学校编码: 10384 学 号: 20720100153473 分类号__密级__ UDC___

唇の大学

博士学位论文

基于微混合技术的可见光响应 TiO₂ 光阳极 的制备及其光电化学性能研究 Micromixing-assisted Fabrication and Photo-

electrochemical Performance Investigation of TiO₂ Photoanodes with Visible Light Response

许超

指导教师姓名:	冯祖德教授	
专业名称:	材 料 学	
论文提交日期:	2015 年 1 月	
论文答辩日期:	2015 年 1 月	
学位授予日期:	2015 年 月	
	答辩委员会主席:_	
	评 阅 人:	

2015年1月

Micromixing-assisted Fabrication and Photoelectrochemical Performance Investigation of TiO₂ Photoanodes with Visible Light Response

A Dissertation Submitted to the Graduate School in Partial

Fulfillment of the Requirement for the Doctor Degree of

Philosophy

By

Chao Xu

Directed by Prof. Zude Feng

Department of Materials Science and Engineering, College

of Materials, Xiamen University

January, 2015

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

另外,该学位论文为() 课题(组)的研究成
果,获得() 课题(组)经费或实验室的资助,在
()实验室完成。(请在以上括号内填写课题或课题
组负责人或实验室名称,未有此项声明内容的,可以不作特别声明。)

声明人 (签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

()2.不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文 应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密 委员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认 为公开学位论文,均适用上述授权。)

声明人(签名):

年 月 日

摘要

基于 TiO₂ 半导体特殊的光电化学性能,其有望成为绿色、环保的新型金属防腐技术中最为重要的光阳极材料。但是,TiO₂存在可见光利用率低、光量子效率不高等限制其实际应用的问题。此外,由于传统混合方式在快速沉淀体系中难以有效调控均相化学过程,导致碱性液相环境制备有序 TiO₂ 薄膜至今仍无法实现。基于上述考虑,本论文提出使用微混合设备辅助在碱性液相环境下制备出形貌可控的 TiO₂ 薄膜光阳极,并通过沉淀剂对产物进行选择性原位掺杂改性。通过数值模拟及实验测试深入研究了制备条件和掺杂对 TiO₂ 薄膜光阳极光电化学性能的影响。本论文的主要研究内容和结果如下:

1、基于自行设计并制造的多孔分散微结构混合器,对液-液快速沉淀体系进 行数值模拟及实验研究。结果表明,微混合器可在极短的时间内完成对液-液反 应物的高效混合并有效抑制反应混合液中的均相化学反应,反应物流量、分散介 质尺寸等对一次粒子的平均粒径及粒度分布有显著影响。

2、以微混合技术为背景,设计出一种在低温、碱性环境中高效合成有序锐 钛矿纳米 TiO₂ 薄膜的新工艺。实验发现,通过调节微观混合及液相沉积参数, 产物的表面形貌可得到有效调控。当微观混合质量流率、沉积时间、温度分别为 0.60 m/s、50 min、80 C 时,制得的 TiO₂ 薄膜质量最佳。

3、通过调整 N 源浓度,制备出不同 N 掺杂物含量的 TiO₂薄膜光阳极。结 果表明,N 已进入 TiO₂ 晶格并拓展了 TiO₂ 的可见光响应区间,CO(NH₂)₂浓度对 薄膜生长效率和 N 掺杂能力有显著影响。N-TiO₂ 光阳极具有优良的可见光诱导 光电化学活性,在可见光照射下能对金属起到有效的光生阴极保护作用。

4、使用 Al(NO₃)₃和 FeCl₃分别作为 Al 源和 Fe 源,制备出 N/Al、N/Fe 共掺 杂 TiO₂薄膜光阳极。Al³⁺、Fe³⁺进入 TiO₂ 晶格并取代 Ti⁴⁺的位置,N/Al、N/Fe 共掺杂协同作用抑制了薄膜晶粒长大,提高了 TiO₂ 光阳极的可见光响应活性和 光量子效率,并抑制光生电子与价带中光生空穴的复合。

