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Abstract 

Speciation can occur when accumulated differences in mating behaviour force diverging species 

to remain reproductively isolated from one another. A key determinant of behavioural isolation is 

the evolution of female mating preferences that prevent interspecific males from mating. 

However, no individual genes involved in species-specific preferences of females have yet been 

identified. Using various genetic mapping techniques available for studying strains and species 

of Drosophila, I identify candidate genes involved in D. simulans female discrimination against 

D. melanogaster males. One candidate gene in particular, Katanin-60, was selected for further 

characterization. Katanin-60 is a gene encoding a microtubule severing protein that has been 

previously implicated in Drosophila behaviour. Transgenic rescue of Katanin-60 expression 

using the GAL4/UAS system revealed the potential involvement of specific neural lobes of the 

Mushroom bodies in interspecific discrimination. Further characterization of the behaviour 

through modifying male mating signals showed that the type-aversive cue females are 

discriminating against is found in male wing song. However, this was not true of all strains and 

species tested, indicating that many means of mate assessment have diversified within the genus. 

One other species, D. sechellia, was additionally mapped for their females’ discrimination 

against D. simulans males. Quantitative trait locus mapping identified two loci for interspecific 

preference that were compared to other maps of interspecific divergence between the two 

species. Together, these studies show how readily, and specifically, behaviour diverges between 

Drosophila groups. They also identify the first candidate genes for female interspecific 

preference, as well as validate a longstanding hypothesis that such genes should be found in 

regions of the genome where recombination is likely to be suppressed between diverging groups.      
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Chapter 1  

1 General Introduction 

1.1 Speciation 

Evolutionary processes that allow lineages to diverge are integral to the nature, diversity, and 

origins of species. The discovery of these evolutionary processes, and under what natural 

conditions they are enabled, has been a longstanding goal for the study of speciation. However, 

the lack of a clear-cut variation for taxonomic resolution among species has led to a debate 

among biologists known as the species problem (Queiroz and Donoghue 1988; Coyne and Orr 

2004). Thus, before any examination of the processes of speciation, it is necessary to define first 

what constitutes a species, and to do so in such a way that is biologically relevant to species 

formation.  

 

Many of the historical and contemporary definitions of a species use assorted forms of organic 

variation to separate one group of organisms from another similar group (i.e. Morphological 

Species Concept, Genetic Species Concept, Evolutionary Species Concept, etc). In contrast, 

Ernest Mayr’s biological species concept organizes species as “groups of interbreeding natural 

populations that are reproductively isolated from other such groups” (Mayr 1942). In Mayr’s 

definition, species can be recognized on the basis of incompatible characters that separate each 

population into distinct reproductive communities (Mayr 1942). Consequently, the evolutionary 

processes underlying the formation of incompatible characters are likely to be those processes 

that also underlie speciation (Mayr 1942; Coyne and Orr 2004). 

 

The geographic distributions of diverging populations are an important determinant of potential 

sexual interactions between those populations. Speciation through allopatry involves populations 

evolving independently of one another in discrete geographic locations (Mayr 1963). If contact 

were ever re-established between these populations, successful reproductive interactions would 

not occur because of the divergence accumulated while geographically isolated. Speciation also 

occurs in contexts that rely less on extrinsic (geographic) factors and more on intrinsic 

(biological) factors for isolation. These contexts include allopatry (including peripatry), which 
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allows for gene flow after an initial period of isolation, parapatric isolation, whereby continuous 

ranges of populations are isolated except for small zones of overlap, and finally, sympatric 

isolation, which occurs without any geographic isolation (Coyne and Orr 2004). Mechanistically, 

intrinsic barriers manifest in three general categories: barriers that act in hybrid offspring, 

rendering them sterile or inviable (post-zygotic isolation), barriers that adapt species to non-

overlapping ecological niches (ecological isolation), and barriers that preclude successful 

fertilization from occurring (pre-zygotic isolation) in the first place (Mayr 1963; Coyne and Orr 

2004). If evolutionary divergence occurs in traits that would establish reproductive barriers, 

speciation is likely to proceed. Of special interest are candidate traits, called ‘key features,’ that 

are predicted to promote diversification and species richness among clades (Coyne and Orr 

2004). These traits are theorized to include sexual dimorphism, size, host plant for 

phytophagy/pollination, dispersal, and traits associated with sexual selection (Coyne and Orr 

2004). 

1.2 Reproductive isolation barriers 

Post-zygotic isolation refers to reproductive barriers that prevent fertile/viable offspring from 

developing when hybridization occurs (Mayr 1963). To date, several genes involved in post-

zygotic isolation have been identified. Incompatible alleles of these genes underlie post-zygotic 

isolation through a variety of mechanisms including: epistatic interactions, selfish genetic 

conflicts, and genomic rearrangements (Orr and Presgraves 2000). For example, hybrid 

inviability occurs between the fruit fly species Drosophila melanogaster and D. simulans as a 

result of divergence in the gene hybrid male rescue (Hmr) (Barbash et al. 2003). Similarly, the 

gene PRDM9 causes hybrid sterility between the mouse species Mus musculus musculus and M. 

musculus dominicus (Mihola et al. 2008). The alleles of both Hmr and PRDM9 likely represent 

the mediation of a genomic conflict in one species of the pair, but not in the other, and now 

interact epistatically in hybrids as a result (Barbash et al. 2003; Mohole et al. 2008). In the 

sterility of D. mauritiana/D. simulans hybrids, the genomic region too much yin (tmy) suppresses 

a selfish genetic element of one species that is not present in the other (Tao et al. 2001). Finally, 

the transposition of JYalpha from the fourth chromosome to the third chromosome in D. 

simulans underlies hybrid dysfunction in later-generation hybrids of D. simulans and D. 

melanogaster (Masly et al. 2006). Given enough time for divergence, post-zygotic isolation is 
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expected among allopatric populations. However, if contact is resumed between incipient 

species, partial post-zygotic isolation may be sufficient to drive selection against hybridization. 

Such a process, referred to as reinforcement, ensures that females discriminate against 

interspecific males to prevent the formation of sterile or inviable hybrids (Dobzhansky 1940). 

Reinforcement may also occur if viable hybrids are produced, but maladapted to their 

environment (Schluter 1995). As a result, populations that adapt to niches that are discrete in 

some way are expected to remain as distinct species in ecological isolation from one another 

(Mayr 1947; Schluter 1995).  

 

Ecological isolation is apparent among species that specialize in the use of unique habitats, hosts, 

and food sources (Schluter 1995; Lavistas-Llanos 2014). For example, D. sechellia has adapted 

to feeding on the toxic plant Morinda citrifolia (Legal et al. 1992; Farine et al. 1996), due to a 

mutation in the gene catsup (Lavistas-Llanos et al. 2014). M. citrifolia contains I-DOPA, which, 

in excess, complements the effects of the catsup mutation. The bearers of this allele used M. 

citrifolia as a host plant (which was avoided by non-bearers), creating a unique situation for the 

D. simulans-like ancestor of D. sechellia to exploit (Lavistas-Llanos et al. 2014). Another form 

of ecological isolation, allochronic isolation, occurs when asynchronicity in space utilization 

occurs between two different groups (Ording 2010). Two races of the pine processionary moth, 

Thaumetopea pityocampa, have alternative larval seasons (winter and summer). As a result, 

neither race is capable of reproductively interacting with one another (Satos 2007).  

 

Pre-zygotic isolation refers to reproductive barriers that prevent successful mating from 

occurring. In the instance of mechanical isolation, anatomical divergence renders heterospecific 

mating impossible. For example, in millipedes of the Parafontaria complex, differences in body 

and genital size prevents mating from occurring (Soto and Tanabe 2010). Pre-zygotic post-

mating (PZPM) isolation refers to incompatible interactions between the reproductive tissues, or 

gametes, of males and females. The result of PZPM is that fertilization cannot occur. Among D. 

virilis, D. americana, and D. novamexicana, the mortality of gametes from one species within 

the reproductive tract of another species is high (Patterson and Stone 1952). In another 

Drosophila species pair, D. santomea and D. yakuba, PZPM manifests through selective 

fertilization of eggs with only conspecific sperm (Matute 2010). Another form of prezygotic 
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isolation is behavioural isolation, which primarily relies on divergence in traits related to mating 

behaviours. Mating requires the co-ordination of sexual communication between sexes. If 

divergence occurs in a species’ sexual signals, or in the perception of sexual signals, then 

rejection of heterospecific courtship occurs (West-Eberhard 1983). Examples of behavioural 

isolation will be covered in Chapter 1.3. 

 

Comparisons of reproductive isolation mechanisms among dozens of species pairs indicate that 

pre-zygotic mechanisms generally evolve earlier than post-zygotic mechanisms (Coyne and Orr 

1989). Behavioural isolation among sympatric species pairs accounts for much of this pattern 

(Coyne and Orr 1997). In general, mating behaviours are among the quickest traits to diversif, as 

they are often highly responsive to selection (Stelkens and Seehausen 2009; Gonzalez-Voyer 

2011). Specifically, traits with sex-biased expression are correlated with faster evolution 

(Ellegren and Pasch 2009), and elevated species richness (see review by Danley et al. 2001; 

Proschel et al. 2006). The distinction of whether a reproductive barrier evolves early or not is 

important, as reproductive barriers that evolve later are redundant. For this reason, mechanisms 

of pre-zygotic isolation are thought to be especially important to the process of speciation. 

1.3 Behavioural isolation 

The expression, reception, and perception of sexual signals must be concordant between the 

sexes for successful mating to occur. Among most animal species, males bear signal traits on the 

basis of which females accept or reject copulation (see review by Ender 1992).  For this reason, 

the divergence of female mating preferences between species is thought to be a key determinant 

in the development of assortative mating, and ultimately, species isolation (Mayr 1963). 

Numerous examples of species pairs across a diverse selection of taxa demonstrate behavioural 

incompatibilities that contribute to species isolation (Etges 2002). 

 

Females of the butterfly Pieris occidentalis use visual cues (wing colouration) to reject mating 

attempts by males of P. protodice (Wiernasz and Kingsolver 1992). Darkening the wings of P. 

protodice mitigates P. occidentalis rejection, as the type-aversive cue against which females are 

visually discriminating against is masked (Wiernasz and Kingsolver 1992). The sympatric sea 

snakes, Laticauda colubrina and L. frontalis, maintain species boundaries on the basis of 
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different lipid-based contact pheromones (Shine et al. 2002). Conversely, sympatric races of the 

European corn borer, Ostrinia nubialis, express identical pheromones, but differ in the ratio of 

cis- to trans- isomers used (Kochansky et al. 1975). While the cases described above 

demonstrate that a single cue can be sufficient for species isolation, behavioural isolation is often 

mediated by multiple sensory modalities. For example, female Passerina cyanea discriminate 

against P. amoena males using both visual cues (plumage) and auditory cues (song) (Baker and 

Baker 1990).  

 

The diversity of mating isolation mechanisms becomes especially apparent in clades for which 

many species pairs have been studied, such as Drosophila, birds, and cichlid fish. For example, 

among cichlids, recent rounds of adaptive radiation in the last 700,000 years have led to the 

proliferation of nearly 400 species (Danley and Kocher 2001).  From the meta-analytics of 

mating behaviour, morphology, and genomic data, a working model for the succession of 

cladogenic events has been developed. The model includes an initial bifurcation of lineages 

along two major habitats, trophic specialization within each habitat, and then a round of 

divergent sexual selection for male nuptial colours (Danley and Kocher 2001).  

 

The above example of cichlid speciation illustrates how both natural and sexual selection can 

contribute to the evolution of behavioural isolation. Natural selection operated directly on the 

visual acuity of cichlids living in different gradations of colour-filtration in Lake Victoria 

(Seehausen et al. 2008). Vision is also used by female cichlids during mating to assess male 

nuptial colours. Since female preference for vivid colouration benefits her in terms of increased 

survival and successful mate acquisition, selection maintains the preference. As new variants for 

visual acuity arise within a population, sub-populations form on the basis of each new variant for 

preference and signal. If each sub-population exhibits assortative mating and high mating 

success, sexual selection will cause both the preference and its corresponding signal to propagate 

within each sub-population. As sexual selection continues to act on the signals and on the 

preference for each signal, between-population mating will decrease, leading to behavioural 

isolation (West-Eberhard 1983). Several models have been proposed to describe how different 

dynamics of sexual selection may drive evolutionary diversification in mating (e.g. runaway, 

good genes, chase-away). It is important to note that diversity in mating preference often arises 



 

6 

 

 

due to the benefit provided to the offspring by the preference. In other words, the preference for 

a particular signal may result in the production of offspring that are more fit. Clearly, many 

evolutionary mechanisms cause mating behaviour to diversify, leading to speciation. The 

following section will cover some of the incompatible mating behaviours that have arisen among 

various species pairs.  

1.4 Diversification of mating behaviour 

A mating communication system consists of a signal, usually by a male, and the perception of 

that signal, usually by a female. If populations evolve variable communication systems for 

mating, and those systems diverge, heterospecific mating between populations decreases. 

However, for communication systems to diverge, the match between variant signals and variant 

preferences for those signals must be complementary. For this reason, sexually selected mating 

traits are expected to be under stabilizing selection (Coyne and Orr 2004). Evolutionary forces 

that would diversify signals and preferences must therefore overcome several challenges. These 

challenges include an initial need for trait variation that does not compromise fitness and can 

later be co-opted for mate selection. There must also be corresponding evolution for matching 

variants of the mating trait (signal/preference) in the opposite sex. Finally, the signal and 

preference are likely to be governed by different traits that are subject to different restrictions 

and pressures for diversification. 

 

The evolution of assortative mating behaviour is expected to bypass the above challenges when 

certain factors are present. One factor is the genomic location of the genes involved in 

influencing behaviour. If genes controlling signal and preference are near one another, alleles of 

either gene will be inherited as a single linked unit. Since these units are rarely broken up by 

recombination, lineage-specific diversity can persist amidst gene flow (McGaugh and Noor 

2012). In European crows, two species behaviourally assort on the basis of a single 2 Mb region. 

Notably, the region harbours a high density of fixed differences for a pigmentation gene and a 

gene involved with visual perception (Poelstra et al. 2014). Among species of the butterfly 

Heliconius, the loci encoding a specific wing colour, and the preference for that wing colour, 

map to a region that is only 5.5 cM (Kronforst et al. 2006). Hawaiian crickets are another such 

example where QTL (quantitative trait loci) influencing male courtship song and female 
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preference for that particular song co-localize. In Laupala kohalensis the region is 1cM, while in 

L. paranigra it is 4cM (Shaw and Lesnick 2009). The persistence of genomic regions that 

harbour both signal and preference loci may also occur if those regions are trapped near areas of 

low recombination such as centromeres, telomeres, within inversions, or outside the edges of 

inversions (Noor et al. 2007; Stevison et al. 2011). The extended linkage disequilibrium of these 

regions allows broader spans of genome to remain in association with one another. 

Consequently, novel behavioural variants may persist simply out of serendipitous placement 

within the genome (Laturney and Moehring 2012). 

 

New signals and preferences can evolve when variation accumulates in mating traits. Novel 

expressions are expected to be initially irrelevant during mating, evolving neutrally until salient 

variation in the reciprocal signal/perception is acquired. In the parasitoid wasp Nasonia 

vitripennis, an ancestral gene duplication event created 4 tandem repeats of a gene involved in 

pheromone synthesis (Niehuis et al. 2013). One of these repeats became a neo-functional paralog 

that produces new variants of a male pheromone for which females now exhibit a preference 

(Niehuis et al. 2013). The new pheromone is imperceptible to females of the sister species 

Nasonia giralti, which suggests that the new pheromone would have been initially unutilized in 

the ancestral species to N. vitripennis. As a result, the new pheromone would have become an 

arousal cue in N. vitripennis females only after they later evolved the perceptual capacity to 

detect it (Niehuis et al. 2013).  

 

Conversely, alternative perceptual capacities may evolve first, and subsequent evolution in the 

properties of signal traits will later fall within the new range of salience. In the process of 

sensory drive bias, signals between senders and receivers evolve to minimize signal degradation 

and maximize contrast with the environment (Vargas-Salinas and Amezquita 2013). One 

example is the evolution of visual preferences among female cichlids (Seehausen et al. 2008). 

Subpopulations of cichlids bear different alleles for the LWS opsin gene which each perform 

better at light absorption in different habitats. Male nuptial colours in each subpopulation then 

diversified to match the specific colour sensitivities of females (Seehausen et al. 2008). 

Relatedly, the perceptual range of a species may evolve alternative gradations for salience within 

an already existent signal range. One example of such evolution occurred in electric fish of the 
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family Mormyridae, which use species-specific electric signals to communicate. Mormyridae 

underwent a species radiation event concurrent with adaptations to brain areas involved in the 

refinement of communication signals (Carlson 2011). 

 

Beyond adaptation, behavioural isolation may evolve as a result of genetic drift in founder 

populations (Templeton 1980). In this model, fluctuations in allele frequency for a small 

population are expected to result in rapid losses of genetic variation and fixation of alleles 

(Templeton 1980). Because inbreeding is prevalent in this scenario, alleles that promote overall 

genomic stability are favoured and behavioural traits may change without regard to their 

extrinisic value (Templeton 1980; Ahearn and Templeton 1989). However, experimental 

attempts to artificially induce evolution under founder conditions seldom yield incompatible 

phenotypes that result in behavioural isolation (Rundel et al. 1989).  

 

The above examples illustrate some of the means by which type-specific mating preferences may 

evolve. In the context of speciation, it is also important to question how these type-specific 

preferences may play out in an interspecific mating context. Are females insufficiently aroused 

or are they excessively aggravated by interspecific males? In either case, rejection is expected, 

but the strength of rejection and the evolutionary pressures under which it arose are expected to 

differ (Boake 1997). For example, in the case of signal drive bias among Lake Victoria cichlids, 

the type-specific colouration of males is preferentially selected for by conspecfic females 

(Seehausen et al. 2008). In contrast, behavioural isolation between D. pseudoobscura and D. 

persimilis specific aversion behaviour has evolved to prevent maladaptive hybridizations from 

occurring (Koopman 1949). The former is likely to be a weaker form of mating isolation, as 

cases exist where disruptions to longstanding ecological boundaries lead to the collapse of 

former ‘species’ into intermediated lineages known as hybrid swarms (e.g. Hasselman et al. 

2014). The latter is presumed to be a stronger barrier to mating as lineage distinctions are 

‘reinforced’ by active discrimination against interspecific traits (Coyne and Orr 2004). Since 

interspecific rejection may harbour elements of both type-specific aversion and arousal, it is 

essential to understand the phenotypic underpinnings of female preferences. 
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1.5 Drosophila species as a speciation model  

The species of the genus Drosophila are saprophagic feeders, from which they received their 

common and Latin names, fruit fly and “dew-loving”, respectively (Meigen et al., 1869). 

Beginning with the work of T.H. Morgan, D. melanogaster has been an important cornerstone of 

genetic research for over a century. D. melanogaster is now also an important model organism 

for the study of development and behaviour. Several of the species in the melanogaster species 

subgroup have already been studied both independently and in relation to D. melanogaster. The 

extensive legacy of research and genetic tools already acquired in this subgroup allows 

opportunities for in-depth study of speciation that would be out of each reach among other 

subgroups of the Sophorphora subgenus.  

 

In the Drosophila life cycle (Spindler-Barth 2012), females lay fertilized eggs in decaying 

organic matter, where embryos develop into larvae. Larvae feed and undergo three instar 

transitions before undergoing pupation. After several days, adults emerge, becoming sexually 

active within a few hours. Developmental time, from embryo to sexually mature adult, can take 

10-16 days, depending on environmental conditions and species- or strain-specific traits. 

Females develop faster than males by approximately 8-12 hours and are usually larger in size 

(Miller and Demerec 1950). Drosophila husbandry is rapid and easy to perform within a 

laboratory for many species within the genus. Depending on the species of study, a number of 

sexually dimorphic characters differ between Drosophila males and females including the 

biochemical composition of cuticular hydrocarbons (CHC) that serve as pheromones during 

courtship (Pechine et al. 1985), the tibial bristles (aka sex combs) on male forelegs that grip 

females during mating (Carson and Bryant 1979), mating behaviour (Hall 1994), head 

morphology (Boake et al. 1997), and abdominal pigmentation (Kopp et al. 2000). Many of these 

dimorphisms have a role in courtship that will be described below in chapter 1.6. 

 

A number of tools are available for genetic mapping and characterization in D. melanogaster 

(and increasingly in other Drosophila species). To study the effects of recessive alleles, 

deficiency mapping stocks have been developed with coverage for 98.4% of the euchromatic 

genome (Cook 2012). Deficiency stocks contain a single deletion at a known cytological location 

that partially overlaps in location with the deletions of other deficiency stocks. Crossing 



 

10 

 

 

deficiency stocks to stocks bearing the recessive element of interest will have the effects of the 

recessive allele unmasked in their progeny. By systematically crossing different deficiency 

stocks, various genomic regions can be ruled in or out for having an effect on the trait of interest 

(Cook 2012). If finer resolution of a locus of interest is required, other tools, such as point 

disruption lines generated by the Drosophila Gene Disruption Project, are available (Bellen et al. 

2004).  

