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ABSTRACT 

by Angela Cifelli 

A cost-effective therapy for snake bites and other biological toxins could save 

thousands of lives each year. A low-cost therapy can be achieved using a bacterial host 

that expresses a peptide that prevents death when administered after exposure to these 

toxins. A protein expressed in opossums, lethal toxin neutralizing factor (LTNF), 

provides the animal’s resistance to venom and a variety of other toxins. A small peptide 

fragment of this protein provides the same lifesaving properties as the full protein 

sequence. A synthetic copy of this peptide was tested in mice exposed to rattlesnake 

venom and showed lifesaving potential. The peptide was expressed in E. coli and the 

feasibility of a lower cost process for producing an anti-venom therapy was shown. Two 

E. coli strains were constructed: snk1 and snk23. This was accomplished by introducing 

expression vectors containing the peptide sequence alone or a polypeptide sequence that 

contains 23 repeats of peptide. Once the bacterial cells were transformed with the anti-

venom DNA, the peptide was produced in shake flasks and scaled up to 2L fermentations. 

While confirming the expression of the single peptide is ongoing, the larger polypeptide 

was expressed and recovered in inclusion bodies.  
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Introduction 

Small peptides with innate bio-functionality are one of nature’s mechanisms for 

fighting and preventing diseases originating from microbial infections, viral infections 

and toxins including biological toxins such as venom (Hartmann, 2007; Kitts, 2003; 

Yoshikawa, 200). They are present in all life forms and play an important role in the 

innate immune response for plants, animals, prokaryotes and eukaryotes. Peptides consist 

of amino acid sequences and are often generated through the hydrolysis of a parent 

protein (Meisel, 1990). Exploiting these activities for use as naturally occurring 

therapeutic agents could lead to a lower cost alternative compared with synthetic based 

therapies. Development of an anti-venom peptide has significant potential to save human 

lives. Envenoming snake bites affect 5 million people every year and cause nearly 

100,000 deaths, with an additional 400,000 people experiencing other serious 

consequences, including amputations and infections (Arnold, 2016; Kasturiratne, 2008). 

Venom consists of complex proteins and can be neurotoxic, hemotoxic or both. Several 

rodents and other small animals have anti-hemorrhage activity, preventing the effects of 

many biological toxins. The opossum, Didelphimorphia, is a large order of marsupials 

found in the western hemisphere that has a specialized immune system. This immune 

system allows it to be resistant to most types of venom and have the ability to tolerate a 

diet containing rotting fruits and other human garbage. Didelphimorphia produces lethal 

toxin neutralizing factor, LTNF, a metalloproteinase inhibitor which protects against 

environmental toxins such as venom (Krause, 2006; Lipps, 1999; Oerez, 1979). 

Evolution of this ability to inhibit the toxins may have coevolved with the toxins. The 
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possum species that are resistant to toxins are also predators of venomous snakes (Jansa, 

2011).  

The anti-venom protein was isolated from opossum serum and showed potential as 

use for anti-venom therapy by preventing death in mice that had otherwise perished 

(Lipps, 1999). It was later shown that this protein could be fractionated into small peptide 

fragments that have the same efficacy as the full LTNF protein (Lipps, 2000). Next, the 

Lipps lab showed that the smaller peptide fraction can reverse the effects of the biotoxins 

such as snake venom. The peptide fragment chosen for this study was a 10-amino acid 

sequence that was identified after showing strong affinity to anti-LTNF in a binding 

assay. This was shown after the N-terminus fragment was sequenced: Leu-Lys-Ala-Met-

Asp-Pro-Thr-Pro-Pro-Leu and later synthesized. The peptide, LTNF-10, then showed 

similar efficacy to its parent LTNF protein when mice were exposed to a variety of 

biological toxins including snake venoms (Lipps, 2000).  

After inserting the gene (cassette) coding for this peptide into a microbial host, the 

microbe can express the peptide. E. coli was the organism chosen to express this peptide. 

A tryptophan was added to the end of the 10-amino acid sequence. This was naturally the 

11th amino acid in the sequence of the protein and may offer alternate strategies for 

processing the poly-peptide as this is a site for hydrolysis by enzymes like chymotrypsin. 

Polyhistidine-tagging (His-tag) the peptide onto a plasmid in an E. coli based protein 

expression system has been shown to improve overall yields and purity while maintaining 

peptide efficacy (Catanzariti, 2016; Zhao, 2011). The his-tag, usually containing 6 

histidines, can be located on the N or C-terminus of the protein.  Purification will be 
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facilitated when a protein is His-tagged because it will bind to metal ions and kits are 

available with nickel or cobalt resins. Quantification and purity can then be determined 

using ELISA, western blots or SDS-PAGE. For this research, the peptides were His-

tagged for more straightforward purification, visualization and validation. This 6x his tag 

is found at the N-terminus of the peptide sequence.  

The production of therapeutic peptides is a successful market. Peptide production is 

currently being used for production of antibiotics as an alternative to small molecules like 

penicillium which has led to antibiotic resistance for many types of human infections. 

Organisms used as expression vectors should grow fast, produce a lot of the desired 

proteins and have fewer nutritional requirements for growth conditions. Usually, strains 

are altered to facilitate the highest production of the desired peptide. E. coli and P. 

pastoris are common organisms.  

This research summarizes the expression of the peptide identified by the Lipps lab as 

LTNF-10 as a potential therapeutic treatment for snake bites. With the addition of the 

tryptophan, our peptide contains 11 amino acids. The synthesized version of this 11-

amino acid peptide was shown to provide lifesaving properties in mice exposed to 

rattlesnake venom. While this dosing strategy will require optimization, it is a very 

promising result and using biotechnology to express this peptide in a more economical 

process is not expected to alter its efficacy.  
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Literature Review 

Industrial Scale Bio-Based Peptide Production 

Synthetic production of peptides is available but can often be cost prohibitive. 

Microbes are excellent tools for industrial-scale peptide production because their life 

spans are short so many generations can be studied in a relatively short amount of time 

and they are relatively inexpensive to grow. Bacteria are extremely adaptable and their 

ability to adjust quickly to new environments has led them to develop selective 

advantages. The rapid growth and reproduction rates of bacteria has put their evolution 

on a different scale compared animals and allow billions of cells to be evaluated 

economically and in a reasonable time frame. Advances in biotechnology and genome 

sequencing have enabled humans to take advantage of this adaptability. In biofuel 

production, enzymes are required to produce the glucose that feed the yeast that make the 

ethanol. The microbes that produce these enzymes have been genetically engineered to be 

faster, more robust and be able to produce at minimal cost. These advancements have led 

to developing lower cost consumer products and also reduce the use of chemicals that can 

harm the environment and are expensive to synthesize. (Fogarty, 2012; Glenn, 1976).  

