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ABSTRACT 
 
The aim of this project is to modelize a LPV model and to compare different 
identification methods. In order to accomplish that, first of all a white box model of the 
quadrotor has been provided. This model has been used to find a LPV description 
that can be used in this case. With this data various identification procedures has 
been tested. This project is focused in the use of particle filters to identify the 
parameters of the system. 
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Introduction  1 

INTRODUCTION 
 
 
The purpose of this project is to provide a comparison of various methods to identify 
a system. In this case this will be a LPV model of a quadrotor. 
 
The first chapter contains an introduction to quadrotors and then there is a summary 
of the LPV theory that is necessary to understand the performances needed in order 
to identify it. 
 
Then in the second chapter the algorithms of the procedure and the results using the 
standard identification methods found in the identification toolbox of Matlab. 
 
In the third chapter the Bayesian inference theory is provided and different  
probabilistic identification  methods are introduced. 
 
In the fourth chapter the algorithms and results of the probabilistic methods are 
provided. 
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Chapter 1 
 

LPV Model 
 
 
In this chapter, the model of our system will be provided. To do so the physical 
equations will be used [ref. 1]. Then these relationships will be turned into a LPV 
model. 
 

1.1. Modeling a quadrotor 
 

1.1.1. Introduction to a Quadrotor 
 
A quadrotor, or quadcopter, is a multirotor helicopter that is lifted and propelled by 
four rotors. The lift force is generated by a set of revolting airfoils. 
 
The quadrotor will be modeled with its four rotors in cross configuration. The 
structure that connects them will be assumed to be rigid, so the only variable that can 
vary is the speed of the propellers. In this case, all the possible movements of the 
quadcopter will be directly related to the rotor velocity. 
 
The front and rear rotors rotate counter-clockwise, while the left and right ones turn 
clockwise. Doing this there is no yaw rotation in hovering and the tail rotor, which is 
used in standard helicopters, isn’t needed.  
 

 
Figure 1.1 Simplified quadrotor 

 
 
Despite the quadrotor 6 degrees of freedom, it’s equipped with four propellers, so it 
can only reach the set point in four. These are related with the basic movements that 
allow the helicopter to reach a certain altitude and attitude.  
 

1. Throttle  
This is provided by varying all the propeller rotations by the same amount. In 
the case that the quadrotor isn’t in horizontal position, this will provide a 
horizontal and vertical acceleration in the inertial frame. 
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2. Roll 

This is provided by increasing the rotation of the right propeller while 
decreasing the rotation of the left one, or the opposite. It produces a torque 
with respect to the Xb axis. 

3. Pitch 
This movement is similar to the roll, but in this case it is produced increasing 
the velocity of the front propeller and decreasing the velocity of the rear one. 
In this case, it produces a torque with respect to the Yb axis. 

4. Yawn 
This is provided by increasing the velocity of the clockwise rotation propellers 
while decreasing the velocity of the counter-clockwise ones. 

 

1.1.2. Deriving the physical equations 
 
In order to derivate the physical model, two frames have been defined. 

 
• The earth inertial frame 
• The body-fixed frame  

 
The kinematics of a generic 6 degree of freedom body, can be defined as 
 
 �
 = ���         (1.1) 
 
 
where �
 is the generalized velocity vector with respect to the earth inertial frame, � is 
the one with respect to the body-fixed frame and ��  is the generalized matrix. 
Furthermore � is composed of the quadrotor linear and angular position with respect 
to the earth inertial frame. 
 � = ��	�	�	�	�	���      (1.2) 
 
Similarly � is composed of the quadrotor linear and angular velocity with respect the 
body-fixed frame. 
 � = ��	�	�	�	�	���      (1.3) 
 
In addition, ��	is composed of 4 sub-matrices. Where 0 !  is a 3 times 3 matrix filled 
with zeros, "� is the rotation matrix and #�	is the transfer one. 
 �� = $ "� 0 ! 0 ! #� %      (1.4) 

 
The rotation and transfer matrices are defined as 
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"� = &'(') −+(', + '(+)+, +(+, + '(+)',+(') '(', + +(+)+, −'(+, + +(')',−+) ')+, ')', .    (1.5) 

 
 

#� = &1 −�)+, �)',0 ', −+,0 +,/') ',/').      (1.6) 

 
 
where '0 = cos 4 , +0 = sin 4 , �0 = tan 4 . The dynamics of the generic 6 degree of 
freedom rigid-body takes into account the mass of the body, :	�4;�, and its inertia 
matrix, <	�=	:	+>� and it’s described by 
 $:	< ! 0 ! 0 ! < % $?
 @A
 @% +	$A@ × (:?@)A@ × (<A@) % = CD@E@ F    (1.7) 

 
where 	< !  is a 3 times 3 identity matrix, ?
 @	is the linear acceleration vector �:	+G>� 
with respect the body-fixed frame, A
 @	is the angular acceleration	 vector ��HI		+G>�  
with respect the same frame, 	D@  is the quadrotor forces vector �=�  and E@  is the 
quadrotor torques vector �=	:� with respect the body-fixed frame. 
 
Then it’s assumed that the origin of the body-fixed frame is coincident with the center 
of mass and that the inertial matrix is diagonal. 
 