 

Point disruptions are often created using transposable element (TE) insertions and, to date, over 

9400 Drosophila genes are tagged with TEs such as P, Minos, and Piggybac. Additional tools 

have been engineered into TEs and incorporated into various Drosophila lines for increased 

utility (Bellen et al. 2004; Bellen et al. 2011). Nearly 70% of the annotated protein coding genes 

in D. melanogaster have been tagged with TEs. Furthermore, many of the genes tagged have 

multiple insertion sites within the Drosophila genome (Bellen et al. 2011). TEs inserted into 

different sites of a gene are useful, as sensitivity of gene function to TE placement varies 

(Spradling et al. 1999). For example, in the gene smD3, P-element insertion into the promoter 

region yields an aberrant neuronal differentiation phenotype, whereas insertion into the 5’ UTR 

of the gene yields lethality (Schenkel 2002). Thus, the role of a putative candidate gene can be 

tested through the use of multiple P-element disruptions of the gene. Further confirmation can be 

procured with the use of transgenics for the gene. One of the most useful transgenic tools for the 

study of gene function in Drosophila has been the Gal4/UAS system. The two components of the 

system are the Gal4 gene and a UAS (Upstream Activating Sequence) element linked to a gene 

of interest.  The yeast transcription factor gene Gal4 is inserted into the D. melanogaster 

genome. If the Gal4 is inserted near a promoter or enhancer, it will produce the GAL4 protein in 

the tissue-specific pattern that would normally be produced by that enhancer or promoter. GAL4 

binds the UAS, which subsequently activates transcription of the directly-adjoining candidate 

gene, enabling tissue-specific expression of the gene of interest (Brand and Perrimon 1993). Of 

note, many of the TE insertion lines are also tagged with UAS elements. 

 

In the 1,579 or more Drosophila species known to exist (Brake 2008), many females display 

some form of discriminatory mating behaviour against interspecific males (Coyne 1989). If, as 

mentioned above, behavioural isolation is as widespread and readily evolved as predicted, then 
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there should be many instances of varying degrees of isolation among species of the genus. 

Examples of each are discussed below in section 1.6.     

1.6 Courtship in Drosophila species 

During courtship, Drosophila males perform a fixed sequence of moves, which includes tapping, 

circling, singing, licking and attempts at mounting the female (Hall 1994). Females appraise the 

visual, chemical, tactile and auditory signals received during courtship, and accept or reject 

mating on the basis of a species-specific composition of these cues (Billeter et al. 2009; Boake et 

al. 1997; Ewing and Bennet-Clark 1968; Hoikkala and Kaneshiro 1993).  

1.6.1 Visual 

Males rely on vision for at least two components of Drosophila mating rituals, namely 

orientation and chasing (Cook 1979). Visionless Drosophila males are capable of mating (Mei-

ling and Griffith 1997), but take longer to court (Markow 1975), and are far less successful when 

compared to males with vision (Connolly 1969). The reduced mating occurs when males fail to 

follow a moving female (Tompkins 1982). Additionally, some sexually selected visual cues from 

males enhance female receptivity. Wing interference patterns from males affect the hue and 

saturation of colours and are a known mating signal in many transparently winged insects 

(Fuyama 1979). Females of D. heteroneura select for males on the basis of their ‘hammer-head’ 

width, which is a D. heteronurea-specific male elaboration (Boake et al. 1997). D. heteronurea 

females will still mate with males that do not possess the elaboration (i.e. interspecific males), 

but do so at much lower levels (Boake et al. 1997). 

1.6.2 Auditory 

 The songs of Drosophila males during courtship are made with an outstretched wing. The 

degree to which wing song is important for mating varies on a species-by-species basis. 

Generally, wing song is an important component of courtship that enhances female mating when 

present and correctly executed during male Drosophila courtship rituals. Drosophila wing song 

often bears strain and species-specific information, which makes it a particularly important 

candidate for species recognition and discrimination (Blyth 2008; Gleason 2005;Tomaru 2004).   
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Wing songs have several characteristics organized among two domains of output: pulse song 

(rapid bursts) and sine song (extended bursts) (Kyriacou and Hall 1982). Auditory-ablated 

female mutants show reduced receptivity, as do females that are presented with no song or an 

aberrant song. In some instances (e.g. D. sechellia females x D. simulans males (Tomaru 2004) 

and D. ananasae females x D. pallidosa males (Doi 2001)) even greater rejection behaviour 

occurs for females presented with the wrong species song compared to no song. Interestingly, in 

the latter species pair, D. pallidosa females use their conspecific song to facilitate normal 

copulation, while D. ananassae females have no use for conspecific wing song in normal mating 

(Yamada et al. 2002). Consequently, wing song is likely utilized for a mixture of arousal and 

aversion preferences depending on the unique evolutionary history of each species. In some 

instances, specific components of song preference of the species are known (Tomaru 2004). In 

the melanogaster group, the interpulse interval (amount of time between pulses) appears to be an 

important conveyor of species-specific information (Ewing and Bennet-Clark 1968). In D. virilis, 

D. montana, and D. lummei, interspecific discrimination appears to be mediated by the properties 

of the pulse itself. (Hoikkala and Lumme 1987; Ritchie 1998). Wing song may also be a within-

species signifier of male genetic quality as has been experimentally demonstrated in D. montana. 

Males with a specific song were preferred by females, and also produced progeny with a higher 

survival rate (Hoikkala et al. 1998).  

1.6.3 Chemical 

Drosophila cuticular hydrocarbons (CHC) are long chain fatty acids produced by specialized 

cells called oenocytes. CHCs are anti-desiccation compounds that also function as pheromonal 

compounds (Jallon and David 1987). CHC are used in both intra- and intersexual communication 

(Jallon and David 1987). Drosophila species use a species-specific blend of pheromones 

(sometimes strain-specific) that can be sexually monomorphic or dimorphic. For example, D. 

melanogaster are sexually dimorphic for CHCs with the females expressing 7,11-heptacosadiene 

(7,11-HD) as their most abundant CHC, while, male D. melanogaster (and both sexes of D. 

simulans) bear 7-tricosene (7-T) as their most abundant CHC (Veltsos et al. 2012). Genetically, 

the major determinant of a monomorphic or dimorphic pheromone profile depends, in part, on 

species-specific expression levels of the gene desat-F (Shirangi et al. 2009). Although they are 
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genetically determined, CHC blends are also known to vary based on factors related to climate, 

age and diet (Rouhalt et al. 2004). 

 

In addition to interspecific variation, CHC blends vary on an intraspecific level as well. For 

example, D. simulans in West Africa utilize 7-pentacosene as their dominant CHC instead of 7-T 

(Bontonou et al. 2012). Desiccation resistance does not vary among D. simulans strains with 

different CHC blends, which suggests sexual selection may play a stronger role than natural 

selection in CHC diversification (Bontonou et al. 2012). CHC variation matters for both sex and 

species identification. In D. melanogaster, males lacking oenocytes (CHC producing cells) were 

courted by D. melanogaster males as if they were females (Billeter et al. 2009). It was only when 

coated with the primary male pheromone, 7-T, that normal perception of males as males was 

restored (Billeter et al. 2009). Similarly, oenocyte-less D. melanogaster females were hyper-

attractive to D. simulans males until they were coated with the normal primary female D. 

melanogaster pheromone 7,11-HD (Billeter et al. 2009).  

1.6.4 Ritual interactions 

Complex actions and reactions occur between males and females during the events of 

Drosophila courtship. For example, D. melanogaster males are capable of issuing different songs 

and will dynamically switch between modes based on female reactions (Coen et al. 2014). 

Consequently, if the duration or protocol of an event is altered between species, then behavioural 

isolation may result. During D. silvestris courtship, females transition from one step to another 

much more quickly than do D. plantibia females. As a result, D. silvestris males fail to mate with 

D. plantibia females, having improperly navigated the species-specific lag in the female’s co-

ordination of mating (Hoikkala and Kaneshiro 1993).  

1.7 Behavioural isolation of Drosophila species 

1.7.1 Behavioural genes 

Loci that influence within-species female receptivity to courtship, such as spinster, 

dissatisfaction, and chaste, have been found in mutation screens of D. melanogaster (Suzuki et 

al. 1997; Finley et al. 1997; Juni and Yamamoto 2009). It is unclear, however, whether these 
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genes possess naturally occurring behavioural variants necessary for evolutionary forces to act 

upon. The spinster mutants, as an example, also show neurodegenerative phenotypes, which may 

indicate the reduced mating receptivity is an epistatic by-product of spinster’s disrupted function 

(Suzuki et al. 1997). There are known naturally-occurring behavioural variants for male mating 

success. For example, the circadian rhythm gene period is involved in aspects of wing rhythm 

during courtship displays. Successful mating is enhanced when males present songs generated 

from the correct period allele to conspecific females. (Kyriacou 2002). Other alleles found to 

influence behaviour in natural populations are the rover/sitter variants of the foraging gene, 

which enable alternative locomotive behaviours (de Belle and Sokolowski 1987; Osborne 1997). 

Though not implicated in a speciation context, traits involved with dispersal are among those 

‘key factors’ that correlate with species richness among clades (Coyne and Orr 2004). 

 

Sexually dimorphic traits are often important modifiers of mating outcomes. As a result, when 

genes underlying sexual dimorphisms diversify, behavioural divergence may occur. The sex 

determination pathway of Drosophila includes a suite of genes that are differentially spliced 

during development to generate normal adult behaviour for males and females (Demir and 

Dickson 2005). Among these genes of the sex determination pathway are doublesex (dsx) and 

fruitless (fru), which are the major upstream determinants of male and female sex-specific 

behaviour. dsx is required for the genetic specification of neuronal cell lines involved in female 

receptivity (Zhou et al. 2014). Expression of dsx is necessary for normal female receptivity 

responses to male wing song and pheromones (Zhou et al. 2014). The gene Abdominal-B (Abd-

B), is a downstream target of dsx regulation and is an important mediator of mating receptivity 

among virgin females (Bussell et al. 2014). The male-specific isoform of fru is the major 

determinant of male behaviour and anatomy (Demir and Dickson 2005). Males without fru 

expression display aberrant or missing male courtship behaviour and anatomy. Females that are 

transgenically modified to express FRU protein (the female version of the transcript is not 

translated) display male-like courtship and anatomy (Demir and Dickson 2005). Females with 

synaptically silenced fru-expressing neurons display reduced courtship and aberrant patterns of 

post-mating behaviour (Kvitsiani and Dickson 2006). Within the genus Drosphila, the utility of 

fru varies based on each species. For example, while female fru is not translated in D. 

melanogaster females, in D. suzukii females, fru transcripts are translated in the lamina and 
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ventral ganglia of the brain (Usui-Aoki et al. 2005). Thus species-specific differences in sexually 

dimorphic gene function may lead to behavioural divergence if populations differentially co-opt, 

suppress, or enhance the action of these traits in mating behaviour.  

1.7.2 Speciation in Drosophila species  

The genus Drosophila contains numerous instances of species pairs that are behaviourally 

isolated from one another. In Western North America, females of Drosophila pseudoobscura 

populations living sympatrically with Drosophila persimilis discriminate against males of D. 

persimilis. However, females of D. pseudoobscua living allopatrically with D. persimilis do not 

display similar levels of behavioural isolation (Noor 1995). Quantitative trait loci (QTL) 

mapping of introgressions from the sympatric D. pseudoobscura strain into the allopatric strain’s 

background identified two loci associated with discrimination against D. persimilis. 

Interestingly, when one of the two loci identified, Coy2, was introgressed into a D. persimilis 

population, discrimination from D. persimilis females towards D. pseudoobscura males 

increased as well (Ortiz-Barrientos et al. 2004). The ‘One-allele’ hypothesis states that a single 

allele may enhance interspecific discrimination capabilities without affecting the normal within 

species mating dynamics. In addition to the example describing the 'One-allele' hypothesis, there 

are other examples, within Drosophila that may represent putative instances of incipient 

isolation. Within intraspecific populations of D. melanogaster, a Zimbabwe strain discriminates 

against a cosmopolitan strain of D. melanogaster on the basis of pheromone differences (Ting et 

al. 2001). Among allopatric populations of D. montana, mechanisms of assortative mating may 

be based on pheromonal and acoustic mating cues (Jenning et al. 2011). 

 

Of the main groups of Drosophila used for behavioural isolation research, most work has been 

done with subsets of the melanogaster group, and in particular the simulans complex. Within the 

simulans complex, female interspecific discrimination developed in two closely related species 

against a common third species. D. mauritiana and D. sechellia females display a mating 

preference against D. simulans males, as well as the other males of the simulans complex. In 

contrast, D. simulans females accept mating from the males of D. mauritiana and D. sechellia. 

Of the three sibling species, it is unclear which two represent the sister species pair. All three 

species likely diverged in allopatry from a D. simulans-like ancestor nearly 242,000 years ago 
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(Garrigan 2012). The asymmetric network of mating preferences among these three species has 

led to preeminent usage of this complex as a behavioural isolation model in Drosophila (Coyne 

1989; Coyne and Orr 2004). Since fertile female hybrids can be produced by crossing species in 

the non-choosy direction and the hybrid female’s behaviour resembles that of their non-choosy 

mother, further backcrosses can be done to make regions of the genome homozygous for one 

species’ alleles. In this way, contributions of different genomic regions to species-specific 

behaviour can be evaluated. 

 

To date, multiple species pairings have been genetically mapped for genomic regions involved in 

female interspecific preference (Coyne 1992; Coyne et al. 1994; McNiven and Moehring 2013; 

Moehring et al. 2004; Chu et al. 2013; McNabney 2012). Most of the loci identified, however, do 

not map to identical locations. As a result, no single combination of traits and genes are likely to 

underlie any general mechanism of speciation in Drosophila. Instead, the genetic underpinnings 

of each form of isolation appear to map to a number of different loci. Therefore, multiple traits 

(or at least architectures involved in shaping their expression) may be poised to form and 

maintain discrete lineages according to their unique evolutionary circumstances. 

 

Though the simulans complex of Drosophila is an interesting case of relatively recent speciation, 

the greater genus Drosophila contains not only more species with similar instances of 

asymmetrical behavioural isolation, but a broader range of genetic tools developed specifically 

within D. melanogaster, a species outside of the simulans complex. Additionally, over a dozen 

Drosophila species genomes have been sequenced, allowing for comparisons of interspecific 

gene divergence. D. melanogaster and D. simulans diverged from a common ancestor 

approximately 5.4 mya (Tamura 2004) in the tropical region of central Africa (Lachaise 1988). 

Since then, both species have spread with humans to a near global distribution (Lachaise 1988). 

Though both species are saprophagic feeders, possessing nearly identical morphologies and life 

histories, D. simulans differs from D. melanogaster in several ways, including lowered 

environmental temperature optima, behavioural avoidance of direct human commensalism, 

cuticular hydrocarbon profile (used by males as pheromones), male genital structure, male wing 

song properties (used in courtship) (reviewed in Capy and Gibert 2004), several fixed 

chromosome inversions, and substantially less transposable element invasion (Clark et al. 2007). 
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Crosses between D. melanogaster females and D. simulans males yield inviable hybrid males 

and viable, yet infertile, hybrid females (Robertson 1988). D. simulans females do not accept 

copulation from D. melanogaster males, whereas D. melanogaster females and F1 interspecies 

female hybrids will accept mating from both D. simulans and D. melanogaster males. For 

reasons that are unclear, the dominance of non-choosiness over choosiness among hybrids 

appears to be a general pattern of continental Drosophila species where such mating 

asymmetries exist (Yohshimura 1997).  

 

Despite the apparent importance that behavioural isolation plays in maintaining species as 

discrete units, no known genes account for how female interspecific preference arises. However, 

the genetics underlying isolation are not totally unknown. It is clear from previous studies using 

chromosomal substitutions in D. melanogaster, that genomic elements localizing to the third 

chromosome bear the largest effects on incipient discrimination (Ting et al. 2001). A broad-scale 

deficiency map of D. simulans discrimination against D. melanogaster found five regions on the 

right arm of the third chromosome (3R) that are likely to be involved in female interspecific 

discrimination (Laturney and Moehring 2012). Additionally, mapping data from the behavioural 

isolation of D. mauritiana to D. simulans, suggests that the right arm of the third chromosome 

(3R) may also harbour important loci (McNiven and Moehring 2013). The first QTL map for 

discrimination against D. simulans by D. mauritiana (Moehring et al. 2004) also yielded other 

loci (two on the X, two on the second, three on the third), which, in part, overlap with loci found 

from another QTL map identifying isolation between D. santomea and D. yakuba (Moehring et 

al. 2006). Alternatively, QTL maps have also implicated a strong role for the X chromosome 

with one and two loci identified in the isolation of D. mauritiana to D. sechellia and D. simulans 

to D. sechellia, respectively (McNabney 2012; Chu et al. 2013). In addition to interspecific 

mating preference, there are maps for divergence in behavioural traits that are known to be 

involved in species differences. The genetic analysis of pheromonal differences contributing to 

sexual isolation between D. melanogaster and D. simulans found that at least 4 loci seem to be 

involved, with the strongest effects localizing to 3R (Coyne 1996). 41% of the known gene 

effects contributing to variation in Drosophila wing song, an important component of 

Drosophila courtship, are found on 3R (Gleason 2005). The balance of evidence thus points to 
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3R as the most likely area to find a gene involved in female interspecific preference amongst 

melanogaster group Drosophila species.  

1.8 Overview of dissertation 

In this dissertation I map and characterize the genetics of behavioural isolation among 

Drosophila species pairs. My primary goals were 1) to identify regions/genes involved in 

behavioural isolation between various Drosophila species belonging to the melanogaster group, 

2) to identify the neuro-anatomical and phenotypic composition of the traits involved in female 

discrimination processes, and 3) to compare sequence and behavioural divergence in these traits 

to establish putative models of behavioural diversification leading to species isolation. In 

Chapter 2 I use quantitative trait locus (QTL) mapping to identify a region of the D. sechellia 

genome that is significantly associated with female D. sechellia discrimination against D. 

simulans males. In Chapter 3 I use deficiency and TE disruption mapping to identify specific 

genes involved in the isolation of D. simulans females against D. melanogaster males. In 

Chapter 4 I check for the presence/absence of roles of these genes in mediating behavioural 

isolation among other strains and species of Drosophila. I also test the role of one of these genes, 

Katanin-60, in the sensory modalities typically associated with interspecific discrimination in 

Drosophila. In Chapter 4 I use GAL4/UAS lines with tissues-specific drivers for the mushroom 

bodies to ascertain which subsets of neuronal bodies are associated with mediating interspecific 

mating receptivity. In Chapter 5 I combine the results from the previous chapters into an 

integrated model that speculates on some of the genetic, developmental and phenotypic 

characterists of behavioural isolation in Drosophila. I additionally discuss the continued work 

required to complete these models, as well as some of the new hypotheses generated for 

speciation research.  
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Chapter 2  

2 Genetic mapping for behavioural isolation between D. 
sechellia and D. simulans 

 

Species can be prevented from mating with one another when incompatibilities accumulate in 

behaviours necessary for successful mating. These incompatibilities are likely to occur when the 

mating preferences of females diverge. Behavioural isolation between Drosophila sechellia and 

D. simulans is maintained, in part, by female D. sechellia discrimination against D. simulans 

males during courtship. The genetic regions underlying differences between courtship traits in 

the two species (pheromone and wingsong) have been identified. Whether these regions control 

for traits involved with female discrimination against interspecific differences is unknown. Here, 

I used QTL mapping to identify two regions involved in female D. sechellia rejection of D. 

simulans males during courtship. The QTL centered on 46B co-localized with genes involved in 

auditory and mating receptivity behaviour. The QTL centered on 74B-C is in a region that has 

been previously implicated in pheromone divergence between the two species. Neither of these 

QTL matched regions previously identified in conspecific mate preference, suggesting that genes 

for aversion to heterospecific mating are not the same as those necessary for attraction in 

conspecific mating. Though there were differences in the duration of certain courtship features 

between the two species, none of these differences appear to be derived from, or of consequence 

to, the behavioural isolation of these two species.  

 

2.1 Introduction 

The females of many species discriminate against heterospecific males during mating, which can 

prevent divergent lineages from reproductively interacting with one another (Mayr 1942). For 

this reason, the evolutionary processes influencing female mating preferences are of special 

interest in our understanding of speciation (Coyne and Orr 1997; Coyne and Orr 2004). In 

particular, studying species-rich groups allows comparisons between mechanisms of behavioural 

isolation among multiple species pairs. For example, the cichlid fishes of Lake Malawi radiated 
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from a single species to nearly 400 species during the last 700,000 years (Danley and Kocher 

2001). Additionally, female cichlids select conspecific mates on the basis of male nuptial colours 

(Dominey; 1984; Knight 2004). From the many studies of cichlid mating behaviour, 

morphology, and population genetics, we now possess an evolutionary model for the procession 

of selective pressures that likely gave rise to so many distinct lineages (Danley and Kocher 

2001). A similar feat for understanding the genetics of interspecific preference can be achieved 

with the use of species from Drosophila, which bear many similar assets as a speciation model, 

as well as a robust variety of genetic tools.  

 

Many genetic studies of female interspecific preference have been carried out in species of the 

genus Drosophila; in particular, the simulans species complex (reviewed in Laturney and 

Moehring 2012). The complex contains three sibling species, D. simulans, D. sechellia, and D. 

mauritiana that diverged from a D. simulans-like ancestor 900,000 years ago (Reis et al. 2011, 

Garrigan et al. 2012). These species have their genomes sequenced, distinct mating phenoypes, 

and are postzygotically (partial) and prezygotically isolated from one another (Lachaise et al. 

