学校编码: 10384 学号: 30520090153593 分类号_____密级_ UDC_____

博 士 学 位 论 文

核受体 Nur77 、RXRα 与肿瘤的交互作用及调控

The Crosstalk and Regulation of Nur77 , RXRa and Cancer

吴 华

指导教师姓名: 张晓坤 教授

曾锦章 教授

专业名称: 化学生物学

论文提交日期: 2012年 10 月

论文答辩时间: 2012年 11 月

学位授予日期:

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学术活动规范(试行)》。

另外,该学位论文为()课题(组) 的研究成果,获得()课题(组)经费或实验室的 资助,在()实验室完成。(请在以上括号内填写课 题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特 别声明。)

声明人(签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

- ()1. 经厦门大学保密委员会审查核定的保密学位论文,
- 于 年 月 日解密,解密后适用上述授权。
 - () 2. 不保密, 适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文 应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密 委员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认 为公开学位论文,均适用上述授权。)

声明人(签名):

年 月 日

英文缩略词

本 立烷字	萬立春夕	山
英文缩写 	英文全名 	中文名称
NR	Nuclear receptor	核受体
AR	Androgen receptor	雄激素受体
Nur77	Orphan nuclear recetor	孤儿核受体
GR	Glucocorticoid receptor	糖皮质激素受体
RXR	Retinoid X receptor	视黄醇X受体
RAR	Retinoic acid receptor	维甲酸受体
TR	Thyroid hormone receptor	甲状腺激素受体
VDR	Vitamin D receptor	维他命 D3 受体
PPAR	Peroxisome proliferator-activated receptor	过氧化物酶激活受体
DBD	DNA-binding domain	DNA 结合结构域
LBD	Ligand-binding domain	配体结合区
AF	Activation function	转录激活功能域
ATRA	All-trans-retinoic acid	全反式视黄酸
9-cis-RA	9-cis retinoic acid	9-顺视黄酸
BRE	Brain and reproductive organ-expressed protein	大脑和生殖器官表达的蛋白质
VEFG	Vascular endothelial growth factor	血管内皮细胞生长因子
$TNF\alpha \\$	Tumor necrosis factor-α	肿瘤坏死因子
LPS	Lipopolysaccharides	脂多糖
Cyt c	Cytochrome c	细胞色素 c
NF-κB	Nuclear factor-kappa B	核因子κB
ΙκΒ	Inhibitory protein of NF-κB	核因子抑制蛋白
JNK	C-Jun Amino-Terminal Kinase	C- jun 氨基末端激酶
HBx	Hepatitis B Virus X Protein	乙型肝炎X蛋白
MTT	3-[4,5-dimethylthiazol-6-yl] -6,5-diphenyltetrazoli	um bromide 噻唑蓝
NES	Nuclear export signal	出核信号
NLS	Nuclear localization sequence	核定位序列
TLR	Toll-like Recptor	Toll 样受体
TRAF6	Tumor Necrosis Factor Receptor Associated Factor	or 6 肿瘤坏死因子受体相关因子 6
Ub	Ubiquitination	泛素化
MMP	Matrix metalloproteinase	基质金属蛋白酶
IL-6	Interleukin-6	白细胞介素 6
IFN-β	Interferon-Beta	干扰素 β
MCP-1	Monocyte chemoattractant protein-1	单核细胞趋化蛋白-1

目 录

摘	要	•••••1
Ab	ostract ·····	3
第	一章 孤儿核受体 Nur77 在结肠癌中的调控及作用	X
第 [·]	一节 前言	5
1	1 核受体概述	5
2	2 孤儿核受体 Nur77 ·······	6
	2.1 Nur77 的结构	6
	2.2 Nur77 在肿瘤中的表达、调控及其生物学功能	7
	2.2.1 Nur77 在肿瘤中的表达	7
	2.2.2 Nur77 的调控	7
	2.2.3 Nur77 的生物学功能	
3	3 Wnt/β-catenin 信号通路 ····································	9
	3.1 Wnt 信号通路	9
	3.2 Wnt 信号转导的途径	10
	3.2.1 经典通路	10
	3.2.2 非经典通路	11
	3.2.3 Wnt/β-catenin 信号通路与结肠癌发生	12
4	4 本章研究的目的、内容及科学意义	12
第.		14
1	1 实验材料	14
_	1.1 细胞株	
	1.2 主要试剂	
	1.3 主要仪器	
~	2 京孙文法	16

