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A Bayesian stochastic SIRS model with a

vaccination strategy for the analysis of respiratory

syncytial virus
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Abstract

Our objective in this paper is to model the dynamics of respiratory syncytial virus in the region of

Valencia (Spain) and analyse the effect of vaccination strategies from a health-economic point of

view. Compartmental mathematical models based on differential equations are commonly used in

epidemiology to both understand the underlying mechanisms that influence disease transmission

and analyse the impact of vaccination programs. However, a recently proposed Bayesian stochas-

tic susceptible-infected-recovered-susceptible model in discrete-time provided an improved and

more natural description of disease dynamics. In this work, we propose an extension of that

stochastic model that allows us to simulate and assess the effect of a vaccination strategy that

consists on vaccinating a proportion of newborns.
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1. Introduction

Effective surveillance and control measures are essential to protect public health by

rapidly detecting and responding to outbreaks of infectious diseases, which pose a grow-

ing threat to human health. Shortcomings in surveillance, vaccines and treatment can

result in rising morbidity and mortality. Innovative surveillance methods have been
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recently developed in an effort to improve outbreak detection capabilities. Numerous

epidemiological models have also been proposed to simulate and analyse the impact of

different vaccination strategies from an economic and sanitary point of view. Nowa-

days, the use of models is considered as an effective tool to both represent the evolution

of diseases and assess the impact of control interventions (World Health Organization,

2016).

Most of the approaches that are currently used to study the impact of vaccination

programs fall into one of the following two categories: compartmental mathematical

models (Acedo et al., 2010; Hogan et al., 2016; Van Hoek et al., 2011; Christensen

et al., 2013; Yu et al., 2016) or computer models defined through complex schemes

of interaction (Pérez-Breva et al., 2014; Vannia et al., 2012; Craig et al., 2014; Poletti

et al., 2015). Compartmental models divide the population being studied into a set

of distinct compartments according to the disease status (for instance, the susceptible-

infected-recovered model divides the population into three categories) and model the

evolution of infectious diseases through changes in the number of individuals in each

compartment. They are usually based on ordinary differential equations, which imply

a continuous-time deterministic model. Besides, they are defined assuming that all the

individuals in the population are equally likely to contact any other individual (Ma and

Li, 2009; Brauer, 2008). However, contact patterns in real populations are indeed more

heterogeneous. Therefore, models involving homogeneous mixing should be replaced

by models incorporating stochastic effects (Brauer, 2008). Stochastic models are able

to accommodate the stochasticity inherent in the transmission of infection by consid-

ering that the number of individuals in each compartment is a random variable with

its associated probability distribution (Allen, 2008). In addition, stochastic models can

be easily analysed from a Bayesian viewpoint (see, for example, Gibson and Renshaw,

1998; O’Neill, 2002; Boys and Giles, 2007; Weidemann et al., 2014).

A Bayesian stochastic susceptible-infected-recovered-susceptible (SIRS) model in

discrete time has been recently proposed to model respiratory syncytial virus (RSV)

dynamics in the region of Valencia, Spain (Corberán-Vallet and Santonja, 2014). The

proposed model, which can be seen as a discrete time Markov chain model (Allen,

2008), does not imply mass-action mixing of individuals in the population. In addition,

the probability of disease transmission depends on a transmission rate that is allowed

to vary stochastically over time. This feature is fundamental to provide an accurate

representation of the disease dynamics.

RSV is the most important cause of lower respiratory tract illness in infants and

children worldwide. It causes repeat infections throughout life and significant disease

in pediatric and elderly population. Due to the high burden of disease globally, RSV

has been a priority for vaccine development. However, efforts to develop a safe and

effective vaccine have yet to lead to a licensed product (Anderson et al., 2013; Jones et

al., 2014; Higgings, Trujillo and Keech, 2016; Roberts et al., 2016). The epidemiology

and burden of RSV disease point to several target populations for vaccines, which may

require different vaccination strategies according to the age. The highest priority tar-
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get population are infants < 6 months of age who are at highest risk of severe disease.

