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Statistical modelling of warm-spell duration series

using hurdle models

Jesper Rydén∗

Abstract

Regression models for counts could be applied to the earth sciences, for instance when studying

trends of extremes of climatological quantities. Hurdle models are modified count models which

can be regarded as mixtures of distributions. In this paper, hurdle models are applied to model

the sums of lengths of periods of high temperatures. A modification to the common versions

presented in the literature is presented, as left truncation as well as a particular treatment of

zeros is needed for the problem. The outcome of the model is compared to those of simpler count

models.

MSC: 62J12, 62P12.
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1. Introduction

Regression models for counts arise when the response variable is a count, i.e. a non-

negative random number. Often a distribution is specified for the response variable and

likelihood-based inference can be performed, with maybe the most common choice for

the response being the Poisson distribution, leading to Poisson regression. However,

the simpler models are not able to successfully model situations with, for example,

excess zeros or truncated observations. Models have been developed in the literature,

see Cameron and Trivedi (2013) for a review.

Some statistical problems in the earth sciences are linked to count data. In particular,

regression models for count data could be of interest, when facing series of so-called

climate indicators (occasionally called climate indices). These are often numbers relat-

ing to extreme phenomena, for instance heat waves or warm spells, loosely described
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as periods of unusually hot weather. In the literature, the notion of a heat wave is often

reserved for periods of great severity, for instance causing deaths among people. For

typical Swedish conditions, analysed in the sequel, the notion warm spell is therefore

preferred. In climatology, interest concerns changes in frequency, intensity or duration

of such quantities.

From a data-analytic point of view, a warm spell is a run, i.e. a period of consecutive

days when the maximum is above a specified high value. In this paper, we examine

statistical modelling of the indicator warm-spell duration index (WSDI), defined as the

annual count of days with at least 6 consecutive days when the daily maximum temper-

ature is exceeding a predefined threshold (see exact definition in the sequel). However,

the statistical modelling of such sequences imply several challenges. In this paper, we

focus on the fact that observations are truncated, but in addition, an annual count of zero

might also be observed depending on the location and its occasionally cold climate. In

fact, such models for count data seem not to have been studied in the applied literature,

either in climate research or other applications.

A key issue in climatology research is investigation of trends. A methodology for

count data could be to check independence, and if possible, use time as a covariate in

a regression model. Generalised linear models and their extensions are then natural

candidates for modelling. As stated by Chandler and Scott (2011), applications of such

models in environmental trend analysis have so far been relatively limited. Examples

are rare, but similar statistical concepts are found for instance in Frei and Schär (2001),

a recent study on extreme precipitation was made by Hertig et al (2014), and trends

of flash counts are discussed by Bates, Chandler and Dowdy (2015). Concerning an

indicator related to the annual number of warm spells, Rydén (2015) investigated a

possible trend for the city of Uppsala, Sweden. Then the elements of the time series were

simply non-negative integers, and the Poisson distribution was found to be a reasonable

description. Moreover, the sequence was considered independent, and hence Poisson

regression was applied.

The paper is organised as follows. In the next section, the indicator WSDI is de-

fined and discussed, along with a presentation of the source of the data. In Section 3,

the framework of hurdle models is introduced, including the modification needed for

modelling of the WSDI. In Section 4, data are introduced and the results of applying

the hurdle models are presented, and finally in Section 5, a summary and discussion is

given.

2. Warm-spell duration index

Several indicators, also labelled indices, have been suggested for monitoring change in

climatic extremes (see e.g. Frich et al 2002), but as pointed out by Perkins and Alexan-

der (2013) concerning heat waves: “Clear and common definitions, at least for some
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types of extreme events, remain rare and nonexistent”. Climate indices may relate to

temperatures as well as precipitation, they may be based on absolute thresholds or per-

centile based. Thus, definitions have to be clearly stated in research work. An overview

of indices, as well as results from an analysis of trends at a global level, is given by

Alexander et al (2006).

Data were retrieved online from the website of the European Climate Assessment &

Dataset (ECA&D) project1. Definitions of indices are found at the webpage of the joint

CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices

(ETCCDI)2.

The indicator WSDI, warm-spell duration index, belongs to the category of duration

indices. Such indices define periods of excessive warmth, cold, wetness or dryness.

WSDI is defined as the annual count of days with at least 6 consecutive days when the

daily maximum temperature is exceeding the threshold T90. To be more precise: Let

T (i, j) be the daily maximum temperature on day i in year j and let T90 be the calendar

day 90th percentile, centred on a five-day window for the base period 1961-1990. Then

the number of days per year j is summed where, in intervals of at least 6 consecutive

days, T (i, j)> T90.