关键词: 微混合技术; TiO2 光阳极; 掺杂改性; 可见光响应; 光电化学性能

Abstract

 TiO_2 semiconductor is expected as the most important photoanode material applied for the novel green and environmental friendly metal anticorrosion technology, because of its unique photoelectrochemical properties. Nevertheless, the inherent disadvantages of the TiO_2 , lies in their limited visible light utilization and quantum yield, have extremely restricted their practical applications. Moreover, the synthesis of well-ordered TiO_2 thin films from alkaline solution is still challenging due to the fact that the traditional mixing process possesses several disadvantages in controllable homogenous chemistry. Therefore, the work described in this paper is devoted to the preparation of TiO_2 thin film photoanodes from alkaline solutions with controllable morphology. In addition, several reactants are employed to doping anions and cations into the TiO_2 product. The effects of the operation conditions and doping modifications on the photoelectrochemical performance of the TiO_2 thin film photoanodes are investigated based on the numerical simulation and experimental measurements. The main research contents and results of this work were summarized as follows:

1. Based on the use of home-built micromixer, the liquid-liquid reaction system with fast precipitation process is investigated through numerical simulation and experimental measurements. It is found that the micromixer is advantageous for the ultrafast mixing at the microscale, and the homogeneous chemistry in the reactant solutions can be efficiently inhibited. The initial inlet velocity of the reactant solutions and the diameter of the microfiltration membrane have major impacts on the average size and distribution of the primary nano particles.

2. A novel micromixing-assisted route is designed to efficiently synthesize well-ordered anatase-TiO₂ thin films from alkaline solutions at low temperatures. The experimental results indicate that the surface morphology of the product can be controlled by carefully operating the parameters of micromixing and liquid phase deposition process. The quality of the of the surface morphology can be significantly

increased when the microxming mass flow rate, deposition time and preparation temperature is 0.60 m/s, 50 min and 80 °C, respectively.

3. The TiO₂ thin films photoanodes with various N contents are successfully synthesized through adjusting the concentration of the N-containing compounds. It is found that the N is well incorporated into the TiO₂ lattice and thus shifting the absorption zone of the TiO₂ to the visible domain. Intriguingly, we find that the concentration of $CO(NH_2)_2$ plays a significant role in affecting the films growth rate and the N-doping capability. The as-prepared N-TiO₂ photoanodes exhibit excellent visible light-induced photoelectrochemical activities and can provide an effective photogenerated cathodic protection for the coupled metal electrode.

4. The TiO₂ thin films photoanodes co-doped with N/Al and N/Fe are successfully synthesized by using Al(NO₃)₃ and FeCl₃ as Al and Fe source, respectively. The results indicate that the Ti⁴⁺ in TiO₂ lattice is substituted by Al³⁺ and Fe³⁺ ions. The synergistic effect of N/Al and N/Fe co-doped has the benefit to restrain grain growth, as well as improving the visible light response activity of the TiO₂ photoanodes. Moreover, the recombination rate of photogenerated electron-hole is efficiently restricted due to the impregnation of Al and Fe.

Keywords: Micromixing technology; TiO₂ photoanodes; Doping modification; Visible light response; Photolectrochemical performance

目 录

摘安 Abstract	I
第一章 绪论	1
1.1 TiO2半导体电极材料概述	1
1.1.1 TiO2半导体的结构与性能	1
1.1.2 TiO2半导体电极的光电化学效应	
1.1.3 TiO2半导体电极的光生阴极保护作用	5
1.2 增强 TiO2 可见光响应活性的途径	7
1.2.1 非金属元素掺杂	8
1.2.2 金属阳离子掺杂	9
1.2.3 表面光敏化	10
1.3 纳米 TiO2 薄膜的液相合成方法	10
1.3.1 溶胶-凝胶法	11
1.3.2 化学水浴沉积法	11
1.3.3 水热法	12
1.3.4 连续离子层吸附反应法	12
1.3.5 液相沉积法	13
1.4 微混合技术在纳米材料制备中的应用	13
1.4.1 微混合技术的特点与优势	13
1.4.2 微混合类型与设备	14
1.4.3 微观混合-沉淀模型及其数值研究方法	15
1.4.4 微混合技术在纳米薄膜材料制备中的应用	16
1.5 本论文的研究内容及意义	16
参考文献	
第二章 实验材料与表征方法	29
2.1 实验试剂与材料	29
2.2 实验仪器设备	