1986). D. simulans originated from a tropical region of central Africa before spreading globally 

with humans (Lachaise et al. 1986). D. sechellia, on the Seychelles archipelago, and D. 

mauritiana, on the island of Mauritius, diverged allopatrically from one another (Lacaise et al. 

1986). Females of D. sechellia and D. mauritiana discriminate against interspecific males in the 

complex, whereas D. simulans females do not discriminate against D. mauritiana or D. sechellia 

males (Lachaise et al. 1986; Coyne 1992). 

 

Although hybrid males are sterile for all interspecies crosses of the simulans species complex, 

the hybrid females are fully fertile (Lachaise et al. 1986). Hybrid females can therefore be 

crossed to males of either parental species to produce backcross (BC) progeny. In this way, 

species-specific variations of preference behaviour can be associated with the inherited 

interspecific genetic regions through quantitative trait loci (QTL) mapping (Moehring et al. 

2004). A QTL map for D. mauritiana mate discrimination against D. simulans identified seven 

loci: two on the X chromosome, two on the second chromosome, and three on the third 

chromosome, with the majority of the effect size coming from the third (Moehring et al. 2004; 

McNiven and Moehring 2013). However, a map of D. mauritiana discrimination against D. 



 

31 

 

 

sechellia identified a single loci of major effect in the middle of the X chromosome that did not 

match any interspecific preference locus previously identified (McNabney 2012). Together, these 

results indicate that alternative interspecific contexts can trigger different discriminatory 

behaviours, each controlled by different genetic loci. Another possibility may be that since 

different D. mauritiana strains were used in these studies, intraspecific behavioural variants may 

underlie different means of interspecific discrimination. More tests of different species pairs, in 

alternative pairings, can resolve which of the above scenarios is acting within this species group. 

 

There are several major differences that differentiate D. sechellia from other species of 

Drosophila. D. sechellia use Morinda citrifolia as their primary breeding substrate and food 

source, which is toxic to other species of Drosophila (Louis and David 1986; Jones 2005). 

Female D. sechellia are more likely to mate with a male producing no courtship song than a male 

producing a heterospecific song (Tomaru 2004). In contrast, D. melanogaster and D. simulans 

females prefer to mate with males that generate any courtship song than with a male that 

produces none (Tomaru 2004). Thus D. sechellia females appear to be using type-specific 

auditory cues as an aversive signal for heterospecific mating, whereas the other species use these 

cues as an arousal signal for conspecific mating. D. sechellia has a sexually dimorphic 

pheromone profile, which is an ancestral feature, and not shared with the rest of the simulans 

complex. As a result, D. sechellia females are not as readily courted by simulans complex males 

since these males do not recognize D. sechellia female pheromones as appropriate female cues 

(Jallon and David 1987). A QTL map examining pheromone-based isolation of D. simulans 

males from D. sechellia females found a single region on the right arm of the third chromosome 

(3R) that controls interspecific aspects of courtship and copulation in D. simulans males (Civetta 

and Cantor 2003). Thus, the divergence of loci involved in audition, and the co-ordination of 

male courtship through olfaction are both likely components of female D. sechellia 

discriminatory processes. 

 

An early chromosomal map of female D. sechellia discrimination against D. simulans identified 

the involvement of the second and third chromosomes (Coyne 1992). However, a subsequent 

QTL map, identifying genomic regions for female D. simulans conspecific preference for D. 

simulans males (instead of D. sechellia  female interspecific rejection against D. simulans males) 
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found a role for each of the three major chromosomes, with the largest effects from two loci on 

either end of the X chromosome (Chu et al. 2013). The contrast of these two approaches 

(‘conspecific arousal for’ versus ‘interspecific aversion against’) allows questions about the 

genetic architecture of discriminatory behaviours to be addressed: How many loci are involved, 

what is their distribution in the genome, and how do their effects compare? Is the genetic basis of 

rejection of a heterospecific mate simply due to allelic variation of within-species mating 

preference? The loci underlying mating preference may be the same between both species if their 

preferences are sensitive to a specific range of stimuli within a larger range of variation, and this 

range differs between species (Ting et al. 2001). Alternatively, the range may remain the same, 

but the polarity of response to that range may differ between species. An example of such 

behaviour can be found in the European corn borer, where two races have reciprocal reactions to 

the pheromonal isomers produced by the opposite race (Kochansky et al. 1975). Therefore, a 

map looking for D. sechellia aversion could find the same locus encoding both D. simulans 

preference for D simulans and D. sechellia aversion against D. simulans. However, if 

intraspecific arousal and interspecific aversion are mediated by different mechanisms, it is likely 

that they are also under distinct genetic controls.  

 

It is likely that the genetics of D. sechellia-specific aversion (interspecific mating isolation) 

differs from D. simulans-specific arousal behaviour (intraspecific sexual selection). Two 

different genetic maps of interspecific mating preference for D. mauritiana females did not even 

match each other (Moehring et al. 2004; McNabney 2012). However, those studies looked at D. 

mauritiana discrimination against different species (D. simulans or D. sechellia), and may only 

speak to the diversity of discriminatory behaviours available to Drosophila species in different 

mating contexts. Finally, the small and gene-poor 4th chromosome has yet to be tested for a role 

in behavioural isolation between D. secehllia and D. simulans. The 4th chromosome has been 

implicated in speciation of the melanogaster species subgroup at the level of postzygotic 

isolation (Masly et al. 2006). To address these questions, quantitative trait loci (QTL) mapping 

was conducted for female D. sechellia discrimination against D. simulans males. By comparing 

any identified loci to those already found in other mapping studies, it is possible to resolve 

which, if any, of the above hypotheses represent a general course of evolution for behavioural 

isolation in species of the simulans species complex.  
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2.2 Methods 

Stocks and Crosses: D. simulans (from Winters, CA; stock #14021-0251.216) and D. sechellia 

(from Cousin Island, Seychelles; stock #14021-0248.25) were obtained from the Drosophila 

Species Stock Center (San Diego, CA). All flies were maintained in 8 dram (30 ml) plastic vials 

on standard Bloomington food recipe medium (Bloomington Drosophila Stock Center) under a 

14:10 light:dark cycle at 25°C and 75% relative humidity.  

 

F1 hybrids were created from crosses using 15 virgin D. simulans females, aged 5-14 days, 

paired with 15 D. sechellia males aged 1-14 days. Backcrosses (BC) were set up using 15 virgin 

F1 hybrid females, aged 5-14 days, paired with 15 D. sechellia males aged 1-14 days. D. 

sechellia males and BC females (used in mating assays) were collected as virgins within 8 hours 

of ecclosion using light CO2 anaesthesia, and were separated by sex to maintain virginity. 

      

No-Choice Mating assays: Within one hour of ‘lights on’, 5-7-day old virgin males were paired 

singly to 5-7-day old virgin females, via aspiration into a lightly misted 8 dram glass vial at 20-

23°C. Pairings were observed for 45 minutes and scored for courtship and copulation. For 

pairings between D. sechellia males and BC females that copulated, mating pairs were stored at -

20ºC for DNA extraction and genotyping. Pairings where males did not attempt to court the 

female were discarded. Pairings where males attempted to court but were rejected were set up for 

a 24-hour mating assay. Here, the mating pair was transferred by tipping into a food vial and 

stored at the original rearing conditions until dissection on the following day. Dissections 

checked for the presence or absence of sperm within the female reproductive tract and 

spermathecae (sperm storage organs). After dissection, the females were stored at -20°C for 

DNA extraction and genotyping. In total 575 assays were conducted, however 40 of the 

genotypes were dropped from the copulation analysis as these females either died or were lost 

between the time of courtship assay and the time of the sperm assay. As only a small portion of 

pairs (36 total) copulated within the 45 minute mating assay, which would not be sufficient for 

genetic mapping on its own, copulations are reported for pairings with BC females as the total 

sum of copulations that were recorded during the mating assays and the sperm assays. 
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DNA extraction and genotyping: DNA was extracted by homogenizing frozen flies in a buffer 

solution (1M Tris-HCl, 0.5M EDTA, and 5M NaCl) containing 200µg/mL Proteinase K. 

Samples were held at room temperature for 5-10 minutes before Proteinase K was inactivated at 

95°C. Twenty-two markers (3 for Chromosome X, 8 for Chromosome 2, 10 for Chromosome 3, 

and 1 for Chromosome 4) corresponding to microsatellite repeat regions that vary in length 

between D. sechellia and D. simulans were amplified using PCR. The product length for the 

D.simulans and D. sechellia amplifications differ and were visualised on a 2% agarose gel for 

the presence of D. sechellia genome as one band or D. sechellia/D. simulans genome as two 

bands. The primer sequences and their approximate cytological locations are given in Table 2.2. 

 

QTL analysis: I correlated phenotype (copulation vs. non-copulation) to genotype (homozygous 

D. sechellia vs. heterozygous D. sechellia/D. simulans) through composite interval mapping 

(CIM) (Jansen 1994; Zeng 1994), using a forward selection model, 3 covariate markers, and a 

window size of 10. Analysis was conducted using the R/qtl package, which includes the CIM 

scheme from QTL cartographer (Broman et al. 2003). CIM calculates a likelihood ratio (LR) for 

each region bordered by two markers via the expectation-maximization (EM) algorithm.  The 

LR, -2ln (H0/Ha), represents the balance of whether a region between two given markers does not 

(H0) or does (Ha) contain a QTL, with higher values describing the region as a probable QTL. 

Significance threshold is determined through 1000 permutations, which reduces the risk of 

committing Type I/Type II error by testing the correlated data against permuted variants of 

marker recombination rates and trait characteristics. The effect size of a QTL was characterized 

by the difference in phenotype averages among the QTL genotype groups. Here, I used the fitqtl 

function with a Haley-Knott regression in rQTL to calculate effect size (Broman and Sen, 2009). 

To determine epistasis, QTL pairs were isolated as an object and an additive QTL model, via the 

function fitqtl, was applied in rQTL. Single marker analysis for the 4th chromosome marker was 

conducted with a Chi-square test. The the null hypothesis for this test was that BC females do not 

differ in receptivity behaviour for being homozygous D. sechellia or heterozygous D. 

sechellia/D. simulans.  
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2.3 Results 

During behavioural assays, the amount of time to initiate courtship (courtship latency, CUL), the 

amount of time to achieve copulation (copulation latency, CPL), and the duration of mating 

(copulation duration, CPD) were measured. Intraspecific mating assays were done as controls to 

establish that different averages exist between species for each of these measures. I compared the 

average D. simulans (n=10) and D. sechellia (n=14) CUL (717 s ± 137 s SE vs.690 s ± 123 s 

SE), CPL (373s ± 159 s SE vs. 761s ± 143 s SE) and CPD (1072s ± 218 s SE vs. 1661s ± 255 s 

SE). These differences were significant in a single-factor ANOVA at p<0.05 for CUL [F(1,13) = 

4.74, p = 0.048], CPL [F(1,16) = 4.49, p = 0.009], and CPD [F(1,15) = 4.54, p = 0.029]. QTL 

analysis for CUL, CPL, CPD, and copulation success (as determined by behavioural and sperm 

assay results) was conducted on backcross (BC) females. Of the 575 mating assays observed, 

460 courtships were measured (80% courtship), with 36 achieving copulation during the 50 

minute assay (8% copulation). The total number of copulations in 24 hours, including those that 

occurred during the first 45 minutes, was 175 (38%). There was a significant difference in the 

average time of CUL between BC females that copulated and those that did not, indicating that 

the time of male courtship initiation affected female copulation occurrence. BC females that 

copulated did so after a CUL of 894 s, whereas BC females that did not had a CUL of 982 s (F 

(1,459) = 13.47, p < 0.001). 

 

The logarithm of the odds (LOD) score estimates the likelihood of genetic linkage between a 

genetic marker and a trait of interest. For BC females, no QTL with a statistically significant 

influence on CUL (LOD = 2.23), CPL (LOD = 4.74), or CPD (LOD = 3.04) were identified (α = 

0.05). Two QTL influencing female preference as measured by copulation occurrence (LOD = 

2.19; α = 0.05) were found (Table 2.1; Figure 2.1). QTL #1 was located on the left arm of the 

second chromosome (2L) at 55cM (95% CI; 45-58cM), and QTL #2 was located on the left arm 

of the third chromosome (3L) at 75cM (95% CI; 65-78cM) (Table 2.1; Figure 2.1). QTL #1 and 

QTL #2 explain 2.13% and 9.03% of the phenotypic variance respectively (Table 2.1). All 

cytological locations were calculated by dividing the basepair distance between two markers by 

their recombination distance (bp/cM). Mapping unit quantities multiplied by this factor gave 

approximate physical locations which could be identified cytologically using a D. simulans 
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genome browser (UCSC Genome browser; last accessed December 14 2015). No epistatic 

interactions were detected between QTL 1 and QTL 2 (p=0.182). Because only one marker was 

located on the fourth chromosome, it could not be analyzed through confidence interval mapping. 

Instead it was tested through a single marker association test that did not find any association 

between the fourth chromosome marker and D. sechellia rejection behaviour. If anything, 

rejection behaviour was lower with BC females that were heterozygous for the 4th chromosome 

marker (X2 = 6.362, p=0.012).   
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Figure 2.1: QTL for copulation occurrence among BC females paired with D. simulans 

males. The left arms of the second and third chromosome each contained a single statistically 

significant region. The LOD significance threshold value, 2.19 (α= 0.05), is represented as a 

horizontal line. Short vertical ticks along the x-axis represent the locations of molecular 

genotyping markers. Dots on the x-axis represent the locations of centromeres.  

 

 

Table 2.1: Interspecific preference QTL locations and effects  

       

Comparison QTL 

#1 

Chrsm2 cM3 Range 

(cM)4 

Max. 

LOD5 

% 

V6 

Copulation vs.  

non-copulation 

1 2L 55 45-58 2.47 2.12 

 2 3L 75 65-78 11.27 9.03 

1QTL peaks from left to right in Figure 2.1 
2Chromosome (X, 2, 3, or 4) and arm (L or R) 
3Position in centimorgans (cM) for the highest likelihood score as determined through CIM 
4Span of the QTL as determined by a 95% confidence interval  
5Maximum logarithm of the odds (LOD) score 
6Percentage of phenotypic variance explained by the QTL 

 

 

 

 

QTL #1 

QTL #2 
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Table 2.2: Markers for differentiating D. simulans and D. sechellia microsatellite regions. 

Marker locations are based on Flybase (2003) D. melanogaster cytology. Markers were designed 

by R.M. Calhoun with the exception of those marked with the superscripts1 (Dickman and 

Moerhing 2014) and 2(McNiven and Moehring 2013).  
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2.4 Discussion 

I mapped two loci in D. sechellia that are involved in female interspecific rejection against 

mating with D. simulans males. I sought to determine how many genetic elements are involved, 

how they are distributed throughout the genome, whether they interact epistatically, whether they 

represent notable candidate loci, and how they compare to the loci found in other maps of the 

simulans complex for mate preference. I identified two regions centered around the cytological 

locations 46B (located on 2L) and 74B-C (located on 3L) which had statistically significant 

associations with D. sechellia female rejection of interspecific males (Figure 2.1). Previous 

mapping for mating discrimination between these species found similar results; contributions 

from the second and third chromosomes, but not the X chromosome (Coyne 1992). In contrast, 

another QTL map of these species, examining intraspecific preference instead of interspecific 

rejection, found that each chromosome (X,2,3) had some contribution to mating preference (Chu 

et al. 2013). The largest effects found by Chu et al. were from two loci at either end of the X-

chromosome (Chu et al. 2013). Thus, in this interspecific pairing, the loci influencing within-

species attractiveness are different than those influencing between-species discrimination. This 

observation has been reached before when comparing other maps of mating receptivity in other 

Drosophila spp. (reviewed in Laturney and Moehring 2012).  

 

The locations of the 2L and 3L QTL identified have noteworthy similarities and differences with 

other QTL map locations for traits associated with mating behaviour and ecology of D. sechellia. 

Uniquely among the simulans complex, D. sechellia has a sexually dimorphic pheromone profile 

(Gleason et al. 2009). Moreover, the genetic regions that produce the different pheromone 

profiles between D. sechellia and D. simulans have been identified for both males (Coyne 1996) 

and females (Gleason et al. 2009). The 3L QTL centers around cytological location 74B-C, 

which is approximately 0.8 Mb from the marker at 3R:1,600,800 (Figure 2.1). This region was 

found previously to influence interspecific differences in the production of 7-tricosene (7-T) 

between D. sechellia and D. simulans males (Civetta and Cantor 2003; Gleason 2009). This 

cuticular hydrocarbon has been shown to play an important role in mating behaviour across the 

melanogaster subgroup. 7-T influences mating behaviour in both sexes of D. simulans and D. 

melanogaster (Ferveur 1991; Grillet 2006). In D. sechellia mating, 6-tricosene (6-T) is used as 

the primary male pheromone instead of 7-T, which may partially influence D. sechellia female 
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rejection of D. simulans males (Coyne 1996). Similarly, the Sao Tome strain of D. yakuba (also 

an island endemic like D. sechellia) has decreased 7-T production (Denis et al. 2015). Instead, 

Sao Tome D. yakuba males produce more 7-heptacosene and 7-nonacosene, and their females 

discriminate against other strains of D. yakuba that produce predominantly 7-T (Denis et al. 

2015). Thus, interspecific differences in 7-T utilization may be an important basis for 

behavioural isolation in some species of Drosophila. Genes involved in the synthesis and 

perception of 7-T may be important candidates for further analysis. Although there are no 

obvious candidate genes for pheromone detection or production within the significant region, the 

chemoreceptor gene Odorant receptor 74a (Or74a) is directly adjacent to the significant QTL 

peak (Robertson et al. 2003), and may warrant future examination in the interspecies mate 

rejection context. 

 

Male D. sechellia courtship songs encode species-specific information towards which their 

females are responsive (Tamaru et al. 2004). Loci influencing interspecific features of D. 

sechellia song (interpulse interval) were found on the second and third chromosomes (Gleason 

and Ritchie 2004). One of these loci spans 42A-45E and contains the candidate song gene 

croaker (Gleason and Ritchie 2004). The second QTL, centered on 46B, overlaps with this 

region. While it is unlikely that a gene underlying male song production also controls female 

song preference, several examples exist of signal variants in tight linkage with the perceptual 

variant that acts upon them (Kronforst et al. 2006; Shaw and Lesnick 2009; McNiven and 

Moehring 2013). Several candidate genes can be found in just 46B alone, with functions in 

sensory perception of auditory cues (trpl), female receptivity (lectin-46Ca, lectin-46Cb), and 

peripheral nervous system development (dila) (Ram and Wolfner 2007; Ma and Jarman 2011; 

Senthilan et al. 2012). To confirm whether any of the above regions contain candidate genes that 

affect auditory or pheromone preferences, follow-up studies with additional backcrossing can be 

used to generate introgression lines which would further refine the current associations to smaller 

locations. 

 

BC females that copulated had a significantly shorter courtship latency than BC females that did 

not. Since D. sechellia pheromones are sexually dimorphic, it remains possible that the non-

copulating D. simulans males were inadequately stimulated to court, and less likely to achieve 
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copulation with these BC females that had a more D. secehllia-like blend of CHCs in their 

pheromone profile. If future studies are able to assess phenotypic variance of courtship traits 

known to be involved in isolation, in addition to the discrimination behaviour itself, it may be 

possible to determine which loci are involved and whether they target similar or different sets of 

male signals. 
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Chapter 3 

3 Mapping genes involved in species isolation between D. 

melanogaster and D. simulans 

Diverging groups can remain reproductively isolated when barriers arise that prevent mating 

with one another. These barriers often occur when females evolve discriminatory mate 

preferences that let them reject heterospecific male courtship attempts. Though various species 

pairs of Drosophila have been genetically mapped for loci involved in this reproductive barrier, 

no individual genes have yet been identified for type-specific female preferences. Here I used 

fine-scale genome mapping, followed by tests of individual candidate genes, to identify Katanin-

60, fruitless, and Mekk-1 as genes underlying Drosophila simulans female rejection behaviour 

towards D. melanogaster males. All three genes were found in close proximity to the boundaries 

of two D. simulans inversions: 82F3;83B3 and 84F1;93F6-7. This appears to validate the long-

standing hypothesis that alleles important for species mainteneance are likely to be found in 

genomic regions where recombination would have been low. Katanin-60 is a phylogenetically-

conserved microtubule severing enzyme with a well-established role in neuronal development. I 

attempted to validate the role of Katanin-60 by rescuing the behavioural phenotype with 

transgenic constructs containing various Katanin-60 alleles inserted into D. melanogaster. These 

manipulations yielded only D. simulans-like preference behaviour which suggests that the D. 

melanogaster-specific regulatory components of Katanin-60 are outside of the focal genomic 

segment for this study. 

