学校编码: 10384 学号: 22420120153448

の大う

博士学位论文

南大洋二甲基硫海-气交换过程及南极上空含 硫气溶胶的来源及特征分析

Study on the Sea-air Dimethylsulphide Exchange Process in the Southern Ocean and Sources and Characteristics of Sulfur Aerosols over the Antractica

张麋鸣

指导教师姓名:陈立奇研究员 专业名称:海洋化学 论文提交日期:2015年4月 论文答辩时间:2015年5月

2015年4月

密级____

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成 果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

另外,该学位论文为(南大洋二甲基硫海-气交换过程及南极上 空含硫气溶胶的来源及特征分析)课题(组)的研究成果,获得(国 家海洋局海洋-大气化学全球变化重点实验室)课题(组)经费或实 验室的资助,在(国家海洋局第三海洋研究所海洋-大气化学全球变 化重点实验室)实验室完成。(请在以上括号内填写课题或课题组负 责人或实验室名称,未有此项声明内容的,可以不作特别声明。)

声明人(签名):

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

(√) 2.不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文应是 已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委员 会审定的学位论文均为公开学位论文。此声明栏不填写的,默认为公 开学位论文,均适用上述授权。)

声明人(签名): 2月月23日

摘 要	······I
Abstract	•••••• I V
第一章 绪论 ·······	1
1.1 DMS 生物地球化学循环	4
1.1.1 海洋 DMS 循环	4
1.1.2 大气 DMS 循环	
1.2 船载 DMS 观测技术进展	••••••13
1.2.1 常规海水 DMS 分析方法	
1.2.2 新型的 DMS 船载观测系统	
1.3 南大洋 DMS 分布特征及海-气 DMS 通量	
1.3.1 南大洋 DMS 分布特征	
1.3.2 南大洋海-气 DMS 通量	
1.4 南大洋海-气 DMS 交换过程的控制因素	
1.4.1 生物因素影响	
1.4.2 非生物因素影响	
1.5 国内外在南大洋硫循环的研究现状	
1.5.1 国际研究现状	
1.5.2 国内研究现状	
1.6 本论文研究的立题依据及研究思路	23
1.6.1 立题依据	
1.6.2 研究思路	
第二章 南极中山站大气气溶胶中 MSA、NSS-SO4 ²⁻ 年	际及季节变化
控制因素	26
2.1 引言	26

2.2 材料和方法27
2.2.1 采样区域27
2.2.2 采样及分析方法
2.2.3 nss-SO4 ²⁻ 计算方法
2.2.4 Chl-a 数据获取,冰间湖面积计算及气象数据
2.3 结果与讨论
2.3.1 中山站大气气溶胶中水溶性离子浓度分布
2.3.2 中山站大气气溶胶中 MSA 及 nss-SO42-季节分布特征
2.3.3 中山站大气中 MSA 及 nss-SO4 ²⁻ 变化的影响因素
2.4 结果与展望
第三章 连续的走航表层海水 DMS 观测系统研发42
3.1 引言42
3.2 实验材料
3.2.1 试剂43
3.2.2 吹扫捕集气相色谱脉冲火焰光度检测器(PT-GC-PFPD)系统 …43
3.2.3 样品分析流程45
3.3 结果与讨论46
3.3.1 制冷及加热设备的应用效果46
3.3.2 标准样品的分析效果47
3.3.3 PT-GC-PFPD 的主要参数的优化47
3.3.4 PT-GC-PFPD 系统的现场应用
3.4 小结与展望
第四章 中国第30次南极考察航线上海-气DMS 通量及其对含硫气溶
胶的影响
4.1 引言53
4.2 材料和方法54
4.2.1 采样区域54
4.2.2 测定方法