2.3 TiO ₂ ≜	半导体薄膜的表征	31
2.3.1	均相沉淀行为及形成机制	31
2.3.2	表面及断面微观形貌	31
2.3.3	结构及物相	31
2.3.4	拉曼光谱	31
2.3.5	表面润湿性能	
2.3.6	红外吸收光谱	
2.3.7	热重-差热曲线	
2.3.8	X 射线光电子能谱	
2.3.9	薄膜结合力	
2.3.1	0 薄膜硬度	34
2.4 光电位	化学性能评价	35
2.4.1	光电化学测试平台的搭建	35
2.4.2	光电流谱测试	
2.4.3	开路电位测试	
2.4.4	极化曲线测试	
2.4.5	电化学阻抗谱测试	
参考文献		40
第三章 微	结构混合装置的制备及其原位混合-反应理论与	实验研究
		41
21 司士		
3.1 71百、	、	
3.4 多几万	了取佩他百备他百效举的致沮侯拟	
3.2.1	多1.7 取佩结构部合奋的几何侠空	
3.2.2	数值万亿	43
3.2.3	(实1)51 (元)51 (1)5	4/
3.3 多化)	力取倾宕的化口命的以应过在的头盔切几	
3.3.1	大迎以笛 以 力伝	
3.3.2	_	
	1、出 ••••••••••••••••••••••••••••••••••••	

参考文南	Ą	62
第四章 基	于微混合技术的碱性环境制备纳米 TiO2	薄膜的实验研究
••••••••••		65
4.1 引言		65
4.2 基于	微混合技术的 TiO2 薄膜的制备与表征	66
4.2.	1 制备方法	
4.2.	2 TiO2薄膜的微观形貌分析	
4.2.	3 TiO2薄膜的润湿性能分析	
4.2.	4 TiO2薄膜的物相分析	
4.2.	5 TiO2薄膜的化学成分分析	
4.2.	6 TiO2薄膜的力学性能	77
4.3 制备	参数对 TiO2 薄膜产物的影响	78
4.3.	1 微混合流量对薄膜形貌的影响	78
4.3.	2 沉积时间对薄膜形貌的影响	81
4.3.	3 沉积温度对薄膜形貌的影响	81
4.3.	4 煅烧对薄膜形貌的影响	81
4.4 基于	微混合技术的 TiO2 薄膜生长机理分析	83
4.4.	1 碱性环境中均相化学行为	83
4.4.	2 基于微混合技术的薄膜生长机理分析	85
4.5 本章	小结	88
参考文南		89
第五章 N	掺杂锐钛矿纳米TiO2薄膜及其可见光诱导	光电化学性能研
究		94
5.1 引言		
5.2 N 掺	杂 TiO ₂ 光阳极的制备与表征	
5.2.	1 不同 N 含量 TiO, 光阳极的制备	
5.2.	2 N-TiO ₂ 光阳极物相分析	
5.2.	3 N-TiO2 光阳极表面形貌分析	97