3.1 Introduction 

Behavioural isolation occurs when diverging populations acquire incompatibilities in traits 

necessary for courtship (Mayr 1942).  Since mating preferences are important determinants of 

success and failure during courtship, divergence in these traits are important targets of inquiry 

for the study of speciation (Mayr 1942; Coyne and Orr 2004). To date, no individual genes 

involved in discrimination against interspecific mating have been identified. The genetic basis 

for interspecific mate preferences is beginning to be understood for several species pairs. In 

Heliconius (butterflies), wing colour patterns vary between females of different species. Males 
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prefer females that display conspecific wing colour patterns (Jiggins et al. 2001). Through 

quantitative trait locus mapping (QTL), a single locus, wingless, was identified that controls both 

wing colour pattern and preference for that particular pattern in multiple species pairs of 

Heliconius (Kronforst et al. 2006; Merrill et al. 2011). Similarly, in Laupala (Hawaiian crickets), 

QTL mapping identified small genomic regions underlying male courtship song and the female 

preference for that particular song (Shaw and Lesnick 2009). Drosophila mauritiana (fruit fly) 

females discriminate against D. simulans males on the basis of two genomic regions influencing 

male traits associated with female preference and the female preferences for those traits 

(McNiven and Moehring 2013). The above studies suggest that genes involved in preference-

trait combinations associated with speciation are likely to be found in tight linkage with one 

another. Linkage ensures that lineage-specific combinations of alleles remain coupled with one 

another. The above studies are also in species pairs for which association mapping of genomic 

introgressions is used to link genotype to phenotype. One limitation of this method includes its 

dependence on fortuitous recombination events arising during continual backcrossing. Another 

limitation is that this approach cannot be used in species pairs that do not produce fertile hybrid 

offspring that can be used for successive backcrossing. 

 

The species pair of D. simulans and D. melanogaster exhibit behavioural isolation dependent 

primarily upon female rejection behaviours. While the males of both species will court 

heterospecific females, D. simulans females strongly discriminate against D. melanogaster males 

(Carracedo et al. 1998). Since D. melanogaster females do not fully discriminate against D. 

simulans males, it is possible to produce viable female hybrids, although these females are sterile 

(Carracedo et al. 1998). Hybrids display the D. melanogaster-like lack of discrimination against 

D. melanogaster males, indicating that genes for D. melanogaster-like female receptivity are 

dominant (Carracedo et al. 1998). Previous studies have implicated each of the three main 

chromosomes in the behavioural isolation of these two species (Carracedo et al. 1998; Ting et al. 

2001). The largest genetic contributions to female interspecific mate preference localize to the 

right arm of the third chromosome (3R) (Carracedo et al. 1998; Ting et al. 2001; Laturney and 

Moehring 2012).   
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One approach that can be applied to the first generation of offspring to genetically map loci for 

behaviour is the use of deficiency stocks, which are D. melanogaster lines with a known 

genomic deletion. Crosses using deficiency stock D. melanogaster females and D. simulans 

males produce hybrids that are hemizygous (possessing only the D. simulans locus) for the 

region of the deletion; the rest of the genome is heterozygous (heterospecific). If the region 

contains a gene affecting mate preference, the recessive D. simulans version of the trait 

(discrimination against D. melanogaster males) will be exhibited in the mating behaviour of 

hybrids. Regions underlying the D. simulans-like preference can be refined through the use of 

additional deficiencies that overlap within each region of interest. A study using deficiency 

mapping on 3R has already identified five regions of interest for D. simulans-like discrimination 

against D. melanogaster males (Laturney and Moehring 2012). Because deficiency lines do not 

exist for most single genes, the testing of candidate loci can be achieved using the same 

conceptual approach as with deficiency lines but through the use of D. melanogaster lines 

bearing transposable element (TE) insertions that disrupt gene function. (Spralding et al 1999; 

Bellen et al. 2004; Metaxakis et al. 2005).  

 

Here I refine the mapping of two regions involved in behavioural isolation between D. 

melanogaster and D. simulans (Laturney and Moehring 2012). The candidate region (91B2-

91F1), originally found using Df(3R)Cha7, was honed using the deletion Df(3R)DG2 to refine its 

proximal border (Laturney and Moehring 2012). The breakpoints of this deletion have been 

updated recently, and likely includes 89E9;91A3-7, instead of 89E-89F;91B1-2 (Carpenter 

2003). If this is the case, the candidate interval widens from 91B2-91F1 to 91A3-91F1 and 

includes 68 genes instead of 67. In addition to 91B2-91F1, I also map 82A-82F as a candidate 

region (Laturney and Moehring 2012).   

 

 I expected, as in the other mapping studies, to locate these genes in regions where recombination 

cannot easily disrupt new combinations of alleles as they emerge. If the genes identified have 

any previously described biological function, I hypothesized these functions to include key 

factors known to promote speciation. Key factors are traits associated with species richness in 

clades and are known to promote diversification (mating preferences, sexual dimorphisms, size 

variants, dispersal patterns, etc) (Coyne and Orr 2004). Through genetic crosses of D. 
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melanogaster lines, using either deficiencies or transposable elements, I identified three genes 

with an influence over D. simulans-like mating discrimination against D. melanogaster males. 

The three genes, Katanin-60 (Kat60), fruitless (fru), and Mekk-1, map to two fixed inversions 

between D. melanogaster and D. simulans. Though Mekk-1 has not yet been identified in 

behavioural context for Drosophila species, Kat60 and fru have known roles in the 

developmental biology of D. melanogaster behaviour (Stewart et al. 2012; Ryner et al. 1996). Of 

note, the ortholog of Kat60 in Xenopus, katanin p60, has been previously found to play a role in 

postzygotic species isolation (Loughlin et al. 2011). For these reasons, Kat60 was selected for 

further experiments using transgenic insertions of Kat60 alleles to rescue species-specific 

behaviours in hybrids. To provide further evidence that Kat60 is a candidate gene for prezygotic 

isolation, I attempted to rescue species-specific behaviours in hybrids using transgenic insertions 

of various Kat60 alleles.    

3.2 Methods 

Drosophila housing and strains: One line of wild-type D. simulans (Stock  #14021-0251.165, 

collected in Florida City) was obtained from Dr. Jerry Coyne; wild-type D. melanogaster (BJS1) 

were collected in 2009 in London, ON, Canada by Dr. Brent Sinclair. Most lines with 

deficiencies spanning the previously-identified significant regions (Laturney and Moehring 

2012), as well as all transposable element (TE) disruption lines, were obtained from the 

Bloomington Drosophila Stock Center (Bloomington, IN, USA; Table 3.1). The deficiency stock 

bearing Df(3R)fru4-40  was obtained from Dr. Barbara Taylor. All of the breakpoints were listed on 

the online database and initially provided by the donors. Nearly all TE insertions used are in the 

same orientation as the gene with which they are associated. The lines bearing TE insertions in 

genes for which they are oppositely oriented are: 15953, 15477, 24442, and 32790 (Table 3.1). 

The orientation of TE insertion is unknown in lines: 13748 and 13042. Chromosomes that 

contain a deletion (Df) or TE insertion (In) are collectively referred to as mutation chromosomes 

(Mut). The homolog of these Mut lines contain balancer (Bal) chromosomes which feature a 

dominant visible marker and serial inversions to elminate viability of recombinant offspring. The 

D. melanogaster lines were maintained as Mut/Bal. Each line was kept in a standard 8-dram (30 

ml) plastic vial and raised on ~7 ml of standard cornmeal and yeast medium (Bloomington Stock 

Center’s standard medium recipe). All stocks were maintained in incubators with a LD 14:10 
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hour cycle, 25°C, and a relative humidity of 75%. A previous deficiency map found 82A-82F as 

a candidate region (Laturney and Moehring 2012). Further mapping reduced this region from 

122 possible candidate genes to 9 genes located in 82F6 (Table 3.1; Figure 3.1; stocks 9224 and 

24334 tested by M. Laturney). I used P-element insertions to disrupt eight of the nine functional 

genes within this area (Table 3.1; Figure 3.1; stocks 19220,15477,19914, 19578, and 1347 tested 

by S. Chan). Deficiency stocks 8683 and 6962 were used to refine 91B2-91F1 (Tested by M. 

Laturney and K. Bruch). 

 

Crosses: Female virgins of each D. melanogaster (mel) stock were collected 0-8 hours after 

eclosion and separated under CO2 anaesthesia. Once separated, females were transferred to new 

vials at low densities (1-20) and housed for at least seven days to ensure virginity and 

reproductive maturity.  Females from D. melanogaster stocks bearing either a deficiency or a TE 

insertion were maintained over a balancer (Bal) and crossed to wild-type D. simulans males. To 

create F1 hybrid females, 10-15 female virgins (5-14 day-old) from each D. melanogaster stock 

and 20-25 D. simulans males (0-7 day-old) were placed in an 8-dram plastic vial with ~7 ml of 

food medium. Available space was reduced by pushing the cotton plug down to force increased 

interactions between the two species. Two types of heterospecific test hybrid females were 

produced from this cross: sim/Bal and sim/Mut. To control for effects of the balancer and Mut 

chromosome on general mating behaviour, ten D. melanogaster female virgins (5-14 day-old) 

from each deficiency, P-element, or minos-element stock and five D. melanogaster males (0-7 

day-old) were placed in an 8-dram plastic vial with ~7 ml of food medium. In this way, BJS1 D. 

melanogaster were crossed with Mut stocks to produce mel/Bal and mel/Mut.  

 

Mating assay: Test females were collected 0-8 hours after eclosion and separated on the 

presence/absence of the dominant marker (indicating the inheritance of the balancer 

chromosome) under light CO2 anaesthesia. Virgin females were transferred to new vials of 1-10 

flies, and housed for 5-7 days. Virgin wild-type D. melanogaster and D. simulans males were 

collected and housed the same way. For D. melanogaster assays intraspecies pairings, one test 

female was placed with one wild-type male for 45 minutes in an 8 dram glass vial (misted with 

water to increase humidity). Equal numbers of each type of test female (mel/Bal and mel/Mut) 

were observed simultaneously to control for environmental effects. Pairings where the females 
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were not courted by the males were discarded, as uncourted females cannot display acceptance 

or rejection behaviour. Copulation occurrence (proportion of the number of courted females that 

mated with D. melanogaster) was determined for each type of female in each line. 

Hybrid female mating behaviour with D. melanogaster males is reduced in comparison to D. 

melanogaster females: only a very small number of both sim/Mut, sim/Bal mate with D. 

melanogaster males within the 45-minute mating assay. Therefore, to increase the number of 

matings for analysis, the length of the assay was increased and sperm presence was assessed. To 

perform the sperm assay, equal numbers of each type of hybrid test female (sim/Bal and sim/Df 

or sim/Mut) were paired with a D. melanogaster male partner in a plastic vial with food (as 

described above). After 24-50 hours, the female reproductive tract and spermathecae were 

dissected and scored for sperm presence under a light microscope. Preliminary observations 

indicated that all (or almost all) females were courted by males within the sperm assay time 

period, and thus sperm presence/absence was used to determine copulation occurrence. Hybrid 

females paired with D. simulans males were paired similarly to compensate for the long 

courtship latency of D. simulans males courting females with a primarily D. melanogaster 

pheromone profile (Billeter et al. 2009). The sperm assay was uninformative for determining 

whether there were differences between Bal and Mut pure intraspecific pairings, as all (or almost 

all) D. melanogaster females mate with D. melanogaster males during the longer time period. 

 

Transgenic Constructs: Five different recombinant Kat60 alleles (generated by Aaron Allen) 

were transgenically inserted in D. melanogaster to assess which species-specific DNA segments 

of Kat60 could rescue female receptivity, and thus which components of the gene and its 

upstream promoter were responsible for the interspecific preferences of females. Two of the 

alleles were unmodified versions of Kat60 (plus its upstream promoter region) from either 

species, and three of the alleles were chimeric DNA segments made up of different thirds of 

either species Kat60 sequence. The regions where interspecific DNA segments were spliced to 

one another occurred at restriction sites in Kat60 for XhoI and StruI, which are both present at 

the same site in both species’ alleles. XhoI cuts once, just before the 2nd exon, and StuI cuts once, 

in the middle of the 5th exon. The five lines bearing these alleles had the transgene inserted into 

cytological region 51C5 (2R), so that transformants could be further crossed into lines bearing 

P{EPgy2}EY09078 (3R). 
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All construction of recombinant Kat60 alleles was performed by Aaron Allen at the University of 

Toronto (Toronto, ON). XhoI and StuI were the restriction enzymes used to cut the D. 

melanogaster and D. simulans alleles of Kat60 into thirds that could then be swapped and ligated 

to other interspecific sequences. The forward and reverse primers used for amplification and 

subcloning of Kat60 were: F- ATAGGCGCGCCGTCATATGCCTTGGCGGTCAG, and R- 

ATAGCGGCCGCCCTCCAGCGGATTCTATCC. Recombinants were inserted into a pSinger-

attB plasmid, which contains genetic elements necessary for transgenic insertion via the phiC31 

integrase system. In total six different recombinants were made (Detailed methods in Appendix 

B). Injection of recombinant constructs was performed by Bestgene (Chino Hills, CA). Injections 

were made into strain 24482 (y1 M{vas-int.Dm}ZH-2A w*; M{3xP3-RFP.attP'}ZH-51C) which 

has its attP landing site in 51C1 (2R). The only modification made to the standard Bestgene 

protocol was lowering the injection and rearing temperatures to 18°C. This modification 

mitigated the toxic effects of Kat60 overexpression during development, which had eliminated 

transformant viability in the first round of injections. Successful integration of the transgenes 

occurred for five out of the six lines which are termed: AA1, AA2, AA3, AA4, AA6 (Table 3.5).  

 

Data analysis:  For tests of mating propensity in behavioural assays, a four-way comparison was 

performed using a G-test of independence (p<0.05). Significance was determined after a False 

Discovery Rate (FDR) correction for multiple tests (Benjamini and Hochberg 1995). Data for all 

significant values were further assessed to ensure that the effect on the proportion mated was in 

the expected direction: a reduction in mating of sim/Mut compared to controls, assessed with the 

two criteria of (sim/Bal > sim/Mut) and [(sim/Bal - sim/Mut) > (mel/Bal - mel/Mut)]. For control 

assays using D. simulans males instead of D. melanogaster males the criterion was (sim/Bal < 

sim/Mut). For tests of mating propensity among transgenic insertion lines, proportions mated 

were compared through a two-tailed Z test (p<0.05) with FDR correction for false positives due 

to multiple tests. For tests of the inserted Kat60 transgenic rescue constructs, statistical 

comparisons were made for hybrids bearing: the transgenic allele (In), the TE insertion (Tr), both 

(In/Tr), or neither (WT).   

          

http://flybase.org/reports/FBal0018607.html
http://flybase.org/reports/FBti0099694.html
http://flybase.org/reports/FBti0099697.html
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3.3 Deficiency Mapping and P-element Results 

3.3.1 Candidate Region 82F 

In the 82F region, the only gene disruptions resulting in expression of a D. simulans-like 

preference against D. melanogaster males were for disruptions in the gene Katanin-60 (Kat60) 

(Table 3.1). The insertion P{Mae-UAS.6.11}Kat60UY1645 has been previously shown to disrupt 

expression of Kat60 (Nicolai et al. 2003). I tested an additional three lines bearing different 

insertions (two P and one minos element) in Kat60. The insertions were located within the 

upstream regulatory region, the 5’UTR, and the intronic region between exons 4 and 5 of Kat60 

(Table 3.1; Figure 3.1). Hybrids with each of these disruptions showed a similar D. simulans-like 

preference against mating with D. melanogaster males (Table 3.1). As expected, the preference 

is not identical to that of pure-species pairings; some females still accept copulations from 

heterospecific males, indicating that other genes contribute to the discrimination phenotype. 

When paired with D. simulans males, hybrids bearing a Kat60 disruption from any of the four 

lines did not show a reduction in mating activity compared to hybrids not bearing a disruption. 

Therefore the behavioural discrimination observed is species-specific and not a general absence 

of female receptivity behaviour (Table 3.4). 

3.3.2 Transgenic alleles of Katanin-60 

The transgenic lines bearing both the disruption in Kat60 and the transgenic rescue construct 

were crossed to D. simulans. The interspecies female hybrids produced from this cross were 

assessed for their mating receptivity. As hybrids bearing P{EPgy2}EY09078 showed D. 

simulans-like mating preference, it was predicted that the insertion of a normal D. melanogaster 

copy (or portions of a normal copy) of Kat60 would restore the normal D. melanogaster-like 

mating behaviour of hybrid females. In all five cases, no rescue of D. melanogaster behaviour 

was found (Table 3.5).  

3.3.3 Candidate Region 91A-F 

The revision of the breakpoints for Df(3R)DG2 to include 91B2-91F1 agrees with our results 

(Carter 2003). All four deletions generate results congruent with the expectation for a candidate 

gene in this expanded interval (Table 3.2, Figure 3.2). This candidate gene is the sex-

http://flybase.org/reports/FBti0040333.html
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determination gene fruitless. Further tests of this region with three TE insertion lines (two minos, 

one P) and a fru-specific deletion were conducted. All but one of the minos elements showed 

similar D. simulans-like mating results (Table 3.2, Figure 3.2). It is unclear why one of the minos 

elements had no effect when the deletion and other gene disruptions, all in different locations, 

did. However, given that fru is a complex gene with multiple splice variants, it is possible that 

the minos insertion in question did not disrupt the regular D. melanogaster function of the gene 

insofar as it would affect any interspecific preference functions of the gene. As was the case for 

the Kat60 disruptions, intraspecific mating was not reduced for hybrids containing the fru gene 

disruptions (Table 3.2). Similarly, hybrid mating with D. simulans males was not affected (Table 

3.4). 

 

In addition to these findings on the proximal end of the interval, a further two deficiency lines 

were used to rule out the contributions of the distal end of the interval. The deficiency line 

Df(3R)ED2 (tested by K. Bruch) had a significant effect on behaviour, but the 

overlappingdeficiency lines with deletions Df(3R)ED5911 (tested by M. Laturney), and  

Df(3R)Exel6180 (tested by K. Bruch), both yielded no effect on hybrid behaviour (Table 3.3; 

Figure 3.3). However, these overlapping deficiencies did not cover the entire span of the distal 

region under testing. Based on their predicted breakpoints, (18,740,468 and 18,742,927 

respectively), an interval of ~2.5kb remained untested.  The interval contained within it a single 

gene. The gene, Mitogen-Activated Protein Kinase Kinase Kinase 1 (Mekk-1), encodes a protein 

kinase kinase involved in JNK signal pathways (Chen et al. 2002). I tested Mekk-1 using three P-

element gene disruption lines. Two of the three lines (20676 and 19991) yielded the D. simulans-

like interspecific preference behaviour (Table 3.3; Figure 3.3), with no reductions in intraspecific 

mating behaviour (Table 3.4). These two TE insertions, and Mekk1, are minus strand orientated, 

whereas the orientation of the third (13748) TE insertion is unknown. For this reason, the D. 

melanogaster allele of Mekk-1 may not have been disrupted if its function is insensitive to TE 

oriention in the plus strand.  
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Table 3.1. Effects of mutations in cytological region 82F on female hybrid mating with D. melanogaster males. Mutant D. 

melanogaster stocks (Mut) contain either a genomic deletion  (Df), or a transposable element insertion (In) of a P-element (P) or 

minos-element (Mi). Mating behaviour of hybrid females bearing either a Mut or balancer chromosome (Bal) were generated from D. 

melanogaster (mel) males crossed to D. simulans (sim) females. Intraspecific crosses were made to control for the effects of 

possessing a Bal or Mut. Numbers are given for the number of courtships (Crt) and copulations (Cop) that occurred during behaviour 

assays. Hybrid females were additionally subjected to a sperm assay. Statistical significance was calculated through comparisons of 

the total number of hybrid females that copulated (behaviour + sperm) and the proportion of copulations for those intraspecific 

females that were courted during behaviour assays ((Cop/Crt)*N). Stocks are labelled 1-14 for ease of reference in Figure 3.1.   
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Figure 3.1. Approximate locations of deficiencies and TE insertions in cytological region 

82F. Locations of deletions (grey bars) and transposable element insertions (arrows) relative to 

genes (white bars) in D. melanogaster genome. Gene orientation is in the direction of the point. 

(1-14) refers to data for corresponding element`s effects on mating discrimination of females 

(Table 3.1).  Significant effects on behaviour when the corresponding regions were 

removed/disrupted are marked with * for P<0.05, ** for P<0.005, and *** for P<0.0005. 

Relevant cytological landmarks are shown with grey lines and listed in bold. The bar listed as 

region (0) represents findings from Df(3R)ME15 (wavy bar) and Df(3R)ED5156 (diagonal bar) 

which were reported Laturney and Moehring 2012 and so the raw data for those lines is not listed 

here. Lines with * were significant for an effect on interspecific behaviour at P< 0.05. 
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Table 3.2. Confirmation of species-specificity for candidate genes influencing female 

preference. Select Mut lines for candidate genes were tested with D. simulans (sim) males 

instead of D. melanogaster (mel) males. Mutant D. melanogaster stocks (Mut) contain either a 

genomic deletion (Df), or a transposable element insertion (In) of a P-element (P) or minos-

element (Mi). Mating behaviour of hybrid females bearing either a Mut or balancer chromosome 

(Bal) were generated from D. melanogaster males crossed to D. simulans females. Numbers are 

given for the number of courtships (Crt) and copulations (Cop) that occurred during behaviour 

assays. Statistical comparisons using G tests were not possible as D. simulans-165 males do not 

actively mate with hybrids. Instead effects of Mut were assessed on the hypothesis that sim/Bal 

mating would be approximately the same as (or less than) mating in sim/Mut.  

