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ABSTRACT

AUTOMATED CLASSIFICATION TO IMPROVE THE EFFICIENCY
OF WEEDING LIBRARY COLLECTIONS

by Kiri L. Wagstaff
M.S. Geological Sciences
Ph.D. Computer Science

Studies have shown that library weeding (the selective removal of unused, worn,

outdated, or irrelevant items) benefits patrons and increases circulation rates.

However, the time required to review the collection and make weeding decisions

presents a formidable obstacle. In this study, we empirically evaluated methods for

automatically classifying weeding candidates. A data set containing 80,346 items

from a large-scale academic library weeding project by Wesleyan University from

2011 to 2014 was used to train six machine learning classifiers to predict “Keep” or

“Weed” for each candidate. We found statistically significant agreement (p = 0.001)

between classifier predictions and librarian judgments for all classifier types. The

naive Bayes and linear support vector machine classifiers had the highest recall

(fraction of items weeded by librarians that were identified by the algorithm), while

the k-nearest-neighbor classifier had the highest precision (fraction of recommended

candidates that librarians had chosen to weed). The most relevant variables were

found to be librarian and faculty votes for retention, item age, and the presence of

copies in other libraries. Future weeding projects could use the same approach to

train a model to quickly identify the candidates most likely to be withdrawn.
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Chapter 1

Introduction

As library collections grow and patron needs evolve, there is an ongoing need for

reviewing and maintaining physical collections. A key component of this process is

weeding, the selective removal of items that are outdated, physically worn, no longer

relevant to patron interests and needs, and/or available in electronic form. There is

widespread agreement among librarians that weeding benefits both the library, by

reducing the number of unneeded or unwanted items that are maintained, and the

user population, by making desired items easier to find (Dilevko & Gottlieb, 2003).

Pruning the collection to remove unwanted items can increase library circulation

rates. Weeding also creates space that can be used for new acquisitions or to

support other library needs, such as programming, maker spaces, or study areas

(Lugg, 2012; Slote, 1997).

Despite the benefits, weeding is often low on the priority list for busy librarians.

In contrast to fulfilling an inter-library loan request or helping a patron locate an

item, weeding provides no immediate observable benefit. Further, it can impose a

psychological strain on those tasked to implement it; many librarians find it

stressful to make the decision to discard an item (Dilevko & Gottlieb, 2003).

One of the largest obstacles to weeding is the time it requires. Making a decision

about a single title can take several minutes (Zuber, 2012). Large-scale weeding

projects can require the review of tens of thousands of titles. For example, Wesleyan

University conducted a weeding project from 2011 to 2014 that began by identifying

90,000 weeding candidates for individual review (Tully, 2011). Reviewing was done

in two phases, by the librarians and then by interested faculty members. The

project involved 17 librarians, two consultant subject specialists, and approximately
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20 staff members plus two new employees (a reference librarian and a staff member)

who were hired specifically to support the project. The project took three years to

complete (P. Tully, personal communication, October 16, 2014).

Other obstacles, such as patron opposition to the act of weeding, can also hinder

progress and must be addressed carefully and diplomatically. At Wesleyan

University, faculty opposition to weeding was a significant factor, and it was

necessary to provide a means for faculty to provide input on which weeding

candidates should be retained (Tully, 2012). However, the experience at other

university libraries has been different. Monmouth University found that their

weeding project was “greeted enthusiastically” by some faculty members due to a

general concern about outdated materials (Dubicki, 2008). Each library must assess

and respond to the particular patron views and concerns at hand.

One possible solution to the time obstacle is automation, and some automation

is already available. Services exist that can apply a set of weeding criteria to a

library’s circulation records to generate the initial list of weeding candidates (Lugg,

2012). A librarian reviews each candidate and assigns it to either the “Keep” or the

“Weed” category. However, for the purposes of weeding, each candidate that is

labeled “Keep” on the initial list represents an unproductive expenditure of the

librarian’s time. The ideal candidate list would be one that contains only items that

the librarian would agree to weed. There is a potential for significant time savings if

an automated method could be employed to filter and refine the list of weedable

candidates.

Motivated by this line of thinking, an experimental study was conducted to

assess the potential improvement in weeding efficiency that could be achieved using

a data mining approach. The study was performed using existing records from the

Wesleyan University weeding project. Automated machine learning classifiers were
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trained and evaluated using the weeding decisions that were recorded for each item.

Agreement between librarian judgments and weeding decisions predicted by machine

learning classifiers was calculated and tested for statistical significance. The study

found significant agreement between the predictions made by the classifiers and

human judgments. The most relevant variables were found to be librarian and

faculty votes for retention, item age, and the presence of copies in other libraries.

This thesis reports on the experimental study of automated classifiers for

assistance in library weeding projects. The remaining content is organized as

follows. In Chapter 2, the existing literature on weeding and automated methods for

collection analysis is reviewed in detail. Chapter 3 defines the research problem and

hypothesis. Chapter 4 provides more information about machine learning and the

specific classifiers that were used in this study. Chapter 5 describes the methodology

for the experimental study of automated weeding recommendations, and Chapter 6

presents and discusses the results of the experiments. Chapter 7 summarizes the

findings and conclusions of this study. Appendix A defines key terms.

The results of this study indicate that machine learning classifiers can improve

the efficiency of weeding projects by automatically identifying those candidates

most likely to be withdrawn. The goal is not to replace the librarian or faculty

member with an automated method, but rather to assist with the decision process.

Staff involved in a weeding project can use a classifier’s recommendations to make

the best use of limited review time. We anticipate that the results of this study can

serve to aid and improve future weeding projects by reducing the time needed for

their completion.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews the motivation for weeding library collections and describes

how such projects are conducted. Next, several weeding project challenges are

discussed, including the primary motivator for this study, which is the time that

such projects consume. One option for reducing the time required is to employ

computer automation to assist in weeding projects. The discussion of current

automation methods and tools highlights an opportunity for data mining or machine

learning methods to assist in filtering or prioritizing the lists of weeding candidates.

2.2 Motivation for Weeding Projects

Many weeding efforts are motivated by the empirical observation that in many

libraries, a large fraction of the collection never circulates. In 1975, Kent, Cohen,

Montgomery, Williams, Bulick, Flynn, Sabor, and Mansfield (1979) found that 49%

of all titles at the University of Pittsburgh Library had not circulated in the past

seven years. Similarly, 40% of the collection in Harvard’s Widener library had not

circulated in the twenty years prior to 1996, going back as far as computerized

records exist (Silverstein & Shieber, 1996). In 2007, Concordia University found

that 15% of the library’s collection had not circulated in 20 years (Soma & Sjoberg,

2010).

Non-circulating items can be a liability for libraries in that they consume shelf

space and resources but do not directly benefit patrons. They also reduce the

library’s overall circulation rate, which is commonly calculated as the number of

annual circulation counts divided by total holdings. High circulation is valued by

librarians because it contributes to a feeling that the library is “serving its

community well” (Dilevko & Gottlieb, 2003, p. 93). For some libraries, circulation
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rates also factor into state decisions about funding support (Roy, 1987). However, it

is not the case that all items with low circulation should be automatically discarded.

Some items enjoy patron use inside the library despite not being checked out (Selth,

Koller, & Briscoe, 1992; Slote, 1997). The process of weeding requires the

examination of additional factors, which increases the time required to accurately

evaluate weeding candidates.

There is a general belief among librarians that weeding can increase circulation

rates (Dilevko & Gottlieb, 2003). However, the few experimental studies that have

been done to assess the effect of weeding on circulation produced mixed results. In

1973, Slote weeded 20% of the adult fiction collection at the Harrison Public Library

and found that circulation increased by 6.2% after six months and by 21.2% after 20

months, while the rest of the collection experienced no change in circulation (Slote,

1997). Moore (1982) conducted a weeding study with “inconclusive” (p. 41) results

about the impact on circulation. Preliminary results suggested that weeding had

more impact on circulation for Dewey Decimal classes that had high use but little

impact on those with low use.

In contrast, Roy (1987) found that weeding produced no statistically significant

improvement in circulation. Working with a team, she weeded 10% of the adult and

young adult collections in four libraries and compared circulation over the next

eight months to that observed in the same eight-month period in the previous year.

Unexpectedly, two libraries that weeded experienced an average decrease in

circulation of 1%. Two libraries that used both weeding and book displays

experienced an average increase of 19%. However, two control libraries that did not

weed during this period experienced an average increase of 13%. Roy found that

there was a statistically significant difference between the libraries that only used

weeding and those that used weeding and displays, but no significant difference
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between either group and the control libraries. However, the small number of

libraries involved in the study may have limited the statistical power of the

experiment.

Despite these mixed results, librarians continue to employ weeding as part of

collection maintenance. Dilevko and Gottlieb (2003) conducted a survey of 294

public librarians in the U.S. and Canada about their weeding practices. They found

that 33% of public libraries weeded irregularly (e.g., to make space for new

acquisitions), 24% conducted weeding in an ongoing (continuous) fashion, and 39%

weeded with a specified frequency (e.g., yearly or monthly). The remaining 4% of

respondents skipped this question.