A generalized force vector can be defined as 
 J = KD!	DL	DM	E!	EL	EMN�     (1.8) 
 
Using this equation, the dynamics can be rewritten as 
 O@�
 + P@(�)� = J      (1.9) 
 
where �
 	is the generalized acceleration vector with respect the body-fixed frame, O@ 
is the inertia matrix and P@(�) is the Coriolis-centripeta matrix, both with respect the 
body-fixed frame. 
 O@ = $:	< ! 0 ! 0 ! < %     (1.10) 

 
Thanks to the assumptions made before, O@ is a diagonal and constant matrix. 
 P@(�) = $0 ! −:Q(?@)0 ! −Q(<A@) %     (1.11) 

 Q(R) is defined as a skew-symmetric operator, that given a three dimension vector is 
defined as follows. 



LPV Model   6 

Q(R) = 	 S 0 −R R>R 0 −RT−R> RT 0 U ,														R = SRTR>R U      (1.12) 

 
In the case of a quadrotor, J can be divided in three different vectors according of 
which of the quadcopter contributions describes. 
 
The first of all is the gravity vector, �@(�)	 given by the acceleration due to the gravity ;	�:	+G>�. 
 �@(�) = :;K+) 	− ')+, 	− ')',	0	0	0N�    (1.13) 
 
The second contribution is due to gyroscopic effects due to the propeller rotation, 
since two rotates clockwise and the other two counterclockwise, there is an 
imbalance when the sum of the rotation is not zero. There is also a contribution of the 
pitch and the roll. 
 

W@(�) XΩTΩ>Ω ΩZ
[ = ��\ X0 !T−��0 [Ω	     (1.14) 

 
where Ω is defined as  the propeller’s overall speed ��HI	+GT�, W@ is the gyroscopic 
propeller matrix, ��\ is the total rotational moment of inertia around the propeller axis 
calculated in the next section �=	:	+>�.  Additionally Ω] is the speed of the propeller ��HI	+GT� as defined in the figure 1.1. 
 Ω = (Ω> + ΩZ −ΩT − Ω )          (1.15) 
 
The third contribution takes into account the forces and torques produced by the 
main movement inputs. From aerodynamics consideration, it follows that both 
torques and forces are proportional to the square propellers’ speed. Therefore the 
movement vector is defined as follows. 
 ^@(Ω) = �0	0	 !̂ >̂  ̂ Ẑ��                   (1.16) 
 
Where !̂, 	 >̂,  ̂ and Ẑ	are the throttle, roll, pitch and the yaw respectively. 
 ^1 = `(Ω12 + Ω22 + Ω32 + Ω42)         (1.17) ^2 = d`(Ω42 − Ω22)                          (1.18) ^3 = d`(Ω32 − Ω12)            (1.19) ^4 = I(Ω22 + Ω42 − Ω12 − Ω32)         (1.20) 
 
In these relationships `	is defined as the thrust factor �=		+>� , I  is the drag factor �=	:	+>� and d is the distance between the center of the quadcopter and the center of 
the propeller �:�. 
 
These equations are with respect with the body-fixed frame. This reference is widely 
used in 6 degree of freedom rigid bogy equations, however in this case the equations 
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will be expressed in terms of a hybrid frame. That reference will be used because it’s 
easy to express the dynamics combined with the control. In this frame a generalized 
velocity vector,	e, would be defined following the next equation. 
 e = K�
 	�
 	�
 	�	�	�N�      (1.21) 
 
The dynamics in the hybrid frame can be rewritten as follows. 
 

Ofe
 + Pf(e)e = �f + Wf(e) XΩTΩ>Ω ΩZ
[ + ^f    (1.22) 

 
The system inertia with respect the hybrid frame is equal to the one with respect the 
fixed-body frame, so Of = O@. The Coriolis-centripetal matrix is defined as 
 Pf(e) = $0 ! 00 ! −Q(<A@)%       (1.23) 

 
The gravitational contribution with respect the hybrid  frame is 
 �f = −�0	0	:;	0	0	0��                 (1.24) 
 
The gyroscopic effects by the propeller rotation are unvaried because it affects only 
the angular equations referred to the body-fixed frame. Finally the movement vector 
is different because the input T̂ affects all the linear equations through the rotation 
matrix. 
 ^f(Ω) = $ "g 03h303h3 <3h3	% ^@(Ω)        (1.25) 

 
Isolating the derivate generalized velocity in the dynamics equation with respect to 
the hybrid frame, the system can be modelized as 
 
This leads to the following equations. 
 
 �
 = i,ij            (1.26) �k = �
�
 lmmGlnnloo − pqrloo �
Ω + stloo^2     (1.27) �
 = i)ij           (1.28) �k = �
�
 lnnGloolmm + pqrlmm �
Ω stlmm^3               (1.29) 

      �
 = i(ij                              (1.30) �k = �
�
 looGlmmlnn + ilnn^4               (1.31) h
 = i!ij            (1.32) hk = (cos� cos� cos� +	sin� sin�) Tu (^1)               (1.33) v
 = iLij             (1.34) 
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vk = (cos� sin� sin� −	sin� cos�) Tu (^1)    (1.35) w
 = iMij            (1.36) wk = −; + cos� cos	� Tu^1         (1.37) 
 
The inputs of this system will be the rotational speed of the propellers instead of the 
voltage input in the DC rotor.  
 

