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Abstract: 

Avihepadnaviruses have previously been isolated from various species of duck, goose, 

stork, heron and crane. Recently the first parrot avihepadnavirus was isolated from a 

Ring-necked Parakeet in Poland. In this study, 41 psittacine liver samples archived in 

Poland over the last nine years were tested for presence of Parrot hepatitis B virus 

(PHBV). We cloned and sequenced PHBV isolates from 18 birds including a Crimson 

Rosella, an African grey parrot and sixteen Ring-necked Parakeets. PHBV isolates 

display a degree of diversity (>78% genome wide pairwise identity) that is 

comparable to that found amongst all other avihepadnaviruses (> 79% genome wide 

pairwise identity). The PHBV viruses can be subdivided into seven genetically distinct 

groups (tentatively named A-G) of which the two isolated of PHBV-G are the most 

divergent sharing ~ 79% genome wide pairwise identity with all their PHBVs. All PHBV 

isolates display classical avihepadnavirus genome architecture. 

 

Introduction 

The family Hepadnaviridae contains enveloped DNA viruses with partially double-

stranded relaxed circular DNA (rcDNA) genomes of approximately 3 kb. These 

viruses have an unusual replication strategy involving reverse transcription of an 

RNA intermediate (Seeger and Mason, 2000). There are two currently defined 

hepadnavirus genera: The genus Orthohepadnavirus, which contains species that 

infect mammals, and the genus Avihepadnavirus, which contains species that 

infect birds. Although species in these two genera share very little sequence 

similarity they have similar genome organisations, with species in both groups 

containing three homologous open reading frames (ORFs), encoding surface 

proteins (preS/S), the nucleocapsid protein and the e-antigen (pre C/C), and the 

viral polymerase (P) (Seeger and Mason, 2000). A fourth ORF, encoding a 

protein called X,  is  found  in  all  orthohepadnaviruses, but is apparently only 

present in some avihepadnaviruses (Chang et al., 2001; Guo et al., 2005). The 

exact role of the X protein during a  natural  infection  in  mammals  is  unknown.  

Although  not  for in vitro replication (Blum et al., 1992) the X protein is 

apparently required for in vivo replication (Zoulim et al., 1994). While both 

orthohepadnaviruses and avihepadnaviruses are hepatotropic and can cause 
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transient or chronic liver infections, only orthohepadnaviruses are known to 

cause liver disease and cancer (Funk et al., 2007). 

 

As with orthohepadnaviruses, avihepadnaviruses have very narrow host ranges. 

It is however, likely that host range switches do occur in that the relatedness of 

viruses infecting different hosts is not always reflective of the relationships of 

those hosts (Funk et al., 2007). Host specificity is thought to be determined by 

the preS domain of the L-envelope protein (Ishikawa and Ganem, 1995). 

Evidence of recombination amongst Duck hepatitis B virus (DHBV) isolates (Liu 

et al., 2010; Piasecki et al., 2012) suggests the possibility that strains with either 

expanded or larger host ranges might arise through recombinational transfers of 

this genome region between distantly related viruses. 

 

To date avihepadnaviruses have been found infecting various species of duck 

(Duck hepatitis B virus, DHBV), geese (Snow goose hepatitis B virus, SGHBV, 

and Ross goose hepatitis B virus, RGHBV), cranes (Crane hepatitis B virus, 

CHBV), herons (Heron hepatitis B virus, DHBV), and storks (Stork hepatitis B 

virus, SHBV; (Chang et al., 1999; Guo et al., 2005; Prassolov et al., 2003; Pult et al., 

2001; Sprengel et al., 1988). Most recently an avihepadnavirus was discovered for the first 

time in a Ring-necked Parakeet (Psittacula krameri) in Poland (Piasecki et al., 2012). In 

the light of the discovery of this Parrot hepatitis B virus (PHBV), we decided to test a 

library of archived parrot liver samples collected in Poland between 2003 and 2011 for 

similar avihepadnaviruses in order to determine the prevalence of this virus, its 

genomic diversity and the extent of its psittacine species host range. 