Circulation is not the only motivation for weeding. For example, in academic

libraries, weeding projects can be inspired by the cost of the storage space consumed

by the collection, a desire to reduce duplication of items on different campuses, a

reliance on interlibrary loan to get materials to where they are wanted, and an

increased reliance on digital sources over print materials (Metz & Gray, 2005).

2.3 Weeding Approaches

There are two primary approaches to weeding. An inclusive approach considers

each item in turn to decide whether it should be weeded or kept. For example, the

widely employed Continuous Review, Evaluation, and Weeding (CREW) method

advocates for the ongoing review of the entire collection, item by item, during which

weeding occurs as part of a larger process of collection maintenance (Larson, 2012).

Inclusive strategies are also often employed for weeding projects in which the goal is

to identify a given number of items for withdrawal, often to make room for new

items or because the collection is being moved to a new location (Soma & Sjoberg,

2010; Tully, 2011).
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An exclusive approach instead first identifies the “core collection” for the library

and then weeds items that fall outside of this subset. The core collection is defined

as the set of items that collectively satisfy a desired fraction of anticipated patron

requests, such as 95% or 99%. Exclusive weeding strategies are exemplified by the

Trueswell method (Trueswell, 1966). This approach employs past circulation

statistics to identify the library’s core collection. Trueswell studied the circulation

records of two libraries and found that just 20-25% of the collection could satisfy

over 99% of patron requests (Trueswell, 1964). This pattern has been observed in

many other libraries as well (Silverstein & Shieber, 1996; Slote, 1997). In general,

the best strategy to employ is one that accommodates the particular needs of the

library’s patrons and community as well as the type and size of the library (Swoger,

2014).

2.4 Factors Employed in Weeding Decisions

The policy used to decide whether a given book should be weeded or retained is

specific to the library (and sometimes to the librarian). Goldstein (1981) found that

only three of eleven TALON (medical) resource libraries had a written policy for

weeding. Four other libraries provided general guidelines and then relied on

individual judgment and expertise. Twenty years later, in a broader survey of

libraries, Dilevko and Gottlieb (2003) found that 75% of libraries reported having a

written weeding policy.

Dilevko and Gottlieb (2003) reported that the criteria most often used by

librarians to make weeding decisions were circulation statistics, the physical

condition of the item, and the accuracy of its information. This is consistent with

the CREW method’s advice to weed items with low circulation, poor appearance, or

poor content (Larson, 2012) and the methods used by previous weeding projects
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such as those of the University of Toledo (Crosetto, Kinner, & Duhon, 2008),

Concordia University (Soma & Sjoberg, 2010), and Rollins College (Snyder, 2014).

A summary of the criteria used by several weeding projects to identify candidates is

given in Appendix B. Next, we examine more closely each of the key factors

involved in weeding decisions.

Circulation Records. Slote (1997) surveyed the weeding literature and

found that past use of the item consistently emerged as the best single criterion for

making weeding decisions. One way to characterize past use is the measure of an

item’s “shelf-time,” i.e., the length of time that has elapsed since the item last

circulated. Slote advocated shelf-time as the most reliable criterion for objectively

determining which books could be weeded with the least impact on patron needs. In

his own 1969 study of five libraries, he found that “past use patterns, as described

by shelf-time period, are highly predictive of the future use, and can be used to

create meaningful weeding criteria” (p. 63).

In practice, however, not everyone agrees. Goldstein (1981) found that none of

the eleven libraries that were studied employed shelf-time in their weeding decision

making, although they did employ use statistics (e.g., number of checkouts). Others

have argued that demand (number of checkouts per year) may be more informative

than the time since last checkout (Snyder, 2014).

Physical Condition. Libraries seek to provide materials that are in a useful

state. Items that have been damaged (e.g., food spills, ripped pages, water damage,

weakened spines, missing pages) are less valuable to patrons and may even become

unusable. As items age, they become more vulnerable to physical decay and

damage. Sometimes items can be repaired. If they are deemed unusable, the library

must decide whether to simply discard the item or to replace it, based on the value

of its content to the user community.
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Quality of Content. The CREW manual identifies six factors that relate to

the quality of an item’s content and summarizes them with the acronym

“MUSTIE” (Larson, 2012, p. 57). The negative factors include: Misleading (or

factually inaccurate), Ugly (worn), Superseded, Trivial (no longer of literary or

scientific merit), Irrelevant (to the user community), or the same information can be

easily obtained Elsewhere (e.g., interlibrary loan or electronic format).

Other Factors. There are several other factors that may be used by

librarians in making weeding decisions. They may consider whether the item is a

duplicate of other items in the same collection and whether it is held by other

libraries. They may consult book reviews or canonical bibliographies, assess local

relevance, track in-house use of the item, and consider unique features of the book.

Soma and Sjoberg (2010) developed a standard checklist to be used by all librarians

as part of a collaborative weeding effort. The checklist included circulation and

browse statistics as well as an indication of whether the item appeared in Resources

for College Libraries and how many copies were held by other libraries.

2.5 Weeding Project Challenges

Dilevko and Gottlieb (2003) found that the biggest obstacle to weeding that was

reported by public librarian respondents was the amount of time that it consumed.

The amount of reviewing that can be done is limited by the number of people who

can devote time to the task, which varies by library. Concordia University reviewed

25,000 books per year for two years, dividing the work between five weeding teams,

and weeded a total of 12,172 items before deciding that this level of review “could

not be maintained” and reducing the review rate by 50% (Soma & Sjoberg, 2010).

Monmouth University librarians took two years to review 72,500 items and select

12,800 for removal (Dubicki, 2008). Rollins College weeded 20,000 of their collection
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of 286,000 items over two years (Snyder, 2014). Wesleyan University weeded 46,000

of ∼90,000 candidates over three years using 17 librarians and 21 staff members

(Tully, 2014).

Reducing the time spent on the weeding process would allow more time to be

devoted to communication with library patrons, many of whom have concerns about

the practice of weeding. For academic libraries, some faculty members may oppose

the entire project and refuse to sanction the removal of any titles. Some are

concerned about the loss of the scholarly record; discarding any material raises the

chance that some key prior contribution will be forever forgotten. Public library

patrons may disapprove of discarding items purchased with tax dollars.

In public and academic libraries, librarian and staff time is often devoted to

education and overcoming weeding opposition. For example, Wesleyan University

librarians attended several faculty meetings and set up a website where interested

faculty could review the candidates and vote on which ones should be retained

(Tully, 2012). Olin Library at Rollins College also invited patrons to participate in

the weeding process: weeding candidates were flagged but remained on the shelf for

two months, during which time faculty members were encouraged to browse relevant

call number ranges and remove the flag of any book they wanted to keep (Snyder,

2014). Librarians at Virginia Tech worked to head off criticism by employing

advance publicity with clear weeding criteria and inviting interested faculty

members to review weeding decisions until they were comfortable with the judgment

employed (Metz & Gray, 2005). However, they found that too much project

visibility was a problem; they collected discards in a bin for recycling, and every few

months a patron or member of the public would notice and object to the project on

principle. Eventually they ended up redirecting discards to the university’s surplus

property sales to reduce visibility and objections.
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In contrast, Monmouth University found that “faculty and administrators were,

in fact, the easier groups to convince that this [weeding] was a worthwhile endeavor”

with “no resistance voiced to the project” (Dubicki, 2008). Methods for addressing

these concerns were outside the scope of this thesis, except insofar as we were able

to incorporate faculty feedback, when available, into the candidate filtering process.

A final challenge is incomplete data about item usage. Circulation records are a

ready source of information about patron interest in an item, but they do not

capture item use inside the library. Some studies have found that in-house use

mirrors that of circulation, while others found that they can be quite different.

Selth et al. (1992) found that 11% of the books in their library had in-house use

with zero circulation. Weeding based only on circulation records could potentially

remove these items despite their evident popularity and utility for visiting patrons.

2.6 Automation Attempts for Weeding Projects

To reduce the time required for weeding, decision support systems have been

developed to aid in the identification of the initial list of weeding candidates (Lugg,

2012). These systems require that the librarian specify a list of weeding rules that

define which items shall be considered to be weeding candidates. For example,

librarians at Wesleyan University specified that weeding candidates were those items

that were published before 1990, acquired by the library before 2003, had fewer than

two checkouts since 1996, were held by at least 30 U.S. libraries, and were held by

at least two partner libraries (Tully, 2011). Given a list of rules, a commercial

service such as Sustainable Collection Services (SCS) (Lugg, 2012) applies the rules

to the collection and iterates, sometimes many times, with the librarians until the

list appears satisfactory in terms of its summary statistics (e.g., number of

candidates identified).
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Part of this process could be done in-house by the librarians themselves. The

main benefit of partnering with a company such as SCS is that it consolidates data

from many libraries in one place, enabling easy application of rules that involve the

number of holdings in other libraries (lest the single remaining copy of an item be

inadvertently discarded) and digital repositories such as the Hathi Trust. This kind

of service therefore enables the potential for a collaborative view of weeding with

“coordinated deselection” decisions between libraries (Snyder, 2014, p. 21). Actively

coordinating weeding decisions between libraries is beyond the scope of this project,

but it could be a powerful future capability.