1.2. LPV modeling 
 
 
The LPV paradigm was introduced in the PhD. Thesis of Shamma [2] for the analysis 
of the control design practice of “gain-scheduling”. The nonlinear system is described 
as a parameterized linear system, where these parameters depend on the state; 
however in the LPV model this dependence is ignored. The parameters are 
considered exogenous and varying within a bounded region. These systems can be 
formulated as: 
 h
 = x(y)h + z(y)�,					y ∈ Ω        (1.38)	
 
where y is the state depended parameter varying in the region Ω. Some properties of 
LPV systems in the gain scheduling context are: 
 

• There is a relationship between the parameter and the states such that the 
LPV description and the nonlinear system are equal. 
 x(|(h))h + z(|(h))� = }(�, h)        (1.39) 
 

• The relation |(h) depends only on measured signals. 
• The relation |(h) is known. 
• The LPV description is as close as possible to the nonlinear for all the values 

in the region Ω. 
 
The first property ensures that the trajectories of the original nonlinear system are 
also trajectories in the LPV system. The second and third properties ensure that the 
parameters are available for the controller and that an explicit nonlinear feedback 
controller is obtainable from the LPV description. 
 
Finding a nonlinear description from a nonlinear system is a non-trivial task. One 
method is to hide the nonlinearities in parameters. So, depending how these 
parameters are defined, a system can have different LPV descriptions. 
 
 
A LPV system might be seen as an extension of a linear time invariant system (LTI 
system) as they coincide when the parameter is known in advance. 
 
In this project, the LPV description will be a system with affine parameter 
dependence. 
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x(y) = x~ + ∑ x�y����T        (1.40) 
 
The parameter y is bounded and at least piecewise continuous. These bounds can 
be bounded as a hyper-cube.  
 y ∈ � = �y�y� ≤ y� ≤ y�, � = 1, … , y� ∀� ≥ �~    (1.41) 
 
 
The time derivative of the parameter is assumed to be bounded also in the same 
fashion in a hyper-cube. The affinity dependence can be transformed into a 
interpolation of the vertices of �. This is called polytopic dependence. The polytopic 
coordinates are denoted as ���>� and these varies as follows, 
 ∑ �� = 1,>���T 					�� > 0     (1.42) 
 

1.3. Quadrotor LPV model 
 
 
Using the method explained previously, the following expressions can be obtained. 
 

��
���
���
���
�� h
Th
>h
 h
Zh
�h
�h
�h
�h
�h
T~h
TTh
T>��

���
���
���
��

= x ����(�)��

���
���
���
��
� hTh>h hZh�h�h�h�h�hT~hTThT>��

���
���
���
�

+ z ����(�)�� XΩTΩ>Ω ΩZ[ 

            (1.43) 
 
 
where 
 

x ����(�)�� =
���
���
��0 1 0 0 0 0 0 00 0 0 HT 0 H> 0 00 0 0 1 0 0 0 00 H 0 0 0 HZ 0 00 0 0 0 0 1 0 00 H� 0 H� 0 0 0 00 0 0 0 0 0 0 10 0 0 0 0 0 0 0��

���
��
�
		 

(1.44) 
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z ����(�)�� =
��
���
��
� 0 0 0 0`T `> ` `Z0 0 0 0`� `� `� `�0 0 0 0`� `T~ `TT `T>0 0 0 0`T `TZ `T� `T���

���
��
�
    

(1.45) HT = <LL − <MM	2<!! �
  
H> = <LL − <MM	2<!! �
  
H = <MM − <!!	2<LL �
  
HZ = <MM − <!!	2<LL �
  
H� = <!! − <LL	2<MM �
  
H� = <!! − <LL	2<MM �
  

 `T = ��\<!! 	�
  
 `> = − ��\<!! 	�
 − d`<hhΩ> 

` = ��\<!! 	�
  `Z = − ��\<!! 	�
 + d`<hhΩZ 

`� = −��\<LL 	�
 − d`<vv ΩT 

`� = ��\<LL 	�
  `� = −��\<LL 	�
 + d`<vv 	Ω  

`� = I<MM 	Ω� , � = 8, … ,11 

]̀ = cos� cos � :̀Ω] ,				¡ = 12,… ,16 
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Knowing that 
 Ω� ∈ {100,500}	,						� = 1,2,3,4 �, � ∈ �0, ¥3� � ∈ {−¥, ¥} �
 , �
 ,�
 ∈ {−0.5,0.5} 
 
 
The parameters can be bounded as 
 HT,H> ∈ ¦− <LL − <MM	4<!! , <LL − <MM	4<!! § 

H , HZ ∈ ¨− <MM − <!!	4<LL , <MM − <!!	4<LL © 
H�, H� ∈ ¦− <!! − <LL	4<MM , <!! − <LL	4<MM § 

`T, ` ∈ ¦−��\2<!! , ��\2<!!	§ 
 `> ∈ ¦− ��\2<!! 	− 500 d`<hh , ��\2<!! 	− 100 d`<hh§ `Z ∈ ¦− ��\2<!! + 100 d`<hh , ��\2<!! + 500 d`<hh§ 
 `� ∈ ¨− ��\2<LL 	− 500 d`<vv , ��\2<LL 	− 100 d`<vv© 

`�, `� ∈ ¨−��\2<LL , ��\2<LL©	 `� ∈ ¨− ��\2<LL + 100 d`<vv , ��\2<LL + 500 d`<vv© `� ∈ ¦100 I<MM , 500 I<MM§	 , � = 8, … ,11 

]̀ ∈ ¦25 :̀ . 500 :̀§ , ¡ = 12, … ,16 
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Chapter 2 
 

Standard Identification Methods  
 
 
In this chapter, space state methods to identify a model will be provided and used in 
our case. 
 