 

Endogenous hepadnaviruses have also been discovered in various avian species including 

finches, olive sunbird, dark-eyed junco (Gilbert and Feschotte, 2010; Katzourakis and 

Gifford, 2010) and more recently in the budgerigar (Cui and Holmes, 2012; Liu et al., 2012). 

Analysis of the endogenous viruses indicates that viruses distantly related to extant 

avihepadnaviruses likely became integrated into avian genomes at least as long ago as 19 

million years (Gilbert and Feschotte, 2010; Katzourakis and Gifford, 2010). Cui and Holmes, 

(2012) suggest that despite the fact that endogenous avihepadnaviruses have been inherited 

between certain bird species, the circulating exogenous avihepadnaviruses do not show 

obvious evidence of virus-host co-divergence and the fact that there has been some cross 

species transmission, will complicate attempts to accurately date the origin of the 

avihepadnaviruses based on the divergence times of their host species. Nonetheless, earlier 

estimates by Zhou and Holmes (2007) suggest that, based on hepadnavirus substitution 

rates of between ~10-4-10-6 substitutions/site/year the time to the most recent ancestor 

(TMRCA) of all then known avihepadnaviruses  (i.e. excluding the  divergent  parrot  

infecting group) is less that 6000 years ago. In light of this, and given the diversity of the 

PHBV genomes that we have sequenced, we additionally decided to re-estimate the 

nucleotide substitution rates and associated TMRCA’s using a larger sample of 77 

avihepadnaviruses including 18 new sequences of PHBV isolates sampled in Poland. 
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Results and discussion 

Parrot avihepanavirus infections and disease pathology 

DNA was extracted from liver samples (n ¼ 41) representing 12 species (see Table 1 for 

details) from birds that had died from unknown diseases. Of the 41 samples screened, we 

found 18 to be PHBV positive. These comprised 15 samples from Ring-necked Parakeets 

and one sample each from an African Grey Parrot (Psittacus erithacus), an 

Alexandrine Parakeet (Psittacula eupatria) and a Crimson Rosella (Platycercus 

elegans). We determined the full genomic sequences of one cloned genome from each of 

these 18 birds. 

 

A review of the pathology of the PHBV positive birds revealed that infection was mainly 

observed in young birds (2–5 weeks: n ¼ 9; 2–5 months: n ¼ 4; 6–9 months: n ¼ 6) with 

a high incidence amongst Ring-necked Parakeets (85% of analysed birds; pathology 

observations are summarised in Tables 1 and 2). Interestingly, these birds succumbed to 

sudden deaths without any physical symptoms. In summary, gross lesions were frequently 

observed in the livers and spleens of these birds, while in some cases splenomegaly and 

marble spleens were also noted. 

 

 
Muscles and subcutaneous petechiae were observed more frequently than petechiae on the 

heart (Table 1). These symptoms were not observed in birds that were found to be negative for 

PHBV. However, it must be noted that we are unable to verify that the observed 

pathology is linked directly to pathological PHBV infections. 
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Therefore the overall disease pathology resulting in psittacines from PHBV infection is 

currently unknown and there is an urgent need to address this gap in our knowledge. 

Nonetheless, we noted that at least 13/18 of the PHBV infected birds were coinfected with 

either Avian polyomavirus (APV) or Beak and feather disease virus (BFDV; Table 1). 

BFDV is the main causative agent of Psittacine beak and feather disease (PBFD), and 

frequent coinfections involving APV and PHBV, might indicate that these viruses together 

constiute an important hitherto unappreciated disease complex. 

 

Avihepadnavirus genome organisation and conserved domains 

As with the PHBV isolate previously described, the 18 PHBV full genome sequences 

determined here have similar genome organisations to all other avihepadnaviruses, 

with three main open reading frames encoding the PreC/C, PreS/S and polymerase 

polyproteins. These genome sequences also have many previously identified sequence 

motifs know to be essential for nucleic acid synthesis (such as the epsilon motif, the DR1 

and DR2 motifs, TATA cis regulatory elements, transcription factor binding sites; Fig. 1, 

Supplementary Fig. 1) (Mueller-Hill and Loeb, 2002). 