Little research has been done on methods to further improve the quality of the

weeding candidate list, once the general rules have been applied. Silverstein and

Shieber (1996) used a machine classifier to predict future demand for individual

books. Their goal was to support an off-site storage program and to minimize the

number of patron requests for items in storage. They evaluated several strategies for

predicting future use. The best single criterion was the number of times the item

had been checked out in a ten-year period preceding the prediction period, and the

next best criterion was the number of months since the item’s last checkout, akin to

Slote’s shelf-time criterion (Slote, 1997). When only a few items were chosen for

off-site storage, incorporating knowledge about the LC class of the item increased

prediction performance, but when selecting larger groups it was less reliable and

sometimes decreased performance. The best result was obtained using a decision

tree classifier, which reduced the number of off-site item requests by a factor of five,

compared to a policy based only on previous use statistics. While this classifier was

designed to support off-site storage decisions, the same approach could be employed

to predict which books may be weeded. Silverstein and Shieber’s result suggests that

methods that employ multiple variables are likely to yield the best performance.
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2.7 Summary

There is a consensus opinion amongst librarians that weeding library collections

can yield benefits for libraries and library patrons. It is commonly found that a

large fraction of a library’s collection never circulates but instead consumes shelf

space and imposes an overhead on cataloging and collection maintenance, such as

the effort required to relocate or re-organize the collection. While the empirical

support for specific outcomes such as increased circulation rates is mixed, librarians

continue to employ weeding as a part of collection maintenance, and large weeding

projects involving the review of most or all of the collection are often required as

part of a move to a different building.

The biggest obstacle to weeding projects is the time required to review and make

decisions about each item. One natural solution to reduce manual effort is to employ

computer automation. However, to date automation has only been employed to

create lists of weeding candidates, by applying criteria articulated by the librarians

to filter the collection. No methods have been proposed to improve or expedite the

subsequent review and decision process that must be applied to each candidate.

This gap in the literature inspired the current study which evaluated the potential

for machine learning methods to filter and prioritize the weeding candidate list.
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Chapter 3

Definition of Research Problem

The high-level motivation for this research was the desire to identify methods to

improve the efficiency of the weeding process. This chapter discusses the reasoning

behind the study’s goal of assessing whether machine learning methods can improve

efficiency and then articulates the research questions that drove the study.

3.1 Machine Learning to Assist Weeding Decisions

Weeding decisions are complex and involve both objective and subjective

factors (Slote, 1997). While shelf-time (the time elapsed since the last checkout of an

item) is a strong predictor of low or no future demand for an item, and therefore its

potential for being withdrawn (Slote, 1997), other factors such as physical condition

of the item and the accuracy of its information also come into play (Dilevko &

Gottlieb, 2003; Larson, 2012; Soma & Sjoberg, 2010). Ranking candidates based on

a single factor would fail to capture the complexity of the decision process.

Weeding decision making also varies between different libraries, both when

defining the criteria for identifying weeding candidates and when making final

weeding decisions. Individual libraries prepare custom checklists for staff members

to apply when weeding items from their collection (Dubicki, 2008; Soma & Sjoberg,

2010). Therefore, any automation that is used to assist in the weeding project must

adapt to local library priorities and preferences.

Machine learning provides the ability to train a model using past decisions and

then apply it to new items, making predictions that are consistent with past

practices (Mitchell, 1997). In this way, a machine learning model can provide the

flexibility to accommodate individual library criteria and actual decisions made.
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Machine learning models also naturally accommodate the incorporation of multiple

factors (or variables) into the trained model.

3.2 Research Questions

Goldstein (1981) suggested that “the incorporation of sophisticated quantitative

methods into the already existing subjective framework could produce a remarkably

reliable and accurate evaluation tool” (p. 314). In this study, we sought to evaluate

whether such methods could indeed produce sufficiently reliable and accurate

predictions of weeding decisions.

We asked the following research questions:

R1. Can automated data classification methods accurately predict

librarian weeding decisions? Since each library employs custom criteria to

guide weeding decisions, there will never be one single equation or model that

satisfies the needs of all libraries. Automated methods must adapt to local criteria.

For machine learning classifiers, this can be achieved by training a local model using

labeled examples of previous weeding decisions made at that library. If the model is

sufficiently sophisticated, and the examples are representative of the rest of the

candidates to be classified, then the predictions made by the classifier should be

consistent with librarian decisions on the same items.

To be of use, it is not necessary for the classifier to have perfect agreement with

a librarian on all decisions, since the goal is not to replace the librarian with the

classifier, but rather to construct an item evaluation tool, as suggested by Goldstein.

The classifier’s predictions can be used to prioritize (rank) or shorten (filter) the list

of weeding candidates, which are then reviewed and confirmed by a librarian.

R2. Which factors are most relevant for making the best predictions

of librarian weeding decisions? According to Slote (1997), the criteria most
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commonly used to make weeding decisions include physical appearance, duplicate

volumes, poor content, foreign language, item age, and circulation statistics.

Physical appearance, content, and circulation correspond to the criteria advocated

by the CREW method (Larson, 2012) and the most common criteria self-reported

by librarians (Dilevko & Gottlieb, 2003). Information about an item’s physical

condition and the quality of its content are not likely to be available in a weeding

data set, but circulation statistics are recorded by all libraries in some form.

Information about item age, its availability in digital form, and its presence in other

libraries is also readily available.

3.3 Research Hypothesis

The major hypothesis to be tested in this experimental study is stated as follows.

• H0: There is no statistically significant agreement between librarian and

classifier weeding decisions based on item age, circulation, availability in

digital form, and presence in other libraries.

• Ha: There is statistically significant agreement between librarian and

classifier weeding decisions based on item age, circulation, availability in

digital form, and presence in other libraries.

In the remainder of this thesis, we report on an empirical study designed to test

the hypothesis using six different machine learning classifiers trained on data from a

large-scale university library weeding project.
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Chapter 4

Machine Learning Classification and Evaluation

This study evaluated weeding decision agreement between librarian judgments

and several state-of-the-art supervised machine learning classifiers. This chapter

provides background and definitions for each of the classifiers that were employed,

including nearest-neighbor classifiers, naive Bayes classifiers, decision trees, random

forests, and support vector machines. This background is followed by a discussion of

the theoretical evaluation strategy. The reader may find it useful to refer to

terminology definitions in Appendix A.

A supervised classifier analyzes a set of training data, in which each item has

been labeled with a human classification decision (the dependent variable). The

independent variables that describe each example are organized into a feature vector

(list of variable values) for use by the classifier. Through this analysis, the classifier

constructs a model that captures the observed relationships between the

independent and dependent variables.

All machine learning models make the assumption that items with similar

feature vectors have similar labels (dependent variable values). Phrased another

way, they assume that there is a correlation between some combination of the

independent variables and the single dependent variable. If this is not the case, the

model may be unreliable and fail to generalize well to new items. This usually

means that the representation employed does not adequately capture important

variation within the data set. Poor generalization (test) performance can indicate

the need for additional variables to be included in the modeling process.

Each classifier type employs a different model representation, and they possess

different strengths and weaknesses.
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4.1 Nearest-Neighbor Classifier

The simplest approach to classifying an item is to identify the most similar

previously classified examples and use them to predict the class of a new

observation. A nearest-neighbor classifier does not train an explicit model. Instead,

it accumulates a database of classified examples. To classify a new item, the

algorithm calculates the distance between the new item’s feature vector and the

feature vectors for all previously stored examples and selects the k examples with

the smallest distances (Cover & Hart, 1967). Of the k labels associated with those

examples, the most frequently appearing class is predicted for the new item. To

avoid ties, k is usually chosen to be an odd number. Since it relies on a distance

metric to identify the most similar items, the nearest-neighbor classifier requires

that input variables be numeric.

The strengths of the nearest-neighbor classifier are (1) it is fast to construct,

since no explicit model need be trained; (2) it makes no assumption about the

distribution of classes in the feature space; and (3) its predictions are easy to explain

by displaying the k examples that were used to predict the item’s label. Its major

weakness is that the time required to classify a new item increases with the size of

the training data set, since all examples must be considered to find the k cases that

are closest to the new item. For a large data set, this classifier can be very slow.

4.2 Naive Bayes Classifier

The naive Bayes classifier uses a probabilistic model of data and labels to predict

the most likely label for a new item (Duda & Hart, 1973). It relies on Bayes’ rule:

P (c|x) = P (c)
P (x|c)
P (x)

(1)

where x is an item and c is a class label. P (c) is the prior probability that an item

will belong to class c, before the item is observed. P (x) is the probability of
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observing item x which is expressed as the probability of observing an item with the

feature vector obtained for item x. The conditional probability P (x|c) is the

probability of observing the feature vector for item x given that the item comes

from class c.

The calculated value of interest, P (c|x), is the probability that item x belongs to

class c. Interestingly, it is not necessary to calculate P (x) to classify a new item.

This value is the same for all possible values of c, so if one simply wants to identify

the highest-probability class, it is sufficient to calculate the numerator only.