Escherichia coli (E. coli) is a well understood organism, making this species a 

popular expression system for proteins and peptides. Pathways of protein production can 

be altered to meet an industrial need. For example, one protein may need to be over-

expressed to produce more of a second protein (Miroux, 1996). Simply inserting genes in 

multiple copies to increase production can often be toxic to the E. coli cells and disrupt 

important feedback mechanisms that sustain fitness and communicate to the cell how to 
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respond appropriately. It usually takes many manipulations of the cell to make an 

economically viable production host on an industrial scale (Sørensen, 2005).  While 

peptides are chemically derived, it can still be more economical to generate these 

molecules in living organisms such as E. coli.  Once an expression system has been 

identified, optimization of the whole system will be needed before these peptides reach 

their full potential as therapeutic agents. The optimized systems would include: improved 

peptide yield, solubility and efficacy under true physiological conditions including 

resistance to protease degradation.   

Molecular Basis of Adapting Bio-Based Systems for Peptide Production 

When making a bio-based system for peptide production, it is important to understand 

how the organism responds and adapts to new conditions. In the past, mutagenesis was 

used to change an organism’s genome but even when one is deliberately changing the 

DNA through insertion of an exogenous gene, the cell’s transcription process still needs 

to function properly. Knowing the mechanisms behind peptide expression can help with 

troubleshooting when expression is poor. A change in the DNA will change the mRNA 

sequence which can lead to a new protein sequence. The SOS response system after DNA 

damage was one of the first well characterized systems showing how E. coli alters its 

cellular mechanisms in response to stress. Cells that do not undergo stress do not induce 

the SOS response activity that involves expression of lexA and recA gene products and 

inhibition of DNA nucleases that degrade damaged DNA (Witkin, 1976).  The response 

systems after UV damage are controlled by master regulators, for example, polymerases, 

and the same enzymes are involved in the responses to various other harsh conditions. E. 
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coli encodes five DNA polymerases, three of which are induced through the SOS 

response to DNA damage. These polymerases are error prone, leading to genetic diversity 

and survival during stress conditions. Using isogenic mutations with all possible 

combinations of the three polymerases, the expression patterns and roles of the 

polymerases were studied during a different kind of stress condition, famine. The study 

revealed that any of the polymerases can randomly generate a mutation even in the 

absence of external stresses such as UV damage. During times of nutrient limitations, 

cells may go into the stationary phase and during this phase, DNA replication is 

susceptible to more errors. Each polymerase has specific roles and, likely, a competitive 

hierarchy for access to the DNA. During this famine-induced stress, Pol IV and V seem 

to be better at producing genetic variation including beneficial alleles than Pol II, based 

on studies of mutants expressing only one of each of these polymerases. However, Pol II 

also plays a role in genetic diversity during periods of rapid cell growth and improves 

replication efficiency during the stationary phase, allowing new alleles to arise following 

the low fidelity transcription of Pol IV and V (Corzett, 2013). Beneficial adaptations are 

the result of several activities, and bacteria adapt their transcription machinery under 

genomic mutations, in cases of UV damage, or environmental stresses, such as starvation. 

Bacteria can change cellular components as needed to withstand harsh environmental 

conditions. Gram negative bacteria are susceptible to acidification of their periplasmic 

space because the outer membranes contain porins, channel-forming proteins that allow 

protons and other small molecules in. The proteins associated with the periplasmic space 

do not function properly under acidic conditions and can affect the cell’s viability unless 
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they can quickly adapt (White, 1995). When E. coli is exposed to an acidic environment, 

it will send signals to the transcription machinery.  This communication changes the 

transcription mechanism to make chaperones that help proteins fold into their proper 

tertiary structure. The folding could be misguided in an acidic environment because 

proteins are normally produced at a neutral pH. They may be insoluble or aggregate 

before proteins are folded into its proper tertiary structure. E. coli can survive an acidic 

environment when acid-activated chaperones help alleviate acid-induced damage caused 

by acidification of its intracellular environment. Periplasmic chaperones, HdeA and 

HdeB, undergo conformational changes in an acidic environment. Without expression of 

these proteins, cells cannot survive the acidic environment. HdeA is dimeric but will 

dissociate into its active monomeric forms when protonation of negatively charged amino 

acids causes the protein to partially unfold below pH 3. At pH below 3, HdeB is not 

active in its monomeric form. Above pH 3 and optimally at pH 4, HdeB in its dimeric 

form is most active and promotes healthy growth in this acidic environment (Dahl, 2015). 

It has been shown that HdeA associates with other periplasmic chaperones to prevent 

their aggregation (Hong, 2012; Wang, 2012). Streptococcus mutans survives the acidic 

environments of the mouth. The mechanism behind this adaptation is increased 

production of monounsaturated fatty acids (UFAs) in membranes of bacterium. 

Cardiolipin plays a role in increasing UFA production, and deletion of this gene results in 

decreased production of UFAs and increased acid sensitivity (MacGilvray, 2012). 

Cardiolipin also protect bacteria under high osmotic environments. Staphylococcus 

aureus can grow in high salt environments. It was shown through lipid analysis that 
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cardiolipin is required for the organism to sustain growth in high salt environments (Tsai, 

2011). Cardiolipin is required for survival to more than one stress response. Heat-induced 

stress has also led to beneficial mutations.  

Another example E. coli change its expression of surface proteins to be resistant to 

silver, genomes were sequenced after selecting colonies that had developed resistance to 

silver for six continuous days (Randall, 2015). To develop this resistance, it must be able 

to upregulate the transport of the silver out of the cell. To achieve this, they lose 

functional surface proteins, OmpC and OmpF porins, and gain function of the Cus efflux 

mechanism responsible for the export of silver. After sequencing genomes from resistant 

strains, it was found that there were mutations in genes the coded for surface proteins: 

OmpC and OmpF porins, regulators of porins and the Cus transporter (Randall, 2015). 

Several populations evolved at 42 °C. The genomes were sequenced after 2000 

generations, and more than 600 sites with mutations were identified. There was a pattern 

in that the heat tolerant mutations were at the gene and operon level, and not after protein 

expression (Tenaillon, 2012). Understanding the mechanisms to stress can be used to 

modify and improve fitness of cells under desired conditions.  

