of 2.0s compared against conven-

tional SDS results. This large value for reduction in time-to-trip for the PRD transient

indicates that the KF/RLSy-based point-predictions may not necessarily be accurate to
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the true future measurements. The result is an early trip that may not necessarily be a true

representation of the impending conditions. In other words, the RLS-based disturbance

estimation overcompensates for the unmeasured disturbance in the system input.

7.2.3.2 Case 2b: KF/RLSy-based interval-predictive shutdown with ALMF

The time-steps surrounding the interval-predictive trip detections for the uncertain case of

parameter error are included in the two plots of Figure 7.27 for the SWPI and PRD power

transients. These interval-predictions include error compensation using the RLS filter to

estimate the measurement disturbance input given an assumed model. This algorithm

is again compensating for both parameter error and the unmeasured initiating event, or

disturbance to the system input. Moreover, the interval-predictions again introduce a delay

in activating the shutdown procedure when compared against the point-predictive results.

The interval-predictions also therefore increase the missed trip rate.

Interval-predictive trip provides a 0.2s improvement or reduction in time-to-trip for the

SWPI power transient when compared against benchmark conventional shutdown. This

time of trip occurs 0.2s later than for the point-predictive case. In contrast, the PRD

power transient results in a time-to-trip that is equivalent to that of the conventional SDS

case. In comparing this result against the point-predictive case, the error covariance for the

predicted measurements must be relatively wide since the change in time of trip is large.

Again, this large change in time-to-trip between point and interval results indicates that

the error covariance for the PRD transient is also larger than that of the SWPI transient.

These results demonstrate that the interval-PSDS design is able to reduce the possibility

of false trip occurrences when the model provided to the KF does not necessarily represent
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Figure 7.27: Case 2b: interval-predictive trip due to SGLL during power transients a)
SWPI and b) PRD under model mismatch and unmeasured initiating event.

the true system.

7.2.3.3 Case 2c: KF/RLSy-based optimal-predictive shutdown

The experimental results of the optimal-PSDS design demonstrate a time-to-trip of 60.1s

for SWPI and 80.3s for PRD as illustrated in Figure 7.28a) and Figure 7.28b) respectively.

For the SWPI transient, this time of trip results in a 0.3s reduction in time-to-trip in

comparison to the corresponding conventional SDS time-to-trip. Moreover, the effective

prediction horizon for the SWPI transient at the time of optimal-predictive shutdown is

Npe = 2. For PRD, the time-to-trip is equivalent to that of the conventional SDS since the

optimal-PSDS determines that none of the predictions are of sufficient quality to compare
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Figure 7.28: Case 2c: optimal-predictive trip due to SGLL during power transients a)
SWPI and b) PRD under some model mismatch and unmeasured initiating event.

against the TSP. The conventional SDS time-to-trip results are again tabulated in Table

7.4 and are not those included in Figure 7.21.

7.2.4 Summary

The proposed PSDS designs have been successfully implemented in an industry standard

safety PLC with a scan time that meets current requirements. The results of this sec-

tion demonstrate through experiment that, given a short-term prediction horizon and low

uncertainty in the model provided to the KF as well as low uncertainty in future system

inputs, all of the proposed PSDS designs are able to achieve a reduced time-to-trip. These

reductions in time-to-trip are summarized for the experimental results in Table 7.4.
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Table 7.4: Summary of experimental time-to-trip and effective prediction horizon results.

Prediction
horizon,

Time-to-trip, ∆kc, ∆kp
[∆kp −∆kc] (s)

Np (s) SWPI PRD

Case 1: reduced-order multi-model

Conventional SDS n/a 62.0 86.0

a) KF/RLSy point-PSDS 0.5 61.4
[−0.6]

85.8
[−0.2]

b) KF/RLSy interval-PSDS 0.5 61.8
[−0.2]

86.6
[+0.6]

Case 1 continued: optimal-PSDS

Conventional SDS n/a 60.2 72.8

c) KF/RLSy optimal-PSDS 2.0 58.9
[−1.3]
Npe = 6

85.8
[−0.2]
Npe = 2

Case 2: reduced-order multi-model with unmeasured PIE

Conventional SDS n/a 59.9 79.3

a) KF/RLSy point-PSDS 0.5 59.5
[−0.4]