The requisite probabilities in the numerator (P (c) and P (x|c)) are derived from

empirical statistics on the (labeled) training examples. For P (x|c) to be meaningful,

there must be at least one previously observed item with exactly the same feature

vector as x. However, we do not expect the training set to include every possible

combination of feature values; indeed, if it did, then no learning would be needed,

since all possible outcomes would be already memorized. Instead, we decompose

P (x|c) =
d∏

i=1

P (xi|c) (2)

where i ranges from 1 to the number of features (d), and P (xi|c) is the independent

probability of observing feature value xi for feature i in class c. For Equation 2 to

hold, it must be the case that the features are statistically independent (not

correlated), given class c. This is referred to as a “naive” assumption, and therefore

a classifier built on this equation is called a “naive Bayes” classifier. The naive

assumption does not always hold (features are often correlated), but in practice,

naive Bayes often still performs well.

The strengths of the naive Bayes classifier are (1) it has a probabilistic

foundation, so it naturally provides a posterior probability for each prediction that

is made; (2) it can accept numeric or categorical inputs; and (3) there are no
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Figure 1: Simple Decision Tree for Classifying Weeding Candidates as “Weed” or
“Keep”

parameters to specify. Its primary weakness is that for its predictions to generalize

well, the distribution of classes in the training data set must be consistent with the

true probabilities of those classes to be observed in new data.

4.3 Decision Tree and Random Forest

Decision trees are another commonly used machine learning method. A decision

tree uses a set of labeled items to create a series of tests organized in a tree-shaped

hierarchy that allows a new item to be classified (Quinlan, 1986). An illustrative

hypothetical decision tree for the weeding task is shown in Figure 1. Starting at the

top of the tree, the test at each node is applied to determine which branch to follow

until a final prediction is reached. The first test is whether the publication date is

earlier than 1990. If not, the next test is whether the number of checkouts in the

last ten years is greater than 2. If not, the prediction is “Weed;” otherwise, the

prediction is “Keep.” If the first test (publication date before 1990) yields a positive

result, then the next test is whether the item is held by fewer than five libraries. If

not, the prediction is “Weed;” otherwise, the prediction is “Keep.” A decision tree

is automatically constructed by analyzing a set of previously labeled items and

identifying which questions (tests) will correctly classify as many of the items as
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possible. Decision trees can accept numeric or categorical inputs. Parameters to

specify include the criterion used to select the best feature on which to split the

data at each node, the maximum tree depth, and the maximum number of features

to consider for each split.

The strengths of a decision tree are (1) it generates an easy-to-understand model

that can explain how each prediction was made by simply tracing through the tree,

and (2) it can accept numeric or categorical inputs. Its primary weakness is that its

posterior probability estimates are usually not very reliable, as they are often

calculated from the fraction of examples that reach a given leaf node, which may be

a very small sample.

A random forest is a collection of decision trees that vote on the classification

decision (Breiman, 2001). The forest is “random” in that each individual tree is

trained on a data sample that is of the same size but is chosen at random, with

replacement, from the full data set. Therefore, by random chance some items will be

omitted from a given sample, so each tree develops a slightly different model. In

addition, instead of considering all d input variables when constructing a node test,

the random forest restricts each node’s search to
√
d, thereby introducing additional

variation in the tree learning process.

It has been shown that the collective decisions made by a random forest are

more reliable than those made by a single decision tree (the ensemble effect). In

addition, a random forest can generate a real-valued output that characterizes the

agreement amongst the ensemble and therefore the confidence in the outcome.

Random forests can accept numeric or categorical inputs. Parameters are the same

as for a single decision tree, plus the number of trees in the forest.

The strengths of a random forest are (1) it provides more robust decisions due to

its ensemble nature, and (2) it can generate a posterior confidence value. Its main
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weakness is that because it is composed of many individual models, its

interpretability is diminished, as compared to a single decision tree.

4.4 Support Vector Machine

Support vector machines (SVMs) identify a subset of the training data as the

“support vectors,” which are the items that most strongly constrain a consistent

model of output decisions (Cortes & Vapnik, 1995). For example, imagine a binary

classification problem with a single independent variable v, in which items with a

value for v < 0 are assigned to class A, and items with v ≥ 0 are assigned to class B.

The two support vectors that will be chosen are the item from class A with the

largest v value and the item from class B with the smallest v value. These two items

are the minimal set needed to correctly classify the rest of the items. For data of

higher complexity and additional independent variables, more support vectors may

be needed to specify the model. The SVM prediction for item x is the weighted sum

of the similarity between x and each of the training items xi, plus a bias offset β:

SVM(x) =
∑
i

αiK(x, xi) + β (3)

Similarity is defined using a kernel function, K, which in its simplest form (linear

kernel) is the dot product between the two item vectors. Another common kernel

function is the RBF or Gaussian kernel, in which K(x, xi) = e
− ||x−xi||

2

2γ2 . The training

process consists of estimating the weights αi and bias β. Training items with αi > 0

are considered support vectors. The remaining items have αi = 0.

SVMs require that all inputs be numeric. Parameters to be specified include the

type of kernel function K and a regularization parameter C, which specifies an

upper limit on the magnitude of each αi and therefore controls how much influence

a single support vector can have. This helps avoid over-fitting to the training data.

For RBF kernels, one must also specify a value for γ.
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The strengths of SVMs are (1) they are computationally efficient, especially for

large data sets, and (2) they have good generalization performance on a wide range

of problems. Their major weakness is the lack of interpretability for predictions. If a

linear kernel is used, one can calculate an equivalent weight vector w, with one value

per feature, that provides insight into which features have more or less influence in

the model.

4.5 Evaluation Approach

To test the hypothesis stated in Chapter 3, we required a method to compare

the decisions made by a librarian with the predictions generated by a classifier.

Examining the fraction of items in which the librarian and classifier agree

(accuracy) provided some insight, but it did not allow us to test the hypothesis in a

statistical fashion. Instead, we employed two statistical measures of agreement (φ

and Yule’s Q) that permit the assessment of statistical significance by factoring in

the amount of agreement that would be expected by random chance. The

justification for this choice is provided in the next chapter.

We further investigated the types of errors made by the classifiers using recall

and precision measures. This is important to any evaluation of weeding decisions

because of asymmetric error costs: the impact of an item that is incorrectly

predicted to be weeded is likely to be larger than the impact of an item that is

incorrectly predicted to be kept. Statistical measures of agreement do not account

for the difference in these two errors, but recall and precision reveal which types of

errors are most commonly made. Implementation details for these metrics are

provided in the next chapter.
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4.6 Summary

In this chapter, we described six machine classification algorithms that each

construct a model of prior decisions to enable prediction on future data. The

algorithms were nearest-neighbor, naive Bayes, decision tree, random forest, linear

SVM, and RBF SVM. We reported the strengths and weaknesses of each method

and the parameters that must be specified for each one. We also outlined the

evaluation strategy that was employed in the study. The methodology of this study

is described in detail in the next chapter.
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Chapter 5

Methodology

This chapter describes the design of the empirical study that we conducted to

assess whether machine classifiers could generate weeding predictions having

sufficiently high agreement with human judgments. Next, the data set, variables,

and pre-processing steps are described. We characterize the data set by reporting

overall statistics and the correlation of each variable with the weeding decision.

Finally, we describe how the classifiers were trained and evaluated and how the

research hypothesis was tested using statistical agreement.

5.1 Research Design

This study employed a somewhat unusual experimental design. Rather than

testing whether a treatment creates a statistically significant change in a dependent

variable, the goal was to test whether librarian and machine-generated weeding

decisions about the same set of items were in significant agreement. That is, rather

than attempting to predict whether a book should be weeded or kept in an objective

fashion, classifiers were designed to construct a model of librarian decisions that

could be efficiently applied to a large collection. This is an inclusive approach to

weeding (as defined in Section 2.3), and each item was considered independently.

5.2 Research Population and Sampling

The study was structured as a retrospective analysis of data collected by the

Wesleyan University Library as part of a large-scale weeding project that took place

from 2011 to 2014 under the direction of the Wesleyan University Librarian, Pat

Tully (Tully, 2014). The research population (if it can be considered as such)

consisted of the items from the library’s collection that were identified by Wesleyan

librarians and staff as candidates for weeding.
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The Wesleyan data set employed in this study was provided by Lori Stethers,

systems librarian at the Wesleyan Library, in March 2015. It contained 88,491

weeding candidates. Each item was marked to indicate whether it was withdrawn or

kept as a result of the weeding project.

The criteria used to generate the list of weeding candidates were as

follows (Tully, 2011):

• Publication date before 1990

• Acquisition date before 2003

• No checkouts since 2003

• ≤ 2 checkouts since 1996

• Held by > 30 other U.S. libraries

• Held by ≥ 2 partner libraries (members of the CTW Consortium, which

includes Connecticut College, Trinity College, and Wesleyan University).

To be included in the list of candidates, each item had to satisfy all of the specified

criteria.