	4.2.3 卫星遥感数据反演海洋 Chl-a 浓度	•57
	4.2.4 DMS 海-气交换通量的计算方法	·58
	4.2.5 海冰数据	·58
4.3	3 结果与讨论	·58
	4.3.1 南极航线上的温盐、海冰及 Chl-a 分布	·58
	4.3.2 表层海水 DMS 浓度分布	·62
	4.3.3 南极航线上不同海域的海-气 DMS 通量	•66
	4.3.4 MSA、nss-SO4 ²⁻ 在南极航线上的分布及 DMS 释放对其的影响。	·68
	4.3.5 表层海水 DMS 与海水 pCO2之间的关系	
4.4	4 结论	•76
第五	章 东南极夏季中山站邻近固定冰中 DMS、DMSP 分布初探・	78
5.1	1 引言	•78
5.2	2 样品采集与分析方法	•79
5.3	3 结果	·81
	5.3.1 冰芯中 DMS、DMSP + DMS 分布特征	·81
	5.3.2 冰芯中 Chl-a, 温度及盐度分布特征	·82
5.4	4 讨论	·83
	5.4.1 采集冰芯盐度分布成因	·83
	5.4.2 冰芯底层及顶层 Chl-a 、DMSP+DMS 分布成因	·84
	5.4.3 冰芯在垂向上 Chl-a 与 DMSP+DMS 的分布成因	·85
	5.4.4 两根冰芯 Chl-a、DMSP + DMS 分布对比	·86
5.5	5 总结和展望	•87
第六	章 结论	88
6.1	1 论文的主要结论	•88
6.2	2 展望	•89
参考	文献	91
致 i	射	.09

Contents

Abstract in Chinese	I
Abstract	IV
Chpater 1 Introduction	
1.1 The biogeochemical cycle of DMS	4
1.1.1 DMS cycle in ocean	4
1.1.2 DMS cycle in atmosphere	9
1.2 Advance in shipboard sea water DMS measurement methods	
1.2.1 Classical sea water DMS measurement method	13
1.2.2 The new shipboard underway DMS observation systems	15
1.3 The characteristic of surface sea water DMS distributions a	nd sea-air
flux in the Southern Ocean	16
1.3.1 The characteristic of surface sea water DMS distribution	ons in the
Southern Ocean	16
1.3.2 DMS sea-air flux in the Southern Ocean	18
1.4. The controlling factors of DMS sea-air exchange process in the	Southern
Ocean	18
1.4.1 Influence of biological factors	19
1.4.2 Influence of none biological factors	20
1.5 The status of sulfur cycle study in the Southern Ocean	22
1.5.1 International	22
1.5.2 Internal	22
1.6 The scientific questions, objectives, contents and study plan of	this thesis
	23
1.6.1 The scientific questions, objectives, contents	23
1.6.2 study plan	24

nss-SO4 ²⁻ at Zhongshan station, East Antarctica
2.1 Introduction
2.1 Introduction 20 2.2 Materials and Method
2.2.1 Sampling site
2.2.2 Sampling and Chemical Analyses
2.2.2 Sampling and Chemical Finallyses
2.2.4 Acquisition of Chl- a concentrations, calculation of polynya areas and
meteorology data
2.3 Results and Discussion
2.3 Results and Discussion 22 2.3.1 Concentrations of MSA, $SO_4^{2^-}$, Mg^{2^+} , nss- $SO_4^{2^-}$ at Zhongshan station 29
2.3.2 Seasonal variations of MSA, nss-SO ₄ ²⁻
2.3.3 The impacting factors of atmospheric MSA, nss-SO ₄ ²⁻ variations34
2.5.5 The impacting factors of autospheric WSA, fiss-504 Variations
Chpater 3 Autonomous system for continuous underway
measurements of dimethyl sulfide in seawater by purge and trap gas
chromatography coupled with pulsed flame photometric detection .42
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction 42 3.2 Materials and Methods 43 3.2.1 Reagents 43 3.2.2 The PT-GC-PFPD system 43
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction 42 3.2 Materials and Methods 43 3.2.1 Reagents 43 3.2.2 The PT-GC-PFPD system 43 3.2.3 Analysis procedure 45
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction 42 3.2 Materials and Methods 43 3.2.1 Reagents 43 3.2.2 The PT-GC-PFPD system 43
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction 42 3.2 Materials and Methods 43 3.2.1 Reagents 43 3.2.2 The PT-GC-PFPD system 43 3.2.3 Analysis procedure 45
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction 42 3.2 Materials and Methods 43 3.2.1 Reagents 43 3.2.2 The PT-GC-PFPD system 43 3.2.3 Analysis procedure 45 3.3 Results and Discussion 46
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction 42 3.2 Materials and Methods 43 3.2.1 Reagents 43 3.2.2 The PT-GC-PFPD system 43 3.2.3 Analysis procedure 45 3.3 Results and Discussion 46 3.3.1 Performance of the heating and cooling device in the PT system 46
chromatography coupled with pulsed flame photometric detection .42 3.1 Introduction 42 3.2 Materials and Methods 3.2.1 Reagents 3.2.2 The PT-GC-PFPD system 3.2.3 Analysis procedure 3.3 Results and Discussion 46 3.3.1 Performance of the heating and cooling device in the PT system 46 3.3.2 Performance of the analytical method