5.2.4	N-TiO2 光阳极表面化学成分分析	99
5.2.5	热处理对 N-TiO2 光阳极化学组分的影响	100
5.3 可见法	光响应 N-TiO2 光阳极的光电化学性能	104
5.3.1	光电流谱分析	104
5.3.2	OCP 分析	106
5.3.3	极化曲线分析	108
5.3.4	EIS 分析	110
5.3.5	薄膜制备参数对光电化学性能的影响	113
5.3.6	热处理对 N-TiO2 光阳极光电化学性能的影响	116
5.4 N-TiC	2 光阳极的可见光响应及光生阴极保护机制	118
5.4.1	可见光响应机制	118
5.4.2	光电化学效应及光生阴极保护机制	119
5.5 本章/	小结	120
参考文献		121
第六章 N/A	Al、N/Fe-TiO2光电极的制备及其可见光诱导光电化	学性能
第六章 N/A 研究	Al、N/Fe-TiO2光电极的制备及其可见光诱导光电化	学性能 125
第六章 N/A 研究 6.1 引言	Al、N/Fe-TiO2光电极的制备及其可见光诱导光电化	学性能 125 125
第六章 N/A 研究 6.1 引言 6.2 N/Al、	Al、N/Fe-TiO2 光电极的制备及其可见光诱导光电化	学性能 125 125 126
第六章 N/A 研究 6.1 引言 6.2 N/Al、 6.2.1	Al、N/Fe-TiO ₂ 光电极的制备及其可见光诱导光电化 N/Fe 共掺杂 TiO ₂ 光阳极的制备与表征 N/Al、N/Fe-TiO ₂ 光阳极的制备	学性能 125 125 126 126
第六章 N/A 研究 6.1 引言 6.2 N/Al、 6.2.1 6.2.2	A1、N/Fe-TiO2 光电极的制备及其可见光诱导光电化 N/Fe 共掺杂 TiO2 光阳极的制备与表征	学性能 125 125 125 126 127
第六章 N/A 研究 6.1 引言 6.2 N/Al、 6.2.1 6.2.2 6.2.3	 A1、N/Fe-TiO₂ 光电极的制备及其可见光诱导光电化 N/Fe 共掺杂 TiO₂ 光阳极的制备与表征 N/A1、N/Fe-TiO₂ 光阳极的制备 N/A1、N/Fe-TiO₂ 光阳极物相分析 N/A1、N/Fe-TiO₂ 光阳极表面形貌分析 	学性能 125 125 125 126 127 128
第六章 N/A 研究 6.1 引言 6.2 N/Al、 6.2.1 6.2.2 6.2.3 6.2.4	 A1、N/Fe-TiO₂ 光电极的制备及其可见光诱导光电化 N/Fe 共掺杂 TiO₂ 光阳极的制备与表征 N/A1、N/Fe-TiO₂ 光阳极的制备 N/A1、N/Fe-TiO₂ 光阳极物相分析 N/A1、N/Fe-TiO₂ 光阳极表面形貌分析 N/A1、N/Fe-TiO₂ 光阳极表面化学成分分析 	学性能 125 125 125 126 126 127 128 130
第六章 N/A 研究 6.1 引言 6.2 N/Al、 6.2.1 6.2.2 6.2.3 6.2.4 6.3 N/Al、	 A1、N/Fe-TiO₂ 光电极的制备及其可见光诱导光电化 N/Fe 共掺杂 TiO₂ 光阳极的制备与表征 N/A1、N/Fe-TiO₂ 光阳极的制备 N/A1、N/Fe-TiO₂ 光阳极物相分析 N/A1、N/Fe-TiO₂ 光阳极表面形貌分析 N/A1、N/Fe-TiO₂ 光阳极表面化学成分分析 N/A1、N/Fe-TiO₂ 光阳极表面化学成分分析 N/Fe 共掺杂 TiO₂ 光阳极的光电化学性能 	学性能 125 125 125 126 126 127 128 130 132
第六章 N/A 研究 6.1 引言 6.2 N/Al、 6.2.1 6.2.3 6.2.4 6.2.4 6.3 N/Al、 6.3.1	Al、N/Fe-TiO2 光电极的制备及其可见光诱导光电化 N/Fe 共掺杂 TiO2 光阳极的制备与表征 N/Al、N/Fe-TiO2 光阳极的制备 N/Al、N/Fe-TiO2 光阳极物相分析 N/Al、N/Fe-TiO2 光阳极物相分析 N/Al、N/Fe-TiO2 光阳极表面形貌分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极为术电化学性能 光电流谱分析	学性能 125 125 126 126 127 128 130 132 132
第六章 N/A 研究 6.1 引言 6.2 N/Al、 6.2.1 6.2.3 6.2.4 6.2.4 6.3 N/Al、 6.3.1 6.3.2	A1、N/Fe-TiO2 光电极的制备及其可见光诱导光电化 N/Fe 共掺杂 TiO2 光阳极的制备与表征 N/A1、N/Fe-TiO2 光阳极的制备 N/A1、N/Fe-TiO2 光阳极物相分析 N/A1、N/Fe-TiO2 光阳极物相分析 N/A1、N/Fe-TiO2 光阳极表面形貌分析 N/A1、N/Fe-TiO2 光阳极表面形貌分析 N/A1、N/Fe-TiO2 光阳极表面形貌分析 N/A1、N/Fe-TiO2 光阳极表面化学成分分析 N/A1、N/Fe-TiO2 光阳极表面化学成分分析 N/A1、N/Fe-TiO2 光阳极表面化学成分分析 N/A1、N/Fe-TiO2 光阳极表面化学成分分析 N/Fe 共掺杂 TiO2 光阳极的光电化学性能 光电流谱分析 OCP 分析	学性能 125 125 125 125 126 126 127 128 130 132 132 133
第六章 N/A 研究 6.1 引言 6.2 N/Al、 6.2.1 6.2.2 6.2.3 6.2.4 6.3 N/Al、 6.3.1 6.3.2 6.4 本章/	Al、N/Fe-TiO2 光电极的制备及其可见光诱导光电化 N/Fe 共掺杂 TiO2 光阳极的制备与表征 N/Al、N/Fe-TiO2 光阳极的制备 N/Al、N/Fe-TiO2 光阳极物相分析 N/Al、N/Fe-TiO2 光阳极物相分析 N/Al、N/Fe-TiO2 光阳极表面形貌分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Fe 共掺杂 TiO2 光阳极的光电化学性能 光电流谱分析 OCP 分析	学性能 125 125 126 126 126 127 128 130 132 132 133 135
第六章 N/A 研究 6.1 引言 6.2 N/Al、 6.2.1 6.2.3 6.2.4 6.3 N/Al、 6.3.1 6.3.2 6.4 本章/ 参考文献	Al、N/Fe-TiO2 光电极的制备及其可见光诱导光电化 N/Fe 共掺杂 TiO2 光阳极的制备与表征 N/Al、N/Fe-TiO2 光阳极的制备 N/Al、N/Fe-TiO2 光阳极物相分析 N/Al、N/Fe-TiO2 光阳极物相分析 N/Al、N/Fe-TiO2 光阳极表面形貌分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极表面化学成分分析 N/Al、N/Fe-TiO2 光阳极的光电化学性能 光电流谱分析 OCP 分析 小结	学性能 125 125 126 126 126 127 128 130 132 132 133 135 136