5.3 Data Collection

The variables available for this study (see Table 1) were limited to what was

previously collected as part of the weeding project. The Wesleyan University

Library provided information for each item about its publication year (used to

calculate age), circulation history (checkouts), how many other libraries held the

same item (uslibs, peerlibs), and whether the item was in the Hathi Trust

(hathicopy, hathipub). Since some of the classifiers in this study require that all

inputs be numeric, the study was limited to variables that were naturally numeric or

that could be converted into a numeric representation. The variables hathicopy and

hathipub were converted to a representation in which True = 1 and False = 0.
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Table 1: Variables Used to Represent Each Weeding Candidate

Variable Description Type
age Number of years between Publication Year and 2012,

when the data was collected
integer

checkouts Number of checkouts since 1996 integer
uslibs Number of U.S. libraries with a copy of this item, based

on OCLC holdings records
integer

peerlibs Number of peer libraries with a copy of this item, based
on OCLC holdings records

integer

hathicopy Copyrighted digital version exists in the Hathi Trust? Boolean
hathipub Public domain digital version exists in the Hathi Trust? Boolean
facultykeep Number of Wesleyan faculty votes to keep the item integer
librariankeep Number of Wesleyan librarian votes to keep the item integer
decision “Keep” or “Weed” Boolean

Some items had a date of last circulation, but most (77%) did not. While

methods exist for inferring missing values in a data set, they are only appropriate if

the value exists but is missing (not recorded). For this data set, checkout dates are

only available for items checked out since 1996. The remaining items may have been

checked out prior to 1996, or they may never have been checked out at all. With no

valid observations of checkouts prior to 1996, there is no principled way to infer the

possible checkout dates for those items. Since many of the machine learning

methods cannot operate on data with missing values, we decided to exclude the

shelf-time variable from modeling. It is very possible that higher performance would

be achieved if shelf-time information were available for all items.

The Wesleyan data set contained information that covered only two of the six

weeding criteria categories identified by Slote (1997). No information was available

about each item’s physical condition, whether an item was a duplicate of another

item, the quality of the item’s content, or whether the item was written in a
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language not commonly used by patrons of the library. These factors may have been

employed by librarians in making their final decisions, but since they are not

recorded in the data set, they were not available for use by the machine classifiers.

As noted in Chapter 3, data on in-house use of the items was also unavailable.

The Wesleyan study was unusual in its large-scale involvement of university

faculty in the weeding project decision process. Faculty members were invited to

vote on items that they did not want withdrawn using a web interface (Tully, 2012).

The data set contained information about the number of “Keep” votes that each

item received from faculty members (facultykeep) as well as librarians

(librariankeep). These variables can potentially capture indirect information about

an item’s condition and subjective value.

The labeled data set contained an entry for each candidate specifying values for

all independent variables (its feature vector) and librarian decision (label variable).

5.4 Data Pre-processing

An initial assessment of data quality and the distribution of values for each

feature identified some inconsistencies and errors in the data set. The following

steps were applied to correct and reduce the data set:

(1) One item (Germany’s Stepchildren, by Solomon Liptzin) had an invalid

publication year of 5704. This value was replaced by the correct value of 1944.

(2) Items that were marked as part of an “enumeration” (series) were handled

separately with different weeding decision criteria during the Wesleyan weeding

project. The difference in criteria that were employed could preclude the learning of

a consistent model, so these items (n = 8141) were excluded from the data set.

(3) Four items had a last circulation date prior to 1996, which was identified as

an error. These items were excluded from the data set.
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5.5 Data Set Analysis and Characterization

The data set contained 80,346 items, 48,445 (60.3%) of which were marked

“Keep” and 31,901 (39.7%) of which were marked “Weed.” The minimum, mean,

and maximum values for the four variables with more than two distinct values were:

Variable Units Minimum Mean Maximum
age years 23 57.59 400
uslibs libraries 31 544.66 7634
facultykeep votes 0 0.46 15

Figure 2 shows the distribution of values observed for these three variables.

Separate distributions are plotted for items marked “Keep” and “Weed.”

Figure 2(a) shows that the distribution of ages for items marked “Keep” was shifted

slightly lower (younger/newer) than for items marked “Weed.” Figure 2(b) shows

that the distribution of values for the number of U.S. libraries holding the item was

shifted slightly higher (more holdings) for items marked “Weed.” Figure 2(c) shows

that items with any faculty votes at all are much more likely to be kept than

withdrawn.

For variables that took on only two possible values, we analyzed the distribution

of “Keep” and “Weed” decisions. The checkouts variable was dominated by items

that had never been checked out: 77% of items in the data set had 0 checkouts. The

probability of an item being withdrawn, P (W ), given that it had 0 checkouts, was

much higher than if it had 1 checkout (0.41 vs. 0.36). The probability that an item

was withdrawn, across the whole data set, was 0.40.

checkouts Number Fraction Weed Keep P (W )
0 61,993 77.16% 25,252 36,741 0.41
1 18,353 22.84% 6,649 11,704 0.36

The peerlibs variable was less strongly aligned with the weeding decision, but

there was still a difference in outcome between items that were held by two peer
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for Items Marked “Keep” vs. “Weed”
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libraries (59% of the items, with P (W ) = 0.41) versus those held by three peer

libraries (41% of the items, with P (W ) = 0.38). The latter were less likely to be

withdrawn.

peerlibs Number Fraction Weed Keep P (W )
2 47,738 59.41% 19,600 28,138 0.41
3 32,608 40.58% 12,301 20,307 0.38

Items in the Hathi Trust were more likely to be held in copyright (57%) than to

be in the public domain (13%). For those items with a copyrighted version in the

Hathi Trust, the probability of being withdrawn was higher (0.42) than the data set

average, while those items with a public domain copy had a lower probability of

being withdrawn (0.38).

hathicopy Number Fraction Weed Keep P (W )
False 34,660 43.14% 12,531 22,129 0.36
True 45,686 56.86% 19,370 26,316 0.42

hathipub Number Fraction Weed Keep P (W )
False 69,997 87.09% 27,932 42,045 0.40
True 10,369 12.91% 3,969 6,400 0.38

Finally, 6% of the items had a value of 1 for the librariankeep variable; the rest

had a value of 0. There was a very strong relationship between librarian votes and

final decisions, as expected: 99% of items with a “Keep” vote were kept

(i.e., P (W ) = 0.01). The 31 items that were withdrawn despite a librarian “Keep”

vote were determined to be either lost or duplicates of other items.

librariankeep Number Fraction Weed Keep P (W )
0 75,926 94.50% 31,870 44,056 0.42
1 4,420 5.50% 31 4,389 0.01

Likewise, the items that received at least one faculty vote (n = 23, 895) for

retention were very likely to be kept. The weeding project overrode the faculty

votes for only 398 (1.7%) items.
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facultykeep Number Fraction Weed Keep P (W )
0 56,451 70.26% 31,503 24,948 0.56
>0 23,895 29.74% 398 23,497 0.02

5.6 Classifier Training and Evaluation

We divided the data set into two equal halves: Dt for training and De for

evaluation. Items were randomly assigned to Dt or De. Each machine learning

classifier was trained on Dt, with known labels, and then used to generate

predictions for De, for which the labels were not visible to the classifier.

All of the feature values were normalized to achieve a mean value of 0 and a

standard deviation of 1. This is a standard practice that compensates for different

ranges in different features, and it tends to improve performance. The

shifting/scaling coefficients were determined from Dt, then applied to De.

The parameters that were used to train each machine learning classifier are

summarized in Table 2. To select parameter values, three-fold cross-validation was

conducted on the data in Dt. That is, Dt was further divided randomly into three

folds, and a classifier was trained on two of the folds and then evaluated on the

third fold, which was not used for training. This process was done three times, so

that each held-out fold was evaluated once. This was done for all candidate

parameter values, and the values that resulted in the highest held-out performance

(accuracy) were selected. For some classifiers (linear and RBF SVMs), all possible

parameter values were tested; these classifiers are marked “All” in Table 2. For

others (marked “50R” or “100R”), a fixed number (50 or 100) of randomly selected

parameter values within the specified range were evaluated, due to computational

cost. A final classifier of each type was then trained on all of Dt using the identified

parameter values. This classifier was tested on De.
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Table 2: Classifier Parameters and Candidate Values Evaluated for Optimization

Classifier Parameter Candidate values
Nearest neighbor (100R) Number of neighbors k {1, 2, . . . , 199, 200}
Naive Bayes None
Decision tree (100R) Maximum tree depth {None, 3, 5}

Maximum number of features {1, 2, . . . , 7, 8}
Split criterion Gini Index or Entropy

Random forest (50R) Maximum tree depth {None, 3, 5}
Maximum number of features {1, 2, . . . , 7, 8}
Split criterion Gini Index or Entropy
Number of trees {10, 20, 50, 100, 500}

SVM (linear kernel) (All) Regularization parameter C 10{−10,−9,...,0,1}

SVM (RBF kernel) (All) Regularization parameter C 10{−10,−9,...,0,1}

RBF parameter γ 10{−2,−1,0,1,2,3}

5.7 Performance Measures and Hypothesis Testing

To test the study’s central hypothesis, the predictions made by each classifier

were compared to the librarian decisions for each item in De. We employed two

statistical measures of agreement: Yule’s Q and the φ coefficient. There is no single

best measure that is widely agreed upon for all possible types of data. Some

measures make assumptions about Gaussianity of the underlying trait, and it is not

evident that the keep/weed decision would satisfy that assumption. However, Yule’s

Q and φ are two widely used measures that do not make that assumption and

therefore are suitable for this task. Yule’s Q (Yule, 1900) is based on the odds ratio

of two outcomes (agreement and disagreement) to enable the determination of

whether the observed agreement is statistically distinguishable from random chance.