Cells may even use their own building blocks to make a desired compound. Microbes 

are used to make bio-butanediol (BDO) using building blocks from their own central 

metabolism. By rearranging order of gene expression, an E. coli strain was identified that 

had enhanced the BDO pathway by enhancing the utilization of oxygen in the citric acid 

cycle (Yim, 2011). Pathway engineering used to make precursors to biofuels creates a 

very harsh environment for the cells by altering the cell’s viscosity.  It can be overcome 
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by enhancing the secretion machinery of the cells.  This requires the manipulation of 

transport proteins that carry the proteins outside the cell. These proteins are now 

identified with next generation sequencing, NGS and are further being studied for their 

ability to enhance protein production and cell viability. Protein pumps have been 

engineered to transport more efficiently, which ultimately leads to increased yields. 

Increasing production of more fit transport proteins led to increased production fatty 

acids which are esterified into biofuel (Lennen, 2011; Lennen 2013).  

Identifying mutations that increase expression of a gene or provide fitness benefits 

often requires screening of billions of cells so being able to grow cells cheaply is ideal. 

Strains with beneficial mutations of naringenin and glucaric acid were identified after 

such screening.  Naringenin is an antioxidant that is implicated in human health, and 

glucaric acid can be used as a more sustainable replacement for petroleum based 

polymers (Raman, 2014). An ideal expression system may depend on many factors and 

once scaling to industrial scale, cost will be a factor. E. coli can be fed a cheaper medium 

such as Luria Bertani (LB) broth. With more sophisticated molecular biology techniques 

and with the help of NGS, more genes are being implicated in response to different 

stresses, and more strains have been generated for a wide range of purposes, including 

production of biofuels and protein or peptides. This information has advanced our 

knowledge and understanding of which genes are involved when a new phenotype is 

observed or gene is overexpressed. With a more holistic understanding of the cell’s 

molecular machinery, we can learn how to take advantage of a bacterium’s ability to 

adapt to changes in environment and genome, eventually leading to the engineering of 
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more efficient microbial strains for protein and peptide production. Peptide therapies 

currently being produced will be discussed in the next section. 

Current Peptide Therapies 

An example of a successful bio-based peptide therapy is Gramicidin, used as an 

antibiotic to treat sore throats and has activity against a wide range of microbes including 

bacterial and fungi. When producing Gramicidin, medium changes had an impact on the 

formation of Gramicidin synthase which is required for the synthesis of Gramicidin 

within a host cell. By limiting nutrients such as phosphate, nitrogen, carbon and sulfur, 

the production of the antimicrobial peptide was altered (Matteo, 1976). Cationic peptides 

are becoming more appealing for use as antibiotic resistance to small molecules such as 

penicillin and amoxicillin increases. Though these traditional antibiotics were important 

treatments for warding off bacterial infections in the past, rapid rates of evolution have 

led to a greater need to develop alternative antimicrobial strategies. The mechanism of 

kill using peptides can be direct, when there is disruption of the cell wall, or by signaling 

degranulation, resulting in toxins being secreted from the bacterial cells (Hartmen, 2007). 

The wide variety of cationic peptides that exists within a species (and from all life forms) 

means better specificity towards different cell types and the ability to co-evolve with 

microbes, decreasing chance of resistance (Peschal, 2006).  

There are several classes of antimicrobial peptides and within humans, three families 

have been identified: defensins, cathelicidins and histadins (Rossi, 2008). Regardless of 

species, they are typically found in the mucus membranes of cells. Their ability to 

distinguish between the host and microbial cells indicates that their expression is highly 
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regulated and the inherent structure makes them highly selective (Yeaman, 2003). 

Antimicrobial resistance to cationic peptides is less frequent compared to small molecule 

antibiotics in vivo. In vitro experiments have shown that bacteria will develop resistance 

to these peptides over time. It could be that there is co-evolution occurring among the 

host-defense peptides and bacteria. Under true physiological conditions the peptides are 

evolving and cells are signaled to generate different peptide cocktails depending on the 

infection (Peschel, 2006). The diversity of the peptides within a host also indicates rapid 

evolution of these peptides as exposure to pathogens increases. It is still unknown how 

fast resistance to these peptides occur or if the peptides co-evolve at the same rate. 

Bacterial production of proteases or peptidases which degrade peptides, is constantly 

evolving. Despite the wide variety of sequences within each class of antimicrobial 

peptides, structure and activity relationships seem important. Fewer disulfide bridges will 

make peptides more susceptible to the proteolysis however more disulfide bridges make 

the molecule less flexibility.  

Defensins are the most abundant antimicrobial peptide with activity against Gram + 

and Gram – bacteria in addition to fungi, yeast and viruses (Hancock, 1998; Hancock, 

2002).  Defensins are typically β-sheets containing disulfide bridges making them more 

resistant to protease degradation but will require more stringent conditions (i.e. low 

sodium chloride) upon entrance into an invasive cell.  Gramicidin S, polymyxin B and 

MBI 594AN are topical treatments used as an antifungal or antibiotic to counter 

infections leading to acne. Gomesin from the spider Acanthoscurria gomesiana has been 

shown to reduce candidiasis, a yeast infection that now has resistance to the traditional 
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antifungal treatments which include polyenes, azoles and echinocandins but has not been 

approved yet as a therapy (Rossi, 2012). LL-37 is an antibiotic that can act as an 

antimicrobial but will also act like a chemokine attracting leukocytes. LL-37 is a linear 

peptide that is highly susceptible to protease degradation and will have limited 

applications in vivo. Hepcidin is a cationic peptide that acts like an antimicrobial and a 

hormone than can regulate iron production.  Iseganan is being developed as an aerosol for 

respiratory type infections caused by pneumonia, cystic fibrosis, or chemotherapy side 

effects (Bush, 2004).  

Cationic peptides with antimicrobial properties have an overall charge from +2 - +11 

and regions of hydrophobic residues that give the folded peptide an amphiphilic motif 

(Hancock, 1998; Hancock, 2006). These peptides can form a variety of secondary 

structures (β-sheets, α-helices, loops) and differ widely in the size and sequence length. 

The overall positive net charge of the peptide interacts with the anionic cell surface and 

the amphiphilic properties allow it to insert itself into the cell’s membrane. The peptide 

can act either by disrupting the integrity of the cell wall allowing toxins to enter or 

through migration into the cell subsequently acting on internal targets (Toke, 2005). In 

addition to the phospholipids present, membranes are composed of several proteins which 

are fundamentally different among all organisms. The membranes of eukaryotes will 

contain sterols that contain a net neutral charge that are normally not in prokaryotic cells. 