Note that the annual count, the annual observation of WSDI is a sum of all days

belonging to a warm-spell period. The number of warm spells is not taken into account,

so a year with two spells of lengths 6 and 8 days, respectively, would result in a value

of WSDI equal to 14, the same value as a year with a single long spell of 14 days.

3. Hurdle models for count data

In this section we review hurdle models for count data (cf. Winkelmann 2008, Cameron

and Trivedi 2013), and discuss implications for the application introduced previously

and possible alternatives for the modelling.

3.1. Structure of the hurdle-count model

We commence by recalling the notion of a truncated random variable. Consider a ran-

dom variable Y , defined on 0,1,2, . . . . Now assume that only values y > a are observed.

The truncated distribution Ỹ then has the probability-mass function

p
Ỹ
(ỹ) =

1

1−FY (a)
pY (ỹ), ỹ = a+1, a+2, . . . .

1. http://www.ecad.eu/

2. http://etccdi.pacificclimate.org/list 27 indices.shtml
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With two-part models for counts, a model is introduced where the probabilistic prop-

erties of zero counts differ from other (positive) counts. Such models were proposed

by Mullahy (1986). For a random variable Y , suppose that we observe either Y = 0

or Y > a. For the zero component, we introduce the probability-mass function p1(y)
and for the positive outcomes, we consider the (unrestricted) probability-mass function

p2(y); related distribution functions are F1(y) and F2(y). A hurdle model is then defined

by

P(Y = j) =

{
p1(0) if j = 0

1−p1(0)
1−F2(a)

p2( j) if j > a
(1)

(For 0 < j ≤ a, the probability-mass function takes the value zero.) Defining a binary,

censoring indicator

d =

{
1, if y > a

0, if y = 0

the probability-mass function for an outcome y with indicator d can then be written as

p(y) = p1(0)
1−d

[
1− p1(0)

1−F2(a)
p2(y)

]d

=
[
p1(0)

1−d(1− p1(0))
d
][ p2(y)

1−F2(a)

]d

.

3.2. Estimation

We now turn to estimation. In a regression context, suppose we have a covariate x. Intro-

ducing parameter vectors θθθ1 and θθθ2, the probability functions can be notated p1(y; x,θθθ1)
and p2(y;x,θθθ2).

The log-likelihood function then follows, with observations (x1,y1), . . . ,(xn,yn), as

ℓ(θθθ1,θθθ2) = ℓ1(θθθ1)+ ℓ2(θθθ2)

=
n∑

i=1

[
(1−di) ln p1(0; xi,θθθ1)+di ln(1− p1(0; xi,θθθ1))

]

+
n∑

i=1

di

[
ln p2(yi; xi,θθθ2)− ln(1−F2(a; xi,θθθ2))

]
.

(2)

Thus, the log-likelihood function can be maximised by separately maximising each

component, which certainly simplifies the numerical treatment.
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3.3. Specification of count distributions

Many options obviously exist for choosing the distributions p1(.) and p2(.). In the orig-

inal paper by Mullahy (1986), these were specified to be of the same family. Common

practice now is to specify different processes for p1(.) and p2(.). The binary process,

p1(.), is often modelled as a logit model, while p2(.) is chosen as a Poisson or nega-

tive binomial distribution. After preliminary analysis of data, overdispersion was found

present and truly significant (p value 1.6 · 10−4, test by Cameron and Trivedi (1990),

as implemented in the routine dispersiontest in the R package AER, see Kleiber and

Zeileis, 2008). Thus a negative binomial distribution was applied, and will be discussed

next.

Several characterisations of the negative binomial distribution exist, in terms of pa-

rameterisation, and we chose in this work to employ the distribution with probability-

mass function as follows, the so-called Negbin II:

p(z;µ,α) =
Γ(α−1 + z)

Γ(α−1)Γ(z+1)

(
α−1

α−1 +µ

)1/α(
µ

α−1 +µ

)z

, z = 0,1,2, . . . (3)

where in a regression context with a covariate x,

µ= exp(β0 +β1x)

and α is a dispersion parameter. When α→ 0, the Poisson distribution is obtained as a

limit. Moreover,

E[Z] = µ, V[Z] = µ(1+αµ).

In summary; with regards to the likelihood estimation in our problem, we have the

parameter vector θθθ2 = (β0, β1, α). For the binary part,

p1(y,xi,θθθ1) =
exp(β′

0 +β′
1xi)

1+ exp(β′
0 +β′

1xi)

and thus θθθ1 = (β′
0, β

′
1).