The φ coefficient (Yule, 1912) is an extension of Pearson correlation to dichotomous

(binary-valued) data: in this case, the two values are “Weed” and “Keep.”

Both measures operate on values calculated as part of a contingency table,

which reports the number of occurrences of the possible outcomes for a given
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Table 3: Contingency Table to Tally Agreements and Disagreements Between
Librarian Decisions and Classifier Predictions

Librarian
Classifier Weed Keep

Weed a b
Keep c d

prediction (see Table 3). The value a is the number of times that the librarian and

the classifier both voted to weed a particular item, and d is the number of times

they both voted to keep an item. The values b and c together report the number of

times they disagreed, where b is the number of items that the librarian voted to

keep and the classifier voted to weed, and c is the number of items that the librarian

voted to weed and the classifier voted to keep.

Yule’s Q uses the following equation:

Q =
ad− bc
ad+ bc

. (4)

The φ coefficient is calculated as:

φ =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
. (5)

Both values can be assessed for statistical significance using a χ2 test with one

degree of freedom. Testing of the null hypothesis was done at the significance level of

p = 0.001, so we reject the null hypothesis if p ≤ 0.001 and fail to reject it otherwise.

The amount of agreement between librarian and classifier decisions provides a

quantification of the quality of the classifier judgments. However, it does not

distinguish between different kinds of disagreements. Incorrect predictions of

“Weed” (those items in cell b of the contingency table) likely are worse mistakes

than incorrect predictions of “Keep” (cell c). Yule’s Q and the φ coefficient both
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treat these equally. To gain further insight into these types of errors, we also

assessed each method in terms of recall, which is sensitive to c, and precision, which

is sensitive to b.

We assess recall and precision with respect to the correct identification of items

that were labeled “Weed” by humans. Recall is the number of items correctly

predicted “Weed” by the classifier (i.e., in agreement with human decisions) divided

by the total number of items labeled “Weed” by humans. With respect to the

contingency table in Table 3, recall (R) is defined as:

R =
a

a+ c
. (6)

Precision (P) is the number of items correctly predicted “Weed” (in agreement

with human decisions) divided by the total number of items predicted “Weed” by

the classifier:

P =
a

a+ b
. (7)

Finally, accuracy (A) is defined as the fraction of classifier predictions that agree

with human decisions, including both “Weed” and “Keep” items:

A =
a+ d

a+ b+ c+ d
. (8)

We assess the statistical significance of recall, precision, and accuracy scores

with a univariate χ2 analysis by testing the observed values against those expected

by a random process. The expected values of recall, precision, and accuracy are

determined as follows.

Let N be the total number of items in the data set, Prand(W ) be the probability

that an item is marked “Weed” by a random process, and Plabel(W ) be the

probability that an item is labeled “Weed” by a human. Since there are only two

prediction outcomes, “Weed” or “Keep,” Prand(W ) = 0.5. From our analysis of the
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data set (Section 5.5), we know that Plabel(W ) = 0.40. The expected number of

items correctly predicted as “Weed” (a) is N × Prand(W )× Plabel(W ). The expected

number of items labeled “Weed” by human decision (a+ c) is N × Plabel(W ). Then

the expected value of recall is:

E[R] =
E[a]

E[a+ c]
(9)

=
N · Prand(W ) · Plabel(W )

N · Plabel(W )
(10)

=
N · 0.5 · 0.4
N · 0.4

(11)

=
N · 0.2
N · 0.4

(12)

= 0.5 (13)

Likewise, the expected value of precision is:

E[P ] =
E[a]

E[a+ b]
(14)

=
N · Prand(W ) · Plabel(W )

N · Prand(W )
(15)

=
N · 0.2
N · 0.5

(16)

= 0.4 (17)

For a random predictor with two outcomes, the expected value of accuracy,

E[A], is 0.5.

A non-parametric χ2 test was used to determine the statistical significance of

each ratio value. The random process was modeled as generating a binary variable

with two possible outcomes. The predicted probability of each outcome, P (oi), was

compared with its observed probability, O(oi):

χ2 = N ·

P (o1)

(
O(o1)− P (o1)

P (o1)

)2

+ P (o2)

(
O(o2)− P (o2)

P (o2)

)2
 (18)
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The calculated χ2 value was checked against a standard table of χ2 distribution

values to determine the probability of observing the difference between P (oi) and

O(oi) by chance, which is the significance level (p-value) for the observed values.

To assess the statistical significance in differences in performance values (recall,

precision, or accuracy) between two classifiers (V1 and V2), we calculated a z-score

based on the ratio of the observed difference to the standard error observed in the

combined sample. Since the ratio scores are in the range [0, 1], we first converted

them into the range [0, 100] by multiplying each value Vi by 100. Let V̄ be the

average of V1 and V2.

z =
V1 − V2√

2
N
V̄ (100− V̄ )

(19)

The calculated z-score was checked against a standard table of z distribution

values to determine the significance level (p-value).

5.8 Implementation Details and Project Timeline

All experiments and data analyses (including the initial variable analysis

reported in Section 5.5) were implemented in Python using a combination of new

code and the freely available scikit-learn library for implementing the machine

learning classifiers and computing φ. Yule’s Q was implemented according to

Equation 4. Experiments were conducted on a MacBook Air laptop running OS X

10.7.5 with a 1.7 GHz Intel Core i5 processor and 4 GB of RAM. The Python

interpreter was version 2.7.5.

The data set was acquired from the Wesleyan University Library in March 2015.

We iterated several times with Wesleyan to address some inconsistencies in the data

set. Initial experimental results were complete by July 2015 and the process of

writing up the results began. In September 2015 we discovered a discrepancy in

that some items in the data set had circulated after 2003, yet one of the selection
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criteria was that items should not have circulated after 2003. A follow-up discussion

with Wesleyan resulted in the determination that these items should be excluded

from the analysis.

After re-running the experiments, another obstacle appeared in terms of the

statistical measure of agreement that was used (φ). It was generating inconsistent

results due to the methodology employed (comparing agreement as a function of

classifier confidence threshold). The φ values were not comparable because the set

of data that passed this threshold was different for each classifier. The φ statistic

requires that the underlying data, or at least its marginal distribution, be fixed for a

comparison to be valid (Liu, 1980). After extensive research into other agreement

measures and assessment of the assumptions they imposed on the data set, we

identified Yule’s Q as a better choice for measuring agreement. After more

consideration, we abandoned the idea of assessing classifier performance as a

function of confidence threshold and instead decided to measure the classifier

outputs directly. That meant that φ could once again be employed to compare

different classifiers, and it simplified the presentation of results greatly.

The final experimentation was completed by December 2015 and the analysis of

the results was completed by March 2016.

5.9 Summary

This chapter outlined the methodology of the study. It described the source of

the data set as well as its properties and the features that were used to describe

each item. An initial assessment of the distribution of values for each feature and

their association with the weeding outcome provided initial insights into the

contents of the data set. It also described the process of training the classifiers as

well as the evaluation of their performance in terms of accuracy, recall, precision,
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and agreement, to enable statistical testing of the hypothesis. The chapter

concluded with an overview of the research implementation.
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Chapter 6

Experimental Results and Discussion

This chapter presents the experimental results, discusses research findings in the

context of prior studies, and reflects on the limitations of the study in terms of data

set quality, factors excluded from modeling, and other potential pitfalls.

6.1 Results

6.1.1 Parameter selection results. After performing three-fold

cross-validation on the training set, Dt, the parameter values were selected for each

classifier as shown in Table 4. The number of neighbors used by the

nearest-neighbor classifier is quite high (165). This indicates that the items may not

be neatly divided into “Keep” and “Weed” groups within the feature space.

Instead, they are mixed together, and a large number of neighbors is needed to get a

robust vote on the correct prediction. The naive Bayes classifier, as previously

noted, does not have any parameters to set.

The decision tree was allowed to use up to five features (of the eight available),

and the maximum tree depth was also five (with no pruning). The decision tree’s

first split was on the librariankeep feature.

In contrast, the random forest was composed of 100 trees, each of which were

only allowed to use three features and to have a depth of three. Shallower trees tend

to generalize better to new data, but they may miss finer nuances. Interestingly, the

single decision tree used the Gini Index to determine how to split nodes, while the

random forest used the entropy criterion. Either one is acceptable for decision trees.

The linear SVM employed a regularization parameter (C) value of 0.001, which

is very small. This signals that the data may not be well modeled by a linear

separation, which is consistent with the high k value chosen by the nearest neighbor
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Table 4: Parameter Values That Were Selected for Six Machine Learning Classifiers
Using Cross-validation on the Training Set

Classifier Parameter Best value
Nearest neighbor Number of neighbors k 165
Naive Bayes None
Decision tree Maximum tree depth 5

Maximum number of features 5
Split criterion Gini Index

Random forest Maximum tree depth 3
Maximum number of features 3
Split criterion Entropy
Number of trees 100

SVM (linear kernel) Regularization parameter C 0.001
SVM (RBF kernel) (All) Regularization parameter C 10

RBF parameter γ 10

classifier. In contrast, the RBF SVM selected a C value of 10, which means that its

more complex modeling yielded a better fit to the data. The RBF parameter (γ)

was set to 10. This parameter is an intuitive measure of how far the influence of a

given example reaches, in feature space. A value of 10 is medium-large, indicating a

relatively small radius of influence for a given item. One can interpret this to

indicate a heterogeneous feature space in which classes may be interspersed rather

than cleanly separated.