Prokaryotic cells may contain more negatively charged hydroxylated phospholipids. The 

host peptide is distinguishing the invasive species by determining membrane composition 

through its affinity for membrane electrochemistry (Hancock, 2002). The amount of 
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negatively charged proteins and number of hydrophobic proteins on the cell membrane 

will guide the peptides selection for which cells to target. Peptide conformation will also 

influence interaction with target cells. The disulfide bonds influence the flexibility of the 

peptide. Among the human β-defensins, hBD1, hBD2 and hBD3, their overall charge 

increases. Compared with hBD1 and hBD2, hBD3’s net +11 charge enables the 

formation of six distinct secondary structures, while hBD1 and hBD2 preferentially folds 

into one structure. Interestingly, the antimicrobial efficacy of the 6 forms of hBD3 is 

effective against E. coli but the chemotactic (interactions with chemical stimulus) 

activities will vary. Additionally, the antimicrobial activity is independent of salt 

concentration which plays an important role in membrane permeability. The decoupling 

of antimicrobial activity and chemotactic activity with hBD3 is indicative that a net +11 

charge will overpower the structural enablement of the peptides permeability across the 

cell membranes (Wu, 2003). 

Most antimicrobials kill cells through lysis but some cationic peptides have a 

different mechanism of antimicrobial activity. Parbutoporin isolated from scorpion 

venom can induce degranulation signaling the cells to secrete cytotoxins (Remijsen, 

2010). In addition, they can work synergistically with each other by making heterodimers 

that will stabilize pores formed or when one peptide opens a channel for a second peptide 

to act on an internal target (Yeaman, 2003). These peptides are not immune to resistance 

and organisms can fight against these antimicrobials by: generating proteases that 

degrade the peptides, generating other protein that form a biofilm around the peptide and 

prevent it from entering the cell and through secretion of the peptide or by altering the 
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charge on the cell’s surface subsequently preventing the peptide from binding and/or 

entering the cell (Peschel, 2006). Although bacteria will likely not replace the anionic 

components of the cell wall, they can alter them such that the overall charge of the cell 

surface is reduced. For a more complete list, see the antimicrobial peptide database 

maintained by the University of Nebraska Medical Center. Some examples of therapeutic 

peptides out on the market can be found in Table 1.  

Table 1. Classification of Some Antimicrobial Peptides 

Peptide 
Class 

General Description Examples 

Defensins antimicrobial peptide of diverse 
origin, usually adopting a β-sheet 
structure with three intramolecular 
disulfide bridges 

Plectasin-fungal anti gram positive 
antibiotic  
Crytdin-α-defensin produced by mice 

Cathelicidin linear antimicrobial peptide  LL-37- human antibiotic and only 
member of the cathelicidin family of 
antimicrobial peptides in humans 

Lantibiotic antimicrobial peptide produced by 
gram positive bacteria which 
contains lanthionine and/or 
methyllanthionine amino acids 
with thioester bridges 

Nisin-lactic acid-producing bacteria 
(LAB) generated antibiotic 

Others   Hepcidin-related CAMP- vertebrate 
peptide with antimicrobial and iron 
metabolism regulating hormone-like 
activities 

 

When developing a process for making therapeutic peptides, the conditions can be 

optimized to provide an environment where the peptides are properly folded and in an 

optimally stable and effective state. While feasibility has been demonstrated to develop 

these into effective antibiotics, it should be considered that only few of these products are 
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currently on the market and mostly applied topically due to low viability in human serum 

(Bowdish, 2005). 

Methods for Industrial Scale Production of Peptides 

Discovery screening tools have enabled the unveiling of several new and novel 

peptides from a wide range of hosts including mammalian, plant and microbial cell lines. 

In addition, process screening tools are available for optimization of process parameters 

including: strain selection, growth conditions and most favorable sequence. An 

expression host should grow fast, produce a lot of proteins and have fewer nutritional 

requirements. Usually strains are altered to facilitate the highest production of the desired 

peptide. E. coli and P. pastoris are common organisms for antimicrobial peptide 

production. Following the identification of the optimum system for production of the 

peptide or pro-peptide, the next challenge is the yield, stabilization and maintaining 

efficacy.  

Yields can be improved by adding enzymes specific for hydrolyzing the parent 

protein into smaller peptides. Thermolycins, proteases, alcalases and trypsins have all 

been shown to be involved in the production of peptides from larger molecules. If the 

parent protein is expressed and requires modification after secretion from the cell, 

additional enzymes can be induced or added to catalyze the hydrolysis and generation of 

the bioactive peptide. By co-expressing other proteins, it is possible to minimize 

aggregation and increase solubility and bio-availability. Over-expressing molecular 

chaperones have been shown to help minimize aggregation by assisting with proper 



 
 

16 
  

folding (Mogk, 2003). The solubility behavior is an important property during 

purification of the peptide.  

Polyhistidine-tagging (His-tag) the peptide by using a plasmid in an E. coli based 

protein expression system does improve overall yields and purity while maintaining 

antimicrobial efficacy (Catanzariti, 2004; Zhao, 2012). The his-tag usually contains 6 

histidines placed on the N or C-terminus of the protein.  Kits are available with nickel or 

cobalt resins for purification. Quantification and purity can then be determined using 

Enzyme-linked immunosorbent assay (ELISA), western blots or sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). 

While his-tagging proteins is useful for lab scale experiments, it may be too costly for 

larger scale processes. The most common purification methods at manufacturing scale are 

ultrafiltration and chromatography. They may be used in combination depending on the 

target industry and purity requirements. Membrane technology has been used to 

fractionate several peptide products from hydrolysates of fish waste (Chabeaud, 2009). 

Four bioactive peptides generated from hydrolysates of porcine collagen were purified 

using a multi-step process with gel filtration and ion exchange chromatography (Li, 

2007). This type of process can be useful when purifying peptides from lysates. In the 

case of antimicrobial peptides, they may be working with other cellular components 

synergistically or adversely. This makes some purification techniques too selective or not 

selective enough. A few alternatives to ultrafiltration and chromatography have been 

developed including a one-step heat treatment that was used to isolate an antimicrobial 

peptide from Aspergillus clavatus. This particular fungal peptide is extremely heat stable. 
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After the 15-minute treatment at 100C, the peptide was the only small protein left in the 

supernatant and the heat treatment had no effect on the activity against bacteria (Hajji, 

2010). Other potential process changes might include alterations in pH, conductivity and 

osmolality, to name a few. 

After a process is developed for making the peptide(s), the next requirement is to 

package it for its application while maintaining its stability and efficacy.  The challenge 

with proteins is they tend to be unstable in solutions. Drying and tableting the peptide 

will improve the shelf life but it is often necessary to provide a liquid formulation. 