77.3
[−2.0]

b) KF/RLSy interval-PSDS 0.5 59.7
[−0.2]

79.3
[0.0]

Case 2 continued: optimal-PSDS

Conventional SDS n/a 60.4 80.3

c) KF/RLSy optimal-PSDS 2.0 60.1
[−0.3]
Npe = 2

80.3
[0.0]

Npe = 2
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In Case 1, under real-world model mismatch, the point predictive algorithm achieves

a reduction in time-to-trip. This is similar to the simulation case with model mismatch,

except that the reductions in time-to-trip are not as consistent to the prediction horizon as

in the simulation case. Moreover, the interval-PSDS is again seen to cause a delay in the

trip decision-making process.

Case 2 reveals that it is necessary to asses the quality of the predictor within the PSDS.

The point- and interval-PSDS designs become less capable of achieving a reduced time-to-

trip as the conditions under which the system is operating deviate from the true system,

environmental, and signal conditions. The optimal-PSDS, however, is able to adapt certain

properties of the predictor based on the quality of the calculated predictions. It is therefore

possible, through the use of the optimal-PSDS, to ensure that the predictions which are

compared against an alarm threshold or TSP are, in fact, accurate to the actual impending

conditions and dynamic response of the system.
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Chapter 8

Conclusions and Recommendations

This dissertation presents the development of predictive shutdown logic as PSDSdesigns for

use as an automatic protection system within an NPP. The developed prediction algorithm

utilizes the update and predict stages of KF-based state estimation. In this manner, the

prediction algorithm has knowledge of an assumed model of the system being protected as

well as uncertainties within the modelled system parameters and signals.

The prediction algorithm is enhanced to take into consideration time-varying model

parameters and noise characteristics. These two enhancements are achieved by incorpo-

rating ALMF noise covariance estimation as well as LS disturbance input estimation. A

recursive solution to the LS disturbance estimation problem is also formulated within this

work. The PSDS is then further enhanced to assess the quality of previously calculated

multi-step-ahead predictions through the use of statistical and hypothesis testing as well

as optimal alarm theory. By assessing prediction quality, the prediction algorithm is able

to adapt the effective prediction horizon in order to optimize the predictive trip decisions
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with respect to false and missed trip rates. The algorithmmay also be extended to consider

the mean bias in the prediction error and/or other statistical parameters that can be tested

via statistical testing.

There are three PSDS designs developed within this work. Each design is a modular

extension of the conventional logic within an existing SDS, e.g. CANDU SDS1. The

first design is the point-PSDS which calculates point-predictions and then compares the

predictions against an alarm threshold or TSP. Although the KF-based point-PSDS is

able to reduce time-to-trip, the KF-based prediction algorithm suffers from the inability

to respond to uncertain conditions during the transient to an abnormal condition. For this

reason, an ALMF-based noise covariance estimation algorithm is implemented alongside

the KF in order to take into consideration changes in the stochastic uncertainties that

are provided to the KF. Moreover, RLS-based estimation of disturbances within both the

state and measurement equations is also be implemented alongside the KF in order to

compensate for prediction errors that are deterministic. The result is a KF/RLS-based

PSDS that can respond to a predetermined set of deterministic and stochastic uncertainty

conditions. The ultimate aim of the point-PSDS design is to calculate accurate predictions

at short prediction horizons. That said, the longer the prediction horizon, the less accurate

the predictions and predictive trip decisions may become.

Due to the preemptive nature of predictive trip, predictive trip decisions that are inac-

curate generally result in false trip occurrences, i.e. a predicted abnormal condition does

not eventually occur. Increase false trip occurrences, in turn, affect the productivity of

the system being protected. The functionality of the point-PSDS design is therefore ex-

tended within the interval-PSDS design in order to counteract an increase in false trip rate.
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The interval-PSDS design calculates interval-predictions and compares either the upper

or lower bound of the confidence interval against a low or high TSP respectively. In this

manner, predictive decisions are made when there is a predetermined and increased level

of confidence in the impending abnormal conditions with respect to some predetermined

alarm threshold or TSP. Although the interval-PSDSmakes decisions with increased confi-

dence, the interval-based decisions are delayed when compared against the point-predictive

design. In some cases, the interval-PSDS may even miss a trip event entirely. This increase

in missed trip rate is opposite to that of the point-PSDS design. The KF-based interval-

PSDS suffers from the same inability to respond to uncertain conditions during transient

to an abnormal condition as the point-SDS. The interval-PSDS is also, therefore, combined

with the ALMF noise covariance estimation and RLS-based disturbance estimation and

prediction error compensation algorithms.