6.1.2 Learned models. As noted earlier, the nearest neighbor classifier does

not learn an explicit model, so there is no model to discuss.

The naive Bayes model consists of the conditional class probabilities for each

feature, estimated from the training data (given in Section 5.5).

One of the strengths of the decision tree classifier is that it creates models that

are easy to interpret. The top three layers of the trained decision tree are shown in

Figure 3. The most likely outcome after three layers of testing, and its associated
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librariankeep	
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Figure 3: Top Three Layers of the Learned Decision Tree Model

probability, is shown at the bottom of the diagram; the complete classifier conducts

two more layers of tests before classifying a given item. The first feature that the

classifier tests is librariankeep. If there is at least one librarian who voted to keep

the item, processing moves to the right sub-tree. There, if at least one faculty

member voted to keep the item, the age of the item is tested. For all of the items

that follow the first branch to the right, the most likely outcome is “Keep.” There

are very few exceptions; the probability of “Keep” ranges from 0.97 to 1.0.

If no librarians voted to keep the item, then the first left branch is followed and

the classifier likewise checks whether any faculty members voted to keep the item.

Any such votes lead to an age check, and the most likely outcome is again “Keep”

with probability 0.98 to 0.99. However, items that had neither a faculty vote nor a

librarian vote to be kept are most likely to be weeded. This left sub-branch is where

most of the complexity and uncertainty exists in the model. The probability of the

most likely outcome (“Weed”) is higher for older items (those older than 35.5

years), but the probability is still only 0.61, indicating that there are many items in

this group that should be kept. For younger items, the probability of being weeded
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is not much more than random chance (0.52). The next feature to be checked (not

shown in the figure) is checkouts, then uslibs and hathicopy. However, none of these

checks served to improve the separation of “Weed” and “Keep” items by much.

The structure of the tree is consistent with the individual feature assessment in

Section 5.5. The librariankeep and facultykeep features had the strongest

discriminatory power between the two classes, while the other variables provided

less separation. The decision tree structure indicates that even when combining the

features in a sequence of tests, accurate weeding decisions on some items remain

difficult to achieve.

The random forest used an ensemble of 100 decision trees, which would be

tedious to examine individually. However, it also produces a consensus estimate of

the importance of each feature based on how often it is employed in individual trees.

The most important feature was facultykeep (0.77), followed by librariankeep (0.19)

and age (0.01).

The support vector machine models do not lend themselves well to

interpretation. They are generally treated as black boxes that generate good

predictions but do not provide insights into the data being classified.

6.1.3 Performance results. Table 5 presents the test performance for the

baseline approaches (keep all items, weed all items) and the six machine learning

methods. The best value(s) for each column is/are in bold; top values that are not

significantly different from each other, as determined by z-score tests with p = 0.01,

are all shown in bold (ties).

All of the accuracy values in Table 5 were found to be statistically significantly

better than random performance (χ2, p = 0.001), except for the “Weed-all” baseline,

which was significantly worse than random performance. All of the recall values

were significantly better than random (χ2, p = 0.001), except for the “Keep-all”
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Table 5: Performance Statistics of Predicting Weeding Decisions by Different
Classifiers

Method Accuracy Recall Precision φ Yule’s Q
Baseline (all “Keep”) 0.600 0.000 0.000 N/A N/A
Baseline (all “Weed”) 0.400 1.000 0.400 N/A N/A
K-nearest-neighbor 0.721 0.869 0.605 0.486 0.832
Naive Bayes 0.724 0.980 0.594 0.552 0.968
Decision tree 0.725 0.967 0.596 0.545 0.949
Random forest 0.724 0.919 0.601 0.516 0.887
SVM (linear) 0.725 0.986 0.594 0.557 0.978
SVM (RBF) 0.725 0.954 0.598 0.537 0.930

baseline, which was significantly worse. For precision, all of the classifiers achieved

values that were significantly better than random (χ2, p = 0.001), but both of the

baselines were significantly worse. As described in Section 5.7, φ and Yule’s Q are

statistical measures of agreement. In the table, all of the φ and Yule’s Q values were

statistically significant (χ2, p = 0.001), despite the difference in their range of values.

All of the machine learning classifiers achieved approximately the same level of

accuracy (72%). This performance is well above the best baseline performance of

60%, which would be achieved by not withdrawing any items. However, a z-score

test with p = 0.05 found that there is no significant difference in accuracy between

classifiers.

Nevertheless, although all classifiers reached about the same level of accuracy,

they did not all make the same type of errors. As noted in Chapter 5, analysis of

recall and precision values allows the determination of whether a given classifier is

more likely to be wrong when predicting “Keep” or when predicting “Weed.” The

recall values varied noticeably across classifiers, but the precision values showed

little difference between them (albeit statistically significant). This suggests that
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some classifiers were better than others at correctly identifying items that should be

withdrawn, but all of the classifiers struggled to improve precision beyond about

60%. That is, there is a large number of items in the data set that should be kept

but are difficult to distinguish, given the features available, from those that should

be withdrawn.

Specifically, the K-nearest-neighbor classifier had the lowest recall (86.9%) but

the highest precision (60.5%), which indicated that it was more likely to mistakenly

predict “Keep” for an item that was actually withdrawn, but its “Weed” predictions

were most reliable. This classifier had significantly higher precision than the naive

Bayes, random forest, and linear SVM classifiers (z-score, p = 0.01) and to a lesser

degree compared to the decision tree and RBF SVM (z-score, p = 0.05). In

contrast, the linear SVM had the highest recall (98.6%) but the lowest precision

(59.4%), which indicated that it was more likely to mistakenly predict “Weed” for

an item that was actually kept. It had significantly higher recall than all other

classifiers (z-score, p = 0.01).

The hypothesis behind this study was that machine learning classifiers could

obtain a statistically significant level of agreement with human weeding decisions.

The null hypothesis was that there would not be significant agreement. The φ and

Yule’s Q results in Table 5 cause us to reject the null hypothesis (χ2, p = 0.001).

The two measures are not directly comparable in terms of their values, but we found

that they ranked the methods identically. The naive Bayes and linear SVM

classifiers had the highest φ values (0.552 and 0.557; these were not significantly

different at the p = 0.01 level). The linear SVM had a significantly higher Yule’s Q

value (0.978), compared to all other classifiers, for the same p-value. The

K-nearest-neighbor classifier had the lowest agreement (φ of 0.486 and Yule’s Q of

0.832).
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Like accuracy, φ and Yule’s Q do not distinguish between different types of

errors. In this study, we found that they correlated well with recall (R=0.918 for φ,

R=0.999 for Yule’s Q) but did not correlate well with precision (R=0.196 for φ,

R=0.003 for Yule’s Q). Thus, classifiers with high recall values tended to have

higher agreement values as well, regardless of their precision.

6.2 Discussion

The experimental results indicate that we should reject the null hypothesis that

there is no statistically significant agreement between human decisions and

automated classifier predictions (χ2, p = 0.001). In fact, there was significant

agreement for all six classifiers that were tested, based on the statistical results of

two measures of agreement (φ and Yule’s Q).

In practice, one particular model would be selected and employed to assist in a

given weeding project. Which one should be selected? For this particular task

(employing a classifier to aid in making weeding decisions), precision is more

important than recall, since mistakenly discarding an item has more impact than

mistakenly keeping it. It is important that any prediction for an item to be weeded

is highly reliable. Problems with this kind of asymmetric “cost” (impact of different

types of errors) are common in machine learning applications, and inspecting recall

and precision performance aids the user in selecting the most appropriate model.

This would lead us to favor the behavior of the K-nearest-neighbor classifier or

the random forest, even though they did not have the highest accuracy or

agreement values. However, these outcomes could change if the same experiment

were conducted with a different set of items or with data from another library.

Fortunately, there is little cost to training and evaluating all models on a new data

set to enable a similar assessment and selection of the most appropriate classifier.
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An opportunity for improving classifier performance stands out in these results.

The inability of all six classifiers to achieve precision above 60% indicates that there

is a need for additional descriptive features to capture the information that

distinguishes the items with an incorrect “Weed” prediction from those that should

truly be withdrawn. These items are the ones in the leftmost branch of the decision

tree in Figure 3. Shelf-time, physical condition, or other factors might be the key to

correctly handling them. Inspection of specific examples from this group could

direct the collection of additional variables.

6.3 Limitations

There are some important limitations of this study. First, we were unable to

make use of the shelf-time information for these items. These values were missing

for the majority of the items in the data set. We wanted to be able to use the data

with all of the classifier candidates, but not all of them can handle missing values.

Decision trees are an exception, and they would be able to access this additional

source of information, which Slote (1997) claimed was the single best predictor of

future item use.

Another option would be to incorporate shelf-time information in a different

way. Last checkout dates were available only for checkouts since 1996. Instead of

trying to capture the total shelf-time, which is unavailable for 77% of the items, we

could create a “shelf-time since 1996” variable that would be set to 16 years for

items with no checkout record between 1996 and 2012 when the data was collected.