The enhanced disease observed after a formalin-inactivated RSV (FI-RSV) vaccine di-

rected development of RSV vaccines toward live virus vaccines. Yet these young infants

present challenges to vaccine development. They may not respond well to a vaccine be-

cause of immature immune system, suppression of the immune response by presence of

maternal antibody, and an elevated susceptibility to disease with live RSV infection. The

second target population are children ≥ 6 months of age, both to prevent their disease

and potential transmission to younger children. The third target population are pregnant

women, since high titers of maternally derived RSV antibody have been shown to cor-

relate inversely with the incidence and severity of RSV infection in the first six months

of life. This maternal vaccination strategy would protect newborns both by placental

transfer of antibodies and by blocking transmission (Dudas and Karron, 1998). How-

ever, it would not provide protection for children beyond 4–6 months of age, and so

this strategy would be followed by direct child vaccination as maternal antibody wanes.

The last target population are the elderly, who are also at risk for severe disease. See

Higgings et al., 2016 for a current summary of RSV vaccine research and development.

Taking into account recommendations for RSV vaccine development (Anderson et

al., 2013), we present here an extension of the model proposed in (Corberán-Vallet and

Santonja, 2014) that allows us to simulate and assess the impact of vaccination pro-

grams. Because most efforts are directed towards immunizing infants from birth to six

months (Beeler and Eichelberger, 2013), the simulated strategy consists on vaccinating

a proportion of newborns. This strategy is similar to the one implemented in (Acedo et

al., 2010).

2. Case study

Our study focuses on weekly hospitalizations for RSV-related illnesses among children

younger than two years of age in the Spanish region of Valencia. Children aged < 2

years are the target population most problematic by possible severe complications. On

some occasions, hospitalization may be necessary, especially for RSV bronchiolitis and

pneumonia.

In particular, we have data on the number of new hospitalizations per week from

week beginning January 1st 2001 to week beginning December 20th 2004 (see Figure

1). As can be seen, RSV activity presents a clear seasonal pattern: epidemics occur

yearly between late fall and early spring.

Acedo et al. (Acedo et al., 2010) proposed a compartmental model based on ordinary

differential equations to describe these data and perform a vaccination program analy-

sis. They assumed that the sizes of the susceptible, infected, removed and vaccinated

populations were large enough so that the mixing of individuals in the population was

homogeneous. However, that is not the case, specially at the beginning of epidemics. In
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Figure 1: Hospitalizations for respiratory syncytial virus (RSV) infection among children aged < 2 years

from week beginning January 1st 2001 to week beginning December 20th 2004 in the Spanish region of

Valencia.

addition, the transmission rate was modeled assuming the same seasonal pattern for all

the years, which is not a realistic description of the data.

Corberán-Vallet and Santonja (Corberán-Vallet and Santonja, 2014) proposed a sto-

chastic SIRS model in discrete time that provided a precise representation of the pattern

of disease. That model was also able to quite accurately identify the start of a new RSV

epidemic and its increase. However, vaccination strategies were not studied. Similar

to that study, we also confine our analysis to data collected from week beginning July

2nd, 2001 (week 27 in the time plot). Since no child was hospitalized the week before,

we can assume that the susceptible population at this time period is the population of

children aged < 2 in the region of Valencia.

It is important to emphasize here that the interest when simulating the effect of vac-

cination strategies may be to study the decrease in disease incidence. In this case study,

the available data refer to hospitalizations. Let it and yt be, respectively, the number

of infections and hospitalizations at time t. It is reasonably to assume the following

relationship:

yt ∼ Bin(it ,ρ)

where ρ is the probability of being hospitalized for RSV infection. Because informa-

tion regarding the number of newly infected children per week is not available, it is

not possible to make a statistical robust estimate of ρ. In Spain, the percentage of chil-

dren who require hospitalization for RSV is around 0.5% and 2% of the number of

infected children (Contreras, 2016; Parra et al., 2013). This percentage coincides with

the results obtained in Acedo et al. (2010). Hence, if the interest relies on analysing

the number of infections, we can assume that the number of infected children at week

t (t = 1,2, . . . ,T = 208) is given by the number of hospitalized children divided by the
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hospitalization rate:

it = yt/h

with h = 0.02 as proposed in Acedo et al. (2010).