Remark. In most texts, and computer implementations (in R, e.g. Zeileis, Kleiber and

Jackman, 2008), hurdle models with a = 0 in Eq. (1) are considered; that is, the hurdle

separates zeros from positive observations. In our application, we have the possible

outcomes 0,6,7,8, . . ., and hence a = 5 in Eq. (1); to the author’s knowledge, this is

a situation rarely met in applications considered in the literature. In Stata, modelling

with truncated hurdle models is implemented. An example with a truncated Poisson

distribution for the non-zero counts is given by McDowell (2003).
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3.4. Mean for the hurdle-count model

For the hurdle model in Eq. (1), for the sake of notation, introduce

b =
1− p1(0)

1−F2(a)
. (4)

Moments about the origin then follow as

E[Y k] = 0k p1(0)+
∞∑

y=a+1

ykb p2(y) = b

∞∑

y=a+1

yk p2(y). (5)

Cameron and Trivedi (2013), Section 4.12, give the corresponding derivation for the

case where a = 0, and the resulting formula can then be expressed in terms of the ex-

pected value for the distribution F2(y).
For model diagnostics (in our application, see Section 4.3), we may use E[Y ] follow-

ing Eq. (5), plugging in estimates. Then assuming a logit model for the binary part, we

find estimates for the quantities in the factor b in Eq. (4):

p̂1(0) = p1(0;xi,θ̂θθ1) =
exp(β̂′

0 + β̂′
1xi)

1+ exp(β̂′
0 + β̂′

1xi)

and F̂2(a) = F2(a,xi,θ̂θθ2), where F2(.) is the related distribution for the Negbin II distri-

bution.

4. Modelling warm-spell duration index

We have chosen to investigate time series of annual observations of WSDI from three

locations and periods in Sweden: Falun (60°37′N, 15°37′E), 1914-2010, Stockholm

(59°21′N, 18°03′E), 1914-2014, and Uppsala (59°51′N, 17°37′E), 1914-2011. This ini-

tial choice was made based on data quality (quite long series without gaps, though miss-

ing data for 2006 at Falun) and we have, moreover, two locations quite close in distance

(Stockholm and Uppsala, less than 10 km).

4.1. Dependence issues

In order to apply regression models for counts using time as a covariate, dependence

in each of the sequences was first investigated, by checking plots of autocorrelation

functions and performing the Ljung–Box test of independence in time series (Ljung and

Box, 1978). Consider a time series x1, . . . ,xN . The null hypothesis is here that the first
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m autocorrelations are jointly zero:

H0 : ρ1 = ρ2 = · · ·= ρm = 0.

Let rk be the sample autocorrelation function at lag k and m the number of lags being

tested. The test statistic is given by

Q = N(N+2)
m∑

k=1

r2
k

N − k

which under the null hypothesis is distributed as Q ∼ χ2(m). A choice of m has to

be made; in the literature, it has been suggested that m ≈ lnN (Tsay, 2010). For our

locations we find Falun (p = 0.85), Stockholm (p = 4.3 · 10−10), Uppsala (p = 6.2 ·
10−8). For the two last locations, we thus reject the null hypothesis about independence.

Plots of empirical autocorrelation functions strengthen this result. Thus, a more evolved

time-series model for counts would have to be introduced for these two locations. One

option for further modelling could be to introduce a time-series model for counts, for

instance, of the class INAR (Al-Osh and Alzaid, 1987; Alzaid and Al-Osh, 1990; for a

recent review, see Scotto, Weiss and Gouveia, 2015).
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Figure 1: Top: Time series of WSDI at Falun. Bottom: Sample autocorrelation function of WSDI at Falun.
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For the location of Falun, we choose to continue, using time as a covariate in a

regression model. The original time series3 at that location is shown in Figure 1, top

panel. The proportion of zeros is found to be 0.35. The sample autocorrelation function

is displayed in Figure 1, bottom panel, and we conclude that data could be considered a

sequence of independent observations.

4.2. Likelihood inference

For the zero part, i.e. maximisation of the function ℓ1(θθθ1) in Eq. (2), a logistic regression

was performed with a binary response variable π(x) and the related model

g(x) = β′
0 +β′

1x

where g(x) = ln(π(x)/(1−π(x))) and the covariate x indicates time. Hence, the vector

θθθ1 = (β′
0 β′

1). The routine glm in the statistical software package R (R Core Team

2016) was employed. The estimation procedure resulted in estimates β̂′
0 = −0.25 and

β̂′
1 = 0.018 with related p-values 0.56 and 0.025, respectively. The covariate time is thus

significant.