2.1 细胞培养	16
2.2 细胞转染实验	16
2.3 蛋白提取与 Western Blots ······	17
2.4 免疫共沉淀(CO-IP)实验	19
2.5 核质分离	19
2.6 免疫荧光染色	21
2.7 免疫组化	22
2.8 荧光素酶报告基因	23
2.9 RT-PCR 以及 qPCR 技术	23
	25
	26
2.12 MTT 实验 ······	26
2.13 创伤愈合实验(wound-healing assays)	
2.14 流式细胞仪检测细胞凋亡	27
2.15 染色质免疫共沉淀(CHIP)	
2.16 Nur77 启动子区突变体的构建	
2.17 诱发性结肠癌动物模型的建立	
2.18 统计学分析	29
第三节 实验结果与分析	30
1 孤儿核受体 Nur77 在结肠癌中的表达 ····································	30
1.1 Nur77 在肿瘤组织中高表达 ····································	
1.2 在诱发性结肠癌动物模型以及结肠癌细胞中, 致癌剂诱导了 N	Jur77 的表
达	30
2 孤儿核受体 Nur77 在结肠癌中的功能 ····································	33
2.1 Nur77 调控 BRE、VEGF 的表达	33
2.2 Nur77 的促癌活性	34
3 孤儿核受体 Nur77 在结肠癌中的表达调控机制 ····································	38
3.1 PI3K/Akt 以及 JNK 信号通路参与调控了 Nur77 的表达	38
3.2 异常激活的 β-catenin 与 Nur77 的表达	40
3.3 β-catenin 在转录水平上调控 Nur77 的表达	43
3.4 β-catenin/AP-1 的协同作用与 Nur77 启动子活性	45
3.5 鉴定 β-catenin/AP-1 与 Nur77 启动子区域相互作用的位点	46

第四	四节 结论	•49
第二	二章 截断蛋白 tRXRα 在肿瘤微环境中介导炎症通路的分子机制	钊
研究	究	
第-	一节 前言	••50
1	视黄醇 X 受体 ··································	-5 0
	1.1 视黄醇 X 受体的结构	··50
	1.2 视黄醇 X 受体的功能	50
	1.2.1 视黄醇 X 受体的基因型功能	51
	1.2.2 视黄醇 X 受体的非基因型功能	52
	1.3 视黄醇 X 受体与疾病	53
2	炎症信号转导 Toll/ NF-κB 信号通路 ····································	·· 5 3
	2.1 Toll 样受体信号通路	53
	2.2 NF-κB 信号通路	
	2.3 TRAF6 介导 TLR 与 NF-κB 信号通路的交联。	57
4	本章研究的目的、内容及科学意义	58
	二节 材料及方法	
弗-		
1	实验材料	
	1.1 细胞株	60
	1.2 主要试剂	60
/,	1.3 主要仪器	61
2	实验方法	··61
¥,	2.1 细胞培养	··61
17	2.2 细胞转染实验	··61
	2.3 蛋白提取与 Western Blots ······	62
	2.4 免疫共沉淀 (CO-IP)实验	62
	2.5 条件性培养基 (CM) 的收集及处理	62
	2.6 免疫荧光染色	62
	2.7 细胞侵袭实验	62
	2.8 荧光素酶报告基因	63