3. Model formulation

3.1. Model formulation without vaccination

In this section we describe a Bayesian stochastic susceptible-infected-recovered-suscep-

tible (SIRS) model in discrete time that was proposed by Corberán-Vallet and Santonja

(2014) to study infectious disease dynamics. Let it denote the number of infected chil-

dren at week t, t = 1,2, . . . ,T . Because the population of children aged< 2 years in the

region of Valencia is finite, the observations are assumed to be Binomial distributed:

it ∼ Bin(St−1, pt) (1)

where St−1 represents the susceptible population at time t − 1; that is, the number of

individuals not yet infected with the disease at time t − 1; and pt is the probability of

becoming infected at time t.

In this discrete-time model, the number of individuals in each compartment is ex-

amined at discrete time steps. Using a fixed population, the number of susceptible (S),

infected (I), and recovered (R) individuals at time t are updated through the following

recursive equations:

St = St−1 − it +bRt−1 +nt −
St−1

N
nt

It = It−1 −aIt−1 + it −
It−1

N
nt

Rt = Rt−1 −bRt−1 +aIt−1 −
Rt−1

N
nt (2)

where a is the proportion of infected individuals that recover per unit time; b is the pro-

portion of recovered individuals who lose their immunity and become susceptible again

per unit time; nt is the number of births at time t; and N is the constant population size.

Taking into account that the average time to recover from RSV illness is 10 days and the

average time to lose immunity is 200 days, we can set a = 7 days (one week)

10 days (recover time)
= 0.7 and

b = 7 days (one week)
200 days (time to lose immunity)

= 0.035 (Acedo et al., 2010). Because the recovery time

and time to lose immunity for RSV are well-known, we have considered these values

as deterministic inputs. Otherwise, these quantities should be considered as additional

parameters of the model with their corresponding prior distribution. In addition, using

demographic data from the Spanish National Institute of Statistics (http://www.ine.es),
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the average weekly number of births in the region of Valencia for years 2001–2004 and

the population size can be set nt = 879 and N = 83,205. The flowchart diagram for the

model is described in Figure 2.

St

St−1
nt

N

St
nt It

It−1
nt

N

Rt

Rt−1
nt

N

it aIt−1

bRt−1

Figure 2: Flowchart of the SIRS model without vaccination. Boxes represent compartments and arrows

represent transitions between compartments, labelled by the parameters of the model.

The probability pt was modelled as:

pt = min

{

iαt−1 exp{rt}

1+ iαt−1 exp{rt}
+ c,1

}

(3)

where the mixing parameter α allows for heterogeneous mixing (homogeneous mix-

ing corresponds to α = 1 (Bjørnstad, Finkenstädt and Grenfell, 2002); c represents a

constant probability of becoming infected and so it accounts for the occurrence of new

cases after the disease has faded out; and exp{rt} represents the time-varying transmis-

sion rate. To accommodate the seasonal pattern observed in the dynamics of RSV, this

transmission rate is modelled by means of sine-cosine waves as:

rt = a0 +
K
∑

k=1

[

a2k−1 sin

(

2kπt

52

)

+a2k cos

(

2kπt

52

)]

+ ǫt (4)

where ǫt is a random effect that represents unspecified features of week t. Note that

this formulation ensures that the probability lies in the interval 0–1 and it also takes into

account the transmissible nature of the infection. The value of K depends on the data

under study and it is set as the highest value k∗ so that the corresponding parameters

a2k∗−1 and a2k∗ are significant.