	7.1 主要结论	,
	7.2 主要创新点	,
	文读博士期间发表的论文.	攻讨
143	友 谢	致

Table of Contents

Abstract in Chinese ······]	[
Abstract in English ······Il	[
Chapter 1 Introduction ······1	
1.1 Introduction of TiO ₂ semiconductor material	
1.1.1 Crystal structure and properties of TiO ₂ semiconductror	
1.1.2 Photoelectrochemical performance of TiO ₂ semiconductror electrode \cdots	3
1.1.3 Photocathodic protection effect of TiO ₂ semiconductror electrode5	5
1.2 Method of enhancing the visible light response activity of TiO ₂ \cdots	1
1.2.1 Non-metallic doping ······	3
1.2.2 Metallic cation doping)
1.2.3 Surface sensitization10)
1.3 Liquid phase synthesis of nano-sized TiO_2 thin films $\cdots \cdots \cdots$)
1.3.1 Sol-gel method ······11	
1.3.2 Chemical bath deposition method11	
1.3.3 Hydrothermo method ······12)
1.3.4 Successive ionic layer absorption and reaction method12)
1.3.5 Liquid phase deposition method13	3
1.4 Application of micromixing technique to the preparation of nano-size	d
meterials ·····13	;
1.4.1 Characteristic and advantage of micromixing technique13	}
1.4.2 Type of micromixing approach and device	ŀ
1.4.3 Micromixing-precipitation model and numerical investigation method .15	5
1.4.4 Application of micromixing technique to the preparation of nano-size	d
TiO ₂ thin film materials	5
1.5 Research contents and significance16)
References ······18	}
Chapter 2 Experimental materials and methods)
2.1 Reagents and materials29)
2.2 Experimental instruments)
2.3 Characterization of TiO ₂ conductor films31	L
2.3.1 Homogenuous precipitation and its formation mechanism	
2.3.2 Surface and cross-sectional morphology	