 

 

 

  

Behaviour assay +Sperm assay 

 Transposable Element 

 

sim/Mut sim/Bal sim/Df sim/Bal 

Stock Insertion N Crt Cop Crt Cop Cop Cop 

15953 P{EPgy2}EY09078 21 2 1 3 0 17 8 

17531 P{EPgy2}Kat60EY05593 22 0 0 0 0 6 5 

25251 Mi{ET1}Kat60MB06739 24 1 0 1 0 16 12 

13042 P{SUPor-P}fruKG00116 28 0 0 0 0 6 8 

19991 P{EPgy2}Mekk1EY02276 20 0 0 0 0 16 1 
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    Table 3.3. Effects of mutations in cytological region 91A-C on female hybrid mating with D. melanogaster males. Mutant D. 

melanogaster stocks (Mut) contain either a genomic deletion (Df), or a transposable element insertion (In) of a P-element (P) or 

minos-element (Mi). Mating behaviour of hybrid females bearing either a Mut or balancer chromosome (Bal) were generated from 

D. melanogaster (mel) males crossed to D. simulans (sim) females. Intraspecific crosses were made to control for the effects of 

possessing a Bal or Mut. Numbers are given for the number of courtships (Crt) and copulations (Cop) that occurred during behaviour 

assays. Hybrid females were additionally subjected to a sperm assay. Statistical significance was calculated through comparisons of 

the total number of hybrid females that copulated (behaviour + sperm) and the proportion of copulations for those intraspecific 

females that were courted during behaviour assays ((Cop/Crt)*N). Stocks are labelled 1-7 for ease of reference with Figure 3.2. 
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Figure 3.2. Approximate locations of deletions and TE insertions in cytological region 91A-

C. Locations of deletions (grey bars) and transposable element insertions  (arrows) relative to 

genes (white bars) in D. melanogaster genome. Gene orientation is in the direction of the 

point.(1-7) refers to data for corresponding element`s effects on mating discrimination of females 

(Table 3.2).  Significant effects on behaviour when the corresponding regions were 

removed/disrupted are marked with * for P<0.05, ** for P<0.005, and *** for P<0.0005. 

Relevant cytological landmarks are shown with grey lines and listed in bold.  
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   Table 3.4. Effects of mutations in cytological region 91C5 on female hybrid mating with D. melanogaster males. Mutant D. 

melanogaster stocks (Mut) contain either a genomic deletion  (Df), or a transposable element insertion of a P-element (P). Mating 

behaviour of hybrid females bearing either a Mut or balancer chromosome (Bal) were generated from D. melanogaster (mel) males 

crossed to D. simulans (sim) females. Intraspecific crosses were made to control for the effects of possessing a Bal or Mut. Numbers 

are given for the number of courtships (Crt) and copulations (Cop) that occurred during behaviour assays. Hybrid females were 

additionally subjected to a sperm assay. Statistical significance was calculated through comparisons of the total number of hybrid 

females that copulated (behaviour + sperm) and the proportion of copulations for those intraspecific females that were courted 

during behaviour assays ((Cop/Crt)*N). Stocks are labelled 1-5 for ease of reference with Figure 3. Note that the data from line 

6962 is also presented in Table 2. 
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Figure 3.3. Approximate locations of deletions and TE insertions in cytological region 

91A5-91B4. Locations of deletions (grey bars) and transposable element insertions (arrows) 

relative to genes (white bars) in D. melanogaster genome. Gene orientation is in the direction of 

the point. (1-6) refers to data for corresponding element`s effects on mating discrimination of 

females (Table 3.3).  Significant effects on behaviour when the corresponding regions were 

removed/disrupted are marked with * for p<0.05.  Relevant cytological landmarks are shown 

with grey lines and listed in bold. 
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Table 3.5. Hybrid female copulation using transgenic Kat60 alleles. Hybrids bearing transposable element inserstion 

P{EPgy2}EY09078 were previously shown to display D. simulans-like mating behaviour (Table 3.1). The mating of hybrid females 

bearing insertions (In) was compared to hybrid females bearing transnsgenic copies of Kat60 (Tr). Tr were composed, to varying 

degrees, of D. melanogaster (dark grey bars) and D. simulans sequence (light grey bars). Wildtype (WT) hybrid females were used as 

a baseline for typical D. melanogaster-like mating behaviour among hybrids. Statistical significance was determined through a two-

tailed Z-test (p<0.05). 
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3.4 Discussion 

3.4.1 Chromosomal Analysis 

Recombination frequency is reduced between heterokaryotypic regions of chromosomes. 

Without recombination in these regions, species-specific alleles are able to persist in association 

with one another (McGaugh and Noor 2012; Stevison et al. 2011). For this reason, chromosomal 

inversions are predicted to be important facilitators of speciation, allowing divergence to 

accumulate in those regions adjacent to the inversion breakpoints, and within the inversion itself 

(McGaugh and Noor 2012; Stevison et al. 2011). For example, D. pseudoobscura and D. 

persimilis differ by several fixed inversions (Stevison et al. 2011). Nucleotide divergence 

between these species is highest in regions that are close to telomeres, centromeres, inversion 

breakpoints, and the regions within inversions (Stevison et al. 2011). The maximum range 

outside an inversion for recombination suppression varies on an inversion-by-inversion basis. 

The most conservative estimates ranging from 2.18-2.44 Mb, 2.32-2.56 Mb, 2.75-2.84 Mb for 

three of the fixed inversions between D. pseudoobscura and D. persimilis (McGaugh and Noor 

2012). Suppression has been found at the same inversions as far as 3.35 Mb, 4.55 Mb, and 3.0 

Mb for the same inversions (Schaeffer et al. 2005). Therefore, a reasonable estimate of an 

inversion’s average recombination suppression effect is in the range of 2.5-3.0 Mb. As a result, 

5-6 Mb of total genome outside the inversion breakpoints can be added to the inversion’s length 

of sheltered heterogeneity between species. It should be noted that two species groups as 

diverged as the pseudoobscura and melanogaster groups (estimated divergence 45.6 mya (Gao et 

al 2011)), may possess different factors that influence recombination in dissimilar ways. If the 

measures made of the pseudoobscura group recombination suppression boundaries are all similar 

on a genus-wide level, then my findings in D. simulans/D. melanogaster fall within the values 

predicted by the D. pseudoobscura/D. persimilis studies. The first candidate gene for D. 

simulans-like preference against D. melanogaster males, Kat60, was located within a D. 

simulans-specific inversion that spans cytological location 82F3;83B3 (Harrison 1939; Table 

3.1; Figure 3.1). Kat60 is approximately 50.4-58.7 kb from the closest inversion breakpoint at 

82F3. In addition to being within an inversion, the proximal-to-distal reorientation of the 

82F3;83B3 region places Kat60  in closer proximity to yet another D.simulans-specific inversion 

that spans 84F1;93F6-7 (Ashburner and Lemeunier 1976). The location of a behavioural 
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isolation gene in inversion 82F3;83B3, and its proximity to the inversion at 84F1;93F6-7, 

supports the hypothesis that genes involved in species isolation are likely to be found in areas 

where  recombination between divergent lineages is suppressed (McGaugh and Noor 2012; 

Stevison et al. 2011).  

 

The second region I  investigated contained two candidate genes, Mekk1 and fru, and was also 

located within the D. simulans 84F1;93F6-7 inversion (Ashburner and Lemeunier 1976). Kat60 

is 2.90 Mb outside the 84F1 breakpoint (centromeric side of the inversion), fru is 3.1 Mb inside 

the 93F6-7 breakpoint and Mekk1 is 2.98 Mb inside the 93F6-7 breakpoint. These distances are 

within the predicted boundaries of recombination suppression estimated from the above studies 

in D. pseudoobscura/D. persimilis. Additionally, the 82F3;83B3 and 84F1;93F6-7 inversions 

place Kat60, Mekk1, and fru in a genomic unit that is approximately 6.06 Mb long. The same 

interval in D. melanogaster is 13.51 Mb long (Figure 3.4). For these reasons, combinations of 

new alleles for the three candidate genes were more likely to be inherited as a unit in D. simulans 

than in D. melanogaster. Thus, the co-localization of Kat60, Mekk1, and fru to a similar genomic 

region support previous findings of genetic coupling among genes involved in species-specific 

mating preferences (Kronforst et al. 2006; Shaw and Lesnick 2009; McNiven and Moehring 

2013). It is unknown whether a D. simulans male trait that D. simulans females prefer can also 

be found in the region. Currently, this hypothesis is impractical to test as generating hybrid males 

from the reciprocal cross is very difficult. 
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Figure 3.4. Relative locations of candidate genes in D. melanogaster and D. simulans. 

Relative locations of candidate gene cytological locations on the right arm of the third 

chromosome (3R). Physical distances (horizontal solid lines) of candidate genes (Kat60, fru, 

Mekk1) map much more closely in D. simulans than in D. melanogaster because of two fixed 

inversions (horizontal dashed lines) between the species.  

3.4.2 Katanin-60 

ATPases associated with various cellular activities (AAA) are a diverse family of proteins that 

can be found in all organisms (Frickey and Lupas 2004). Proteins of the AAA family feature a 

conserved C-terminal catalytic domain, and an N-terminal domain involved in protein-protein 

interactions (Lupas and Martin 2002). Katanins, a subclass of AAA, are involved in microtubule 

severing activities that underlie cell division, cell migration, cilia/flagella assembly, and neuronal 

structuring (Sharp and Ross 2011; Toyo-oka 2005). Katanin-60 binds and severs microtubules, 

either altering the length of microtubule spindles, or generating short fragments for the seeding 

of non-centrosomal microtubular arrays (Sharp and Ross 2001; Zhang et al. 2007, Zhang et al. 

2011). Several Katanin proteins exist, and it is a well-known feature of these proteins to be 

involved in neuronal development, migration, and regeneration (Stone et al. 2012, Toyo-oka 
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2005). For example, Katanin p60-like1 shapes the dendritic arborizations (branch number and 

length) of class IV sensory neurons in D. melanogaster. If Katanin p60-like1 is mis-expressed, 

these neurons produce poor arborisations with adverse behavioural consequences (decreased 

nocifensive response) (Stewart et al. 2012).  

Our candidate gene, Katanin-60 (Kat60), has activity during mitosis (Zhang et al. 2007), 

interphase microtubule dynamics, cell migration (Zhang et al. 2011), axonal/dendritic outgrowth 

(Yu et al 2008, Mao et al. 2014), and neuronal polarity (Yu et al. 2005). In Drosophila cell 

cultures, the ratio of Kat60 to Katanin-80 expression can have important consequences for 

neuronal morphology (Yu et al. 2005). To date, there is no known role for Kat60 in mating 

behaviour, though it has been implicated as a potential source of species isolation (Loughlin et 

al. 2011). Interspecific differences in protein-level regulation have been demonstrated for the 

Xenopus ortholog of Kat60, - called Katanin p60 (Loughlin et al. 2011). Serine 131 is a 

conserved phosphorylation site present in most identified Katanin  proteins, however this site is 

polymorphic between X. tropicalis and X. laevis (Loughlin et al. 2011). As a result, postzygotic 

isolation exists between these species because of species-specific meiotic spindle lengths that are 

incompatible in hybrids (Loughlin et al. 2011). In addition to inviability between Xenopus 

species, Katanin mutants can cause sterility in mice. Katanin p80, the targeting subunit of the 

larger Katanin p60 complex, is essential for male fertility. Misexpression of Katanin p80 leads to 

decreased sperm production (O’Donnell et al. 2012). The sperm that are produced are also 

morphologically aberrant, and completely immotile (O’Donnell et al. 2012). The influence of 

Katanins in postzygotic sterility, inviability, and now, mating behaviour, raises interesting 

questions of how divergence in a single class of genes can contribute to multiple types of 

incompatibilities involved in species isolation. 

3.4.3 fruitless 

The gene, fruitless (fru,) regulates sexually dimorphic development in Drosophila (Lee and Luo 

2001; Kimura 2005). fru encodes several transcripts that are differentially spliced between sexes. 

The transcripts are translated into transcription factors which target different genes on the basis 

of their respective DNA binding affinities (Ryner et al. 1996). fru is the first gene in the sex 

determination pathway of Drosophila to function in the central nervous system (CNS), up-

regulating the neurodevelopment genes CadN, lola, and pdm2 (Nojima 2014). fruM, the male-



 

66 

 

 

specific transcript is essential to male specific behaviours (Lee et al. 2000). Misexpression of 

fruM  causes male courtship aberrations including courtship with other males (Lee et al. 2000). 

Futhermore, studies expressing fruM transcripts in different mosaics of neural tissues have 

identified male-specific neuroanatomical structures (Lee et al. 2000). At a cellular level, the 

effects of fruM`s are as a masculinization factor occur through the upregulation of cell surface 

markers that paint male neuronal identities on the D. melanogaster CNS. The male-specific cell 

surface markers prevent programmed cell death (PCD) for structures that would otherwise 

undergo PCD in the developing female (Kimura 2005). Differential PCD is a general mechanism 

of sexual dimorphism for many organisms. As an example, expression of TRA-1A, a gene in the 

sex-determination hierarchy in C. elegans, blocks PCD and preserves hermaphrodite-specific 

neurons. Currently there is no evidence of between species variation in fru that leads to variant 

male courtship behaviours (Cande et al. 2014). However, fruM  has divergent patterns of 

expression in different species of Drosophila that are responsible for anatomical differences 

between males of different species (Usui-Aoki 2005). Moreover, in D. suzukii, the canonically 

male-only transcript is translated in specific areas of the female brain (Usui-Aoki 2005). Thus, 

fru’s role as a source of interspecific variation in mating behaviour may be as a source of 

differential sexual dimorphism between species. If subsets of sexually dimorphic traits are 

preserved, altered, or removed between species, then the degree to which either species utilizes 

these traits for mating may vary as well.    

3.4.4 Mekk1 

Mitogen-Activated Protein Kinase (MAPK) cascades are signal pathways that connect a diverse 

set of circumstances (physiology, environmental stresses, pathology, etc) to the transcriptional 

machinery of the nucleus (Lopez-Ilasaca 1997). These cascades are typically composed of three 

kinases (MAPKKK->MAPKK->MAPK), of which Mekk1 is a MAPKKK. Mekk1 mediates 

stress responses in the p38 MAPK pathway under conditions of high osmolarity and high 

temperature, and in the JNK pathway in response to heavy metals (Inoue 2001; Ryabinina 2006). 

Additionally, in the JNK pathway, Mekk1 demonstrates activity as an upstream mediator of 

apoptosis in response to reactive oxygen species (ROS) and microtubule destabilization (Kang 

2012; Yujiri 1999). Interestingly Mekk1 has a pro-apoptotic role in the ROS stress context, but is 

anti-apoptotic in response to microtubule destabilization (Kang 2012; Yujiri 1999). 
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Consequently, the polarity of Mekk1`s function may be conferred by its integration with 

downstream signalling products (Lin 2003). Though Mekk1’s involvement in behaviour may be 

less straightforward than that of fru and Kat60`s, Mekk1`s activity in PCD may be of 

consequence to neurodevelopmental processes. For example, PCD is an essential component of 

neuronal remodelling during pupation (Rusconi 2000). If divergent Mekk1 alleles convey 

alternative patterns of PCD during development, variant systems of behaviour based on the 

inclusion/exclusion of specific cell clusters may emerge. Alternatively, if Mekk1 is not involved 

in a developmental role, it may instead be involved directly in courtship. JNK signalling has 

been implicated in switching between genetic programs of neurotransmitter synthesis (Guemez-

Gamboa 2014).  

3.5 Conclusions 

Previously, inversions were known to preserve heterospecificity between species because 

recombination was suppressed in those regions. For this reason, alleles yielding reproductive 

isolation between species are thought to be more likely to emerge in these regions. I support this 

hypothesis by identifying three candidate genes for D. simulans discrimination against D. 

melanogaster near the breakpoints of two inversions. As a result, I suggest future mapping 

efforts maximize the potential identification of other behavioural isolation genes by focusing first 

on heterokaryotypic regions that differentiate species from one another. I did not restore D. 

melanogaster behaviour with any of the transgenic insertions of Kat60. One reason may have 

been because modifications to the protocol for increasing viability of transformants (by lowering 

Kat60 expression) were too severe. Another possibility is that the regulation of Kat60 expression 

is complex, relying on cis-acting elements outside the boundaries of the gene itself. Species-

specific differences in cis-regulatory regions have also been found between Nasonia vitripennis 

and N. giraulti. N. vitripennis possesses a duplication of the 5’ UTR and its associated regulatory 

elements for the gene doublesex. This region is located in an intergenic segment between two 

transcription factors and is responsible for the species-specific differences in sexual dimorphism 

for wing size between these species (Loehlin 2010). If a similar dynamic is at work between D. 

melanogaster and D. simulans, then future studies may be able to identify the divergent 

intergenic sites involved in these species-specific mating behaviours. 
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Chapter 4 

4  Phenotypic components of the candidate gene Katanin-60 
in    behavioural isolation of D. simulans and D. 
melanogaster 

 

Species can remain reproductively isolated from one another when traits necessary for successful 

mating acquire type-specificity. An important mechanism in this process can be the evolution, in 

females, of alternative mating preferences for specific kinds of males. To understand how 

preferences diverge, it is necessary to identify the underlying components of these preferences, 

as well as the ways in which they vary between species. Female D. simulans discriminate against 

D. melanogaster males during courtship, in part, due to the influence of the candidate 

behavioural isolation gene Katanin-60. Here I examine the phenotypic basis of discrimination by 

examining female hybrids made to display either D. melanogaster-like or D. simulans-like 

mating preferences. I determined that D. simulans females potentially assess D. melanogaster 

male courtship songs unfavourably on the basis of neural processing that occurs in the α and β 

lobes of the mushroom bodies. I additionally tested these properties in other strains and other 

species to determine how general these mechanisms are within the genus Drosophila and found 

similar results in two other strains of D. simulans as well as in D. mauritiana.    

 

4.1 Introduction 

Reproductive isolation emerges between many animal species when barriers arise that prevent 

successful mating with one another (Mayr 1942). Mating incompatibilities often occur when 

female mating preferences evolve to target type-specific male courtship signals. As a result, 

females reject mating with heterospecific males for lack of necessary conspecific arousal cues, 

the presence of aversive cues, or both (Mayr 1963; Coyne and Orr 2004). To address questions 

of how female mating preferences diverge, it is necessary to understand which sensory 

modalities and neural structures are involved in the detection and processing of courtship signals. 

By studying these structures underlying behaviour I can understand how mating preferences 
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evolve type specificity, how that specificity can vary between closely-related strains and species, 

and how consequential these variations are to the process of speciation. 

 

Much work in the study of behavioural isolation has been conducted with species of the genus 

Drosophila (reviewed in Nanda and Singh 2012). Though Drosophila species females assess 

visual, chemical, tactile, and auditory signals during courtship, it is most commonly the auditory 

and chemical features of mating that are assessed for variation between different strains and 

species (Nanda and Singh 2012). The auditory component of courtship is the pulse and 

frequency of a wing song performed by males through vibrations of their outstretched wings 

(Ewing and Bennet-Clark 1967). Females detect song vibrations through feather-like projections, 

the arista, located on the second segment of the antenna (Boekhoff-Falk and Eberl 2014). 

Primary mechano-sensory neurons within the Johnston’s organ (also on the second antennal 

segment) acquire signals and then transmit them to the antennal mechano-sensory and motor 

center of the brain (Kamikouchi et al. 2006; Boekhoff-Falk and Eberl 2014). The neurons found 

in the antennal mechano-sensory and motor center of the brain are responsible for sex-specific 

song response (Zhou et al. 2015). The most noteworthy extensions created by these neurons are 

those made to the pC1 neurons, which surround the peduncles of the mushroom bodies (MB; 

Zhou et al. 2014). The MB are an important neuroanatomical component of many Drosophila 

behaviours and their role will be discussed in depth below.  

 

The key components of song that females assess are the modes of output (pulse song or sine 

song), the interval between song bursts (interpulse interval), and other properties of the song 

itself (e.g., carrier frequency) (Bennet-Clark and Ewing 1969; Kyriacou and Hall 1982; Ritchie 

et al. 1999). How these properties are evaluated by females varies both intraspecifically and 

interspecfically. For example, both D. sechellia and D. ananasae females discriminate against 

interspecific males on the basis of wing song (Doi et al. 2001; Tomaru 2004). However, 

interspecific males muted through surgical removal of their wings are able to achieve some level 

of copulation with normally discriminatory interspecific females. This dynamic indicates that 

females are able to recognize and discriminate against type-specific cues present in the song of 

interspecific males. Interestingly, in D. ananassae, the only role of wing song appears to be for 

rejecting heterospecific males, whereas in D. sechellia, conspecific wing song also stimulates 
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female receptivity (Tomaru 2004; Yamada et al. 2002). Intraspecifically, divergent wing songs 

are a partial source of behavioural isolation between allopatric populations of D. montana 

(Jenning et al. 2011). Therefore at the level of both strain and species, song can signal a mixture 

of arousal and aversion cues, with females of various lineages attuned to different song 

properties for different responses. 