The parameters of the model are α, c, {ak}
2K
k=0, and {ǫt}

T
t=1. The prior distribution

assumed for parameter α is the Uniform distribution in the interval 0–1. The Uniform

distribution in the interval 0–0.01 is assigned to parameter c. In this case study, this

range of variation for c is enough to capture the probability of infection the first week of

epidemic periods. However, a wider range may be necessary in the analysis of different

diseases. Parameters {ak} are assumed to have zero mean Gaussian distributions with

standard deviations σak
; and {ǫt} are Gaussian distributed random effects with zero

mean and standard deviations σǫ. All the standard deviations in the previous equations

are assigned the Uniform distribution in the interval 0–5 (Gelman, 2006).
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3.2. Model formulation with vaccination

We propose here an extension of the model previously described to accommodate a vac-

cination strategy that consists on vaccinating a proportion of newborns. As mentioned

in the introduction section, the planning of effective vaccine strategies to protect infants

from birth to six mounth are needed. Let ĩt be the number of infected children at time

t after implementation of the vaccination program for infants. It is important to empha-

size that in this section we are working with a hypothetical scenario (since there is not

a RSV vaccination strategy implemented in the Community of Valencia), and so data

corresponding to the number of new infections are not available. Let S̃t−1 represent the

susceptible population at time t −1 and p̃t the new probability of becoming infected at

time t after introducing the RSV vaccine. We can assume then that:

ĩt = S̃t−1 p̃t (5)

The number of individuals in each compartment is updated through the following

recursive equations:

S̃t = S̃t−1 − ĩt +bR̃t−1 +(1−ν)nt −
S̃t−1

N
nt

Ĩt = Ĩt−1 −aĨt−1 + ĩt −
Ĩt−1

N
nt

R̃t = R̃t−1 −bR̃t−1 +aĨt−1 −
R̃t−1

N
nt

Ṽt = Ṽt−1 +νnt −
Ṽt−1

N
nt (6)

Similar to Equations (2), a is the proportion of infected individuals that recover per

unit time; b is the proportion of recovered individuals who lose their immunity per

unit time; nt is the number of births at time t; and N is the constant population size.

Parameter ν represents the proportion of newborns that are vaccinated. We assume here

that infants receive additional booster doses if necessary to induce optimal levels of

RSV neutralizing antibody, and so vaccinated children do not evolve to the susceptible

population. Based on this assumption, there is not transition between the vaccinated

subpopulation (V ) and the susceptible one (S). The flowchart diagram for the model

with vaccination is described in Figure 3.

To estimate ĩt we need to know the value of S̃t−1 and p̃t . The first term is derived by

applying the previous recursive equations and the probability p̃t can be estimated using

the expression:

p̃t = min

{

ĩα
∗

t−1 exp{r∗t }

1+ ĩα
∗

t−1 exp{r∗t }
+ c∗,1

}

(7)
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where α∗, c∗, and {r∗t } represent the posterior mean estimates obtained when the model

without vaccination is fitted to real data. Note that these parameters represent features

of RSV dynamics that do not depend on the number of infected children, and so it is

sensible to use these estimates to calculate p̃t . Varying the value of ν, it is possible to

find out the effect of this vaccination strategy on the number of RSV infections.

S̃t

S̃t−1
nt

N

(1−ν) nt Ĩt

Ĩt−1
nt

N

R̃t

R̃t−1
nt

N

ĩt aĨt−1

bR̃t−1

Ṽt

Ṽt−1
nt

N

ν nt

Figure 3: Flowchart of the SIRS model with vaccination (vaccinated children do not evolve to the suscep-

tible population). Boxes represent compartments and arrows represent transitions between compartments,

labelled by the parameters of the model.