Second, there are several variables relevant to weeding decisions that are unlikely

or impossible to be made available to a machine classifier without further librarian

intervention, such as the physical condition of the item, the quality of its content,

and its in-house use. This places an (unknown) upper limit on the ability of any
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classifier to accurately capture human weeding decisions. However, the classifier will

only be used to filter the candidates, not to make a final decision. Its output will

still be reviewed by a librarian, who can employ additional judgment based on

factors not available to the classifier.

Third, to our knowledge an assessment of quantitative agreement between

librarians on weeding decisions has never been attempted empirically. Since libraries

differ in their policies and individual librarians may differ in their application of

subjective criteria, it is likely that inter-librarian agreement is not perfect. Thus, we

do not know what to consider as the best achievable agreement in reality; it is

probably not φ = 1.0. Assessing agreement between librarians would help us

interpret the classifier performance in context: is there a lot of room for

improvement, or is it already as good as a human?

Fourth, the results of this evaluation may not generalize well to new library

collections. Evidence suggests that libraries differ enough in their weeding

strategies (Swoger, 2014) that the classifier would have to be re-trained to create a

custom model for each new library according to the local librarians’ weeding

philosophy as expressed in their past weeding decisions. Depending on the

particular nature of those decisions, the classifier could achieve higher or lower

agreement that that observed on the data set employed in this study.

Despite these limitations, the experimental study demonstrated the feasibility of

a machine learning approach to constructing a model of human weeding decisions

and then applying it to new items in a consistent fashion. Accuracy, recall,

precision, and agreement values indicate high performance that could be used to

reliably rank weeding candidates for prioritized review by a human librarian and

save significant time by directing efforts to the items most likely to require weeding.
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6.4 Summary

The results of the study show statistically significant agreement between human

and classifier decisions about which items to weed or keep. Agreement was highest

for the naive Bayes and linear SVM classifiers. These classifiers had high recall but

low precision. The k-nearest-neighbor classifier provided the highest precision but

lowest recall. Judgment about the impact of different types of prediction errors is

needed to select between the classifiers for the one that best suits a given weeding

project.

Analysis of the learned models provided insight into which variables were most

relevant for distinguishing between candidates that should be weeded or kept, in this

data set. Librarian and faculty votes for retention emerged as the most important

features, while item age and presence in other U.S. libraries were also important.



50

Chapter 7

Conclusions and Future Work

Lack of time is cited as the biggest obstacle to effective weeding projects

(Dilevko & Gottlieb, 2003). Current automation to assist weeding efforts is limited

to the a priori specification of general weeding rules that are used to generate a list

of weeding candidates. The time required to review this candidate list can be

formidable, and the project may require the efforts of a large number of staff

members to complete. Because collection review and weeding is relevant for all

libraries at some point, and perhaps even as a continual ongoing process (Larson,

2012), methods that can further reduce the amount of human effort required to

accomplish large weeding projects are vital.

This study provides the first empirical analysis of the agreement with human

weeding decisions that can be achieved by machine learning classifiers. The machine

learning methods provide a data-driven approach to building a model that predicts

human decisions. The learned models do not replace humans, but they can provide

an initial assessment of the candidate list, which allows librarians to focus their time

and attention on those items most likely to be weeded.

7.1 Key Research Findings

All six machine learning classifiers had statistically significant agreement with

human judgments. Research question R1 (“Can automated data classification

methods accurately reproduce librarian weeding decisions?”) was answered by Yule’s

Q and φ values that caused us to reject the null hypothesis at the p = 0.001 level.

We also analyzed the models that were learned to address research question R2

(“Which factors are most relevant for obtaining accurate weeding predictions?”).

We found that the features representing librarian and faculty votes to keep certain
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items were prioritized by the classifiers, followed by the features relating to item age

and presence in other libraries. These findings are consistent with the literature on

factors relevant to weeding decisions.

7.2 Recommendations for Machine Learning in Weeding Projects

The results of this empirical study suggest that machine learning classifiers can

improve the efficiency of weeding projects by pruning or prioritizing the list of

weeding candidates prior to their review by a librarian. Because the weeding criteria

are defined differently in each library, and because weeding decisions often include

an element of subjectivity, it is unlikely that a generic classifier trained on decisions

made at one library could be directly applied to the collection at another library.

Instead, we recommend that each library label a portion of their weeding candidates

to provide a custom, library-specific set of training examples.

Most classifiers, including those used in this study, output a posterior confidence

in their predictions as well as the binary outcome. The librarian can filter the list of

candidates by specifying a minimum confidence threshold (τ) and generating a list

of only those weeding candidates whose prediction confidence is greater than τ . For

greater flexibility, we recommend sorting the entire candidate list by posterior

confidence values, so that the librarian can start with the candidates most likely to

be weeded and work down the list as time permits. Given good agreement between

librarian and classifier decisions, the sorted list will direct the librarian quickly to

items most likely to be withdrawn.

7.3 Future Research Directions

There are several directions for further research on the best use of machine

learning classifiers to assist in weeding projects. First, it would be valuable to

determine the minimum number of librarian-labeled examples that are needed to
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train a model that can attain a certain level of accuracy or agreement. As noted

above, it will be necessary for each library to label a representative set of examples

for training a customized model of that library’s weeding practices. In this study,

we used half of the data set to train each model, which amounted to more than

40, 000 labeled items. It is desirable to do the same evaluation with progressively

fewer labeled items to determine whether the same performance could be achieved

with less up-front effort.

In practice, for a new weeding project, one could start with a small collection of

labeled items and progressively increase the number of items until the desired level

of performance is achieved. Another promising area of investigation is the use of

active learning (Cohn, Ghahramani, & Jordan, 1996) in which the machine learning

method starts with very few labeled examples and then actively chooses which items

the librarian should label to provide the most informative labels first. This strategy

has been shown to dramatically reduce the number of labeled items required.

Second, this study included only information about age, circulation, and other

library holdings. As discussed in Chapter 2, there are many other potentially useful

features that could not be evaluated in the present study. These include information

about the item’s physical condition, quality of content, library in-house use, etc. A

similar empirical study with data that included those variables would help to

determine their value for predicting weeding decisions. An ablative study, in which

each variable in turn is eliminated from the data set and the same evaluation re-run,

would help determine which variables contribute relevant information and which do

not.

Finally, the vital next step in evaluating this approach is to conduct an

experimental study in parallel with an active human weeding project. One method

would be to collect data about items that are under consideration for weeding, then
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split the list in half. For half of the items, the standard approach of manual review

by librarians would be used. For the other half of the items, a classifier would be

trained and then used to prioritize the items for subsequent review. The total

human time required to identify weeding candidates in each half of the data set

would be tracked, and the outcomes would be measured in terms of circulation rate,

or the metric of most importance to the weeding project, for each half.

Ultimately, our goal is to facilitate weeding projects and reduce the burden that

they currently impose on librarians in terms of time and effort. While most

librarians feel that weeding is an important and necessary process, the most

common complaint is that it takes too much time (Dilevko & Gottlieb, 2003). It

may never be possible to fully automate the weeding process, but the use of

automation to provide decision support to busy librarians has the potential to

reduce that burden significantly.
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Appendix A

Definition of Terms

An automated classifier is a computer model that was trained to make

predictions in a manner consistent with previously recorded decisions for training

examples.

Data mining is the use of statistical methods to extract meaningful

characterizations of relationships within a data set.

A feature vector is the list of values used by a machine learning classifier to

represent a real-world item.

A label is the judgment (“Keep” or “Weed”) assigned by a librarian to a given

item.

Machine learning is the process by which an automated classifier is trained on

examples and applied to new data to make predictions.

Weeding is the selective removal (withdrawal) of library items that are outdated,

physically worn, no longer relevant to patron interests and needs, and/or available

in electronic form.

A weeding candidate is an item that has been included in the list of items for

review and possible withdrawal.
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Appendix B

Weeding Criteria Used in Prior Weeding Projects

Concordia University’s Carl B. Ylvisaker Library employed the following

variables during a weeding project that reviewed 25,000 items during 2007 and 2008

and removed a total of 12,172 (Soma & Sjoberg, 2010):

• Last circulation date

• Browse count

• Whether the item appears in Resources for College Libraries

• Whether there are more than five copies at other U.S. libraries

The article does not specify what thresholds were used to convert these variables

into decision criteria.

The Olin Library at Rollins College conducted a weeding project from 2010 to

2012 that removed more than 20,000 items from the collection (Snyder, 2014). The

criteria that they used to create the candidate list were:

• Acquired before January 1, 1996

• No in-house use or circulation since January 1, 1996

• More than 100 U.S. libraries hold the item

• Either the University of Florida or Florida State University holds the item

• Not in Resources for College Libraries or Choice Reviews

• Not about Florida (local interest)

All criteria had to be satisfied for an item to be included in the candidate list.

Wesleyan University creating a list of ∼90,000 candidates using these

criteria (Tully, 2011):

• Fewer than two checkouts since 1996

• Published before 1990
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• Acquired before 2003

• More than 30 U.S. libraries hold the item

• At least two Wesleyan partner libraries hold the item

Again, all criteria had to be satisfied for an item to be included in the candidate list.
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