 

Various domains within the predicted PHBV proteome such as the terminal domain, the 

reverse transcriptase domain (RNA-dependent DNA polymerase), the RNase H 

domain, the putative myristylation sites, the host range determination region, the 

gp120 binding site, the p120 binding region, the transmembrane domain, the 

conserved avian insertion domain, the hhr domain and a X-like domain were identified 

within the polyprotein, preS/S and the PreC/C ORFs of the PHBVs (Lilienbaum et al., 1993; 

Liu et al., 1994; Zoulim and Seeger, 1994) (supplementary Fig. 2). As is the case with 

HHBV and STHBV, some of the PHBV isolates (labelled A, B, C, D and E in Figs. 2 and 3) 

have an X-like ORF. Similarly, PHBV-G has a homologous X-like element (as do 

DHBV, SHBV, CHBV and RGHBV) with a potential alternative start codon 

(supplementary Fig. 3). In the case of woodchuck hepatitis B virus (WHV) the X-like 

ORF, through in vivo experiments, has been shown to be required for the 

establishment of chronic infections and could contribute to hepatocarcinogenesis (Chang 

et al., 2001). The balance of evidence, however, suggests that by itself this gene does not 

cause orthohepadnavirus related carcinogenesis (reviewed by (Seeger and Mason, 2000). 

 

Maximum likelihood phylogenetic and pairwise identity analyses of 

avihepadnavirus isolates 

A maximum likelihood (ML) phylogenetic tree of the full genomes of avihepadnavirus 

(Fig. 2) indicated  that  the  18 new PHBV isolates (Table 1; Genbank accession # 

JX274018– JX274035; supplementary Fig. 1) could be subdivided into two major clades 

(Fig. 2); one with isolates sharing  495% pairwise identities (1- p-distances with pairwise 

deletion of gaps; isolates labelled A–F in Figs. 2 and 3) with the PHBV isolate described by 

Piasecki et al., (2012), whereas the second is more distantly related (79% pairwise identity) 

with the two isolates from Ring-necked Parakeet and Crimson Rosella sharing 99.4% 

pairwise identity (isolates P902 and P1233 labelled G in Figs. 2 and 3; Table 1; GenBank 

accession # JX274018 and JX274019). 
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A comparative analysis of pairwise genetic distances of the full genomes of 

avihepadnaviruses revealed that the pairwise identity of the two most distantly related 

PHBV isolates analysed here (22%; based on genome wide pairwise distance calculated 

with pairwise deletion of gaps) is similar to that of the two most divergent non-PHBV 

avihepadnaviruses (i.e. DHBV, SGHBV, SHBV, CHBV, RGHBV, HHBV and STHBV; 21%; Fig. 

3). Similarly, pairwise comparisons (2927 pairwise comparisons) of 77 avihepadnavirus 

full genome sequences indicated that they all share >75% pairwise identities (Fig. 

3). The diversity amongst the 39 DHBV isolates (Fig. 3) is relatively low (p-distances o 

10%), as is the case for sparsely sampled isolates of CHBV (p-distances o 2%), SGHBV (p-

distances o 1%) and STHBV (p-distances o 1%). 

 

The distribution of pairwise identities clearly indicates troughs at 80–81% and 96–95% 

which could easily be used for strain and genotype demarcations. This can easily be 

expanded beyond the current criteria for species demarcation set by ICTV for 

avihepadnaviruses based on DHBV and HHBV isolates, which state that isolates with 
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>21.6% pairwise distance should be classified as new species. Based on the information 

available and the distribution of pairwise identities (Fig. 3), we propose that 

avihepadnavirus sequences with <80% pairwise identity should perhaps be considered as 

new species. Finally, we can easily further classify these sequences based on a 95% 

genome-wide sequence identity clustering rule, i.e. isolates sharing <95% pairwise 

identity belong to the variant grouping. For descriptive purposes we have tentatively 

assigned the names A–G to the various PHBV variant groupings and A–L to the DHBV 

variant groupings (Figs. 2–4, supplementary Figs. 1–3, Table 1). 