If booster doses are not planned, vaccinated children may evolve to the susceptible

population after an immunization period. In that case, the recursive equations would be

replaced by:

S̃t = S̃t−1 − ĩt +bR̃t−1 +b∗Ṽt−1 +(1−ν)nt −
S̃t−1

N
nt

Ĩt = Ĩt−1 −aĨt−1 + ĩt −
Ĩt−1

N
nt

R̃t = R̃t−1 −bR̃t−1 +aĨt−1 −
R̃t−1

N
nt

Ṽt = Ṽt−1 −b∗Ṽt−1 +νnt −
Ṽt−1

N
nt (8)

where b∗ represents the proportion of vaccinated children who lose their immunity and

become susceptible per unit time. In Acedo et al. (2010), the authors assumed an im-

munization period by vaccination equal to the immunization after infection. Taking into

account this consideration, a value of b∗ equal to 0.035 could be assumed. The flowchart

diagram for this new scenario is presented in Figure 4.
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ĩt aĨt−1
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Figure 4: Flowchart of the SIRS model with vaccination (vaccinated children may evolve to the susceptible

population after an immunization period). Boxes represent compartments and arrows represent transitions

between compartments, labelled by the parameters of the model.

It is important to mention that the previously proposed model is also valid for a ma-

ternal vaccination strategy. In that case, ν would represent the proportion of newborns

whose mothers have been vaccinated and so they are protected from RSV. Since this

maternal immunization strategy does not provide complete protection, children in the

V compartment will evolve to the susceptible population after 4–6 months (Higgings et

al., 2016). The recursive equations given by (8) should then be used, with parameter b∗

adapted to this immunization period.

4. Results

In this section we describe the main results obtained in the analysis of RSV data. We

first show the results when the model without vaccines is fitted to the data. The Bayesian

analysis of the model allows us to calculate the posterior distribution of the model pa-

rameters. Because this posterior distribution is not analytically tractable, we approached

it by simulation. In particular, we obtained a random sample from it using Markov chain

Monte Carlo (MCMC) simulation techniques as implemented in the free statistical soft-

ware WinBUGS (Lunn et al., 2000). We fixed a burn-in period of 150000 iterations to

assess the convergence of MCMC chains. To reduce the correlation for the samples, we

kept one posterior sample in 25 iterations after the burn-in period until a set of 5000

iterations was obtained.

Similar to the study in Corberán-Vallet and Santonja (2014), we model directly the

weekly number of RSV hospitalizations as yt ∼ Bi(St−1, pt), and so pt represents the

probability of being hospitalized at time t. The posterior mean and 95% credible inter-

vals are displayed in Figure 5.
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Figure 5: Hospitalizations for RSV (solid black line) together with posterior means and 95% credible

intervals (dotted gray lines) from week beginning July 2nd 2001 to week beginning December 20th 2004 in

the Spanish region of Valencia.

Figure 6 shows the estimated transmission rate exp{rt} together with its seasonal

component, which is defined by the sum of two harmonic waves (K = 2; higher-order

frequencies were no significant). As can be seen, even though seasonality plays an

important role in disease transmission, adding random effects in the transmission rate

model to account for overdispersion is fundamental to provide a more realistic descrip-

tion of the transmission pattern.

Figure 6: Estimated transmission rate together with its seasonal component from week beginning July 2nd

2001 to week beginning December 20th 2004.
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Table 1: Posterior means and 95% credible intervals for the parameters of the model.

Parameter Mean Credible interval

α 0.80 (0.66,0.95)

c 1.54e-05 (1.26e-05,1.84e-05)

a0 −11.73 (−12.28,−11.26)

a1 −0.61 (−0.94,−0.30)

a2 −1.55 (−2.11,−1.06)

a3 −0.44 (−0.73,−0.17)

a4 −0.14 (−0.42,0.10)

It is important to mention that these results are very similar to the ones presented in

Corberán-Vallet and Santonja (2014). The main difference is that here we are not inter-

ested in prediction, and so we do not keep the last weeks to measure the out-of-sample

forecast accuracy. Because the data set is not exactly the same, some minor differences

are observed in the posterior distribution of the model parameters. The posterior mean

and 95% credible intervals for the parameters of the model are shown in Table 1.