The point- and interval-PSDSdesigns are able tomake accurate predictive trip decisions

given that the prior knowledge provided to the algorithm is a true representation of the

actual system, environment, and signals. That said, this knowledge is often assumed,

may not necessarily be accurate, and may result in an increase in false or missed trip

rate Thus, PSDS functionality is again extended to consider prediction accuracy. The

final optimal-PSDS design can compare either the point-predictions or the bounds of the

interval-predictions against a TSP. The optimal-PSDS also, however, utilizes statistical

tests to assess the quality of previously calculated safety parameter measurements. A

subset of the time-steps within the prediction horizon are identified as being of sufficient

qualitywith respect to a significance level. In addition, the optimal-PSDSmay also consider

a set of mean prediction error values to be compared against the TSP instead of the point-
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prediction. The optimal prediction metric, either point-prediction, interval-prediction, or

mean prediction error is selected bymaximizing theTPRandminimizing the corresponding

FNR. Thus, the optimal-PSDS design limits the maximum probability of false positive

predictive trip decisions. These false positives are known as missed trip occurrences. The

optimal-PSDSdesign alsominimizes the probability of false negative trip decisions, referred

to as false trip occurrences. This functionality is preferred over both of the point- and

interval-PSDS designs due to the prediction algorithm being aware of prediction quality,

and the predictions not being delayed to achieve a certain level of confidence.

This dissertation includes analysis simulation results as well as experiment using a

Tricon v9 safety PLC. The results demonstrate that each of the proposed PSDS reduce

time-to-trip when compared against a benchmark conventional SDS. This reduction in

time-to-trip subsequently reduces the potential for a high power surge to cause damage

to the reactor core and other critical components. In other words, predictive shutdown

results in negative reactivity being inserted into the reactor core earlier than conventional

SDSs under the conditions that the system model and related uncertainty descriptions are

accurate to the true conditions of the system.

Through the use of KF-based measurement prediction and RLS-based disturbance es-

timation, the SDS now incorporates additional prior information so that the SDS can make

proactive decisions prior to conventional trip decisions. Further, the proposed KF/RLS-

based trip detection algorithm overcomes the fundamental limitations which restrict the

potential benefits of conventional SDSs. The interval-PSDS design also provides the ability

to make a trip decision given a certain level of confidence in an impending abnormal condi-

tion. Moreover, the optimal-PSDS design is able to adapt the effective prediction horizon
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and mean prediction bias as a function of true and false positive and negative events. In

other words, the decision-making mechanism within the optimal-PSDS selects a predic-

tive value that is optimal with respect to minimizing false and missed trip occurrences.

The optimal-PSDS design is also the only PSDS design whereby the prediction algorithm

makes a predictive decision that considers the accuracy or quality of the previously pre-

dicted multi-step-ahead safety parameter measurements.

8.1 Recommended future work

This dissertation presents the foundations for enhancing a NPP SDS to make predictive

decisions. These predictive decisions have been demonstrated for a single safety param-

eter within SDS1 of a CANDU NPP. It is expected that scaling the proposed prediction

algorithms to the entire SDS1 safety parameter set will require the use of a more computa-

tionally powerful industrial controller, e.g. an FPGA. In addition, the dynamic response

of the neutronics within the reactor core may require the use of nonlinear models and

non-Gaussian probability distributions. It is expected that the EKF, UKF, and particle

filters may be of use in predicting these increasingly complex dynamic responses. It is

also recommended that the LOCA rather than the loss of secondary side feedwater PIE

be investigated with respect to predictive shutdown. This recommendation is due to the

fact that LOCA PIEs have the largest peak response in safety parameter measurement and

therefore establish the limiting criteria for SDS response time.