2.9 RT-PCR 以及 qPCR 技术 ·······63
2.10 RNA 干扰技术以及稳转细胞系的建立 64
2.11 克隆形成实验64
2.12 TRAF6 突变体的构建 ····································
2.13 TRAF6 的泛素化实验 65
2.14 统计学分析65
第三节 实验结果与分析
1 细胞质定位的 tRXRα 与 NF-κB 活性的关系 ····································
1.1 细胞质定位的 tRXRα 激活 NF-κB 信号通路
1.2 tRXR α 介导炎症因子的表达和分泌 ••••••••••••••••••••••••••••••••••••
2 tRXRα 介导巨噬细胞驱动的肿瘤细胞的生长以及侵袭 ········69
3 tRXRα 介导 LPS 诱导的 NF-κB 激活 ······70
4 tRXRα 与 TRAF6 相互作用及其在 NF-κB 信号通路中的作用 ·······72
4.1 tRXRα 与 TRAF6 相互作用
4.2 tRXRα/TRAF6 相互作用与 NF-κB 激活 ·······74
5 鉴定 tRXRα 与 TRAF6 相互作用的结合区 ·······75
6 tRXRα 在 TRAF6 自泛素化中的作用 ·······76
7 舒林酸衍生物 K-80003 与 tRXRα 介导的炎症信号通路 ·······78
7.1 K-80003 抑制 tRXRα 介导的炎症信号通路 ····································
7.2 K-80003 抑制肿瘤细胞生长、侵袭 ·······80
第四节 结论
讨 论
2 蛋白质的表达、定位及调控 ····································
3 核受体 Nur77、RXRα 与肿瘤及炎症发生 ·······88
4 核受体 Nur77、RXRα 是药物开发的良好靶点 ········90
参考文献93
懂十研究生期间 文音 发表及获奖情况

Table of Contents

Abstract in Chinese ·····	1
Abstract in English	3
Chapter I The Role and Regulation of Orphan Nuclear Receptor)r
Nur77 in Colon Cancer	
Section I Introduction	
1 Review of Nuclear receptor	
2 Orphan Nuclear Receptor Nur77	•6
2.1 Structure of Nur77 ·····	6
2.2 The Expression, Regulation and Biological function of Nur77 in cancer	
2.2.1 The Expression of Nur77 in Cancer ·····	7
2.2.2 The Regulation of Nur77	.7
2.2.3 The Biological function of Nur77 ·····	8
3 Wnt/β-catenin Signal pathway ·······	.9
3.1 Wnt Signaling ·····	.9
3.2 The transduction Pathways for Wnt Signaling	0
3.2.1 Canonical pathway ······	0
3.2.2 Noncanonical pathway ·····	11
3.2.3 Wnt/β-catenin Signal pathway and Tumorigenesis ······	2
4 Aims and significance ·······	2
Section II Materials and Methods	
1 Materials ······	4
1.1 Cell Lines ·····	4
1.2 Chemicals and Reagents	4
1.3 Instrument ————————————————————————————————————	15
2 Methods	6

	2.1 Cell Culture ·····	··16
	2.2 Cell Transfection	16
	2.3 Protein Extraction and Western Blots	··17
	2.4 Immunoprecipitation (CO-IP)	19
	2.5 Cell Fractionation ·····	19
	2.6 Immunofluorescence	21
	2.7 Immunohistochemistry	
	2.8 Luciferase reporter assay	
	2.9 RT-PCR and qPCR ·····	23
	2.10 RNA Interference and Stable Transfection	25
	2.11 Colony Formation Assay	26
	2.12 MTT	26
	2.13 Wound-healing Assays	27
	2.14 Flow Cytometry Analysis	27
	2.15 Chromatin Immunoprecipitation (ChIP) Assays	27
	2.16 Nur77 Promoter Constructs ·····	29
	2.17 Animal Study for Colon Cancer Induction	
	2.18 Statistical Analysis	29
Sec	tion III Results and Analysis	••30
	-///	
1	The Expression of Orphan Nuclear Receptor Nur77 In Colon Cancer	
	1.1 Nur77 Is Overexpression in Human Colon Tumors	
1	1.2 Nur77 Is Strongly Induced in Mice Colonic Epithelium and Colon Cancer Cells by Colonic Carcinogens	
	The Function of Orphan Nuclear Receptor Nur77 In Colon Cancer	
	2.1 Nur77 Regulates BRE and VEGF Expression	
	2.2 The Oncogenic Activity of Nur77	
2	The Mechanism by which Nur77 Was Regulated in Colon Cancer Cells	
3	·	
	3.1 Nur77 Expression Was Regulated by PI3K/Akt and JNK Signal Pathways	
	3.2 β-catenin and Nur77 Expression	
	3.3 β-catenin Regulated Nur77 Transcription	
	3.4 The Effect of Synergistic β-catenin and AP-1 on Nur77 Promotor Activation	

