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Abstract

[I-nitrides and their alloys are highly attractive materials due to their superior
properties of wurtzite crystalline structure, including direct and wide bandgap, high
thermostability, chemically stable, hard texture, etc. Remarkable progresses on
scientific research have been achieved in past decades, and commercial devices have
been overwhelmingly accepted by the markets, revealing of their highly commercial
potentials. The applications of Ill-nitride semiconductors include displays,
illuminations, detectors, digital storage, communication, crops lighting, healthcare, etc.
However, challenges still remain for further improving, such as spontaneous and the
piezoelectric polarizations, high density of threading dislocations, low light extraction
efficiency, droop effect, Green Gap, etc.

Remedies have been proposed to mitigate the complications mentioned above.
Adopting semipolar quantum wells (QWs) is one of the promising solutions. Semipolar
QWs possess low internal field, high radiative efficiency, applicable to long wavelength
LEDs devices, low droop effect and so on. Researches on semipolar QWs are attracting
much attention, such as electronic properties, optical properties, carrier recombination
dynamics. In this thesis, under the above circumstance, we focusing on improving the
radiative-recombination efficiency of III-Nitrides QWs, discussed the optimized-
growth conditions of selective area epitaxy (SAE) to grow semipolar QWs structures,
and studied the optical properties of these 3D {1122} and {1101} semipolar QWs
structures and the carrier recombination dynamics. Moreover, electronic and optical
properties of indium-graded semipolar QW structures were studied with different
indium variation schemes. Details of the content are summarized as below:

1. The 3D {1122} and {1101} semipolar QWs were grown by MOCVD using
SAE technique on basal sapphire substrates with optimized epitaxy-parameters.
Temperature-dependent photoluminescence (PL) measurement results showed that the
{1101} semipolar QWs has a normalized PL-integrated intensity of 6.2%, about 1 time
higher than the polar QWs, this means that relative internal quantum efficiency (IQE)
of {1101} semipolar QWs is also about 1 time higher than the polar one. Moreover,
the relative IQE of {1122} semipolar QWs is about 12%, which is even higher than
the {1101} semipolar QWs. The superior radiative-recombination efficiencies of
semipolar QWs were also proved by both time-resolved photoluminescence (TRPL)

measurements and theoretical calculation results.
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2. Based on temperature-dependent PL and TRPL measurements, carrier
recombination dynamics were discussed. The weakened S-shaped temperature-
dependent PL peak-energy of semipolar samples were explained by the weak phonon-
assisted carrier in-plane hopping/tunneling processes, which originated from the
weakened internal field and piezoelectric effect. This feature was further verified by PL
spectra-dependent decay times and temperature dependent TRPL. The weakened
carrier hopping/tunneling effects are beneficial to carrier in-suit radiative
recombination processes rather than carrier redistribution among inhomogeneous
potential fluctuation. This could help carriers from being captured by defects, which
may lead to the participating of nonradiative processes.

3. The indium-graded technique was introduced in the semipolar well layers to
improve the radiative-recombination efficiencies. And then the k-p theory was
employed to investigate electronic and optical properties of indium-graded {1122}
semipolar QW structures with different indium variation schemes. The conduction and
valence band structures, the electron and hole wave functions have been solved for all
QW structures, and then the overlap of electron-hole wave functions, the transition
matrix elements between the first conduction and the topmost valence bands, the
spontaneous emission spectra, and the optical polarization ratio were studied.
According to the calculation results, both increasing the indium composition difference
(Ap) between the maximum and the minimum points in the well layer and moving the
location of the maximum indium composition (MIC) in the opposite direction of the
built-in field existing in the well layer of indium constant semipolar QW can improve
the overlap of electron and hole wave functions, as well as the intensity of spontaneous
emission rate spectra for y-polarization of the indium-graded semipolar QW. For the 3
nm semipolar QW structure, the maximum overlap of 94.15% is achieved by the QW
with MIC=3/4 and minimum indium composition of 0%, this result is much higher than
the 30.37% of indium constant polar QW and 83.74% of indium constant semipolar
QW.

4. The optical polarization ratio pyx decreases by larger Ap and increased by
moving MIC to the opposite direction of the built-in field existing in the well layer of
indium constant semipolar QW. The maximum pyx of 44.6% for the 3nm semipolar
QW is achieved by MIC=3/4 and Ap=5%, and the minimum pyx of 36% is achieved

by MIC=1/4 and minimum indium composition of 0%.
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5. The overlaps of optimized indium-graded semipolar QWs are decreased with
the increasing of well width, but with slower decreasing rates than the indium constant
semipolar QW. The py« of indium-graded semipolar QWs is increased with the well

width but also in a slow increasing rate compared with the indium constant semipolar

QW.
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