  

The olfactory component of Drosophila  species courtship is mediated, in part, through cuticular 

hydrocarbons (CHC), which are surface compounds used dually as anti-desiccants and 

pheromones (Jallon and David 1987). Ligand detection of CHCs is primarily through olfactory 

sensory neurons (OSN) located in the antennae and the maxillary palps (See review by Keene 

and Waddell 2007). OSN make connections with the antennal lobe glomeruli where signals are 

sorted before being relayed to the mushroom bodies (MB) and the lateral horn. Depending on the 

species, the primary CHC utilized in the pheromone blend can either be sexually monomorphic 

or dimorphic for the two most abundant CHCs (Jallon and David 1987). Among species of the 

melanogaster group, D. melanogaster and D. sechellia are sexually dimorphic for pheromone 

blend, whereas D. mauritiana and D. simulans are sexually monomorphic (Jallon and David 

1987). Males of monomorphic species have difficulty recognizing females from dimorphic 

species as viable courtship partners, and this may contribute to their behavioural isolation (Coyne 

et al. 1994). For example, perfuming experiments conducted with D. sechellia and D. simulans 

show that D. simulans males are less likely to mate with D. simulans females that have been 

perfumed with D. sechellia pheromones. Similarly, CHC-less D. melanogaster females were 

more attractive to D. simulans males (normally reluctant to mate with D. melanogaster females) 

until perfumed with the primary D. melanogaster pheromone 7,11-heptacosadiene (7,11-HD; 

Billeter et al. 2009). In this last study, it was also determined that CHC are important markers for 

intrasexual signals, as CHC-less D. melanogaster males are courted by other D. melanogaster 

males until perfumed with their primary male pheromone 7-tricosene (7-T). CHC have also been 

found to be important in marking species identity for females in the behavioural isolation of D. 

serrata against D. birchii, and D. subquinaria against D. recens (Blows and Alan 1998; Dyer et 

al. 2014). In these experiments, perfuming males with the pheromones of the reciprocal species 

increases their copulation success with interspecific females that normally reject their mating 

attempts. In addition to species-specific differences that contribute to behavioural isolation, some 
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strain-specific pheromone differences contribute to incipient cases of species isolation. For 

example, D. melanogaster females from a Zimbabwe strain prefer mating with males that have 

less 7-T. In contrast, a cosmopolitan strain displays a positively correlated preference for 7-T 

(Grillet et al. 2012).  

 

In addition to understanding which cues are being discriminated against, I wanted to identify 

which neural structures are responsible for executing the evaluations. Several studies implicate 

the MB as a likely candidate structure for housing circuitry involved in mating receptivity 

decisions. The MB are a conserved neuroanatomical structure that have been implicated in 

complex insect behaviours since 1850, when Felix Dujardin demonstrated that the size of the 

MB positively correlated with behavioural complexity (Dujardin, 1850). Specifically, the MB are 

now known as a center for learning and memory, as well as a site where direct sensory inputs are 

integrated with contextual information before being relayed to higher order connections in the 

brain (Stausfeld et al. 1998; Keene and Waddell 2007). Specific behaviours mediated by the MB 

in D. melanogaster include saliency-based decision making (Zhang et al. 2007), temperature 

preference (Bang et al. 2011), sexual behaviour (O’Dell et al. 1995; Fleischmann et al. 2001), 

and associative odour learning (de Belle and Heisenberg 1994). To date the MB have not been 

associated with pre-mating receptivity, however, there is evidence that the MB are associated 

with the reductions in female receptivity that occur post-mating (Fleischmann et al. 2001). In 

these experiments, the detection of a male sex peptide also triggers the MB to de-repress 

oviposition and egg-laying behaviours. Additionally, chemical ablation of the MB in females 

also causes elevated rates of oviposition among virgin flies (Fleishmann et al. 2001). The case 

for MB involvement in female sexual behaviour can also be made from studies on female 

evaluations of male wing song and pheromones, which demonstrate a necessary role for dsx-

expressing pC1 and pCd neurons, which surround the peduncles of the MB (Zhou et al. 2014)..  

Compositionally, the MB are made up of Kenyon cells, which themselves can be subdivided into 

three classes of cells that cluster together in lobes (γ ,α, and β) (Lee et al. 1999). One of our 

candidate genes for female interspecific preference, Katanin-60 (Kat60; see Chapter 3), has been 

implicated previously in mushroom body (MB) development in D. melanogaster (Nicolai et al. 

2003). Removal of expression of Kat60 with homozygous P-element insertion (Kat60UY1645 ; also 

used to generate hemizygotes in the experiments conducted in Chapter 3) was observed to cause 
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neuron number defects and abnormal α lobe morphology in the MB (Nicolai et al. 2003). For 

these reasons, I test the hypothesis that the MB might have an inhibitory effect on mating 

behaviour that can be intensified or relieved on the basis of different mating signals.  

Previously, I identified three candidate genes (fruitless, Katanin-60, Mekk-1) involved in the 

behavioural isolation of D. simulans females against D. melanogaster males (Chapter 3). By 

using D. melanogaster lines bearing gene disruptions for the D. melanogaster allele of Katanin-

60 (Kat60) I was able to produce D. melanogaster/D. simulans female hybrids that displayed D. 

simulans-like mating preferences instead of the typical D. melanogaster-like receptive behaviour 

of hybrid females. By these means, it is possible to compare D. melanogaster and D. simulans 

behaviour among hybrid females of similar genetic backgrounds, with the key difference being 

whether the hybrid females inherit the transposable element insertion disrupting D. melanogaster 

Kat60 function or not.  This model allows us to test whether Kat60 is involved in female 

discrimination against auditory or olfactory cues because any other features of D. simulans 

discrimination are still masked by the dominant D. melanogaster traits. Only those sensory 

modalities influenced by the D. simulans allele of Kat60 are unmasked.  

Usage of mating cues for aversion or arousal provides clues to the selective processes that have 

shaped female receptivity, especially when comparisons are made of cue use between 

intraspecific and interspecific mating contexts. To this end, I determined if wing song was a 

general discriminatory cue used by the females of other D. simulans strains, and of other 

simulans complex species.  I also test whether Kat60 plays a similar role in the interspecific 

preferences of other strains of D. simulans, as well as their sibling species D. sechellia and D. 

mauritiana. If Kat60 is similarly involved in their behavioural isolation from D. melanogaster, 

then Kat60 may represent an important gene for the evolution of mating preference within the 

genus. Fortuitously, the P-element insertion line Kat60UY1645, used in my previous experiments 

(Chapter 3), bore a UAS element that can be utilized to drive tissue specific expression of the D. 

melanogaster Kat60 allele in hybrid females (which display D. simulans-like behaviour) using 

the GAL4-UAS system. This allowed testing of hypotheses about the MB and whether they play 

a role in mating receptivity behaviour by using different GAL4 drivers to rescue D. 

melanogaster  behaviour. The tissue-specificity of GAL4 expression allowed us to test which 
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subsets of the MB tissues may be involved. In testing the above hypotheses I found several 

interesting features of the influence of Kat60 on behavioural isolation.  

4.2 Methods 

 

Genetic Crosses: Six tissue-specific second chromosome GAL4 driver lineswere used to drive 

expression in overlapping subsets of neurons within the MB region of the brain: P{GawB}c747, 

P{GawB}Tab2201Y, P{GawB}103Y, P{GawB}17D, P{w[+mW.hs]=GawB}1471and 

P{GawB}Hr39c739. To make informative interspecies crosses, the GAL4 and UAS components 

had to be combined over balancer chromosomes within a single line so that I could generate and 

identify hybrid offspring containing the necessary components to induce expression of D. 

melanogaster Kat60. The final genotype of the D. melanogaster lines was: w*; P{GawB}[Gal4 

line]/CyO; P{Mae-UAS.6.11}Kat60UY1645/MKRS,Sb. Females from these D. melanogaster 

GAL4-UAS lines were crossed to D. simulans males to generate interspecies hybrids. Female 

receptivity towards D. melanogaster males was assessed with only the P{Mae-

UAS.6.11}Kat60UY1645 insertion (the D. melanogaster allele of Kat60 disrupted; only the D. 

simulans allele of Kat60 is expressed) and compared to females that have both the insertion and a 

GAL4 driver that turns on the D. melanogaster allele of Kat60 within the MB (both the D. 

melanogaster and D. simulans alleles of Kat60 are expressed). Hybrid females containing only 

the GAL4 driver (but not the UAS) were assayed as a control for background genetic effects. 

Hybrid assays with Kat60 disrupted using the P-element insertion, P{EPgy2}EY05593 (described in 

Chapter 3), were crossed according to the schemes laid out in Chapter 3.  

 

Stocks and Rearing Conditions: All Drosophila spp.lines were reared in conditions similar to 

those described in Chapter 3. The only exceptions were the rearing conditions for hybrid crosses 

involving D. sechellia, and two out of the four tests of D. mauritiana. In these cases, hybrid 

crosses were reared at 180C instead of 250C. All D. melanogaster stocks (30813, 51631, 9465, 

7362, 4440, 6494, 7345, 15953) were obtained from the Bloomington Drosophila Stock Center 

with the exception of the wildtype D. melanogaster strain (BJS1), which were provided by Dr. 

B. J. Sinclair. Wildtype D. simulans (14021-0251.165) were obtained from Dr. J. A. Coyne. 

Additional D. simulans strains (14021-0251.004, 14021-0251.166, 14021-0251.199, 14021-

http://flybase.org/reports/FBti0040333.html
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0251.216, 14021-0251.288, 14021-0251.310), and D. sechellia (14021-0248.25) were obtained 

from the Drosophila species stock center at the University of California. D. mauritiana were 

collected from Rodrigues, Mauritiana by Christopher Austin.  

 

RT-PCR: To assess general differences in Kat60 gene expression levels between D. simulans 

and D. melanogaster I performed RT-PCR (Fig. S2).  RNA was extracted from whole 5 day old 

virgin females using Purelink® RNA mini-kit (Life technologies). cDNA was synthesized from 

100ng RNA using One step RT-PCR (Qiagen). Amplification of Kat60 was performed using an 

exon-exon spanning primer 5’-CCATAACCTTACTGCGAGGTG-3’ and 5’-

CCGTGCTAATTTGGCATTCT-3’. The spt6 housekeeping gene was amplified in multiplex 

with Kat60 using primers 5’-GGAGAATCTGGGCGTCAAAGT-3’ and 5’-

CGCTTTCGTTGTCGTGGAT-3’, which are in adjacent exons. 

      

Statistics: Most assays of mating tested the proportion mated using a two-tailed Z-test, followed 

by FDR (P≤0.05) correction for multiple tests (Benjamini and Hochberg 1995). The only assays 

that used a different statistical test were those assessing the contributions of Kat60 in other stains 

and species. These tests were performed using a G-test of independence (p<0.05).  

 

Modality modifications and mating assays: Virgin hybrid sim/melKat60-females (P-element 

insertion P{EPgy2}EY055938 ) aged 3-5 days were anesthetised with CO2 and had the last two 

antennal segments and aristae surgically removed (herein referred to as, ant-) using 

microdissection needles. Control females remained unaltered, with intact antennae and aristae 

(herein referred to as, ant+). Mating assays were performed approximately 48 hours after 

surgical removal of the anntenna/aristae. In order to assess the effects of wing song within 

species, wingless intraspecific males were compared to winged intraspecific males. An identical 

approach was taken to determine the effects of interspecific wing song between species. Wing 

removal (referred to as, wing-) were performed similarly to the described protocol above for 

aristae, with the exception that males wings were removed 24 hours prior to the mating assay. 

Wings were removed near the base and did not including any musculature. During the perfuming 

assays, I used a masking paradigm to confer species pheromonal identity on test males. If 

females use interspecific CHC as a basis for discrimination, then a drop in mating activity for 
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conspecific males perfumed with interspecific CHC would be measured. If however, females 

were using conspecific CHC as an arousal signal, I would instead measure an increase in mating 

activity among interspecific males that are normally discriminated against.  Thus males were 

perfumed as such: D. melanogaster with D. melanogaster CHCs; D. melanogaster with D. 

simulans CHCs; D. simulans with D. simulans CHCs; D. simulans with D. melanogaster CHCs. 

CHC perfuming was conducted by crowding a single male in an 8mL vial with 15 other 

‘perfuming’ males. Perfuming males were differentiated from the single test male by surgically 

removing their wings as described above. All test males were perfumed for 48 hours prior to 

placement within the mating assay. All modality assays involving sim/mel hybrids used D. 

simulans-165 (Strain #14021-0251.165) 

4.3 Results 

4.3.1 The role of Katanin-60 in behavioural isolation of Drosophila spp. 

 

 D. melanogaster/D. simulans hybrid females accept mating from D. melanogaster males 

(Robertson 1988). Any D. simulans rejection behaviour in these hybrids is masked by the 

dominant D. melanogaster mating preferences. However, D. melanogaster/D. simulans hybrids 

bearing a P-element insertion (P{Mae-UAS.6.11}Kat60UY1645) in the D. melanogaster allele of 

Kat60 display D. simulans-like rejection behaviour (Chapter 3; Table 1). The strain of D. 

simulans used in these experiments (14021-0251.165) was originally collected from Florida City, 

FL, USA. I tested other strains of D. simulans from the Southeastern USA, and found similar 

results (Table 4.1). Female hybrids produced from D. melanogaster crossed with either D. 

simulans 288 (Athens, GA, USA) or D. simulans 166 (Islamorada, FL, USA) showed the same 

D. simulans-like mating rejection behaviour when the D. melanogaster Kat60 allele was 

disrupted (N=55; G = 9.004, p=0.003 and N=29; p=0.013, G=6.23, Table 4.1). The other D. 

simulans strains, 004 (Australia) 199 (Nanyuki, Kenya), 216 (Winters, CA, USA), 310 (Nairobi, 

Kenya) continued to show the D. melanogaster-like acceptance of mating, despite the presence 

of a disruption to the D. melanogaster allele of Kat60 (Table 4.1).  

 

Beyond testing the above D. simulans strains, I tested other simulans complex species with the 

same methodology. Since the degree of postzygotic isolation between D. melanogaster and other 
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species differs, it was neccessary to rear crosses between D. sechellia and D. melanogaster at a 

lower temperature (180C) to obtain any viable offspring. In these assays, no discriminatory 

behaviour was displayed by hybrids, indicating that D. sechellia interspecific preference is not 

influenced by Kat60 (Table 4.1). Given the difficulty of crossing D. melanogaster and D. 

sechellia at the normal rearing temperature (250C), it was assumed that similar precautions 

would be needed for crossing D. mauritiana and D. melanogaster. However after the first 

replicate of tests it was determined that such measures were unnecessary. Upon moving crosses 

to standard temperature incubation (250C), a different set of behavioural results were obtained 

that did not reflect those observed with hybrid females reared in the lower incubation condition 

(180C). To confirm the effects of rearing temperature on behavioural development, two more 

rounds of crosses were set up concurrently, with each reared at either the lower (L) or higer (H) 

temperatures. In both replicates using lower temperature conditions, hybrid females showed D. 

mauritiana-like rejection behaviour (L1: N=36; G = 5.533, P = 0.02; L2: N=35; G = 5.182, P = 

0.02). Hybrid females in both of the higher temperature replicates showed only the usual D. 

melanogaster-like acceptance behaviour (Table 4.1).  

4.3.2 Interspecific preference traits and Katanin-60’s influence 

To understand how behavioural divergence has led to interspecific mating discrimination, it is 

necessary to determine how, and which sensory modalities evolved incompatible differences. D. 

simulans females discriminate against the multimodal courtship of D. melanogaster males, and 

removal of any one component of this male courtship does not rescue interspecies female 

rejection. D. melanogaster  mating preferences are dominant in D. melanogaster/D. simulans 

hybrids. However, I was able to produce D. melanogaster/D. simulans hybrids bearing a 

disrupted D. melanogaster allele of Kat60, P{EPgy2}EY05593 (Kat60-), which unmasks D. 

simulans-like interspecific mating preference (Table 4.1). This allows tests for D. simulans 

sensory modalities and evaluations that are influenced by Kat60, as any other redundant 

discriminatory processes are still masked dominantly by the D. melanogaster genetic 

background. To test which organs might receive sensory inputs important for interspecific 

discrimination decisions, the last two antennal segments and the arista were removed from D. 

simulans-165/D. melanogaster hybrid females (sim/mel). Removal did not reduce sim/mel  

receptivity towards males, nor did it relieve discrimination against D. melanogaster males from 
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sim/melK60- females (Table 4.2). Next I tested wing song generally by removing male wings, and 

thus their ability to produce courtship song (Tomaru et al. 2000). If song was being used to 

stimulate arousal, a drop in female mating receptivity towards w- males would be measured. If 

females were using wing song to discriminate against males, then w- males would bypass female 

discrimination and achieve mating. In both cases, if there is an element of type-specificity for 

these female preferences, the results for female mating receptivity with intraspecific males and 

interspecific males would differ. Removing male wings did not reduce D. simulans-165 or 

sim/melK60- female receptivity towards D. simulans-165 males (Figure 4.1; Table 4.2). However, 

the absence of D. melanogaster song increased the frequency of interspecific copulation for both 

pure species D. simulans females (N=30; p=0.0048, Z= -2.8) and sim/melK60- females (N=29; 

p=0.0015, Z=-3.17) (Figure 4.1; Table 4.2).  Conversely, the absence of D. melanogaster song 

decreased the receptivity of sim/mel (N=29; p=0.0039, Z=-2.89), as has been previously reported 

in D. melanogaster females (Figure 4.1; Table 4.2; Tomaru and Oguma 2004). Thus, females 

bearing only the D. simulans allele of Kat60 have decreased mating due to the presence of D. 

melanogaster male song, while females bearing at least one dominant allele of D. melanogaster 

Kat60 have increased mating due to the presence of D. melanogaster song. 

 

I also studied female use of wing song in intraspecific and interspecfic contexts among different 

strains and species of Drosophila. Females from D. sechellia, D. mauritiana, and several strains 

of D. simulans were presented with either a male of their own species, or another (D. 

melanogaster) , both with (wing+) and without (wing-) wings. These results show that male 

wing song is used as a conspecific arousal cue for D. sechellia, D. mauritiana, and the 288 strain 

of D. simulans (Table 4.2; Figure 4.2). There were no differences in female mating activity for 

the interspecific context (mating with wing+ or wing- D. melanogaster) that were significant for 

these species and strains (Table 4.2). Male wing song was used as a discriminatory cue by 

females from D. simulans-165 and D. simulans-166 (Figure 4.2; Table 4.2). The D. simulans 

strains 216, 310, and 004 had no differences in mating with wing+ or wing- males in either 

context (Figure 4.2; Table 4.2).  

 

To test olfactory cues, I perfumed males with either their own species cuticular hydrocarbons 

(CHC) or CHCs of a different species (Coyne et al. 1994). Females using interspecific CHC as a 
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basis for discrimination, then a drop in mating activity for conspecific males perfumed with 

interspecific CHC would be measured. If however, females were using conspecific CHC as an 

arousal signal, I would instead measure an increase in mating activity among interspecific males 

that are normally discriminated against. In my experiments, only one interspecific arousal 

reaction was induced in females (Table 4.3). D. simulans males achieved more copulations with 

sim/melK60- females when they were perfumed with the D. melanogaster CHC males instead of 

D. simulans CHC (N=20; p=0.01). 

I hypothesized that the MBs are Drosophila neural structures that are likely involved in 

mediating mating decisions. I used D. melanogaster that have an UAS-bearing (P{Mae-

UAS.6.11}Kat60UY1645) transposable element insertion upstream of the promoter of Kat60, the 

presence of which disrupts D. melanogaster preference behaviour (Chapter 3; Table 4.1). When 

a GAL4-producing construct is crossed into the same genetic background as the UAS element, 

GAL4 binds to the UAS and activates the expression of the downstream gene; in this case, 

Kat60. The timing and location of the expression of GAL4 determines the timing and location of 

expression of the gene with the inserted UAS region (Brand and Perrimon 1993). Since many 

different tissue-specific GAL4 drivers exist for different tissues of the Drosophila brain, I was 

able to compare hybrids bearing these different drivers to narrow down which specific regions of 

the MB may be involved in female mating receptivity towards interspecific males. 

  

I tested six GAL4 drivers to induce expression at varying strengths for different subsets of 

neurons within the MB (α, α’, β, β’, γ). For three out of six of these different GAL4 lines (4440, 

7362, 51631) D. melanogaster-like behaviour was restored in UAS-bearing hybrids (Figure 4.3). 

The Gal4/UAS hybrids of these lines achieved more copulations than hybrids bearing only the 

UAS element, and did not have statistically lower copulation levels than  control hybrids that 

only bore the GAL4 driver or no Gal4/UAS elements at all (Table 4.4). In one line (9465) the 

difference between Gal4/UAS and UAS copulations was almost of statistical significance (N=24; 

p=0.08, Z=-1.76). This line may be another rescue as there is no statistical difference in 

copulations between the Gal4/UAS hybrids and the two control group females (Gal4-only 

hybrids and normal hybrids), which indicates that they are mating at the same level that D. 

melanogaster females would mate at with D. melanogaster males (Table 4.4). Comparison of the 

expression locations among these lines (both within and outside of the MB) reveals that there is 
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not a single neural substrate for Kat60's effect on female rejection behaviour. By subtracting the 

GAL4 driven regions of the three lines where D. melanogaster-like mating receptivity was 

restored from the regions of expression in the three lines where it was not restored, I was able to 

narrow the circuitry and developmental timing involved (Table S1). From this analysis, I 

conclude that the development of D. melanogaster-like mating receptivity occurs in the α and β 

lobes of the MB during larval development, with an emphasis for the third instar stage (Table 

S1). 
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Table 4.1: Role of Kat60 in interspecific preference of different D. simulans strains and species of Drosophila. D. melanogaster 

(Mut) contain the P-element insertion P{EPgy2}EY05593. Mating behaviour of hybrid females bearing either a Mut or balancer 

chromosome (Bal) were generated from D. melanogaster (mel) males crossed to the females from the listed strains and species1. 