Chpater 4 The surface sea water DMS distributions, sea-air flux and
its influence to the sulfur aerosols in the transect of Chinses 30th
Antarctica Research Expedition53
4.1 Introduction53
4.2 Materials and Methods54
4.2.1 Sampling site
4.2.2 Measurement methods
4.2.3 Acquisition of Chl- <i>a</i> concentrations
4.2.4 Calculation of DMS sea-ari flux
 4.2.4 Calculation of DMS sea-ari flux
4.3 Results and discussion
4.3.1 The distributon of surface sea water temperature, salinity, Chl-a and sea
ice concentration
4.3.2 Distributions of surface sea water DMS
4.3.3 The sea-air flux of DMS in different transects
4.3.4 The distributions of MSA, $nss-SO_4^{2-}$ in transects and its relationship
with DMS emissions
4.3.5 The relationship between surface sea water DMS and pCO_2 71
4.4 Conclusions76
Chapter 5 Preliminary exploration of the DMSP and DMS
distributions in coastal fast ice near the zhongshan station of east
Antarctica during the austral summer78
5.1 Introduction78
5.2 Materials and Methods79
5.3 Results
5.3.1 Characteristic of DMS, DMSP + DMS distributions in ice cores81
5.3.2 Characteristic of Chl-a, temperature and salinity distributions in ice
cores

5.4 discussion	
5.4.1 The cause of salinity distributions in ic	e cores83
5.4.2 The controlling factors of Chl-a, D	MSP+DMS distributions in the
bottem and upper of ice cores	
5.4.3 The controlling factors of Chl-a, DMS	SP+DMS vertical distributions in
ice cores	
5.4.4 comparison between the ice cores	
5.5.Conclusions	
Chapter 6 Summary	
6.1 The main conclusions	
6.2 Propects	
References	
Acknowlegements	

图目录

图 1-1 全球硫的生物地球化学过程循环示意图	1
图 1-2 全球表层海水 DMS 观测分布数据,颜色表示观测的次数	2
图 1-3 DMSP 及 DMS 海洋生物地球化学循环过程简图	5
图 1-4 不同月份全球 DMS 平均浓度 (nM)。注:为提高清晰度, DMS 浓度范围	围
大都采用小于 15 nM, 部分区域 DMS 浓度大于 15 nM	7
图 1-5 DMS 的气相氧化反应示意图1	0
图 1-6 Andreae 等用于分析海水中 DMS 的吹扫捕集装置示意图1	4
图 1-7 2006 年 11 月至 12 月 2 个南大洋断面的表层海水 DMS 等分布特征1	
图 1-8 海冰样品中 DMS 浓度随深度的变化图2	1
图 2-1 采样地点2	7
图 2-2 离子年际浓度变化图(a) nss-SO4 ²⁻ 、Mg ²⁺ ; (b) MSA、SO4 ²⁻ 3	2
图 2-3 典型的中山站夏季 (a) 海域 A (60 S - 70 S, 60 °E - 100 °E) 与 (b) 海均	或
B (65 S - 70 S, 70 °E - 85 °E) 中 Chl-a 分布图	
图 2-4 中山站 2005 至 2008 年春夏季风玫瑰图 (日平均数据)。(a) 2005.02	-
2005.03; (b) 2005.11 - 2006.03; (c) 2006.11 - 2007.03; (d)	
2007.11-2008.03	,
图 2-5 (a) MSA 与用遥感方法所得的海域 A (60 S - 70 S, 60 °E - 100 °E) 上	Ī
海域 B (65 S - 70 S, 70 °E - 85 °E)的 Chl-a 均值比较图;(b) MSA	`
气温与中山站邻近海域冰间湖面积的关系图	6
图 2-6 (a) MSA/nss-SO4 ²⁻ (R)比值; (b)中山站由 12 月至 2 月 1000 m 高	
度 5 天后向轨迹分析图4	0
图 3-1 吹扫捕集气相色谱脉冲火焰光度检测器(PT-GC-PFPD)系统示意图,F	С
为流量控制器。备注:系统处于吹扫状态4	5
图 3-2 海水 DMS 分析流程示意图。每个阀的状态都在图中显示。R 代表制冷,	
HT 代表加热时间, DV 代表排水阀。字母 A、B 是代表阀的位置状态,	
阀只有两个位置46	