Usually, stabilizers (polyols, sugars, salts) are added but for therapies, the list of 

acceptable stabilizers is quite small. Lung infections applications are using aerosols and 

mouthwash as a topical treatment and is currently the preferred application for iseganan 

which is used to treat lung infections from cystic fibrosis patients, pneumonia and those 

with respiratory infections due to side effects from chemotherapies (Bush, 2004). Topical 

treatments are often preferred due to low viability in human serum (Hancock, 2006). 

Limitations and Potential 

The challenge is almost always the economics of developing these into products. In 

the biofuels sector, moving towards bio-based fuels to be more sustainable has been 

successful and is becoming more cost effective. In this case, there was the added 

challenge of utilizing the right feedstock that does not impact the food supply or the cost 

of food. Maize was the first-generation feedstock and now lignocellulose can be utilized. 

The economics has mostly been achieved through pathway engineering metabolism to 

produce the hydrocarbons and by engineering cells to make the enzymes to better 
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hydrolyze the cellulose based substrates (Bokinsky, 2011; Huffer, 2012).  One approach 

to making the advanced biofuels more economical was to engineer E. coli to over express 

the necessary enzymes for substrate hydrolysis: xylanase, cellulase, beta-glucosidase. In 

addition, these strains could grow with cellulose and hemicellulose in the feedstock 

(Bokinsky, 2011). 

Advancements in screening tools and industrial microbiology could mean bio-based 

production is more cost-effective than chemical peptide synthesis. Success with 

engineering these peptides was demonstrated with nisin where several variants of 8000 

mutants had enhanced antimicrobial activity against resistant strains of bacteria (Field, 

2008). Although nisin is used as an antimicrobial during food production and not 

necessarily as a therapy, the engineering tools utilized to optimize both production and 

enhanced functions can be leveraged to all therapeutic peptides. There will be great 

benefits in continuing to develop methods for industrial scale production of peptides and 

to expand their use as therapeutic agents. Nisin is a lantibiotic, derived by the ribosome 

expressed by bacteria, and has been engineered with improved efficacy (Field, 2008). 

Most of antimicrobial peptides that have been in clinical studies have not shown 

enhanced activity against bacteria resistant to multiple antibiotics in vivo (Vaara, 2009). 

These processes must constantly be optimized not only for improved recovery but also to 

ensure the efficacy is still meeting the demands.  

It is important to note that often the peptide’s therapeutic activity requires the mature 

peptide sequence. The gene encoding the peptide will not provide the full effect and the 

sequence of the peptide after modifications are made by the cell is the sequence that 
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should be used (Maxwell, 2003). Should protein engineering be a strategy, it must not 

interfere with their efficacy in the case of cationic peptides. This means the net cationic 

charge and the amphiphilic structure which will decrease and change the activity of the 

peptide. More in vivo studies are needed to fully understand the stability of therapeutic 

peptides under meaningful physiological conditions when engineering peptide, proteins 

or pathways. 

The feasibility has been demonstrated but supplying the demand for therapeutic 

peptides may still be years away before it is economically feasible. The best way to 

overcome the economics is to engineer bacterial strains to handle higher protein 

production and to make the cells more express proteins under a wider range of conditions 

by fine tuning their metabolic pathways. Screening workflows and advances in DNA 

sequencing are tools that will help develop these efforts and bring us closer to 

understanding how to better predict gene expression. This was shown after synthesizing 

thousands of combinations of regulatory elements, promoters and ribosomal binding sites, 

involved in controlling transcription and translation. These genes were inserted into E. 

coli to follow how these sequence combinations affect gene expression. This information 

may be important when building new strains to make novel products. Even though the 

growth rates were not studied in this experiment, it is a more holistic approach and can be 

extended to more organisms and more combinations of genes (Kosuri, 2013). Growth 

rates often suffer when altering their gene function but can be optimized. Viability of 

bacteria requires a balance of high fidelity replication while generating genetic diversity 

to enable adaptation to new and stressful environments and DNA repair mechanism have 
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been optimized for engineering strains to better handle stress (Nyerges, 2014). The high 

expression of genes must not hinder cellular growth and optimizing growth rates should 

not alter gene expression. Finally, proper transport of proteins, whether it is a protein you 

are trying to express or a protein involved in healthy cell growth, will also need to be 

optimized. Stress proteins and the proteins that transport them are being modeled for their 

ability to enhance proper movement and folding of desired proteins (Dixit, 2012). These 

other proteins will play a role in overcoming the demands of industrial scale production.  

An area of potential is with anti-venom therapies. Venom contains neurotoxic or 

hemotoxic proteins and sometimes both. The opossum, Didelphimorphia, is a large order 

of marsupials found in the western hemisphere that are resistant to most venoms and have 

the ability to tolerate a diet containing poisonous snakes. Lethal Toxin Neutralizing 

Factor (LTNF), a metalloproteinase inhibitor, was identified from opossum serum that 

enables the opossum to tolerate snake bites that often kill humans and dogs. The Lipps 

lab showed potential as use for anti-venom therapy by preventing death in mice that had 

otherwise perished in the control group. It was later shown that this protein could be 

fractionated into small peptide fragments that also have the same efficacy as the full 

LTNF protein (Lipps, 2000). In Table 2, the results from the Lipps study are shown. Five 

bio-toxins were tested on three test groups. The first group was given PBS as a control 

and all the mice died from all five toxins. In the second group, the synthetic peptide was 

administered two hours before the mice were given the toxins and all mice survived the 

toxin exposure administered. The third group was given the peptide two hours after being 

given lethal doses of the toxins and all those mice survived. Therefore, this data shows 
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that the peptide is successful at reversing the effects of the bio-toxins up to two hours 

before the toxin exposure and up to two hours after exposure to the toxin.  

Table 2: Summary of survival results in mice exposed to toxins.  

Toxin Mouse Survival/Death 

Control Group 
(PBS) 

  LT10 Group             
2 hours before 

injection 

   LT10 Group            
2 hours after 

injection 
Western rattlesnake 
venom 

0/3 3/0 3/0 

Cobratoxin 0/3 3/0 3/0 
Scorpion venom 0/3 3/0 3/0 
Honeybee venom 0/3 3/0 3/0 
Ricin 0/3 3/0 3/0 
Botulinum toxin 0/3 3/0 3/0 

 

Snake bites are a leading cause of death in India and Brazil and a lower cost 

therapy could save many lives especially in the most rural locations within these 

countries. In these developing countries, where snake bites are most prevalent, a bio-

based anti-venom therapy could eventually be a lower cost alternative to serum based 

therapies. The current method of treatment is to use horse serum. A horse is injected with 

the venom and produces antibodies against the venom. The horse is then bled for its 

serum, which is used to treat humans. This type of therapy can lead to other health issues 

for humans by inducing allergic responses to other proteins contained in the horse serum. 