2.1. Identification of the System State Space model   
 
The prediction error method consists in building mathematical models of dynamic 
models using measured input-output data. To do that, first of all the model of the 
system has been implemented in Simulink.  
 
 
 

 
Figure 2.1 Simulink Model 

 
Then using the data that has been extracted from the simulation, the model can be 
found using the Matlab function ssest and n4sid.  
 
pss12 = ssest(data,8, 'Form' , 'canonical' , 'DisturbanceModel' , 'none' );  
 
n4s12 = n4sid(data,8, 'Form' , ' canonical'  , 'DisturbanceModel' , 'none' , 
'Ts' ,0, Opt);  
 
In both cases, the result is given in an observable canonical form and there are no 
disturbances in the model because the simulation is perfect.  Then the results are 
studied using the function idssdata that returns the matrices of the space-state 
model and its uncertainties. 
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2.2. Ident 
 

2.2.1. Probing the method 
 
A first example has been set in order to probe the method. In this case, the space 
state model is the following, 
 

h
 = S 0 1 00 0 1−1 −5 −6U h + S001U�   (2.1) 

 
 

 
Figure 3.2 Result of the identification using Matlab 

 
The method identifies correctly the value and the variance of this is much lower. The 
next scenario would be studying the case of a model with a parameter that has a 
time variance. 
 

h
 = S 0 1 00 0 1−1 −5 −6 + sin	(�)U h + S001U �   (2.2) 

 
 

 
Figure 3.3 Results of the identification in a model with parameter that evolves with 

time 
 
As can be seen, this tool converges to a value and if the deviations are studied the 
parameter has a value of −5.871	 ± 			0.0149.  With that can be concluded that this 
method is not a good one to identify time varying parameters because it can’t capture 
the dynamics of the time varying parameter. 
 

2.2.2. Using the model 
 
If the model of the quadrotor, however can’t find the model because is nearly singular 
and the uncertainty is much bigger than the nominal value.  To solve that a method 
that doesn’t tries to identify the space state model but the parameters in a system 
whose form is known is preferred. 
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Chapter 3 
 

Bayesian identification 
 
In this chapter, an introduction to Bayesian identification using Dynamic Linear 
Models is provided. This method is used because of the flexibility in modeling 
structural changes and because this method is defined sequentially as new observed 
data is available. 
 

3.1. Introduction to Bayesian Inference 
 
In every real data analysis, even with accurate deterministic models, there are 
uncertainties because of measurement errors for example. To modelize that, in 
Bayesian statistics the uncertainty is described by means of probability. Then using 
probability theory it is possible to assign these probabilities coherently.  
 

3.1.1. Bayesian Inference 
 
The Bayesian inference is a method in which the Bayes rule (3.1) is used to update 
the probability estimate as additional data is acquired.   
 ­(x|z) = \(@|¯)\(¯)\(@)       (3.1) 

 
 

In this expression, A represents the event of interest, while B is an experimental 
result. Knowing the probability of A, B and B given A, the probability of learning the 
probability of learning about an event from the experimental data is solved by 
computing P(A|B). 
 
In statistical inference, the data is the result of sampling data, represented by a 
vector Y. The variables of interest are represented by the vector � of parameters of 
the model. Bayesian inference consists on � consists of calculating its conditional 
distribution given the sampling results.  Supposing a conditional distribution ¥(v|�) 
for �  given �  and a prior distribution ¥(�)  that express the uncertainty of the 
parameter, it’s possible to generalize the Bayes’ theorem to compute the conditional 
density of �  given v, where Y=y. 
 
 ¥(�|v) = µ(L|))µ())µ(L)       (3.2) 

 
 

Where ¥(v) is the marginal distribution of Y. 
 ¥(v) = ¶¥(v|�)¥(�)I�                        (3.3) 
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3.2. Dynamic Linear Models 
 
A dynamic linear model (DLM) is a special case space model, which is linear and 
Gaussian. Estimations of these models can be obtained recursively using Kalman 
filters. 
 
A dynamic linear model is specified by a prior for the p-dimensional state vector at 
t=0,	�0, and a pair equations for each t>1. These equations describe the outputs of 
the system,	��, and the states of the system, ��, in a given time. 
 �0~ �̧(:0, P0)          (3.2) �� = D��� + ��,						��~ :̧(0, ?�)     (3.3) �� = ����−1 +��,						��~ �̧(0,¹�)       (3.4) 

 
 

In these equations Gt and Ft are known matrices and wt and vt are independent 
Gaussian random vectors with known variance matrices and mean zero. The prior is 
assumed to be independent of the Gaussian vectors.  
 