图 3-3 (a) 不同浓度标准溶液色谱图, 0 nM 代表空白; (b) DMS 标准曲线47
图 3-4 不同吹扫流量下 DMS 标准样品的响应信号(20 nM)48
图 3-5 (a) 典型的海水样品和标准样品测定结果色谱谱图。DMS 标准溶液浓度
为 2 nM;(b)过滤与为过滤样品峰面积大小对比结果。误差棒为样品
测定 5 次的标准偏差49
图 3-6 在 9 天连续观测中, 2 nM DMS 标准溶液的峰面积变化 (n=3)50
图 3-7 CHINARE-VI 考察中航线上的表层海水 DMS 观测应用51
图 4-1 表层海水 DMS 观测航迹图,五角星为大气采样点,底图为 Sea-WiFS 卫
星遥感月平均 Chl-a 数据(数据与航线时间对应),黑色虚线为大气采样
点 3 天后项轨迹分布图(高度 100 m), R1(65 S-70 S, 34 E-14 E),
R2(44 S-34 S, 81 E-104 E)为两个重点讨论海域,小图为 R1 海域
每隔6小时做一次3天后项轨迹分布图。SIZ(60S以南),SAAZ(亚
南极及南极海域,40 %-60 %),EIOZ (印度洋东南部海域,0°40 %),
WPZ (太平洋西南部海域, 0°40 N)。图中白色区域为可能因海冰覆盖
未检出叶绿素区域56
图 4-2 T1 航段(a)与 T2 航段(b)上用卫星遥感数据匹配的 8 天平均 Chl-a与
月平均 Chl-a 关系比较图58
图 4-3 T1 航段(a)表层海水温度(SST,黑色)、盐度(SSS,红色)及海冰密
集度(灰色)分布图;(b)表层海水 DMS 浓度分布图(黑色),8天平均
匹配 Chl-a 分布图(红色),月平均匹配 Chl-a 分布图(紫色);(c) DMS
海-气交换通量值(黑色),风速(蓝色)60
图 4-4 T2 航段(a)表层海水温度(SST,黑色)、盐度(SSS,红色)及海冰密
集度(灰色)分布图;(b)表层海水 DMS 浓度分布图(黑色);(c)8天
平均匹配 Chl-a 分布图 (红色); (d) 风速 (蓝色); (e) DMS 海-气交换
通量值61
图 4-5 R1与R2海域8天平均Chl-a值由1月至5月(2014年)的变化图63
图 4-6 在 (a, b) 东西航段及 (c, d) 南北航段上含硫气溶胶 (MSA, $nss-SO_4^{2-}$)
与表层海水 DMS 浓度及 Flux _{DMS} (按气溶胶采样时间间隔平均)关系
图

Degree papers are in the "Xiamen University Electronic Theses and

Dissertations Database".

Fulltexts are available in the following ways:

1. If your library is a CALIS member libraries, please log on

http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary

loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn

for delivery details.