For the maximisation of the log-likelihood function ℓ2(θθθ2), a Negbin II was assumed

(see Eq. (3)). The optimisation was carried out by the routine optim, using the procedure

by Nelder and Mead (1965). The following point estimates, with related standard errors

within parentheses as obtained from the inverted observed Fisher information matrix,

were obtained:

β̂0 = 1.01 (1.70), β̂1 = 0.0053 (0.0062), α= 2.84 (5.98)

with p-values 0.56, 0.39 and 0.64 respectively. With the climate application in focus,

we note that the slope is slightly positive in magnitude, and not statistically significant.

4.3. Model checking and comparison

In Figure 2, the original time series is plotted along with the mean of the fitted model,

following Eq. (5).

We deduced earlier that the original time series could be considered an independent

sequence (cf. Figure 1, bottom panel). In Figure 3, the sample autocorrelation function

of the raw residuals is shown. We note that dependence is still not a concern.

3. The high observed value 40 at the beginning of the series belongs to year 1914, the summer of which is known for
historians as being unusually warm and pleasant, right before the outburst of World War I, end of July 1914.



Jesper Rydén 185

●

● ● ● ● ● ● ● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

1920 1940 1960 1980 2000

0
1
0

2
0

3
0

4
0

Time(year)

W
D

S
I

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Original data

Fitted data

❋✐❣✉$❡ ✷✿ ❖!✐❣✐♥❛❧ '✐♠❡ *❡!✐❡* ❛♥❞ ✜''❡❞ ♠♦❞❡❧✳

❋✐❣✉$❡ ✸✿ ❙❛♠♣❧❡ ❛✉'♦❝♦!!❡❧❛'✐♦♥ ❢✉♥❝'✐♦♥ ❢♦! '❤❡ !❡*✐❞✉❛❧*✳

♠❡❛♥ ✱ -❛②✱ ❝♦✉❧❞ 3❤❡♥ ❜❡ ❞✐$❡❝3❧② ✜33❡❞ 3♦ ❛❧❧ ♦✉3❝♦♠❡- ♦❢

❲❙❉■ ✐♥ ❛ $❡❣$❡--✐♦♥ ♠♦❞❡❧ ✭✉-✐♥❣ 3❤❡ $♦✉3✐♥❡ ❣❧♠✳♥❜ ✐♥ 3❤❡ ♣❛❝❦❛❣❡ ▼❆❙❙ ✐♥

❘✮✳ ❙✉❝❤ ❛ ♠♦❞❡❧ $❡-✉❧3- ✐♥ ❛♥ ❡-3✐♠❛3❡ ❢♦$ 3❤❡ -❧♦♣❡ ✭-3❛♥❞❛$❞ ❡$$♦$

✵✳✵✵✺✺✮ ✇✐3❤ 3❤❡ $❡❧❛3❡❞ ♣✲✈❛❧✉❡ ✵✳✵✾✷✱ ✇❤✐❝❤ ❝♦✉❧❞ ❜❡ ❝♦♠♣❛$❡❞ 3♦ ❝♦$$❡-♣♦♥❞✐♥❣

❡-3✐♠❛3❡ ❢♦$ 3❤❡ ❤✉$❞❧❡ ♠♦❞❡❧✳

❋♦$ ♠♦❞❡❧ ❝♦♠♣❛$✐-♦♥✱ ✈❛❧✉❡- ♦❢ ❆■❈ ✭❆❦❛✐❦❡✬- ■♥❢♦$♠❛3✐♦♥ ❈$✐3❡$✐♦♥✱ ❆❦❛✐❦❡

✶✾✼✸✮ ❛$❡ ✉-❡❢✉❧✿

❆■❈

✇❤❡$❡ ✐- 3❤❡ ♥✉♠❜❡$ ♦❢ ♣❛$❛♠❡3❡$- ❛♥❞ 3❤❡ ✈❛❧✉❡ ❛3 3❤❡ ♦♣3✐♠✉♠ ♦❢ 3❤❡

❧✐❦❡❧✐❤♦♦❞ ❢✉♥❝3✐♦♥✳ ❚❤❡-❡ ✇❡$❡ ❝♦♠♣✉3❡❞ ❢♦$ 3❤❡ 3✇♦ ❝♦♥-✐❞❡$❡❞ ♠♦❞❡❧-✳ ❋♦$

3❤❡ ❤✉$❞❧❡ ♠♦❞❡❧✱ ❆■❈ ✱ ✇❤✐❧❡ ❢♦$ 3❤❡ ❛♣♣$♦❛❝❤ ✇✐3❤ ♥❡❣❛3✐✈❡ ❜✐♥♦♠✐❛❧✱

❆■❈ ✳ ❆ ♠♦❞❡❧ ✇✐3❤ ❛- -♠❛❧❧ ❆■❈ ❛- ♣♦--✐❜❧❡ ✐- ♣$❡❢❡$❛❜❧❡✱ ❛♥❞ 3❤❡$❡ ✐-

❤❡♥❝❡ -♦♠❡ ♠❡$✐3 ♦❢ 3❤❡ ❤✉$❞❧❡ ♠♦❞❡❧ ✐♥ 3❤✐- $❡-♣❡❝3✳

✶✶

Figure 2: Original time series and fitted model.
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Figure 3: Sample autocorrelation function for the residuals.

One might contemplate a simpler statistical model, though not taking into account

the particular structure of data. A negative binomial distribution with meanµ= exp(β0+

β1x), say, could then be directly fitted to all outcomes of WSDI in a regression model

(using the routine glm.nb in the package MASS in R). Such a model results in an esti-

mate β̂1 = 0.0092 for the slope (standard error 0.0055) with the related p-value 0.092,

which could be compared to the corresponding estimate for the hurdle model.

For model comparison, values of AIC (Akaike’s Information Criterion, Akaike 1973)

are useful:

AIC = 2k−2lnL

where k is the number of parameters and L the value at the optimum of the likelihood

function. These were computed for the two considered models. For the hurdle model,