Intraspecific crosses were made to control for the effects of possessing a Bal or Mut. Numbers are given for the number of courtships 

(Crt) and copulations (Cop) that occurred during behaviour assays. Hybrid females were additionally subjected to a sperm assay. 

Statistical significance was calculated for the comparisons of total copulations during the behaviour assay2, and then again for the sum 

of the behaviour and sperm assays3. The number of intraspecific copulations that occurred were calculated by taking the proportion of 

copulations of intraspecific females that were courted during behaviour assays ((Cop/Crt)*N). D. simulans-165 was tested previously 

and has been reprinted here for ease of reference (Chapter 3; Table 1)4. 
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Figure 4.1: Comparison of female D. simulans-165 mating to hybrid females displaying D. 

simulans-like or D. melanogaster-like response to song. D. simulans-165 (sim-165) and D. 

melanogaster (mel) males with wings (w+) or no wings (w-) were paired with females. D. 

melanogaster mating preferences are dominant in hybrids (sim/mel) unless the D. melanogaster 

allele for Kat60 is disrupted (sim/melK60-). D. simulans-165 and sim/melK60- females reject mating 

with w+ mel males, but accept mating from w- mel males. sim/mel display the typical D. 

melanogaster-like reduction in mating behaviour when no song is presented from w- mel males 

(Tamura and Oguma 2004). Statistical significance from Z-test comparions shown: ** = P≤0.005 

(Table 4.2). 
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Figure 4.2: Response of simulans species complex females to male courtship song in 

intraspecific and interspecific contexts. To determine the relevance of song males with wings 

(w+) or no wings (w-) were paired with females. Females were tested in both an intraspecific 

context (blues) and an interspecific context (reds).  Significance was determined through a two-

tailed Z test (P<0.05) with FDR for false positives (Table 4.2). Significant differences in mating 

are marked as *: P<0.05; **: P<0.005, ***: P<0.0005. Simulans complex species D. sechellia 

(sec), D. mauritiana (mau), and D. simulans strains 165, 166, 288, 004, 216, and 310 were used.  
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Table 4.2: Effects of sensory modalities in the mating preferences of different strains and species of 

Drosophila.  Mating proportions of females that had their antennae intact (ant+) or removed (ant-), or 

when males had their wings intact (wing+) or removed (wing-). Hybrid females that are sim/melKat60- 

have the D. melanogaster allele of Kat60 disrupted with P{EPgy2}Kat60EY05593. Significance was 

determined through a two-tailed Z test (p<0.05). 
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Table 4.3: Response of females to interspecific CHC. D. simulans-165/D. melanogaster 

hybrid (sim/mel) females were paired with either D. simulans-165 (sim-165) or D. melanogaster 

(mel) males. Males were perfumed with either (mel) or (sim-165) CHC. Hybrids did not copulate 

differently with D. melanogaster males perfumed in either conspecific or interspecific 

pheromones. Significance was determined through a two-tailed Z test (p<0.05). 

 

 

 

 

 

Female Male Treatment N # Copulations P-value (Z-statistic) 

sim/mel
K60-

 mel (mel) 20 1  

sim/mel
K60-

 mel ( sim-165) 20 4 0.15 (1.43) 

sim/mel mel (mel) 20 14  

sim/mel mel ( sim-165) 20 17 0.25 (1.14) 

sim/mel
K60-

 sim-165 (mel) 20 12  

sim/mel
K60-

 sim-165 ( sim-165) 20 4 0.01 (2.58) 

sim/mel sim-165 (mel) 20 9  

sim/mel sim-165 ( sim-165) 20 6 0.33 (0.98) 

sim-165 mel (mel) 20 0  

sim-165 mel ( sim-165) 20 0 - 

sim-165 sim-165 (mel) 21 16  

sim-165 sim-165 ( sim-165) 21 16 - 
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Figure 4.3: Effects on mating behaviour of tissue-specific MB expression for the D. 

melanogaster allele of Kat60 in hybrid females. Mating rate of hybrid females bearing different 

GAL4 drivers for expression of D. melanogasterKat60 in various neural tissues. Three different 

GAL4/UAS restored D. melanogaster–like mating levels (p<0.05). FDR correction for multiple 

tests ruled all three significant lines in as true positives.  
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Table 4.4. Hybrid female copulation with tissue-specific expression of the D. melanogaster allele of Kat60. Hybrids bearing 

transposable element (P{Mae-UAS.6.11}Kat60UY1645) were previously shown to display D. simulans-like mating behaviour (Chapter 3; 

Table 3.1). GAL4 drivers that selectively drive expression of UAS bearing genes in specific neural tissues were used to test whether 

D. melanogaster-like mating receptivity was restored. Behaviour of GAL4/UAS hybrid females was compared to UAS-only hybrid 

females which display the D. simulans-like rejection behaviour. Hybrids bearing only GAL4 or neither GAL4 or UAS (WT) were 

used to control for the presence of the GAL4 element. Significance was determined through a two-tailed Z-test (p<0.05). 

Bloomington TE insertion 
    

Z-test  
   Stock # 

 
n UAS GAL4/UAS GAL4 WT 

 
UAS GAL4 WT 

7362 P{GawB}Hr39c739 54 18 31 42 39 GAL4/UAS 0.01 (-2.53) 0.02 (-2.31) 0.10 (-1.64) 

       
WT <0.01 (-4.09) 0.50 (-0.69) 

       
GAL4 <0.01 (-4.70) 

 

           30813 P{GawB}103Y 34 10 12 29 26 GAL4/UAS 0.60 (-0.52) <0.01 (-4.21) <0.01 (3.42) 

       
WT <0.01 (-3.89) 0.35 (-0.93) 

       
GAL4 <0.01 (-4.66) 

 

           51631 P{GawB}17D 22 3 9 13 16 GAL4/UAS 0.04 (-2.031) 0.23 (-1.21) 0.03 (-2.13) 

       
WT <0.01 (-4.00) 0.34 (-0.95) 

       
GAL4 <0.01 (-3.13) 

 

           9465 P{w[+mW.hs]=GawB}1471 24 7 13 15 19 GAL4/UAS 0.08 (-1.76) 0.56 (-0.59) 0.07 (-1.84) 

       
WT 0.02 (-2.32) 0.20 (-1.27) 

       
GAL4 <0.01 (-3.48) 

 

           4440 P{GawB}Tab2201Y 21 6 13 13 16 GAL4/UAS 0.03 (-2.17) 1 (0) 0.32 (-1.00) 

       
WT <0.01 (-3.09) 0.32 (-1.00) 

       
GAL4 0.03 (-2.17) 

 

           6494 P{GawB}c747 22 5 7 14 17 GAL4/UAS 0.50 (-0.68) <0.01 (3.03) 0.03 (2.11) 

       
WT <0.01 (-2.74) 0.32 (0.99) 

       
GAL4 0.01 (-3.62) 

 

Copulations                                                     
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     4.4        Discussion 

4.4.1  Kat60 in behavioural isolation of Drosophila species 

I tested the phenotypic and evolutionary significance of the candidate behavioural isolation gene 

Kat60 in various strains and species of Drosophila. Though D. melanogaster mating preferences 

are dominant over D. simulans mating preferences in female hybrids, I was able to induce D. 

simulans-like discriminatory behaviour in hybrids using lines bearing various P-element 

insertions in the D. melanogaster allele of Kat60 (Chapter 3; Table 3.1). I was able to replicate 

this effect in two other D. simulans strains (166, 288) collected from a similar geographic region 

(Table 4.1). However, four other strains of D. simulans (004 199, 216, 310) did not show 

discrimination against D. melanogaster when the D. melanogaster Kat60 allele was similarly 

disrupted. Finding only three out of seven strains with the same genetic basis for interspecific 

preference is not surprising given similar findings from mapping studies of other Drosophila 

species pairs. For example, two loci influencing D. pseudobscura discrimination against D. 

persimilis were found in a QTL mapping study. The same experimental design applied to six 

other strains of D. pseudoobscura did not find any genetic correlation between the previously 

identified regions and interspecific preference of D. pseduoobscura females (Barnwell and Noor 

2008). Thus, I replicate here the finding that any pattern of isolation identified in a specific strain 

may not represent a general pattern of isolation among other strains for that species. Moreover, 

when loci underlying behavioural isolation identified against one species are identified, it is 

unlikely that the same genetic basis will be found to underlie behavioural isolation against 

another species. For example, D. mauritiana loci involved in discrimination against D. simulans 

(Moehring et al. 2004) did not match loci involved their discrimination against D.sechellia 

(McNabney 2012) or D. melanogaster (Chapter 3; Table 4.1). This makes sense as the males of 

different species likely possess different signal cues, and thus trigger rejection behaviours on the 

basis of different transgressions.  

 

Did Kat60-mediated discrimination evolve during an era that could have contributed to species 

isolation? Among the D. simulans strains tested, I only found Kat60-mediated isolation in the 

behavioural isolation of strains from the South-Eastern USA. The simplest explanation is that the 
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preference evolved after these strains were relocated from their ancestral location in central 

Africa. However, there is evidence that this form of discrimination is ancestral (and therefore lost 

by the other global strains of D. simulans tested here) because of the results obtained from D. 

mauritiana. D. mauritiana-like discrimination was unmasked in hybrids where the D. 

melanogaster allele of Kat60 was disrupted. However this was only the case when hybrids were 

reared at a lower temperature. If the former hypothesis is true (Kat60 discrimination against D. 

melanogaster is recent), then it is possible that Kat60  is generally important to the evolution of 

mating behaviour in Drosophila species. If the latter hypothesis is true (Kat60 discrimination 

evolved pre-speciation of D.mauritiana/D. simulans, post-speciation of D. simulans/D. 

melanogaster) then Kat60 may represent the kind of gene that would have aided early 

reproductive isolation between the two species. Regardless of which hypothesis is correct, Kat60 

appears to be an important gene for explaining interspecific differences in behaviour between 

Drosophila species.  

4.4.2  Sensory modalities usage and mediation by Kat60 

In addition to establishing whether Kat60 was involved in the mating preferences of these 

various strains and species, I also sought to determine which sensory modality conveys the type-

specific information upon which these decisions are made. The ability to produce hybrids that 

display either D. melanogaster-like or D. simulans-like mating preferences (because of 

P{EPgy2}Kat60EY05593), allowed us to assess only those component preferences influenced by 

Kat60. Any additional modalities D. simulans may use to discriminate against D. melanogaster 

are still masked by the dominant D. melanogaster background. Specifically, I tested whether 

Kat60 encodes for discrimination against either auditory or chemical cues from D. melanogaster 

males, since both of these modalities have been shown to influence mating receptivity in D. 

simulans females (Coyne et al. 1994; Ritchie et al. 1999). The first surgical manipulations tested 

(Performed by Tara Edwards) removed the antennae and aristae, which are the primary systems 

for detecting auditory and volatile chemical signals (Burnet et al 1971; Cline et al. 1997). 

Removal of these organs did not cause a reduction in female receptivity towards conspecific 

males (Table 4.1). It also did not increase receptivity in females paired with heterospecific males, 

demonstrating that D. simulans discrimination is not based on the detection of an aberrant 

heterospecific signal via these organs (Table 4.1). The removal of aristae has been found to not 
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have an effect on mating receptivity before in both D. subquinaria and D. recens (Dyer et al. 

2014). Thus, Kat60 does not appear to influence discrimination through these particular sensory 

organs, which means future searches must be expanded to other chordotonal organs located on 

the legs, thorax, and abdomen in future experiments. 

 

To specifically test the role of song I compared copulation success among normal males, and 

wingless males. I hypothesized that if females recognized aversive cues in interspecific males 

then w- males would achieve more copulations than w+ males, and conspecific males would 

similarly achieve copulation regardless of being w+ or w-. I also hypothesized that if conspecific 

males possessed necessary arousal cues, then w+ conspecific males would achieve more 

copulations than w- conspecific males, and interspecific males would be similarly discriminated 

against regardless of being w+ or w-. Song was important for discrimination against interspecific 

males in D. simulans-165 and D. simulans-166. Interestingly, D. simulans-165 and D. simulans-

166 are from similar geographic regions (Florida City, FL and Islamorada, FL), so it is likely that 

each is derived from a similar ancestral strain (Figure 4.1). When I tested Kat60- hybrids (display 

D. simulans-like preference), I found the same result: hybrids did not discriminate against w- D. 

melanogaster males (Figure 4.1). Conversely, among normal hybrids (display D. melanogaster-

like preference), copulation decreased with w- males, which is the expected result for D. 

melanogaster females (Tomaru and Oguma 2004). Thus the behavioural effects of Kat60 alleles 

on hybrid behaviour is not likely due to mis-expression of the gene, as I was able to generate 

behaviours in hybrids that matched either parent’s preference behaviours. Conspecific song was 

also important for stimulating copulation with D. mauritiana, D. sechellia, and D. simulans-288 

females (Table 4.1; Figure 4.2). The D. sechellia results contradict previous studies (Tamura and 

Oguma. 2004) which showed that D. sechellia use song for both intraspecific arousal and 

interspecific aversion. However, Tomaru and Oguma (2004) used different strains from the ones 

tested here, which may account for the differences in interspecific responses, a phenomenon seen 

here with these D. simulans strains as well (Table 4.1). For the species that did not discriminate 

against D. melanogaster on the basis of song it should be noted that they may still discriminate 

against other strains and species on the basis of auditory cues, just not D. melanogaster auditory 

cues.  

 



 

95 

 

To assess the role of Kat60 in pheromone discrimination, I perfumed test males with CHC from 

either their own species or a different one.  Female hybrids with the TE insertion (displaying D. 

simulans-like behaviour) did not accept more D. melanogaster males perfumed with D. simulans 

CHC. This result indicates that Kat60 is not involved in discrimination against D. melanogaster 

CHC. The only result with a statistically significant difference between pheromone treatments 

was for increased copulation between Kat60- hybrid females and D. simulans males perfumed 

with D. melanogaster male CHC (N=20; p=0.01; Table 4.3). I interpret this result to mean that 

even though D. simulans discrimination is unmasked in these hybrids, there are other arousal 

systems of D. melanogaster that are still being expressed, and one of these systems is governed 

by D. melanogaster male CHC. I believe this to be concordant with other results, because Kat60  

hybrids still mate with D. melanogaster at a low level (as opposed to D. simulans which do not 

mate at all; Chapter 3). This trend was also present in normal (control) hybrids for the same 

treatment, but I did not achieve statistical significance for their difference in copulation success 

(Table 4.4). Even though there was no statistically significant difference between treatments (D. 

melanogaster perfume vs. D. simulans perfume) for control hybrids, there was also no 

statistically significant difference between hybrid classes (hybrid vs. Kat60- hybrid) for either 

perfuming treatment of D. melanogaster perfume (N= 20; p=0.34, Z=-0.95) or D. simulans 

perfume (N=20; p=0.47, Z=-0.73). Future experiments with larger samples may be able clarify 

the ambiguity in these results.   

4.4.3  Expression of Kat60 in the MB 

Alternative mating behaviours can exist as a result of variation in gene expression. Various 

alleles of the circadian rhythm gene period influences female sexual behaviour (Sehgal et al. 

1994). Different expression patterns of fruitless influences male sexual behaviour in Drosophila 

(Goodwin et al. 2000). Because the severing activity of Kat60 is concentration-dependent, it is 

likely that differential expression of the gene during development explains species differences as 

opposed to protein differences (Zhang et al. 2007B). However, since the effect on behaviour is 

potentially due to a very specific core set of neurons, it is not surprising that neither I nor others 

could report any species-specific differences in expression of Kat60 (Figure 4.3; Graze et al. 

2009). Expression differences in these neurons, if present, would only contribute a small amount 

of transcripts to the overall Kat60 transcript pool and may only be present transiently during 
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specific stages of development. A significant difference in expression levels of Kat60 was not 

detected between the two species (Figure S1; Wang et al. 2007), and there is no mis-expression 

or dominance of expression of Kat60 in hybrid females (Wang et al. 2007).  

 

To confirm the role of Kat60 in behavioural isolation, I induced expression of the D. 

melanogaster allele of Kat60 using the GAL4-UAS system. This was possible because the 

P{Mae-UAS.6.11}Kat60UY1645 insertion used to disrupt D. melanogaster Kat60 also contained a 

UAS element which allowed us to drive tissue specific expression of Kat60. Three different 

GAL4 lines restored D. melanogaster like mating behaviour in Kat60-  hybrids. Comparisons of 

their expression patterns revealed that they were all expressed in the α and β lobes of the MB 

during larval development, with an emphasis for the third instar stage (Supplementary Table 

4.1). At this stage, D. melanogaster larva are ~120-124 hours old, and begin undergoing 

developmental changes leading into pupation (Doane 1967). During pupation, the MBs undergo 

extensive remodelling, including: pruning and regrowth of neuronal processes, programmed cell 

death (PCD), and trans-differentiation (Veverysta and Allan 2013). Given the reliance of these 

cellular processes on microtubule dynamics, Kat60 could play a role in this stage of development 

of the MB. Kat60`s action could occur through several different activities including: disassembly 

of MT during the pruning of larval neurite networks, generation of short microtubule fragments 

to seed the rearborization of Kenyon cells, facilitating PCD, or some mixture of each (Moore 

2008; Roll-Mecak and McNally 2010). Further study of these regions at various stages of 

development could be done using the temperature sensitive shibire system to negatively select 

these regions of interest. Such an approach could shed further insight into the different circuitry 

used by these two species in preference behaviour. 

4.5 Conclusion 

Females of D. simulans strains of the Southeastern USA bear a Kat60 allele that influences their 

mating preferences against D. melanogaster males. The discrimination is against interspecific 

signals present in D. melanogaster wing song, and requires neural processing in the α and β 

lobes of the MB. This behaviour is recessive in hybrids of the two species, which instead display 

D. melanogaster reliance on wing song for arousal cues. The differential usage of wing song 

between the two species may explain the mating asymmetry between the two species (D. 
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simulans females reject D. melanogaster males but not the other way around). The finding that 

D. mauritania had a temperature-dependent requirement for Kat60-mediated discrimination 

indicates that variant behavioural phenotypes may only be realized under certain environmental 

influences during development. Though it is unlikely that this discrimination behaviour was 

present in D. simulans ancestors, the fact that it is a type-specific aversion suggests that there 

may have been an episode of sexual selection, in recent evolutionary history, against 

unfavourable male mating partners.  

  

     4.6  Literature cited 

Attrill, H., Falls K., Goodman, J.L., Millburn, G.H., Antonazzo, G., Rey, A.J., Marygold, S.J., 

the FlyBase Consortium. (2016). FlyBase: establishing a gene group resource for Drosophila 

melanogaster.  Nucleic Acids Research 44: D786-D792. 

Bang, S., Hyun, S., Hong, S.T., Kang, J., Jeong, K., Park, J.J., Choe, J. and Chung, J. (2011) 

Dopamine signalling in mushroom bodies regulates temperature-preference behaviour in 

Drosophila. PLoS genet, 7(3): e1001346. 

Barnwell, C.V. and Noor, M.A. (2008). Failure to replicate two mate preference QTLs across 

multiple strains of Drosophila pseudoobscura. Journal of Heredity 99: 653-656. 

Bontonou, G., Denis, B. and Wicker‐Thomas, C. (2012). Male pheromone polymorphism and 

reproductive isolation in populations of Drosophila simulans. Ecology and Evolution 2: 2527-

2536. 

Burnet, B., Connolly, K. and Dennis, L. (1971). The function and processing of auditory 

information in the courtship behaviour of Drosophila melanogaster. Animal Behavior 19: 409-

415. 

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B 

(Methodological) 57: 289-300. 

 

Boekhoff‐Falk, G. and Eberl, D.F. (2014). The Drosophila auditory system. Wiley 

Interdisciplinary Reviews: Developmental Biology 3: 179-191. 

Brand, A.H. and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates 

and generating dominant phenotypes. Development 118: 401-415. 

Clyne, P., Grant, A., O'Connell, R. and Carlson, J.R. (1997). Odorant response of individual 

sensilla on the Drosophila antenna. Invertebrate Neuroscience 3: 127-135. 



 

98 

 

Coyne, J.A., Crittenden, A.P. and Mah, K. (1994). Genetics of a pheromonal difference 

contributing to reproductive isolation in Drosophila. Science 265: 1461-1464. 

De Belle, J.S. and Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by 

chemical ablation of mushroom bodies. Science 263: 692-695. 

Doane, W.W. (1967). Drosophila. In Methods in Developmental Biology. Crowell, New York: 

219-244. 

Dujardin, F. (1850). Mémoiresur le système nerveux des insectes. Annales Des Sciences 

Naturelles-Zoologie Et Biologie Animale 14: 195-206. 

 

Ewing, A.W. and Bennet-Clark, H.C. (1968). The courtship songs of Drosophila. Behaviour 31: 

288-301. 

Fleischmann, I., Cotton, B., Choffat, Y., Spengler, M. and Kubli, E. (2001). Mushroom bodies 

and post-mating behaviors of Drosophila melanogaster females. Journal of Neurogenetics 15: 

117-144. 

 

Goodwin, S.F., Taylor, B.J., Villella, A., Foss, M., Ryner, L.C., Baker, B.S. and Hall, J.C. 

(2000). Aberrant splicing and altered spatial expression patterns in fruitless mutants of 

Drosophila melanogaster. Genetics 154: 725-745. 