Once the posterior means of the parameters of the model without vaccines have been

estimated, we can analyse the effect of the newborn vaccination strategy. As explained

in Section 3.2, parameters α, c, and {rt} represent features of RSV dynamics that do

not depend on the number of infected children, and they are used to compute both the

new probability of hospitalization once the vaccine has been implemented and the new

number of infections. In our simulation of the vaccine implementation, we assume that

there were no vaccinations before July 2nd 2001; that is, vaccines are introduced the

first week of our time frame and so we set V0 = 0.
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Figure 7: Number of real hospitalizations for RSV (solid line) and simulated numbers of hospitalizations

for two different coverage rates (percentages of vaccinated newborns), ν = 0.2 (dashed line) and ν = 0.8

(dotted line).
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Figure 7 shows the real number of hospitalizations from week beginning July 2nd

2001 to week beginning December 20th 2004 and the simulated numbers for two differ-

ent values of ν: ν = 0.2 and ν = 0.8. As expected, the number of RSV hospitalizations

decreases as the percentage of vaccinated newborns increases. Note that the value of ν

is decided by policymakers and we just set these values as an example.

Taking into account an average of 6.28 hospitalization days for every infected child

and e500 per day and child hospitalized (Acedo et al., 2010), we can estimate the total

cost of hospitalizations for the time period of study. If no child is vaccinated, the cost of

hospitalizations is approximately e13,213,120. This quantity decreases as ν increases.

The hospitalization cost for a value of ν equal to 0.2 would be around 8.5 millions of

euros, and if we set ν = 0.8, 2.5 millions of euros. Note that in order to complete the

economic analysis, we should also consider the vaccine price. For instance, (Acedo et

al., 2010) assumed a cost of e300 per child.

4.1. Comparison with a deterministic continuous-time model

In Corberán-Vallet and Santonja (2014), the authors compared the model described in

Section 3.1 with four alternative formulations of the SIRS model in discrete time: a

stochastic model with a deterministic seasonal transmission rate, a stochastic model

where the transmission rate was assumed to be constant over time, and the equiva-

lent deterministic formulations. The results showed that the proposed Bayesian SIRS

model in discrete-time lead to an improved goodness of fit. We compare here the re-

sults obtained with our model with those provided by a deterministic continuous-time

formulation similar to the one implemented in Acedo et al. (2010). As mentioned in the

Introduction, deterministic compartmental models in continuous-time are widely used

to assess the effect of vaccination programs. By considering only one age-group and a

constant population size, the deterministic continuous-time model without vaccines can

be formulated as:

dS

dt
=−β(t)SI+bR+µ−µS

dI

dt
=−aI +β(t)SI−µI

dR

dt
=−bR+aI−µR (9)

where β(t) is defined as b0 + b1cos(2πt +ψ) to account for seasonality. The flowchart

of this model is shown in Figure 8.

Similar to Acedo et al. (2010), we have assumed that 1% of infants are infected in

January 1999 while the remaining 99% of infants are susceptible. We have also set

µ= 0.01074, b = 1.59, and a = 36.5. In order to estimate parameters b0, b1 and ψ, we

have used the dsolve package (Soetaert, Petzoldt and Setzer, 2010) in R (R Core Team,

2017) together with the optim function.
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Figure 8: Flowchart of the deterministic continuous-time SIRS model without vaccination.

Figure 9 compares the estimates of RSV hospitalizations obtained with both the

Bayesian stochastic SIRS model in discrete-time and its deterministic counterpart. As

can be seen, the deterministic continuous-time approach is not able to properly describe

epidemic peaks. The seasonal pattern is constant over time and it does not explain

particular features of annual epidemics. The fitting RMSE are, respectively, 2.52 and

19.09. These results highlight the importance of taking into account the stochasticity

inherent in the transmission dynamics.
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Figure 9: Real hospitalizations for RSV (solid points) and the estimates obtained with both the Bayesian

stochastic model in discrete-time (solid line) and the deterministic continuous-time model (dashed line).