In addition, this type of therapy is not low cost. Using opossum serum would also incur 

high costs because maintaining these animals safely would require large specialized 

facilities. Purification of the protein may decrease allergenicity but adds significant cost 

to an already costly production. 
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The anti-venom peptide’s role in the innate immune response could be another 

strategy to fight infection. Rather than directly acting on the venom, these peptides could 

serve the role as an immune modulator activating the immune response upon infection or 

aiding a small molecule or another protein by forming large pores in the cell membrane. 

Further studies of the structure function relationship will improve understanding of the 

therapeutic mechanisms in humans which is weak unless administered topically. With the 

large diversity of peptides, using more tissue specific peptides might improve overall 

specificity.  

The Lipps lab showed a synthetic peptide could save the lives of mice when given 

variety of bio-toxins but a bio-based system for making an anti-venom therapy is in an 

early phase of developing an economical anti-venom therapy. 

Materials and Methods 

Plasmid Prep 

The synthesized sequence of the desired anti-venom peptide was constructed onto a 

plasmid by Operon Labs in Mountain View, California. The gene was inserted into the E. 

coli expression plasmid pET29a (Figure 1a). The goal was to construct two plasmids 

containing snk1 and snk25 genes (Figure 1b). Snk1 is the single peptide sequence and the 

snk25 is a polypeptide sequence in which the peptide sequence repeated 25 times on the 

same plasmid. Once the plasmid contained snk genes, they were inserted into an 

expression strain, BL21.  
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a)  
 
 
 
 
 
 
 
 
 
 
 
b) 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Cloning LTNF synthetic genes onto expression vector with novablue cells and 
euorfin plasmid. a) The pET29a plasmid b) Expression vector after cloning snk1 or snk23  
 

The initial transformations with the plasmid DNA was performed using a heat shock 

protocol. 100 µL of Novablue cells were transformed with 2 µl of plasmid DNA (~50 ng). 

This mixture was incubated at 41 °C for 40 seconds before re-suspending in 250 µl SOC 

medium. The cells were then spread across LB plates with 50 µg/g kanamycin. The plates 

were incubated overnight at 35 °C. Colonies that grew should contain the plasmid. To 

obtain plasmid DNA, a Life Technologies midi prep kit was used.  

KanR2 

pET29a 

XhoI 
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T7 terminator 

T7 promoter 

6x His tag 

KanR2 

pET29a-Snk 

XhoI 

NdeI 

snk 
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There were two restriction sites used for cloning. Figure 2a shows optimized insert 

containing the snk1. Figure 2b illustrates the insert for the snk25 gene. 

a) 

 

 

b) 

Figure 2. Insert optimized for expression of LTNF10 peptide. a) the single peptide insert 
b) the polypeptide insert 

Cloning and Sub-Cloning 

Plasmid DNA was collected using a Life Technologies midi prep kit as described in 

Life Technologies midi prep kit. The plasmids were cut at the Ndel and Xho sites. Two 

transformed cell cultures were used from the midipreps: one with pET plasmid and the 

other with Eurofin plasmid containing genes for peptides of interest, either snk1 or snk25.  

Agarose gel electrophoresis was used to purify the genes of interest and the cut pET 

plasmid for cloning. The circular DNA and cut fragments were run on 1% agarose gel 
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containing ethidium bromide at a final concentration of 0.5 µl/ml with TAE as the 

running buffer.  

After extracting the gene of interest and the cut pET plasmid from the gel using the 

QIAquick Gel Extraction Kit from Qiagen, the DNA extracted from the gel was used for 

ligation and generation of the new pET plasmid containing the snk genes. The next step 

was to perform ligation of the snk genes into the cut pET plasmid using the Promega 

LigaFast Rapid DNA ligation system. The plasmid (Figure 1b) was transformed into 

Novablue cells using the transformation protocol described above. The cells containing 

the new plasmid could grow on LB media containing Kanamycin. The new strain was 

confirmed to contain the new insert after digestion and agarose gel confirmation 

described previously.  

Next, the snk1 and snk25 plasmids were transformed into an E. coli strain that is 

optimized for expression, Bl21. This was achieved using same transformation and 

confirmation protocol described above. The first step was to obtain the plasmid DNA 

from the Novablue cells. Then, the plasmid DNA containing snk genes were transformed 

into Bl21 cells. Finally, the presence of plasmid DNA and the snk genes were confirmed 

using agarose gel electrophoresis. 

Expression and Recovery of Peptide 

100 mL shake flasks and 2L bio-reactors were used for protein expression. One mM 

IPTG was used to induce protein production. It was expected that the peptides would be 

in the cell lysate. After growing the cells in a shake flask or in the bio-reactor, the 

medium was centrifuged in a Thermos Scientific Heraeus table top centrifuge at 300 g, 
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resulting in a wet cell pellet. The supernatant was stored cold. Sodium dodecyl 

sulfate polyacrylamide gel electrophoresis, SDS PAGE, in combination with Coomassie 

staining were used to visualize the peptides. In procedure used, 0.05 ml of processed 

broth sample was added to 0.05 ml of hydrochloric acid and mixed well. Then 0.05 ml of 

sodium dodecyl sulfate (SDS) was added and the solution was mixed. This sample was 

incubated 5 min on ice before spinning out solids for 2 min at 14,000 rpm using 

Eppendorf 5430 R microfuge. 0.02 ml of the supernatant was added to 4-12% Bis-Tris, 

10 or 12 well, polyacrylamide gel and run for up to 45 min at 120 mV. After separation 

by SDS PAGE, the gel was stained with Coomassie for 5 minutes. After staining, the 

stained gel was rinsed 3 times with deionized (DI) water, then submerged in 10% 

methanol with 10% acetic acid to de-stain overnight. The de-stained gel was again rinsed 

with DI water 3 times before scanning or photographing. The SDS PAGE gels used were 

pre-casted from Novex. Bis-Tris gels (4-12%), 1 mm thick with 10 or 12 wells. 

Downstream from the (poly)peptide sequence, there is a 6x his tag before the termination 

sequence. The protocol for the his-stain was obtained from the 6x his stain kit produced 

by Peirce Scientific.  