This dissertation also presents a recursive solution to the LS disturbance estimation

problem. The disturbance estimation is not entirely recursive, however, due to the inclu-
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sion of an initiating time-step for the assumed disturbance. It is possible to formulate a

fully recursive implementation that has a rolling initial time-step of disturbance for various

disturbance profiles. These profiles and the fully recursive formulation of RLS-based dis-

turbance estimation are therefore suggested for future study. In contrast, this work makes

use of a dual alternating configuration for disturbance estimation. In order to switch be-

tween the two RLS filters, a switching function is established which detects the convergence

of parameter error compensation to the current mean error. A complete analysis of these

switching functions and the development of a more suitable approach to switching between

the two estimators are recommended. Moreover, it is recommended that a future study in-

vestigate the ability of the disturbance profile for the additive disturbances to be accurate

under non-additive parameter error disturbances. When implementing the RLS distur-

bance estimation algorithm, it is essential that the expected disturbances are compatible

with the chosen disturbance profile. It is also the case that the predictive shutdown will

provide various model- and data-based metrics and time-series that may be useful in alarm

management and operator indication although these aspects of prediction are considered

beyond the scope of this dissertation work.
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[163] O. Glöckler, “Testing the dynamics of shutdown systems instrumentation in reactor
trip measurements,” Progress in Nuclear Energy, vol. 43, no. 1, pp. 91–96, 2003.

[164] E. Irving, C. Miossec, and J. Tassart, “Toward efficient full automatic operation of
the PWR steam generator with water level adaptive control,” in 2nd International
Conference on Boiler Dynamics and Control in Nuclear Power Stations, 1980, pp.
309–329.

[165] M. Akkawi and J. Jiang, “An inverse control-based set-point function for steam
generator level control in nuclear power plants,”Nuclear Science, IEEE Transactions
on, vol. 58, no. 6, pp. 3291–3304, 2011.

[166] D. J.Rankin and J. Jiang, “Analytically compensated SGLC test facility,” inProceed-
ings of the 9th International Topical Meeting on Nuclear Power Plant Instrumen-
tation, Control and Human-Machine Interface Technologies. American Nuclear
Society (ANS), 2015.

[167] M.-K. Kim, M. H. Shin, and M. J. Chung, “A gain-scheduled L2 control to nuclear
steam generator water level,”Annals of Nuclear Energy, vol. 26, no. 10, pp. 905–916,
1999.

[168] Q. Li and J. Jiang, “Evaluation of Foundation Fieldbus H1 networks for steam gen-
erator level control,” Control Systems Technology, IEEE Transactions on, vol. 19,
no. 5, pp. 1047–1058, 2011.

[169] D. J. Rankin and J. Jiang, “Predictive trip detection for nuclear power plants,”
Nuclear Science, IEEE Transactions on, vol. 63, no. 4, pp. 2352–2362, 2016.

365



Appendices

Appendix A: Copyright permissions

366



Curriculum Vitae

Name: Drew James Rankin

Post-Secondary Ph.D. Electrical and Computer Engineering
Education and University of Western Ontario, London, ON
Degrees: 2009 – 2017

M.Eng.Sc. Electrical and Computer Engineering
University of Western Ontario, London, ON
2006 – 2008

B.App.Sc. Electrical and Computer Engineering
with Co-operative Education (Co-op) Placements
University of Windsor, Windsor, ON
2002 – 2006

Honours and Natural Science and Engineering Research
Awards: Council (NSERC) Postgraduate Scholarship

Doctorate (PGS D)
2010 – 2013

Ontario Graduate Scholarship in Science
and Technology (OGSST)
2009 – 2010

Related Work Research and Teaching Assistant
Experience: The University of Western Ontario

2006 – 2017

Journal Publications:

[1] D. J. Rankin, and J. Jiang, “Optimal predictive trip detection for nuclear power
plants.” Manuscript, Pending, 2017.

[2] D. J. Rankin, and J. Jiang, “Predictive trip detection for nuclear power plants.”
Nuclear Science, IEEE Transactions on, vol. 63, no. 4, pp. 2352-2362, 2016.

[3] D. J. Rankin, and J. Jiang, “A hardware-in-the-loop simulation platform for the
verification and validation of safety control systems.” Nuclear Science, IEEE Trans-
actions on, vol. 58, no. 2, pp. 468-478, 2011.