2.3.3 Crystal and phase sturcure	l
2.3.4 Raman spectrum ······31	l
2.3.5 Surface wettability	2
2.3.6 Infrared absorption spectrum ······32	2
2.3.7 TG-DTA curves ····································	2
2.3.8 X-ray photoelectron spectroscopy	3
2.3.9 Film adhesion	3
2.3.10 Hardness of film	1
2.4 Evaluation of photoelectrochemical performance	5
2.4.1 Photoelectrochemical measurement platform35	5
2.4.2 Measurement of photocurrent	5
2.4.3 Measurement of open circuit potential	7
2.4.4 Measurement of polarization curves	7
2.4.5 Measurement of electrochemical impedance spectroscopy	3
References ······40)
Chapter 3 Fabrication, theoretical and experimental research of)f
micro-structured mixing device and mixing-precipitation process \cdot 41	
3.1 Introduction ······41	L
3.2 Numerical simulation of microfiltration membrane micromixer ••••••42	2
3.2.1 Geometric model of microfiltration membrane micromixer42	2
3.2.2 Numerical method43	3
3.2.3 Simulation results and discuss47	7
3.3 Experimental research of reaction process in the microfiltratio	n
membrane micromixer ······53	3
3.3.1 Experimental device and method	3
3.3.2 Experimental results and discussion55	5
3.4 Conclusions ······61	l
References ······62	
	2
Chapter 4 Micromixing-assisted synthesis of nano TiO ₂ films from	<u>z</u> n
Chapter 4 Micromixing-assisted synthesis of nano TiO ₂ films from alkaline solutions65	2 n ;
Chapter 4 Micromixing-assisted synthesis of nano TiO ₂ films from alkaline solutions	2 n ;
Chapter 4 Micromixing-assisted synthesis of nano TiO ₂ films from alkaline solutions	2 n 5 5