If we assume that a proportion of newborns are vaccinated, the deterministic model

can be reformulated as:

dS

dt
=−β(t)SI+bR+(1−ν)µ−µS

dI

dt
=−aI +β(t)SI−µI

dR

dt
=−bR+aI−µR

dV

dt
= νµ−µV (10)
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Figure 10 displays the real number of hospitalizations from week beginning July 2nd

2001 to week beginning December 20th 2004 and the numbers simulated by the deter-

ministic continuous-time model for a coverage rate ν = 0.2. For comparative purposes,

we have also included the results provided by our model. As expected, the deterministic

model does not explain properly epidemic peaks. Nevertheless, we can conclude that

both strategies show a similar decreasing trend in the number of RSV hospitalizations

after the introduction of the vaccine.
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Figure 10: Real hospitalizations for RSV (solid line) and simulated numbers of hospitalizations provided

by both the Bayesian stochastic SIRS model (dashed line) and the deterministic continuous-time model

(dotted line) for a coverage rate ν = 0.2.

5. Conclusion

In this paper, we have described a stochastic compartmental model in discrete-time to

describe RSV dynamics in the region of Valencia. However, the model can be adapted

for other infectious diseases with (or without) a seasonal pattern and temporary (or per-

manent) immunity, replacing the transmission rate and the immunity rate according to

the nature of disease. Unlike standard formulations, this compartmental model does

not assume mass-action mixing of individuals in the population. In addition, the model

considers the stochasticity inherent in the transmission of disease and, consequently, it

provides a more realistic and accurate description of the progression of infections.

The extended model proposed in this paper provides a useful framework to address

one of the important needs in RSV incidence control: the implementation of an efficient

vaccination strategy. In particular, we have studied the effects of a vaccination strategy

that consists on vaccinating a proportion of newborns, which are the highest priority

target population. Additionally, we have pointed out how to adapt the model to simulate

a vaccination strategy targeted to pregnant women.

Nevertheless, the model has some limitations. We have assumed that the number

of births equals the number of deaths so that the total population size is constant. In
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addition, we do not consider an age structure into the formulation of the compartmental

model. It would be valuable to extend the proposed model to allow for different age

groups, for instance infants < 6 months of age and children ≥ 6 months of age, which

are considered as distinct target populations for RSV vaccines. An age-structured model

would provide an important tool to study the effects of alternative vaccination strategies.

It could demonstrate how immunization of a target population may protect others. Be-

sides, this formulation could be used to simulate the benefits of implementing a mater-

nal vaccination strategy followed by direct older infant vaccination as maternal antibody

wanes.

Note that we have only implemented a control strategy based on vaccination. How-

ever there are other possibilities such as isolation of infected individuals. This alternative

control strategy could be straightforwardly incorporated into the model by adapting the

probability of becoming infected. Under this scenario, the probability of infection at a

particular time point would depend only on a proportion of infected individuals at the

previous time point (the ones that have not been isolated). It would also be interesting

to assess the impact of both control strategies simultaneously.

Another very fruitful area for further research is the extension of the proposed model

to the spatial domain. Space can play a significant role in RSV transmission. In addition,

a spatio-temporal model may be useful to detect high-risk areas in need of more strong

intervention strategies to reduce the burden of disease.

Finally, it is worth emphasizing that we have focused here on models that have been

previously proposed to analyse the impact of vaccination strategies; in particular, we

have focused on compartmental models. However, the literature on models for the anal-

ysis of infectious disease data is vast and can be found in both statistical as well as

epidemiological journals. Comprehensive coverage of statistical models for the analy-

sis of infectious diseases in a single paper is not possible and it is beyond the scope of

this paper. Nevetheless, it would be interesting to extend common approaches to model

count time series (such as INAR models (Rao and McCabe, 2016) or p-splines (Eil-

ers, Marx and Durban, 2016)) to incorporate the impact of vaccination programs and

compare the performance of these different approaches.
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