AIC = 505.7, while for the approach with negative binomial, AIC = 597.8. A model

with as small AIC as possible is preferable, and there is hence some merit of the hurdle

model in this respect.
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5. Discussion

Regression models for counts find applications in many scientific fields. Typically, a

Poisson distribution is assumed for count data, but the original models have to be mod-

ified in order to model e.g. overdispersion or excesses of zeros. One special model is

the so-called hurdle model, attributed to Mullahy (1986). As a further, quite recent, de-

velopment of the hurdle model could be mentioned Saffari, Adnan and Greene (2012),

where a framework with hurdle models adopted to right-censored data was presented

(application to counts of fish).

In this paper, a hurdle model for the case of left-truncated data was presented, moti-

vated by an application from climatology where data is either zero or an integer at least

six. Estimation was carried out by likelihood techniques. The obtained results were

compared with estimates from a simpler model, fitting a negative binomial distribution

directly to the counts. Point estimates of trend (coefficient for slope) became of roughly

the same magnitude. Comparison of AIC indicates that the hurdle model is preferable.

However, for all estimated parameters, uncertainties are considerably high, as can be

reflected from related p-values.

The meaning of the quantity WSDI as an additive measure of days may have in-

fluences on the distribution over possible integers. For instance, a WSDI of 11 can be

obtained only as a single period of 11 days, while an observed count of 14 can result

in three ways: a single period of 14, adding 6 and 8 or adding 7 and 7. Thus, in addi-

tion to natural variability, results could vary due to combinatoric reasons. For the data

sets, the following table of counts for various WSDI can be compiled (for Falun, also

cf. Figure 1, top panel):

WSDI 7 8 9 10 11 12 13 14 15

Counts, Falun 10 3 5 1 1 2 1 3 3

Counts, Uppsala 6 4 3 1 2 4 6 6 2

Count, Stockholm 6 5 4 1 0 2 3 2 4

We note that for WSDI equal to 10 and 11, few counts are found (not likely com-

binations to occur). Thus, to model WSDI with a probability distribution, possibly this

phenomenon could be taken into account.

For all types of regression models, model assessment is an important objective. A

review for the common cases of regression with count data is given by Cameron and

Trivedi (2013), where it is also stated in Chapter 5 (Model Validation and Testing) that

there is “. . . considerable scope for generalization and application to a broader range of

count data models.” In this paper, we made a simple investigation (see Figures 2 and 3).

Further research would be to, for instance, develop and examine goodness-of-fit tests

for the hurdle model with truncated observations for the non-zero part.

In this paper, regression models for counts were modelled using time as a covariate.

It could be mentioned that a non-parametric regression methodology based on P-splines
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might be a useful approach, see the recent paper by Eilers, Marx and Durbán (2015) in

this journal.
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