3.3. Models with unknown parameters 
 
The matrixes introduced in the previous point (Gt,	 Ft,	 Vt	 and Wt) usually are not 
completely known.  These can be modeled to depend on a parameter that can have 
a temporal evolution. 
 

3.3.1. Maximum Likelihood Estimator 
 
Supposing that �T, … , �¾are n random vectors whose distribution depends on an 
unknown parameter, �. The joint density of these observations for a known value of 
the parameter will be denoted as �(vT, … , v¾; 	�).	 	 For a DLM the joint density can be 
written as 
 �(vT, … , v¾; 	�) = ∏ �(vj|vT:jGT; 	�)¾j�T    (3.5) 
 
 
where �(vj|vT:jGT; 	�)  is the conditional density of vj	  given the data up to the 
previous time step and assuming that � is the value of the unknown parameter.  The 
terms of the right hand side of the previous equation (3.7) are Gaussian densities 
with mean }j and variance	Âj. Therefore it is possible to write the loglikelihood as  
 

d(�) = − T
>∑ log	|Âj|¾j�T − T

>∑ (vj − }j)′ÂjGT(vj − }j)¾j�T    (3.6) 
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where the }j  and 	Âj  depends implicitly on  � . The expression (3.8) can be 
numerically maximized at  
 �Æ = argmax( d(�)     (3.7) 

 
 

The variance of the MLE is approximated by the matrix ÊGT, where H is denoted by 
the Hessian of l(�) evaluated at � = �Æ.  
 
The likelihood function of a DLM can have various local maxima, which means that 
the result can depend on the starting point.  
 

3.3.2. Parameter Learning 
 

3.3.2.1. Bayesian Estimation of a Space State Model 
 
From a Bayesian perspective, the aim of state estimation is to find the probability 
function of the state given the sampling data, ¥(�0|vT:0) . Assuming the initial 
conditions as a probability distribution ¥(v~|�~) , the result desired can be found 
sequentially, 
 ¥(�0|vT:0GT) = ¶¥(�0|�0GT) ¥(�0GT|vT:0GT)I�0GT  (3.8) 
 
and updated using 
 ¥(�0|vT:0) = 	µ(LË|	)Ë)µ()Ë|LÌ:ËÍÌ)µ(LË|LÌ:Ë)     (3.9) 

 
 
where ¥(v0|vT:0)  is a normalizing function independent of the state, ¥(�0|�0GT)  is 
defined by the state function and ¥(v0|	�0) by the the measurement function. 
 

3.3.2.2. Particle Filter 
 
 
The basic idea behind the particle filters is to approximate ¥(�|v) using a set of 
random samples, called particles, �0�  with associated weights �0� .  
 ¥(�0|vT:0) = ∑ �0�Î��T Ï(�0 − �0� )     (3.10) 
 
where Ï(h)  is equal to 1 when the h = 0 , and otherwise equals 0. In this case, ¥(�0|vT:0GT)	 isn’t a conventional form of density function. Therefore importance 
sampling is used to obtain new particles and the weight.  To do so, a importance 
density, ;(�0|vT:0) , must be defined. Then the weight can be computed as 
 �0� ∝ 	µ()Ë|LÌ:Ë)Ñ()Ë|LÌ:Ë)             (3.11) 
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For a sequential estimation problem, at a point k, the particles can be calculated as 
 ¥(�0|vT:0) ∝ ¥(�0 , vT:0|vT:0GT)     (3.12) 
 
 
Computing that, can be probed that 
 ¥��0� ÒvT:0� = �0GT� ¥(v0|	�0)¥��0Ò�0GT� �Ï(�0 − �0� )   (3.13) 
 
 
The importance density used is the one proposed by Pitt and Shepard 
 ;��0� ÒvT:0� ∝ �0GT� ¥�vT:0Ò�Æ0�¥��0Ò�0GT� �	Ï��0 − �0� �  (3.14) 
 
 
where �Æ0  has been defined as the expected value. Considering all that, the non-
normalized weight of the nth draw can be computed as 
 
 �0¾ = 	 µ�LËÒ	)ËÓ�µ�LÌ:ËÒ)ÔËÓ�     (3.15) 

 
 

3.3.2.3. Liu and West 
 
Liu and West is a particle filter method in which there are unknown parameters that 
will be estimated from the data. These parameters will be denoted by a vector �. To 
do that, this method constructs a target distribution at time k that is continuous for 	�0 
and �.  Using importance sampling, values of ψ  from a continuous importance 
density can be drawn, and the values from the previous time step discrete 
approximation can be forgoten. This approximated can be computed as  
 ¥jGT(�0GT|	ψ) = ∑ �0�Î��T Ï()Ë,Ö)    (3.16) 
 
Marginally 
 ¥jGT(ψ) = ∑ �0�Î��T ÏÖ     (3.17) 
 
 
In the Liu and West method ÏÖ	 is replaced by a Normal distribution.  
 ¥jGT(ψ) = ∑ �0�Î��T ¸(ψ;:�, ℎ2Ø)    (3.18) 
 
where, 
 :� = Hψ� + (1 − H)ψÙ      (3.19) 
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If H ∈ {0,1} and H> + ℎ> = 1, can be probed that Ú(ψ) = ψÙ         (3.20) 
 
 ?H�(ψ) = Ø         (3.21) 
 