First, homogenization was utilized to break up the cells but there was difficulty in 

separating out the cell debris from the lysate due to the high viscosity of the sample, so 

the cells were lysed using Bugbuster Protein Extraction reagent from Novagen. 2.5 ml of 

Bugbuster reagent was mixed with a pellet made from 50 ml of cell culture. To this 

mixture, 0.1 mg of lysozyme was added. This supernatant was also collected after 

centrifugation and run on SDS PAGE. The pellet was further treated with 8 M urea 
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solution in water. For each pellet generated from 50 ml of culture, 1 ml of 8 M urea was 

added and then the pellets incubated overnight with urea. From this urea treated pellet, 

the band of the snk23 was seen on the SDS PAGE gel after Coomassie staining.  

Downstream from the (poly)peptide sequence, there is a 6x his tag before the 

termination sequence. This was used to confirm that the peptide of interest was being 

produced using a 6x his stain kit produced by Peirce Scientific. The protocol for the his-

stain was obtained from the manufacturer. 

Results 

Plasmid Construction 

The snk1 and snk25 plasmids were transformed into Novablue cells using a standard 

heat shock protocol. The cells were plated onto LB plates with kanamycin to select for 

the transformed species. An isolated colony was used to confirm the presence of the 

peptide after midiprep. After digestion with restriction enzymes, the plasmid DNA was 

separated using agarose gel separation (Figure 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. DNA gel verifying the presence of the plasmid containing snk1 insert. Lane 1 
contains the molecular marker. Lanes 2-5 contain the plasmid DNA after restriction 
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digest. The larger band is the plasmid DNA and the smaller band is the snk1 gene cut out 
of the plasmid. 
 

The snk1 and snk23 containing inserts were cut out and extracted for ligation along 

with the cut pET plasmid. The new plasmids were transformed into Novablue cells and 

the presence of the plasmid was confirmed using agarose gel electrophoresis. The new 

plasmid was then inserted into a cell line that is used for expression, Bl21. 

Expression and Downstream Processing 

The larger polypeptide, snk25, was shown to express in shake flasks but it was not in 

the soluble portion of the cell lysate. The expectation was to find the peptide in the 

supernatant of the fermentation broth after cell lysis. Figure 4 shows the banding pattern 

after the cell lysis with and without the inducer but the results were inconclusive.  
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Figure 4. SDS PAGE gel showing protein expression in the cell lysate. Lane 1 is the 
MWM.  Lane 3 the protein expressed in the cells containing the snk plasmid. Lane 5 
shows the protein expression in the cells containing the plasmid without the snk gene 
inserted. There were no differences observed. 

It was eventually found in an inclusion body preparation. This became evident in an 

experiment in which the cell pellet containing the inclusion bodies was solubilized with 

8M urea and then run on SDS PAGE to look for the polypeptide in the insoluble portion 

of the lysed broth. A follow up experiment was run in shake flasks to confirm this result. 

The samples were compared with and without the addition of an inducer. Both the 

soluble fraction and the insoluble fraction were processed for SDS PAGE analysis. 

Figure 5 shows the results of SDS PAGE gel. A band of the expected size, ~30kDa, was 

seen in the samples after induction and in the insoluble (inclusion body) fraction. In 

addition, to see the expression over time, time points were taken and the band of expected 

size was seen in all time points after induction.  
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 Figure 5. SDS PAGE gel showing snk25 expression time course during shake flask 
experiment. Lane 1-5 are supernatants after lysis of the cells taken at increasing time-
points, approximately every 5-6 hours. No band of interest is present. Lane 6-10 are the 
supernatants after treating the cell pellet with 8M urea at the same time-points are in lane 
1-5. Lane 7-10 are after induction and the band of expected size is seen. 

After the positive results from the shake flask experiments, a 2 L fermentation was 

run with the new plasmid containing strains. From the insoluble fraction, the results were 

again positive and the same bands at the expected size were stained only after induction. 

Figure 6 shows the SDS-PAGE gel after a 2 L fermentation.  
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Figure 6. SDS PAGE gel from snk25 fermentation samples: Lane 1 is the marker. Lane 
2-6 contains samples taken at increasing time-points during the fermentation after lysis of 
the cells and harvesting the supernatant. No band of interest is present. In lanes 7-12 are 
also samples taken at increasing time-points during the fermentation after treating the 
lysed cell pellet with 8M urea. Lane 10-12 are after induction with 1mM IPTG and the 
snk25 band is now present. 

To confirm that this band is in fact our snk25 poly-peptide, an SDS PAGE gel 

was stained with a 6x his-stain. This stain confirmed the results of the Coomassie-stained 

gel and provided more confirmation that this polypeptide is his-tagged and likely snk25. 

Figure 7 shows the his-stained gel from the shake flasks which correspond to the 

Coomassie-stained gel shown in Figure 5.  
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Figure 7. His-stained gel. Lane 1-5 are supernatants after lysis of the cells taken at 
increasing time-points. No band of interest is present. Lane 6-10 are the supernatants 
after treating the cell pellet with 8M urea at the same time-points are in lane 1-5. Lanes 2-
5 and 7-10 are after induction. The band of expected size is seen after induction and only 
in the insoluble portion of the cell lysate. 

To confirm that the polypeptide with the his-tag can also be produced in the 2 L 

bioreactor, an SDS-PAGE gel corresponding to figure 6 was run and then stained with 

the his-stain. Figure 8 shows a band of expected size illuminate though it is not as intense 

as the shake flask experiments, possibly because degradation is already occurring. 
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Figure 8. His-stained gel from fermentation of snk25. Lane 2-6 are samples taken at 
increasing time-points during the fermentation after lysis of the cells and harvesting the 
supernatant. No band of interest is present. In lanes 7-12 are also samples taken at 
increasing time-points during the fermentation after treating the lysed cell pellet with 8M 
urea. Lane 10-12 are after induction with 1mM IPTG and the snk25 band is now present. 

The shake flask experiments and the 2 L bioreactor experiments with snk1 were not 

conclusive. For the snk1 peptide, the SDS PAGE method described above was 

unsuccessful, so a different gel was tried. 10-20% tricine gels from Invitrogen can resolve 

lower molecular weight species but still was not able to resolve the small peptide.  

The expression of snk25 was confirmed using His stain from Pierce scientific kit after 

SDS PAGE to separate the proteins. While snk25 illuminated in the 6x stain, the snk1 

staining was unsuccessful thus far and consistent with SDS PAGE observations. 
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It was not illuminated on SDS PAGE gel with neither Coomassie nor with the 6x his-

stain kit. The ability to visualize such a small peptide using SDS-PAGE is very limited. 

Several systems and samples preps were tried to see the snk1 band which is described in 

the Discussion section.  