4.2.1 Preparation method ······	56
4.2.2 Microstructure analysis of TiO ₂ films	58
4.2.3 Surface wettability analysis of TiO ₂ films7	70
4.2.4 Crysal structure analysis of TiO ₂ films7	71
4.2.5 Chemical composition analysis of TiO ₂ films7	74
4.2.6 Mechanical property analysis of TiO ₂ films7	17
4.3 Effect of preparation parameters on TiO₂ films ······	78
4.3.1 Effect of micromixing flow rate on surface morphology	78
4.3.2 Effect of micromixing deposition time on surface morphology8	31
4.3.3 Effect of depositon temperature on surface morphology	31
4.3.4 Effect of heat treatment on surface morphology	31
4.4 Growth mechanism of micromixing-assisted deposited TiO ₂ films8	33
4.4.1 Homogenous chemistry in alkaline reaction environment	33
4.4.2 Growth mechanism of micromixing-assisted deposited films	35
4.5 Conclusions ······8	38
References ······	39
	• .
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and 1	its
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and visible light-induced photoelectrochemical performance9	its 94
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and visible light-induced photoelectrochemical performance9 5.1 Introduction9	1ts 94 94
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and visible light-induced photoelectrochemical performance9 5.1 Introduction9 5.2 Preparation and characterization of N-doped TiO ₂ photoanodes9	1ts 94 94 95
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and solves visible light-induced photoelectrochemical performance9 5.1 Introduction	1ts 94 94 95 95
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and the visible light-induced photoelectrochemical performance 5.1 Introduction 5.2 Preparation and characterization of N-doped TiO ₂ photoanodes 5.2.1 Preparation of TiO ₂ photoanodes with various N contents 5.2.2 Crystal structure of TiO ₂ photoanodes	1ts 94 94 95 95
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and the visible light-induced photoelectrochemical performance 5.1 Introduction 5.2 Preparation and characterization of N-doped TiO ₂ photoanodes 5.2.1 Preparation of TiO ₂ photoanodes with various N contents 5.2.2 Crystal structure of TiO ₂ photoanodes 5.2.3 Surface morphology of TiO ₂ photoanodes	115 94 94 95 95 96 97
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and the visible light-induced photoelectrochemical performance S.1 Introduction S.2 Preparation and characterization of N-doped TiO ₂ photoanodes S.2.1 Preparation of TiO ₂ photoanodes with various N contents S.2.2 Crystal structure of TiO ₂ photoanodes S.2.3 Surface morphology of TiO ₂ photoanodes S.2.4 Chemical composition of TiO ₂ photoanodes	115 94 94 95 95 96 97
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and invisible light-induced photoelectrochemical performance visible light-induced photoelectrochemical performance 5.1 Introduction 5.2 Preparation and characterization of N-doped TiO ₂ photoanodes 5.2.1 Preparation of TiO ₂ photoanodes with various N contents 5.2.2 Crystal structure of TiO ₂ photoanodes 5.2.3 Surface morphology of TiO ₂ photoanodes 5.2.4 Chemical composition of TiO ₂ photoanodes 5.2.5 Effect of heat treatment on TiO ₂ films' chemical composition	115 14 14 15 15 15 15 16 17 19 10
Chapter 5 Preparation of N-doped anatase nano TiO2 films and the visible light-induced photoelectrochemical performance 9 5.1 Introduction 9 5.2 Preparation and characterization of N-doped TiO2 photoanodes 9 5.2.1 Preparation of TiO2 photoanodes with various N contents 9 5.2.2 Crystal structure of TiO2 photoanodes 9 5.2.3 Surface morphology of TiO2 photoanodes 9 5.2.4 Chemical composition of TiO2 photoanodes 9 5.2.5 Effect of heat treatment on TiO2 films' chemical composition 9 5.3 Photoelectrochemical performance of N-TiO2 photoanodes with visil 9	115 94 94 95 95 96 97 99 90 90
Chapter 5 Preparation of N-doped anatase nano TiO2 films and invisible light-induced photoelectrochemical performance 9 5.1 Introduction 9 5.2 Preparation and characterization of N-doped TiO2 photoanodes 9 5.2.1 Preparation of TiO2 photoanodes with various N contents 9 5.2.2 Crystal structure of TiO2 photoanodes 9 5.2.3 Surface morphology of TiO2 photoanodes 9 5.2.4 Chemical composition of TiO2 photoanodes 9 5.2.5 Effect of heat treatment on TiO2 films' chemical composition 10 5.3 Photoelectrochemical performance of N-TiO2 photoanodes with visit 10 10 10 10 10 10 10	115 94 94 95 95 96 97 99 90 51e
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and invisible light-induced photoelectrochemical performance 5.1 Introduction 5.2 Preparation and characterization of N-doped TiO ₂ photoanodes 5.2.1 Preparation of TiO ₂ photoanodes with various N contents 5.2.2 Crystal structure of TiO ₂ photoanodes 5.2.3 Surface morphology of TiO ₂ photoanodes 5.2.4 Chemical composition of TiO ₂ photoanodes 5.2.5 Effect of heat treatment on TiO ₂ films' chemical composition 5.2.5 Effect of heat treatment on TiO ₂ films' chemical composition 5.3.1 Analysis of photocurrent spectra	115 94 95 95 96 97 99 90 51e 94
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and invisible light-induced photoelectrochemical performance visible light-induced photoelectrochemical performance 5.1 Introduction 5.2 Preparation and characterization of N-doped TiO ₂ photoanodes 5.2.1 Preparation of TiO ₂ photoanodes with various N contents 5.2.2 Crystal structure of TiO ₂ photoanodes 5.2.3 Surface morphology of TiO ₂ photoanodes 5.2.4 Chemical composition of TiO ₂ photoanodes 5.2.5 Effect of heat treatment on TiO ₂ films' chemical composition 5.3 Photoelectrochemical performance of N-TiO ₂ photoanodes with visil light response 5.3.1 Analysis of photocurrent spectra 10 5.3.2 Analysis of OCP	115 94 95 95 96 97 99 90 91 91 94 94 94 96
Chapter 5 Preparation of N-doped anatase nano TiO ₂ films and invisible light-induced photoelectrochemical performance 9 5.1 Introduction 9 5.2 Preparation and characterization of N-doped TiO ₂ photoanodes 9 5.2.1 Preparation of TiO ₂ photoanodes with various N contents 9 5.2.2 Crystal structure of TiO ₂ photoanodes 9 5.2.3 Surface morphology of TiO ₂ photoanodes 9 5.2.4 Chemical composition of TiO ₂ photoanodes 9 5.2.5 Effect of heat treatment on TiO ₂ films' chemical composition 10 5.3 Photoelectrochemical performance of N-TiO ₂ photoanodes with visil light response 10 5.3.1 Analysis of photocurrent spectra 10 5.3.3 Analysis of polarization curves 10	115 14 14 15 15 16 17 19 10 10 14 16 18
Chapter 5 Preparation of N-doped anatase nano TiO2 films and invisible light-induced photoelectrochemical performance 9 5.1 Introduction 9 5.2 Preparation and characterization of N-doped TiO2 photoanodes 9 5.2.1 Preparation of TiO2 photoanodes with various N contents 9 5.2.2 Crystal structure of TiO2 photoanodes 9 5.2.3 Surface morphology of TiO2 photoanodes 9 5.2.4 Chemical composition of TiO2 photoanodes 9 5.2.5 Effect of heat treatment on TiO2 films' chemical composition 10 5.3 Photoelectrochemical performance of N-TiO2 photoanodes with visil light response 10 5.3.1 Analysis of photocurrent spectra 10 5.3.3 Analysis of polarization curves 10 5.3.4 Analysis of EIS 11	115 14 14 15 15 15 16 17 19 10 10 10 11 15 10 10 11 15 10 10 10 10 10 10 10 10 10 10
Chapter 5 Preparation of N-doped anatase nano TiO2 films and invisible light-induced photoelectrochemical performance 9 5.1 Introduction 9 5.2 Preparation and characterization of N-doped TiO2 photoanodes 9 5.2.1 Preparation of TiO2 photoanodes with various N contents 9 5.2.2 Crystal structure of TiO2 photoanodes 9 5.2.3 Surface morphology of TiO2 photoanodes 9 5.2.4 Chemical composition of TiO2 photoanodes 9 5.2.5 Effect of heat treatment on TiO2 films' chemical composition 10 5.3 Photoelectrochemical performance of N-TiO2 photoanodes with visil 10 5.3.1 Analysis of photocurrent spectra 10 5.3.2 Analysis of polarization curves 10 5.3.4 Analysis of EIS 11 5.3.5 Effect of preparation parameters on photoelectrochemical performance 11	11s 94 94 95 95 96 97 90 ble 94 95 96 910 910 910 910 910 910 910 910 910 910 910 910 910 910 9113