 
Despite any H in (0,1) can be used, it is recommended to use an H in (0.974,0.995). 
Using this transformation, the discrete distribution can be transformed as 
 

¥��0|vT:0� = ∑ �0
� ¸�ψ; :�, ℎ2Ø�Î

��T Ï��0 − �0
� �   (3.22) 

 
 
And using the same method as before, can be probed  
 

¥��0
� ÒvT:0� = �0GT

� ¥�v0| �0 , ψ�¥��0Ò�0GT
� , ψ�¸�ψ; :�, ℎ2Ø�Ï��0 − �0

� �  (3.23) 
 
 
Using the importance density proposed by Pitt and Shepard 
 

;��0
� ÒvT:0� ∝ �0GT

� ¥�v0Ò �0 = �Æ0
� , ψ = m��¥��0Ò�0GT

� , ψ�¸�ψ; :�, ℎ2Ø� Ï��0 − �0
� � (3.24) 

 
 
A sample of ;��0

� ÒvT:0� can be obtained by iterating for every particle (n=1...N) the 
following steps. 
 

• Draw a variable <¾ such as 
  

­�<¾ = ��  ∝ �0GT
� ¥�v0Ò �0 = �Æ0

� , ψ = m��    (3.25) 
 

• Given <¾ = �, draw ¸�ψ; :�, ℎ>Ø� and set ψ = ψ¾ 
• Given <¾ = � and set ψ = ψ¾, draw 
 

�0
¾~ ¥�v0Ò �0 = �Æ0

� , ψ = m��   (3.26) 
 
and set 

�~:0
� = ��~:0GT

� , �0
� �      (3.27) 

 
 
The importance weight of the nth draw is  
 

�0
¾ =  

µ�LË� )Ë�)Ë
Û ,Ö�ÖÛ�

µ�LË� )Ë�)ÔË
ÜÓ ,Ö�ÝÜÓ�

    (3.28) 
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Normalizing the weight, the posterior distribution can be approximated. This method 
must be used with a parameter ψ	that is one-dimensional. If the parameter is a 
vector, such as ψ = (ψT, ψ>) and defining the multivariate distribution 
 }(ψ, γ) = fT(ψT; γT)f>(ψ>; γ>),					à = (àT, à>)  (3.29) 

 
where γ]  can be set in such a way that fá�·, γ]� has a specific mean and variance. 
 

ψÙ = ãψÙTψÙ>ä ,					Ø = $ ØT ØT>Ø>T Ø> %	   (3.30) 

 
Then for i=1,..,N 
 å]� = Hψ]� + (1 − H)ψÙ]       (3.31) 
 

|>](�) = ℎ>Ø          (3.32) 
 
So using the mixture is 
 ∑ �0� fT�ψT; γT� �f>�ψ>; γ>� �)Î��T     (3.33) 
 
 
This technique can be generalized to produce kernels with more than two factors 
because ψá can be also considered to be multivariate. Furthermore Liu and West 

method can be used to identify multivariate parameters by changing the å]¾ and |>](¾)	 
values instead of a and m. 
 
 
Summarizing this method, 
 

0. Initialize the parameter priors independently from its distribution, set the 
weight as �~� = 1/= and 

 ¥~ = ∑ �~�Î��T Ï()æÛ ,ÖÛ)              (3.34) 
 

1. For k=1…K  
1.1 For i=1…N and j=1,2: 

 
• Compute  ψÙ] = Ú�ψá�µËÍÌ  and Ø] = ?H�](ψá) and for i=1...N, set 

å]�  and |>](�) using the equations (3.31) and (3.32) and set 
 å� = (åT� , å>� )              (3.35) 

 �0� = Ú��0Ò	�0GT = �0GT� , ψ = å��          (3.36) 
 

• Solve for γ]� 	 the system of equations 
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Úçè�·,éêÛ�	�ψ]� � = å]�             (3.37) 

 
?H�çè�·,éêÛ�	�ψ]� � = |](�)           (3.38) 

1.2 For n=1…N 
 

• Draw <¾ as 
  ­(<¾ = �) 	 ∝ �0GT� ¥�v0Ò	�0 = �Æ0� , ψ = m��   (3.39) 
 

• For j=1,2, draw ψ]�  from fá�·, γ]� � 
• Draw �0¾ from ¥��0Ò	�0GT = �0GTlÓ , ψ = ψ¾� and set 

 
�0¾ = (�~:0GTlÓ , �0¾)     (3.40) 

 
• Set the weight as in the equation (3.28) 

 
1.3  Set ¥0 = ∑ �0�Î��T Ï()ËÛ ,ÖÛ)  

 

3.3.2.4. Parameter learning with changepoints 
 
Liu and west is constrained to learning parameters for static parameters. In order to 
track, the motion of the target requires the parameters of the model to evolve in 
conjunction with the target’s motion.  To do it’s assumed that there exists m 
changepoints in the observations. The probability of a changepoint at 4 = � is � which 
will be considered continuous. Doing so, Liu and West can be used assuming that 
the parameters are static and once there is a maneuver, the parameter will be 
updated by drawing new priors to learn the new value of the parameters. In this case 
there will be 2 distributions used in the resampling, one with the learnt parameters 
and another with the new data. 
 