3.5 Identification of the Binding Site on Nur77 Promo	ter46	
Section IV Results	49	
Chapter II The Molecular Mechanism by Which Truncated RXRα (tRXRα) Regulated Inflammation In Tumor Microenvironment		
Section I Introduction		
1 Retinoid X Receptor (RXR) ······	50	
1.1 The Structure of RXR ·····	50	
1.1 The Structure of RXR	50	
1.2.1 The Genomic Action of RXR ·······	51	
1.2.2 The Nongenomic Action of RXR	52	
1.3 RXR and Human Disease	53	
2 Toll/ NF-κB Signal Pathways ······	53	
2.1 Toll-like Receptor Signal Pathway		
2.2 NF-κB Signal Pathway	56	
2.3 The Crosstalk of TLR and NF-kB signaling mediat	ed by TRAF6 57	
3 Aims and significance	58	
Section II Materials and Methords	60	
1 Materials ·····	60	
1.1 Cell Lines ·····	60	
1.2 Chemicals and Reagents	60	
1.3 Instruments ·····	61	
2 Methords ······	61	
2.1 Cell Culture ·····	61	
2.2 Cell Transfection	61	
2.3 Protein Extraction and Western Blots	62	
2.4 Immunoprecipitation (CO-IP)	62	
2.5 Preparation of Conditional Medium (CM)	62	
2.6 Immunofluorescence ·····	62	
2.7 Invasion Assay ·····	62	

2.8 Luciferase reporter assay	63
2.9 RT-PCR and qPCR ·····	63
2.10 RNA Interference and Stable Transfection	64
2.11 Colony Formation Assay ·····	64
2.12 TRAF6 Mutants Constructs	64
2.13 TRAF6 Ubiquitination Assay	
2.14 Statistical Analysis	
Section III Results and Analysis	66
1 Cytoplasmic tRXRα and NF-κB Activity	66
1.1 The Cytoplasmic tRXRα was Associated with NF-κB Activation •••••••••	
1.2 The Regulation of Cytokine Production by tRXRα ···································	68
2 Cancer Cells Growth and Invasion Driven by Macrophages Mediate tRXRα	-
3 tRXRa Regulated Lipopolysaccharide-induced Inflammation	
4 The Role of tRXR α Interaction with TRAF6 in NF- κB Signal Pathway \cdot	·····72
4.1 The Interaction of tRXRα and TRAF6 ·······	·····72
4.2 tRXRα Interaction with TRAF6 and NF-κB Activity ••••••••••••••••••••••••••••••••••••	·····74
5 Binding regions for RXR and TRAF6	·····75
6 The Role of tRXRα in TRAF6 autoubiquitination	····76
7 Sulindac analog K-80003 and Inflammation	····78
7.1 K-80003 Inhibited Inflammatory Signal Through tRXRα ···································	·····78
7.2 K-80003 Inhibited Cancer Cells Growth and Invasion	····80
Section IV Results	····83
Discussion ·····	·····84
1 The Genomic and Nongenomic Action of Nuclear Receptor	····84
2 Protein Expression, Location and Regulation	85
3 The Role of Nur77 and RXRα In Cancer and Inflammation	88
4 Nur77 and RXRα are Potential Targets for Drug Development	90
Defenses	0.2