5.4 Mechanisms of visible light response and photocathodic protection effect
of N-TiO ₂ photoanodes ·····118
5.4.1 Mechanism of visible light response ······118
5.4.2 Mechanism of photoelectrochemical and photocathodic protection effect
5.5 Conclusions ······120
References ····································
Chapter 6 Preparation and visible light-induced photoelectro-
chemical performance of N/Al and N/Fe-TiO ₂ photoanodes125
6.1 Introduction ······125
6.2 Preparation and characterization of N/Al and N/Fe codoped TiO_2
photoanodes ······126
6.2.1 Preparation of N/Al and N/Fe-TiO ₂ photoanodes126
6.2.2 Crystal structure analysis of N/Al and N/Fe-TiO ₂ photoanodes $\dots 127$
6.2.3 Surface morphology analysis of N/Al and N/Fe-TiO ₂ photoanodes \cdots 128
6.2.4 Chemical composition analysis of N/Al and N/Fe-TiO ₂ photoanodes $\cdot \cdot 130$
6.3 Photoelectrochemical performance of N/Al and N/Fe codoped TiO_2
photoanodes ······132
6.3.1 Analysis of photocurrent spectra ······132
6.3.2 Analysis of OCP ·····133
6.4 Conclusions ······135
References ······136
Chapter 7 Summary ·····139
7.1 Main conclusions ······139
7.2 Main innovations ·····141
Publications and research achievements142
Acknowledgements ······143

Degree papers are in the "Xiamen University Electronic Theses and

Dissertations Database".

Fulltexts are available in the following ways:

1. If your library is a CALIS member libraries, please log on

http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary

loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn

for delivery details.