To use the changepoints, the algorithm must be modified in this way 
 
 

1. For i=1...N 
1.1 Sample a prior �0� ∗  
1.2 Calculate 
 �0,T� ∝ (1 − β)�0GT� ¥�v0Ò	å0� , 	m��    (3.41) 

 
�0,>� ∝ ��0GT� ¥�v0Ò	å0� , �0� ∗	�     (3.42) 

 
2. For i=1...N 

• Draw <¾ ∝ �0,T� + �0,>�  
 

3. For i=1...N 
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• Define ¹0� = �0,T� �0,T� + �0,>�í  and �~î(0,1) 
3.1 If ¹0� > � update the parameters and assign the weights as before 

 
3.2 Else, define �0� = �0� ∗ , propagate using this assumption and compute 

the weight as 

�0¾ = 	 µ�LË�	)Ë�)ËÛ ,Ö�ÖÛ�
µ�LË�	)Ë�)ÔËÜÓ ,Ö�)ËÛ ∗	�

    (3.43) 
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Chapter 4 
 

Results using probabilistic methods 
 
In this chapter, various probabilistic identification algorithms are provided. Then they 
are tested. It should be taken into account that in this case the bounds of the 
parameters are the information that is looked for. 
 

4.1. Maximum likelihood in R 
 
 
In the case studied, it is used the R package “dlm”. This creates the class dlm that 
*uses the variables FF, V, GG, W, C0 and m0. For example, the following DLM 

 �0~ �̧(0,10)       (4.1) �� = �� + ��,						��~ :̧(0,1.4)     (4.2) 
�� = ��−1 +��,						��~ �̧(0,0.2)        (4.3) 

 
Would be described as, 
 
>model <-  dlm(m0 = 0, C0 = 10, FF = 1, V = 1.4, GG = 1, W = 0.2) 
 
In order to determine its model using MLE methods, this model must be discretized, 
to do so the matrix �� must be defined as	�4 = ï)ð#+ , where #ñ is the sampling time. To 
try to find the value of components of this matrix, the function dlmMLE of the same 
package has been used. 
 
>fit = dlmMLE(y,init,modelDLM) 
This function needs an initialization vector of the unknown parameters, and a build of 
the model that must be identified that depends on the unknown parameter,  
  
>modelDLM <-  function(u)  {dlm(m0 = 0, C0 = 10, FF = 1, V = 1.4, GG = u[1], W = 0.2)} 
 
 

4.1.1. First Test 
 
A first example has been set in order to probe the method. The following dlm has 
been identified. 
 

�0~ �̧ �C00F , C1 00 1F�         (4.4) 

								�� = �1 0��� + ��,						��~ :̧(0,?�)     (4.5) 

�� = $h1 10 0%��−1 +��,						��~ �̧ ò0,h ã 1 h2h2 h22äó       (4.6) 
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where hT = 0.6, h> = 0.3 and h = 0.05.  
 
The model used before, this has been identified correctly with an maximum error of 
around 10% (hT = 0.599, h> = 0.269 and h = 0.049.).  
 
Then the unknown parameter has been modified to be hT = 0.6 + 0.1�. Using the 
same method as before, the result is similar. However, if the parameter is defined as hT = hTô + hTj�  the MLE method can detect the varying component. With that it is 
possible to identify the varying components of a system using maximum likelihood. 

4.1.2. Result with the quadrotor model 
 
Then the quadrotor model has been linearized in a point, to adapt it into the DLM 
model, a filter has been used to put the B matrix into the A. With this n points of the 
matrix have been identified to try to study how large the data extracted from the 
simulation should be. 

 
Figure 4.1 Relative error vs data length in a MLE identification for 1 parameter 

 
If the number of parameters increases, increases also the length of the vector with 
data needed for identify the parameters. So it can be concluded that this method can 
be used to detect the parameters of a system whose dynamics are known; however 
the amount of data needed is really big. 
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Figure 4.2 Relative error vs data length in a MLE identification for 2 parameters 

 

4.2. Liu and West 

4.2.1. Algorithm 
 
In this case, a code following the algorithm proposed before has been used (figure 
2.1 and 2.2). 
 
The priors have been selected as a uniform distribution for the unknown parameter 
and a normal distribution for the system variables. 
 
pfOutTheta[1, ] <- rnorm(N, mean = m0, 
                         sd = sqrt(C0)) 
pfOutalpha[1,] <- runif(N,0,3) 
 
wt[1, ] <- rep(1/N, N) 
 
for (it in 2 : (n+1)) 
{ 
   
  meanalpha <- weighted.mean(pfOutalpha[it - 1, ], wt[it - 1,]) 
  varalpha <- weighted.mean((pfOutalpha[it - 1, ] - meanalpha)^2, 
                            wt[it - 1,]) 
  mualpha <- a * pfOutalpha[it - 1, ] + (1 - a) * meanalpha 
   