 

Polyprotein, PreC/C and PreS/S maximum likelihood phylogenetic 

analyses 

ML phylogenetic trees of the polymerase polyprotein, Prec/C and Pres/S amino acid 

sequences show that while the overall tree topology inferred from these different proteins is 

similar to that of the full genome trees, there are some noteworthy subtle differences 

(Fig. 4, supplementary Fig. 2). For example, the PreC/C and PreS/S proteins of SHBV 

isolates cluster in-amongst those of DHBV, whereas the polyproteins of the SHBV 

isolates cluster basal to those of the DHBV and SGHBV isolates. Most of the other 

differences between the trees are in the patterns of branching within the DHBV (A–L) 

and PHBV (A–F) clusters (Fig. 4, Supplementary Fig. 2). The PreC/C, PreS/S and 

polymerase polyprotein sequences of the PHBV-A, -B, -C, -D, -E, -F isolates share <98.5% 

amino acid similarity, which is similar to that shared by the two PHBV-G isolates. 

However, when PHBV-A, -B, -C, -D, -E, -F are collectively compared to PHBV-G, the 

PreC/C, PreS/S and polymerase polyproteins of these share only "" 82%, 65% and 70% 

similarity respectively. A comparative analysis of PHBV with all other avihepadnaviruses 

indicates that they respectively share >76%, 65% and 65% similarity in the PreC/C, 

PreS/S and polymerase polyproteins. The similarities in comparisons of proteins of 

PHBV-A, -B, -C, -D, -E, -F and -G between themselves and with all other avihepadnaviruses 

is striking but not unexpected given that similar degrees of diversity were observed with 

their full genome nucleotide sequences. 

 

Recombination analysis 

Other than the recombination events reported by Piasecki et al. (2012) we found no 

new events of recombination amongst the avihepadnaviruses. However, large scale 

screening and determination of PHBV genomes from infected parrots from all around the 

world will assist in identifying new recombinants, recombination hotspots and over-all 

recombination patterns that can be compared to those of orthohepadnaviruses (Bollyky et 

al., 1996;)  
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We attempted to infer the nucleotide substitution rates of avihepadnaviruses using our 

expanded dataset of full genome sequences (all of which had known sampling dates) 

using the molecular clock analysis methods implemented in the computer programme 

BEAST v1.7.3 (Drummond and Rambaut, 2007). We tested a range of plausible 

demographic and molecular clock models and attempted to identify which of these fitted 

the data best using Bayes factor tests (Kass and Raftery, 1995). These tests indicated that 

for both the full genome dataset and a C gene dataset containing no evidence of 

recombination, a relaxed-clock provided a better fit to the data than a strict-clock model 

irrespective of the demographic model employed (full genome BFlog 10 =70.13, capsid 

12.89), but was equivocal between different demographic models under the relaxed 

clock (full genome BFlog 10 =0.21). 

 

For the sake of brevity, the maximum clade credibility (MCC) trees for the full genome 

and C gene datasets under a constant population size relaxed-clock model are shown in 

supplementary Figs. 4 and 5. The full genome trees had identical topologies but differed 

from the ML tree in Fig. 2 in that the rooting achieved with the MCC trees 

(supplementary Fig. 4) indicates reasonable support (posterior probability ~0.83) for all 

the PHBV sequences branching from the root of the tree (as is indicated in the preS/S tree 

of Fig. 4). 