Discussion 

Opossum’s serum has been shown to provide lifesaving benefits in mice that were 

given a variety of venoms and other biological toxins including ricin and botulinum 

(Lipps, 1999; Lipps, 2000). A small peptide sequence fractionated from LTNF was 

shown to prevent death caused by snake venom in mice and was successfully expressed 

in E. coli. Snk25 may have been more stable in the cell because it was packaged in an 

inclusion body whereas snk1 may not have been. Still, the downstream recovery and 

application performance will need to be demonstrated. Even though inclusion bodies are 

not preferred, it can be beneficial to have a peptide or protein of interest in an inclusion 

body rather than freely transported around the cell (Ramón, 2014). The inclusion body 

can protect from proteolysis and may even prevent aggregation when high levels of 

protein expression are reached within the cell. It may just require another method of 

visualization to see snk1. Several attempts were made to visualize snk1 including running 

the gel for half the time in case the small 1.1 kDa peptide is running off the gel. In 

addition, concentration and separation techniques were implemented for both shake 

flasks and 2 L bioreactor samples. The samples which were present in the cell lysate and 

the cell pellet after treatment were included and exposed to many conditions to visualize 

this small species. The supernatant after spinning cells down for 5 min at 14k were 
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analyzed by SDS PAGE to see if the peptide might be secreted and found in the 

(previously discarded) supernatant. The insoluble portions were treated with Bug Buster, 

urea, and lysozyme but the band of expected size was not observed. The washes were 

also analyzed but the snk1 band was not visible with SDS PAGE or his-staining. 

Components larger than 5 kDa were separated out so only species smaller than 5 kDa are 

present. The desired peptide still was not observed, so the sample was concentrated 2x 

using a Savant™ Explorer SpeedVac™. Finally, purification thru nickel affinity 

column was performed using HisPur™ Ni-NTA Resin and concentrated in 

Savant™ Explorer SpeedVac™, but still no band was observed. 

The presence of mRNA in the cell should be confirmed, which would be evidence 

that the snk1 peptide is being expressed. With mRNA experiments, it will become 

evident what the level of expression is for the peptide. If the level is low, more copies 

may be placed on the plasmid or the cell’s transcriptional machinery needs to be over 

activated. Sometimes, a different promoter is needed for the expression levels to be high 

enough to confirm their presence.  

It is very likely that the expression system is working and may have even 

recovered the snk1 peptide from the cells, but the visualization method is wrong for such 

a small species. The Coomassie stain used is very good for visualizing proteins because it 

binds to the protein’s positive charge but with such a small peptide which may be 

expressed at low levels, there may not be a large enough peptide to dye ratio to see the 

peptide.  If the peptide is being degraded before visualization, but is being recovered 

from the cells, it could indicate the peptide is very unstable, especially if mRNA results 



 
 

36 
  

show expression. Small peptides may still be targets for proteolysis but the sample was 

spun through a 5 MWCO centricon to remove proteases or other enzymes that may 

degrade the peptide. If the peptide was aggregating, then it may have been filtered out. 

Also, it could aggregate during the sample prep of the SDS PAGE and the aggregate 

migrated appropriately but unexpectedly. 

Other molecular biology techniques may help confirm the snk1 expression and 

aid the recovery. Perhaps a GFP tag or some other fluorescent, active tag can be used and 

visualized by flow cytometry. Another approach could be to add a linker protein to the 

peptide which can help with expression or even make the molecule bigger and easier to 

visualize on SDS PAGE.  

It is also possible that the cell is not making this peptide and the cells need further 

manipulation. To influence cells to produce a protein, the right balance of other proteins 

and compounds must be maintained within the cell.  Additional modifications may be 

required to keep this balance. Gyrase activation requires ATP which requires ATP 

synthase. By not providing the right balance of these two enzymes, the cell may go into 

the stationary phase rather than being maintained in the growth phase (Gutiérrez-Estrada, 

2014). When engineering cells to overexpress proteins, understanding the entire pathway 

and all the proteins involved, and maintaining balance in the cell will increase fitness 

during stressful times and lead to better performing compounds. To identify new genes 

that are associated with the global regulatory circuit, the Gac lab tracked populations for 

1000 generations under four different environmental conditions (Gac, 2013). Starting 

with a common ancestor, the carbon food source varied in four different conditions and 
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evolved clones from these conditions were sampled at different time points, assayed and 

further tested after growth in all four conditions. All populations could adapt to their 

environment and they found specific genes that were modified across all environments, 

although the patterns of the modifications varied across the different conditions. The 

genes identified were generally associated with catabolism, as expected, based on carbon 

being the varied condition. The Gac lab concluded that populations sharing historical 

pressures react more similarly in a changing environment compared with populations that 

have similar gene mutations under different conditions. The cells that came from the 

same condition had similar activity when they were subjected to new carbon sources, 

while cells from the different carbon environments, where similar gene mutations were 

identified, behaved differently after they were placed in similar carbon sources (Gac, 

2013). This indicates that adaptation mutations may be related to improvements in 

catabolic pathways. At the nucleotide level, the process of translation is generally 

conserved but the mechanism behind how the translational apparatus adapts to changing 

environments is not fully understood. The tRNA pool will rapidly change and evolve to 

meet translational demands and to maintain proper cell balance. Through mutations in the 

tRNA pool, cells do have the ability to rapidly change the tRNAs under different 

conditions because they are part of a multimember gene family. Eventually, throughout a 

longer timescale, the genome will change and evolve (Yona, 2013). Based on this 

observation, it is possible the cell is not transcribing snk1.  

The fermentation and recovery processes have not been fully optimized. Changes to 

the medium or fermentation conditions may also help increase the peptide production to a 
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level that can be seen by SDS PAGE. Media improvements are product dependent. 

Reducing the amount of phosphate, adjusting the pH slightly or increasing the number of 

certain vitamins may enhance the level of product being made by each cell. Optimizing 

the number of peptide repeats in the polypeptide sequence may also be beneficial. This 

can impact the processing within the cell and determine if it is secreted, excreted or 

degraded. 

Conclusion 

Optimizing the production of snk1 and snk25 will provide a low-cost alternative 

to treat snake bites compared to the traditional horse serum based treatment. The first step 

is to utilize biotechnology system to produce a low cost anti-venom. The construction of 

two strains containing an antivenom peptide was successful. The SDS PAGE gel showed 

evidence of snk25 expression. For snk1, the expression was challenging to confirm but 

agarose gel electrophoresis and sequencing (sequencing done by Quintara Biosciences, 

data not included) showed that the snk1 DNA is present.  
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