Publication and Achievement	105
Acknowledge ······	106

摘要

核受体是真核细胞生物体内一类重要的蛋白质,在机体正常生命活动过程中 发挥着极其重要的作用;然而,核受体表达和功能的异常会导致严重的人类疾病。 这里,我们主要研究了两种核受体Nur77和RXRα在肿瘤发生中的作用及其机制。

在第一章中,我们主要研究了孤儿核受体 Nur77 在结肠癌发生中的作用及其调控。孤儿核受体 Nur77 属于核受体超家族的重要一员,易被诱导表达。研究表明,Nur77 在多种人类肿瘤中高表达,提示它与肿瘤发生紧密相关;然而,其潜在的调控机制及生物学功能尚不清楚。在本章中,我们首先分析了 Nur77 在结肠癌中的表达,结果表明,Nur77 在人结肠癌组织中的表达水平显著高于癌旁组织,在小鼠诱发结肠癌的过程中 Nur77 可以被显著诱导,Nur77 还高表达于多种结肠癌细胞系,并可被脱氧胆酸 DCA 进一步诱导。DCA 所诱导的 Nur77 可进一步导致抗凋亡蛋白 BRE、血管生成因子 VEGF 的表达,并伴随着结肠癌细胞的生长、克隆形成以及迁移;在深入研究其调控机制时,我们发现结肠癌中异常激活的β-catenin 可通过与 AP-1 的直接相互作用,激活 Nur77 启动子区的 AP-1 位点,从而激活 Nur77 的转录表达机制,多种结肠癌致癌剂如 DCA、AOM 和 DMH 等可通过这种机制促进结肠癌的发生发展。综上所述,我们的研究首次证明,Nur77 可作为 Wnt/β-catenin 以及 AP-1 信号通路的重要效应蛋白介导结肠癌细胞的生长。

在第二章中,我们主要研究了另一个核受体 RXRα的截短蛋白 tRXRα在肿瘤 微环境中的作用。类视黄醇 X 受体 RXRα,是核受体超家族的重要一员,参与了人体众多生理和病理过程。最近研究表明,肿瘤细胞及肿瘤组织中还存在 RXRα的截断形式 tRXRα,其可通过与 PI3K 亚基 p85α的相互作用激活 Akt,促进肿瘤细胞的生长;有趣的是,这种相互作用依赖于肿瘤坏死因子 TNFα;众所周知,TNFα可通过激活 NF-κB 信号通路调控炎症与肿瘤。然而,在肿瘤微环境中,tRXRα是否参与调控炎症和肿瘤网络尚不清楚。在本研究中,我们发现 tRXRα也表达于巨噬细胞;有趣的是,细胞质定位的 tRXRα与炎症通路 NF-κB 的激活紧密相关,而细胞核定位的全长 RXRα(FL-RXRα)不具有这样的功能。炎症细胞与肿瘤细胞的共培养实验表明 tRXRα可调控炎症驱动的肿瘤细胞的生长、侵袭。在深入研究其作用机制时,我们发现细胞质定位的 tRXRα可通过与 TRAF6

的相互作用,提高 TRAF6 的自泛素化水平,激活 NF-κB 信号通路,并最终诱导促炎症因子的表达和分泌,Toll 样受体信号通路的激动剂 LPS 可进一步增强这一过程。有趣的是,非类固醇药物舒林酸(Sulindac)衍生物 K-80003 可通过破坏 tRXRα与 TRAF6 相互作用,抑制炎症发生及肿瘤细胞的生长和侵袭。综上所述,我们研究表明,在肿瘤微环境中,细胞质定位的 tRXRα及其选择性小分子调节剂可通过调节 Toll 样受体信号来调控炎症发生。

关键字: Nur77; β-catenin; AP-1; 结肠癌; tRXRα; TRAF6; NF-κB 信号通路; Toll 样受体; 炎症与肿瘤

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database".

Fulltexts are available in the following ways:

- If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.
- 2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.