 

For the recombination free C gene dataset the constant (supplementary Fig. 5) and expansion 

model relaxed-clock MCC trees had identical topologies to their full genome counterparts 

with the exception that sequence, RGHBV-B [AY494849_USA_2001], which groups with 

the DHBV clade rendering the RGHBV sequences paraphyletic on the tree. The posterior 

probabilities of this split were, however, poorly supported (posterior probability¼ 0.53). In 

contrast, the recombination-free C gene exponential  relaxed-clock  MCC tree (not shown) 

the STHBV and the HHBV sequences form a monophyletic clade at the base of the tree 

that is reminiscent of the tree presented by Zhou and Holmes (2007). The statistical support 

for this arrangement was however, extremely weak (posterior probability¼ 0.33). 

 

https://repository.uwc.ac.za/



9 
 

The estimated mean substitution rates with 95% highest probability density (HPD) 

intervals for the full genome and C gene datasets ranged between 1.01 x 10-4 (95% HPD, 

4.22 x 10-5 - 1.77 x 10-4) and 9.38 x 10-5 (95% HPD, 4.19 x 10-5 - 1.61 x 10-4) 

(supplementary Table 1). These nucleotide substitution rates overlap with the estimated 

mean rates of 7.32 x 10-4 and 4.85 x 10-4 subs/site/year reported previously by Zhou and 

Holmes (2007) for the low- and high recombinant regions of the genome respectively from 35 

avihepadnaviruses sampled between 1981 and 2001. 

 

Under the constant population size, exponential growth and expansion models and a 

relaxed-clock, the estimated median time to the most recent common ancestor 

(TMRCA) of all the analysed avihepadnaviruses ranged between 1485 (95% HPD 468- 

3587) years (observed with the C gene dataset under an exponential growth model) and 

4753 (95% HPD 1935-8535) years (observed with the full genome dataset under a 

constant population size model) (supplementary Table 1). 

 

It should be emphasised however, that the degree of clock-like evolution evident in the data 

is low. Using a regression approach whereby the root-to-tip genetic distances inferred from 

neighbour-joining phylogenetic trees are regressed against sampling times using the 

programme PATH-O-GEN v1.3 (http://tree.bio.ed.ac.uk/software/pathogen/), indicated that 

there is no strong evidence for a significant temporal signal in either the C gene (r2 ¼ 

0.08916, residual mean squared= 9.32 x 10- 5) or full genome (r2 ¼ 5.1324 x 10- 3, 

residual mean squared= 2.41 x 10- 5) datasets. Thus any attempt to date the origin of 

these isolated would be invalid with the current available data. 

 

Conclusions 

This study provides verification of  the  initial  discovery of PHBV infections in 

parrots. While the only cases of infection so far have been found in Poland, 

further testing of psittacine species in other countries will determine how 

widespread PHBV infection is among these birds. Such testing will hopefully 

provide information on the potential global distribution of these viruses, and 

facilitate the detection of any new recombinants amongst them. Perhaps testing 

for HBV should be routinely carried out in aviaries, especially when psittacine 

birds die unexpectedly and where the presence of BFDV or APV infections are 

also suspected or detected. Although we have attempted to estimate the 

TMRCAs of all the currently sampled avihepadnavirus full genomes, the analysis 

of more avihepadnavirus sequence data, particularly from archived samples, will 

be required to obtain credible estimates of the substitution rates of these 

viruses. Without such data it will not be possible to properly reconcile the 

apparently high evolution rates of avihepadnaviruses with the fact  that close  

relatives of these viruses likely became integrated into bird genomes at least as 

long ago as 19 million years. 
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Material and methods 

DNA extraction, amplification, cloning and sequencing of parrot 

hepadnavirus  isolates 

DNA from liver samples was extracted using commercially available Genomic Mini 

kit (A&A Biotechnology, Gdynia, Poland), according to the manufacturer’s 

instructions. Total DNA was extracted from samples and subjected to rolling-circle 

amplification (RCA) using TempliPhiTM (GE Healthcare, USA), to non-specifically 

amplify any circular DNA (such as circular viral genomes) as described in Piasecki 

et al. (2012). The RCA concatemers were digested with BamHI, HindIII and XmnI 

restriction enzymes. The resulting fragments ranging in size from 1–3 kb were 

cloned into plasmid vectors (BamHI and HindIII restricted pGEM3ZF and 

pJET1.2 for XmnI restricted products) and sequenced. Based on the resulting 

sequence information we designed back-to-back primers to amplify full PHBV 

genomes. One micro litre of the RCA product was used for PCR amplification 
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using primers PHBV-F 50  - GGAYTTCTCTCAGTTYTCCAAAGG - 30  and PHBV-