 

Graze, R.M., Mcintyre, L.M., Main, B.J., Wayne, M.L. and Nuzhdin, S.V. (2009). Regulatory 

divergence in Drosophila melanogaster and D. simulans, a genomewide analysis of allele-

specific expression. Genetics 183: 547-561. 

Grillet, M., Everaerts, C., Houot, B., Ritchie, M.G., Cobb, M. and Ferveur, J.F. (2012). Incipient 

speciation in Drosophila melanogaster involves chemical signals. Scientific Reports 2224: 

srep00224. 

Jennings, J.H., Mazzi, D., Ritchie, M.G. and Hoikkala, A. (2011). Sexual and postmating 

reproductive isolation between allopatric Drosophila montana populations suggest speciation 

potential. BMC Evolutionary Biology 11: 68. 

 

Kamikouchi, A., Shimada, T. and Ito, K. (2006). Comprehensive classification of the auditory 

sensory projections in the brain of the fruit fly Drosophila melanogaster. Journal of 

Comparative Neurology 499: 317-356. 

Lee, T., Lee, A. and Luo, L. (1999). Development of the Drosophila mushroom bodies: 

sequential generation of three distinct types of neurons from a neuroblast. Development 126: 

4065-4076. 

McNabney, D.R. (2012). The genetic basis of behavioral isolation between Drosophila 

mauritiana and D. sechellia. Evolution 66: 2182-2190. 



 

99 

 

Moehring, A.J., Li, J., Schug, M.D., Smith, S.G., Mackay, T.F. and Coyne, J.A. (2004). 

Quantitative trait loci for sexual isolation between Drosophila simulans and D. mauritiana. 

Genetics 167: 1265-1274. 

Moore, A.W. (2008). Intrinsic mechanisms to define neuron class-specific dendrite arbor 

morphology. Cell Adhesion and Migration 2: 81-82. 

Nanda, P. and Singh, B.N. (2012). Behavioural reproductive isolation and speciation in 

Drosophila. Journal of biosciences 37:359-374. 

Nicolaï, M., Lasbleiz, C. and Dura, J.M. (2003). Gain‐of‐function screen identifies a role of the 

Src64 oncogene in Drosophila mushroom body development. Journal of Neurobiology 57: 291-

302. 

O'Dell, K.M., Armstrong, J.D., Yang, M.Y. and Kaiser, K. (1995). Functional dissection of the 

Drosophila mushroom bodies by selective feminization of genetically defined subcompartments. 

Neuron 15: 55-61. 

Pavlou, H.J. and Goodwin, S.F. (2013). Courtship behavior in Drosophila melanogaster: towards 

a ‘courtship connectome’. Current Opinion in Neurobiology 23: 76-83. 

Ritchie, M.G., Halsey, E.J. and Gleason, J.M. (1999). Drosophila song as a species-specific 

mating signal and the behavioural importance of Kyriacou and Hall cycles in D. melanogaster 

song. Animal Behavior 58: 649-657. 

Roll-Mecak, A. and McNally, F.J. (2010). Microtubule-severing enzymes. Current Opinion in 

Cell Biology 22: 96-103. 

Sehgal, A., Price, J.L., Man, B. and Young, M.W. (1994). Loss of circadian behavioral rhythms 

and per RNA oscillations in the Drosophila mutant timeless. Science 263: 1603-1606. 

Terai, Y., Seehausen, O., Sasaki, T., Takahashi, K., Mizoiri, S., Sugawara, T., Sato, T., 

Watanabe, M., Konijnendijk, N., Mrosso, H.D. and Tachida, H. (2006). Divergent selection on 

opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biology 4: e433. 

Tomaru, M. and Oguma, Y. (2004). Mate choice in Drosophila melanogaster and D. sechellia: 

criteria and their variation depending on courtship song. Animal Behavior 60: 797-804. 

Veverytsa, L. and Allan, D.W. (2013). Subtype-specific neuronal remodeling during Drosophila 

metamorphosis. Fly 7: 78-86. 

Wang, Z., Singhvi, A. and Kong, P. (2004). Taste representations in the Drosophila brain. Cell 

117: 981–999. 

Yew, J.Y., Dreisewerd, K., Luftmann, H., Müthing, J., Pohlentz, G. and Kravitz, E.A., (2009). A 

new male sex pheromone and novel cuticular cues for chemical communication in 

Drosophila. Current Biology 19: 1245-1254. 



 

100 

 

Zhang, K., Guo, J.Z., Peng, Y., Xi, W. and Guo, A. (2007). Dopamine-mushroom body circuit 

regulates saliency-based decision-making in Drosophila. Science 316: 1901-1904. 

 

Zhang D., Rogers, G.C., Buster, D.W. and Sharp, D.J. (2007). Three microtubule severing 

enzymes contribute to the "Pacman-flux" machinery that moves chromosomes. Journal of Cell 

Biology 177: 231-242. 

Zhou, C., Pan, Y., Robinett, C.C., Meissner, G.W. and Baker, B.S. (2014). Central brain neurons 

expressing doublesex regulate female receptivity in Drosophila. Neuron 83: 149-163. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

101 

 

 

Chapter 5 

5 General Discussion 

5.1 Thesis Summary 

 

The loci underpinning behavioural isolation between species do not appear to be those 

underpinning genetic variation within species. In song QTL among Drosophila spp., the within 

species variation in wing song for D. melanogaster matches none of the between species genetic 

differences found between D. simulans and D. sechellia (Gleason 2004). There are no known 

alleles of fruitless that produce variant D. melanogaster male morphology, but other 

melanogaster group species males have morphological differences that are attributable to their 

version of fruitless. The QTL for conspecific prefence of D. simulans females for D. simulans 

males did not share any loci with my QTL map for D. sechellia female rejection of D. simulans 

males (Chapter 3). On the basis of these results, it seems reasonable to conclude that many 

unique outlets for diversification appear to exist, each yielding alternative mating preferences 

between species, and each underwritten from contributions of different genetic loci. Though 

Kat60 was identified as a candidate behavioural isolation gene in both D. simulans and D. 

mauritiana, the action and developmental conditions of their discrimination against D. 

melanogaster males varied from one another (Chapter 3; Chapter 4). Thus, even when a single 

gene underlying behavioural isolation is identified, there are potential intra- and interspecific 

variants of genes in the same pathway from which species-specific charactersitics could be 

derived. One such candidate gene for female D. mauritiana discrimination against D. simulans 

males has already been mapped to a small region containing only three genes, one of which is the 

microtubule binding protein Map205 (McNiven and Moehring 2013). Lastly, it is also possible 

that the same pathway may give rise to multiple forms of reproductive isolation, such as hybrid 

sterility. For example, the cellular activity of Katanin-60 is sometimes modulated by Katanin-80, 

a protein that can result in male sterility when mutated (O’Donnell et al. 2012). If prezygotic and 

postzygotic mechanisms of isolation co-occur in the same pathway, then the reinforcement of 

reproductive barriers between species could occur readily. 
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Genomic recombination is suppressed between heterokaryotypic regions of homologous 

chromosomes. As a result these regions have increased levels of nucleotide divergence between 

species, and are predicted to have a higher likelihood of harbouring alleles important for the 

maintenance of species as distinct groups (Noor et al. 2007; Stevison et al. 2011). The 

identification of the candidate behavioural isolation genes Kat60, Mekk-1, and fruitless near the 

borders of two D. simulans chromosomal inversions appears to validate this hypothesis. The 

finding that genes involved in behavioural isolation are coincident with regions of elevated 

interspecific divergence is important as this prediction is at the intersection of two important 

species concepts. The genotypic species cluster concept is our most powerful means of defining 

distinct lineages from one another but does not speak to whether reproductive isolation exists 

between any given species pair (Mallet 1995). The biological species concept is the most 

reflective of how speciation dynamics emerge in nature, but is experimentally unfeasible to test 

on the myriad combinations of closely related species that might reproductively interact with one 

another (Mayr 1976). Thus it is possible to make predictive claims about the behavioural 

isolation that might exist between a species pair given the divergent features present within the 

genome, or vise versa. This may be especially true of inversions which may not only shelter 

divergent regions, but possess adaptive value that distinguish and diversify the group bearing 

them. For example, inversions between various strains of D. pseudoobscura are selectively 

maintained between heterogeneous environments because of their ability to hold different 

combinations of adaptive loci in specific combinations (Schaeffer 2008). Another putative 

mechanism might be that once a region is inverted, either end of the inversion might be 

introduced to new gene regulatory environments, inducing its divergence (Heard and Bickmore 

2007). The D. simulans breakpoint at 84F1 (near Kat60) is directly in front of a Hox gene cluster 

(84F1-84B2), which are classical examples of the influence of chromosomal territory on gene 

function (Graham et al. 1989). The breakpoint at 93F6-7 (near Mekk-1 and fruitless) is directly 

after the neuronal response gene Insulin-like receptor (InR). InR is noteworthy in the context of 

female D. melanogaster mating behaviour as it has been shown to regulate sex-specific female 

courtship responses to pheromones (Lebreton et al. 2015). Thus inversions may be an important 

substrate for evolutionary dynamics that are likely to lead to speciation. 
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5.2 Genetics of behavioural isolation in Drosophila 

The loci underpinning behavioural isolation between species do not appear to be those 

underpinning variation within species. In song QTL among Drosophila spp., the within species 

variation in wing song for D. melanogaster matches none of the between species genetic 

differences found between D. simulans and D. sechellia (Gleason 2004). There are no known 

alleles of fruitless that produce variant D. melanogaster male morphology, but other 

melanogaster group species males have morphology differences that are attributable to their 

version of fruitless. The QTL for conspecific prefence of D. simulans females for D. simulans 

males did not share any loci with my QTL map for D. sechellia female rejection of D. simulans 

males (Chapter 3). On the basis of these results, it seems reasonable to conclude that many 

unique outlets for diversification appear to exist, each yielding alternative mating preferences 

between species, and each underwritten from contributions of different genetic loci. Though 

Kat60 was identified as a candidate behavioural isolation gene in both D. simulans and D. 

mauritiana, the action and developmental conditions of their discrimination against D. 

melanogaster males varied  from one another (Chapter 3; Chapter 4). Thus, even when a single 

gene underlying behavioural isolation is identified, there are potential intra- and interspecific 

variants of genes in the same pathway from which species-specific charactersitics could be 

derived. One such candidate gene for female D. mauritiana discrimination against D. simulans 

males has already been mapped to a small region containing only three genes, one of which is the 

microtubule binding protein Map205 (McNiven and Moehring 2013). Lastly, it is also possible 

that the same pathway may give rise to multiple forms of reproductive isolation, such as hybrid 

sterility. For example, the cellular activity of Katanin-60 is sometimes modulated by Katanin-80, 

a protein that can result in male sterility when mutated (O’Donnell et al. 2012). If prezygotic and 

postzygotic mechanisms of isolation co-occur in the same pathway, then the reinforcement of 

reproductive barriers between species could occur readily. 

 

Genomic recombination is suppressed between heterokaryotypic regions of homologous 

chromosomes. As a result these regions have increased levels of nucleotide divergence between 

species, and are predicted to have a higher likelihood of harbouring alleles important for the 

mainteneance of species as distinct groups (Noor et al. 2007; Stevison et al. 2011). The 
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identification of the candidate behavioural isolation genes Kat60, Mekk-1, and fruitless near the 

borders of two D. simulans chromosomal inversions appears to validate this hypothesis. The 

finding that genes involved in behavioural isolation are coincident with regions of elevated 

interspecific divergence is important as this prediction at the intersection of two important 

species concepts. The genotypic species cluster concept is our most powerful means of defining 

distinct lineages from one another but does not speak to whether reproductive isolation exists 

between any given species pair (Mallet 1995). The biological species concept is the most 

reflective of how speciation dynamics emerge in nature, but is experimentally unfeasible to test 

on the myriad combinations of closely related species that might reproductively interact with one 

another (Mayr 1976). Thus it is possible to make predictive claims about the behavioural 

isolation that might exist between a species pair given the divergent features present within the 

genome, or vise versa. This may be especially true of inversions which may not only shelter 

divergent regions, but possess adaptive value that distinguish and diversify the group bearing 

them. For example, inversions between various strains of D. pseudoobscura are selectively 

maintained between heterogeneous environments because of their ability to hold different 

combinations of adaptive loci in specific combinations (Schaeffer 2008). Another putative 

mechanism might be that once a region is inverted, either end of the inversion might be 

introduced to new gene regulatory environments, inducing its divergence (Heard and Bickmore 

2007). The D. simulans breakpoint at 84F1 (near Kat60) is directly in front of a Hox gene cluster 

(84F1-84B2), which are classical examples of the influence of chromosomal territory on gene 

function (Graham et al. 1989). The breakpoint at 93F6-7 (near Mekk-1 and fruitless) is directly 

after the neuronal response gene Insulin-like receptor (InR). InR is noteworthy in the context of 

female D. melanogaster mating behaviour as it has been shown to regulate sex-specific female 

courtship responses to pheromones (Lebreton et al. 2015). Thus inversions may be an important 

substrate for evolutionary dynamics that are likely to lead to speciation. 

5.2.1 Divergent sexual dimorphism 

Evolutionary diversification of traits associated with sexual dimorphism are predicted to be key 

factors of speciation (Coyne and Orr 2004). fruitless, a necessary determinant of sexually 

dimorphic anatomy and behaviours in Drosophila  species, was identified as a candidate gene 

(Chapter 3). In Chapter 3 I covered briefly how fruitless may contribute to divergent behaviours 
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between species, and will expand on this discussion here with a more speciation-centric 

perspective. The first notable behaviour attached to the gene fruitless was its role in inhibiting 

courtship behaviour of males towards other males (Ryner et al. 1996). fruitless has, since then, 

been found to be an important determinant of proper behavioural and anatomical development of 

male D. melanogaster (Lee et al. 2000; Usui-Aoki et al. 2005). However, the degree to which 

fruitless establishes sexually dimorphic systems varies on a species-by-species basis. For 

example in the lamina of the Drospohila CNS, fru is expressed by D. virilis males, by D. suzukii 

males and females, and not at all among seven other Drosophila species (Usui-Aoki et al. 2005). 

Together, these two facts suggest that females, when evolving aversive mating preferences, may 

sometimes borrow those same systems that males use to identify and inhibit their own mating 

behaviour towards other males. One advantage to shifting intersexual boundaries in this way is 

that the system already exists and avoids the evolutionary hurdle of having to develop a new one 

from scratch. A potential consequence may be that, for the male signifier to be sexually selected 

against, males bearing feminized/neutral traits are favoured during mating. This may partially 

explain the mating asymmetry between D. melanogaster (sexually dimorphic for CHC) and D. 

simulans (sexually monomorphic for CHC). If such a dynamic is prevalent, it would be 

straightforward to measure whether females are generally more likely to discriminate against 

interspecific males possessing traits that were ancestrally present in conspecific males, but have 

since been lost.  

5.3 Evolution of traits involved in behavioural isolation 

D. melanogaster and D. simulans have species-specific differences in auditory cues and olfactory 

cues that play a role their behavioural isolation from one another (reviewed in: Capy and Gibert 

2004). I determined that one of the means female D. simulans used to discriminate against D. 

melanogaster males was through a system that involved: aversion towards cues present in male 

wing song, neural structures found within the MB, and the expression of Kat60 - a gene located 

in a region of the D. simulans genome which would have been sheltered from recombination as it 

diverged (Chapter 3, Chapter 4). This system did not rely on the antennae or aristae to detect 

these signals, and male CHC were not discriminated against (Chapter 4). These patterns were not 

uniform across the other strains and species of melanogaster group Drosophila that I tested.  In 

total, three different usages of song by various strains and species of the melanogaster group 
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were found: as a bearer of conspecific arousal cues, as a bearer of interspecific aversion cues, 

and with no apparent use for species recognition at all. Taken together, these results indicate that 

Drosophila species can readily diversify by using different subsets of mating traits, or similar 

subsets with different trait salience. The evolution of conspecific male arousal signals likely 

represents a process of sexual selection for male traits that signify adaptive qualities (Seehausen 

et al. 2008). Thus in D. mauritiana, D. simulans-288, and D. mauritiana  I expect some episode 

of ecological adaptation to explain their interspecific preference that targets conspecific males 

and bears no regard towards interspecific males (Chapter 4). D. simulans-165 and D.  simulans-

166 likely acquired their interspecific aversion to D. melanogaster males under different 

evolutionary circumstances. During reinforcement, maladaptive or inviable offspring produced 

from interspecific mating are prevented through the evolution of female discriminatory processes 

that recognize the interspecific males that would produce such offspring (Koopman 1949). As a 

result, females are able to detect and reject a signifier present in the interspecific males but not 

conspecific males. Alternatively, if the females recognize the signifier as a means of avoiding 

sexually anagonistic conspecific males, then interspecific males, which presumably still bear this 

ancestral trait, could also be selected against. This latter interpretation has some support in the 

context of Kat60, which is highly upregulated in female-specific versus male-specific tissues 

(Innocenti and Morrow 2010). Genes with sexually antagonistic functions are more likely to 

arise from genes with sex-biased expression (Reviewed in Ellegen and Parsch 2007). 

Alternatively, no selective mechanisms are required if alleles for new behaviours were acquired 

through genetic drift (Niehuis 2013), and were subsequently sheltered by inhabiting a region 

with suppressed recombination, such as an inversion (Stevison et al. 2011). Given that the 

candidate genes were located in such an interval, this may also be a plausible evolutionary 

explanation. 

5.4 Concluding remarks 

In conclusion, female mechanisms of discrimination against interspecific males can arise through 

many different pathways. One pathway I have identified here in D. simulans appears to rely on 

genes that are involved in the selective cultivation of specific neuronal populations or 

connections during development. More work is required to identify the genetic components of 

these alleles that vary between species and are responsible for behavioural isolation. This 
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includes using inducible enhancer-mediated expression to determine developmental timing of the 

behavioural effect, and immunohistochemistry to determine the location of expression within 

various structures of the CNS, such as the MB, in the two species.  

 

Based on analyses of the discriminatory system found in D. simulans-165, and its comparison to 

other strains and species of Drosophila, I suggest that the discrimination shown by D. simulans-

165 females against D. melanogaster males evolved relatively recently, evolved in response to 

past sexual antagonism, and evolved through redundant or secondary means of detection of 

auditory signals. To determine whether any these dynamics represent general patterns of species 

formation in Drosophila, we will need to expand our catalogue of species pairs, their 

reproductive interactions with one another, and upon what phenotypic bases these interactions 

occur. Such studies of courtship are becoming easier and more nuanced with the introduction of 

software-based analytics that are better able to capture details that are not apparent to a human 

observer. For this reason, we are increasingly becoming aware that the flow of information and 

assessment during courtship may be more bidirectional and more influenced by context than has 

been previously noted. I look forward to further addressing the ideas explored in this chapter, 

and I hope they find wider usage in the speciation research community.  
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Appendices 

 

Appendix A: Chapter 3 supplementary methods 

 

Cloning of the Kat60 gene from D. melanogaster and D. simulans 

Aaron M. Allen 

 

PCR amplification of the Kat60 alleles: 

 

Kat60 alleles were amplified through PCR. Restriciton sites (AscI, NotI) as well as an “ata” 

spacer were subcloned into the alleles with the primers ATA GGC GCG CCG TCA TAT GCC 

TTG GCG GTC AG and ATA GCG GCC GCC CTC CAG CGG ATT CTA TCC. NEB Phusion 

High-Fidelity polymerase was used (cat # M0530) following the manufacturers instructions.  

 

Digestion, ligation and transformation of the PCR amplified Kat60 alleles: 

 

All enzymes used were purchased from NEB and used following the manufacturers instructions. 

The PCR amplicons were directly digested with AscI and NotI. The pStinger-attB plasmid was 

also digested with AscI and NotI. The resulting digestions were gel electrophoresed and the 

corresponding bands were purified using Bio Basic gel extraction kit (cat# BS654) following the 

manufacturers instructions. The insert and vector were ligated using NEB's T4 DNA ligase 

(cat# M0202). The resulting ligation was used to transform NEB 10 beta cells (cat# C3020K) 

following the manufacturers instructions. Isolated colonies were used to generate overnight 

liquid cultures. Plasmid DNA mini-prepartions (Bio Basic cat# BS614) were 

performed to isolate the resulting recombinant DNA. 
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Appendix B: Chapter 4 supplementary material 

 

 

 

 

 

Supplementary Figure 1: RT-PCR of Kat60 from Drosophila species females (A) RT-

PCR of Katanin-60 (Kat60) in D. melanogaster (D. mel) and D. simulans(D. sim); the 

housekeeping gene Spt-6 was used as an internal control.(B) Expression of Katanin-60 in 

three D. melanogaster lines bearing different P-elements associated with Katanin-60. D. 

mel (7345) is the line with P{Mae-UAS.6.11}Kat60UY1645. 
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Supplementary Table 1. Comparison of regions with tissue-specific expression from different GAL4 

drivers. Hybrids bearing transposable element (P{Mae-UAS.6.11}Kat60UY1645) were previously shown to 

display D. simulans-like mating behaviour (Chapter 3; Table 3.1). GAL4 drivers that selectively drive 

expression of UAS bearing genes in specific neural tissues were used to test whether D. melanogaster-

like mating receptivity was restored. Hybrids bearing only GAL4 or neither GAL4 or UAS (WT) were 

used to control for the presence of the GAL4 element. Significance was determined through a two-tailed 

Z-test  (P<0.05). All expression data was obtained from Flybase (Date accessed: March 31 2016).  
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