367



[4] Q. Li, J. Jiang, and D. J. Rankin, “Evaluation of delays induced by Profibus PA
networks.” Instrumentation and Measurement, IEEE Transactions on, vol. 60, no.
8, pp. 2910-2917.

[5] Q. Li, D. J. Rankin, and J. Jiang, “Evaluation of delays induced by Foundation
Fieldbus H1 networks.” Instrumentation and Measurement, IEEE Transactions on,
vol. 58, no. 10, pp. 3684-3692, 2009.

Conference Publications:

[1] D. J. Rankin, and J. Jiang, “Analytically compensated SGLC test facility.” 9th
International Topical Meeting on Nuclear Power Plant Instrumentation, Control,
and Human-Machine Interface Technologies (NPIC & HMIT). Charlotte, North
Carolina, USA. ANS, 2015.

[2] D. J. Rankin, and J. Jiang, “Kalman filter based predictive trip detection for nuclear
power plant safety systems.” 22nd International Conference on Nuclear Engineering
(ICONE). Prague, Czech Republic. ASME, 2014.

[3] D. J. Rankin, K. P. vanHoof, and J. Jiang, “Analytically compensated physicalmodel
of a steam generator with non-minimum phase level response.” 8th International
Topical Meeting on Nuclear Power Plant Instrumentation, Control, and Human-
Machine Interface Technologies (NPIC & HMIT). SanDiego, California, USA.ANS,
2012.

[4] D. J. Rankin, and J. Jiang, “Effects of in-the-loop interface fidelity on the simulation
of NPP processes.” 7th International Topical Meeting on Nuclear Power Plant
Instrumentation, Control, and Human-Machine Interface Technologies (NPIC &
HMIT). Las Vegas, Nevada, USA. ANS, 2010.

[5] D. J. Rankin, J. She, and J. Jiang, “Evaluation of safety PLCs and FPGAs for
shutdown systems in CANDU nuclear power plants.” International Symposium on
Future Instrumentation and Control for Nuclear Power Plants (ISSNP/ISOFIC).
Harbin, China. KNS, 2008.

[6] D. J. Rankin, and J. Jiang, “Hardware-in-the-loop simulation using Tricon v9 safety
PLC.” 16th International Conference on Nuclear Engineering (ICONE). Orlando,
Florida, USA. ASME, 2008.

[7] D. J. Rankin, and J. Jiang, “Hardware-in-the-loop (HIL) nuclear power plant training
simulation platformdesign and verification.” 29th Annual Canadian Nuclear Society
(CNS). Toronto, Ontario, Canada. CNS, 2007.

[8] D. J. Rankin, and J. Jiang, “Tricon and shutdown system one (SDS1).” 28th Annual
Canadian Nuclear Society (CNS). Saint John, New Brunswick, Canada. CNS, 2007.

368


	Predictive Shutdown Systems for Nuclear Power Plants
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Appendices
	List of Abbreviations, Symbols, Nomenclature
	Acronyms and Initialisms
	Mathematical Notations
	Roman Symbols
	Greek Symbols

	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statements, Objectives, and Scope
	1.2.1 Shutdown system enhancement and reduction of time-to-trip
	1.2.2 Predictive shutdown concept
	1.2.3 Prediction of abnormal conditions under uncertainty
	1.2.4 Objectives
	1.2.5 Scope
	1.2.5.1 Methodology
	1.2.5.2 Experimental verification


	1.3 Contributions
	1.4 Organization

	2 Literature Review
	2.1 Time-series Prediction
	2.1.1 Filtering and estimation
	2.1.2 Kalman-filter-based prediction
	2.1.3 Prediction under uncertainty

	2.2 Safety Instrumented and Shutdown Systems
	2.2.1 Regulations and standards
	2.2.2 CANDU shutdown systems
	2.2.3 Time-to-trip and shutdown system response time
	2.2.4 Optimal alarms


	3 Prediction under Uncertainty for Linear-Time-Varying Systems
	3.1 State-space Modelling, Prediction, and Uncertainty
	3.2 Kalman-Filter-Based State Estimation
	3.2.1 The Kalman filter
	3.2.2 Related equations
	3.2.3 Initial conditions, convergence, model selection, and bumpless transfer