R 50  - ACCACRARTCTAGCYTCCYCAGT - 30 with Kapa HiFi HotStart DNA 

polymerase (Kapa Biosystems, USA) using the following protocol: initial 

denaturation at 94 1C for 2 min, 25 cycles of 98 1C for 20 s, 52 1C for 30 s, 72 1C for 

3 min, followed by a final extension at 72 1C for 5 min and a final renaturation step at 4 1C 

for 10 min. The amplicons were resolved on a 0.7% agarose gel, ~3 kb bands excised, cleaned 

with Mega-spin agarose gel extraction kit (Intron, Korea) and cloned into pJET1.2 vector 

(Fermentas, USA). The plasmid isolated from a single E. coli colony was sequenced by 

Macrogen Inc (Korea) by primer walking. 

 

DNA sequence manipulation and dataset preparations 

The sequence contigs were assembled using DNAMAN (Version 5.2.9, Lynnon Biosoft, 

Canada). The full genomes were aligned with other full length genomes of 

avihepadnaviruses available in GenBank using MUSCLE (Edgar, 2004) as implemented in 

MEGA 5 (Tamura et al., 2011) with manual editing carried out by eye. 

 

Phylogenetic and recombination analyses 

A maximum likelihood phylogenetic tree (Fig. 2) of the full genomes was constructed 

with an orthohepadnavirus isolate (Hepatitis B isolate, GenBank accession # X04615) 

as an out-group using nucleotide substitution model GTR þ I þ G4 (selected as the best 

substitution model by jModelTest, (Posada, 2008)) with PHYML. Branches with less than 

60% approximate likelihood (aLRT) support were collapsed using MESQUITE (Version 

2.75). Maximum likelihood phylogenetic trees of the polymerase polyprotein, preC/C and 

preS/S amino acid sequences (aligned using MUSCLE, Edgar, 2004) were constructed 

with PHYML (Guindon et al., 2010) using the LG model substitution model selected using 

ProTest (Abascal et al., 2005) with aLRT being used to assess branch support 

(Anisimova and Gascuel, 2006). The 77 avihepadnaviruses were analysed for 

recombination using RDP4 (Martin et al., 2010) with default settings. Nucleotide 

pairwise identities ([1 - p-distances] x 100;with pairwise deletion of gaps) were 

calculated by aligning two sequences at a time using MUSCLE (Edgar, 2004) 

implemented in our software SDTv1.0 (Muhire et al., in press) and amino acid 

identities were calculated using MUSCLE (Edgar, 2004). 

 

Estimation of nucleotide substitution rates 

Two avian hepadnavirus alignments comprising 77 full genome (3116 bp) and C gene (786 

bp) sequences respectively, obtained from samples collected between 1981 and 2011 were 

analysed. The Bayesian Markov chain Monte Carlo (MCMC) method implemented in BEAST 

v1.7.3 (Drummond and Rambaut, 2007) was employed to co-estimate the nucleotide 

substitution model parameters, phylogeny and time to the most recent common ancestor 

(TMRCA) of the avihepadnavirus full genome and preC/C datasets. Three different 

coalescent parametric demographic models were investigated (constant population size, 

exponential population growth and expansion growth) with both strict and relaxed molecular 

clock models and a general time reversible nucleotide substitution model with gamma 

distributed rate variation (with 4 rate categories) and a proportion of invariable sites (GTRþ 

G4 þ I). For each evolutionary model, five independent replicate runs of length 2 x 108 
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steps in the Markov chain were performed using BEAST and the estimated effective 

sample sizes (ESS) were always4200. 
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