	3.3 Kalman-filter-based point-prediction
	3.4 Confidence and prediction intervals
	3.5 Kalman-filter-based measurement interval-prediction
	3.6 Noise covariances and uncertainty
	3.7 Monitoring for nonconvergence and divergence
	3.8 Summary

	4 Estimation of Disturbance Inputs for Prediction Error Compensation
	4.1 Least-Squares-based Estimation of Disturbance Inputs
	4.1.1 Estimation and estimation error compensation
	4.1.2 Prediction error compensation

	4.2 Recursive Least Squares Formulation of Disturbance Estimation and Prediction Error Compensation
	4.2.1 Disturbance to the measurement
	4.2.2 Disturbance to the state
	4.2.3 Disturbances to both the measurement and state
	4.2.4 Resetting the disturbance and RLS covariance
	4.2.5 Adaptive-limited-memory-filter-based noise covariance estimation

	4.3 Summary

	5 Predictive Shutdown and Assessment of Prediction Quality
	5.1 A Conventional Shutdown System Design
	5.2 Predictive Shutdown System Designs
	5.2.1 Point-PSDS: point-predictive shutdown system
	5.2.2 Interval-PSDS: interval-predictive shutdown system

	5.3 Prediction Quality Assessment
	5.3.1 Hypothesis testing
	5.3.1.1 Innovation bound or Z test
	5.3.1.2 Normalized innovations squared or chi-squared 2 test
	5.3.1.3 Innovation whiteness or autocovariance test

	5.3.2 Optimal alarms
	5.3.3 Optimal-PSDS: optimal predictive shutdown system

	5.4 Summary

	6 Experimental Setup
	6.1 Physical System
	6.2 The Scaled-Irving Model
	6.3 Closed-loop Control
	6.4 Operating Modes
	6.5 Postulated Initiating Event
	6.6 Shutdown Systems
	6.6.1 Predictive shutdown, the Kalman filter, and point-prediction
	6.6.2 Noise covariances, stochastic uncertainty, and the adaptive limited memory filter
	6.6.3 Disturbance inputs, deterministic uncertainty, and the recursive least squared filter
	6.6.4 Point-, interval- and optimal-predictive shutdown system designs

	6.7 Summary

	7 Results and Analysis
	7.1 Simulation Results
	7.1.1 Benchmark: Conventional shutdown
	7.1.2 PSDS Case 1: Reduced-order multi-model
	7.1.2.1 Case 1a: KF-based point-predictive shutdown
	7.1.2.2 Case 1b: KF-based interval-predictive shutdown without ALMF
	7.1.2.3 Case 1c: KF-based interval-predictive shutdown with ALMF
	7.1.2.4 Case 1d: KF-based optimal-predictive shutdown

	7.1.3 PSDS Case 2: Reduced-order multi-model with parameter error
	7.1.3.1 Case 2a: KF-based point-predictive shutdown
	7.1.3.2 Case 2b: KF/RLS-based point-predictive shutdown
	7.1.3.3 Case 2c: KF/RLS-based interval-predictive shutdown
	7.1.3.4 Case 2d: KF/RLS-based optimal-predictive shutdown

	7.1.4 Summary

	7.2 Experimental Results
	7.2.1 Benchmark: Conventional shutdown
	7.2.2 PSDS Case 1: Reduced-order multi-model with measured PIE
	7.2.2.1 Case 1a: KF/RLSy-based point-predictive shutdown
	7.2.2.2 Case 1b: KF/RLSy-based interval-predictive shutdown with ALMF
	7.2.2.3 Case 1c: KF/RLSy-based optimal-predictive shutdown

	7.2.3 PSDS Case 2: Reduced-order multi-model with unmeasured PIE
	7.2.3.1 Case 2a: KF/RLSy-based point-predictive shutdown
	7.2.3.2 Case 2b: KF/RLSy-based interval-predictive shutdown with ALMF
	7.2.3.3 Case 2c: KF/RLSy-based optimal-predictive shutdown

	7.2.4 Summary


	8 Conclusions and Recommendations
	8.1 Recommended future work

	Bibliography
	Appendices
	Curriculum Vitae