   
  Valpha<- h^2*sum((pfOutalpha[it-1,]-mualpha)^2)/N 
   
  expTheta <- pfOutalpha[it-1,]*pfOutTheta[it-1,]   
   
  probs <- wt[it - 1,] * dnorm(y[it - 1], sd = sqrt(v), 
                               mean = pfOutTheta[it - 1, ]) 
   
  auxInd <- sample(N, N, replace = TRUE, prob = probs) 
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  pfOutalpha[it,] <- rnorm(N,mean=mualpha[auxInd],sd=varalpha) 
  pfOutTheta[it,] <- rnorm(N,mean=pfOutalpha[it-1,auxInd]*pfOutTheta[it - 1, auxInd], 
                            sd = sqrt(w)) 
  wt[it, ] <- exp(dnorm(y[it - 1], mean = pfOutTheta[it, ], 
                        sd = sqrt(v), 
                        log = TRUE) - 
                  dnorm(y[it - 1], mean = 
                        expTheta[auxInd], 
                        sd = sqrt(v), 
                        log = TRUE)) 
     
  wt[it, ] <- wt[it, ] / sum(wt[it, ]) 
   
}  

 

4.2.2. Results 
 
As a first approximation, a dlm in which the only parameter is unknown is used. As is 
shown in the following figure, the Liu and West method converges in a good result 
really quick.  
 �0~ �̧(0,10)       (4.1) �� = �� + ��,						��~ :̧(0,2)     (4.2) 

�� = ���−1 +��,						��~ �̧(0,1)        (4.3) 
 

 
Figure 4.3 Parameter estimation and relative error for  parameter estimation 

 
As the figure shows, the Then, the variances of the uncertainties have been 
supposed unknown. The next figure shows that the identification keeps on being 
accurate. 
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Figure 4.4	�j and variances of the uncertainties identification using Liu and West 

 
 
Therefore this method can accurately identify time continuous parameters. Then a 
test in which the parameter evolves following a slow sinusoidal has been tested. 
 

 
Figure 4.5 �j(�) and variances of the uncertainties identification using Liu and West 
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Figure 4.6 Detail of the identification of the varying parameter 

 
 
As the figures show, the constant parameters keep on identifying correctly. However, 
that’s not the case with the time varying one. To solve that, the changepoints have 
been added. 
 
 

4.3. Liu and West with changepoints 

4.3.1. Algorithm 
 
In this case, the algorithm used in the section before has been updated to be able to 
changepoints and try to identify maneuvers in the parameter. To do so, a new prior is 
introduced in every step to be able to find the new values. However this introduces 
noise in the divergence components in the identification, in order to avoid these 
priors will be normal distributions which mean is the one of the computed for the 
parameter during the previous time-step.  
 
for (it in 2 : (n+1)) 
{ 
   
 
  meanalpha <- weighted.mean(pfOutalpha[it - 1, ], wt[it - 1,]) 
  varalpha <- weighted.mean((pfOutalpha[it - 1, ] - meanalpha)^2, 
                            wt[it - 1,]) 
  mualpha <- a * pfOutalpha[it - 1, ] + (1 - a) * meanalpha 
   
   
  Valpha<- h^2*sum((pfOutalpha[it-1,]-mualpha)^2)/N 
   
  expTheta <- pfOutalpha[it-1,]*pfOutTheta[it-1,] 
  probalpha <- rnorm(N,mean=meanalpha,sd=sqrt(3*varalpha)) 
   
  w1 <- (1-b)*wt[it-1,]*dnorm(y[it-1], mean = expTheta, 
                              sd = sqrt(v)) 
   



Probabilistic Identification Methods  28 

  w2 <- b*wt[it-1,]*dnorm(y[it-1], mean = expTheta, 
                          sd = sqrt(v)) 
   
  ww <-w1/(w1+w2) 
  ww <- (ww) 
   
  auxInd <- sample(N, N, replace = TRUE, prob = w1+w2) 
 
  val[it]=varalpha-Valpha 
   
  for (i in 1:N){ 
  
    if (w2[i] == 0) 
    {   
      ww[i] <- 1 
    } 
    if (ww[i]>runif(1,0,1)) 
    { 
       
      pfOutalpha[it,i] <-rnorm(1,mean=mualpha[auxInd[i]],sd=varalpha) 
      pfOutTheta[it,i] <- rnorm(1,mean =pfOutalpha[it-1,auxInd[i]]*pfOutTheta[it - 1, auxInd[i]], 
                                sd = sqrt(w)) 
      wt[it,i] <- exp(dnorm(y[it - 1], mean = pfOutalpha[it,i]*pfOutTheta[it,i], 
                            sd = sqrt(v), 
                            log = TRUE) - 
                        dnorm(y[it - 1], mean =expTheta[auxInd[i]], 
                              sd = sqrt(v), 
                              log = TRUE)) 
    } 
    else 
    { 
       
      setpoint[it-1]= setpoint[it-1]+1 
      pfOutalpha[it,i] <- probalpha[auxInd[i]] 
      pfOutTheta[it,i] <- rnorm(1,mean =pfOutalpha[it-1,auxInd[1]]*pfOutTheta[it - 1, auxInd[i]], 
                                sd = sqrt(w)) 
       
      wt[it,i] <- exp(dnorm(y[it - 1], mean = pfOutalpha[it,i]*pfOutTheta[it,i], 
                            sd = sqrt(v), 
                            log = TRUE) - 
                        dnorm(y[it - 1], mean =expTheta[auxInd[i]], 
                              sd = sqrt(v), 
                              log = TRUE)) 
       
    } 
  } 
   
   
  wt[it, ] <- wt[it, ] / sum(wt[it, ]) 
   
} 

 

4.3.2. Results  
 
To begin with it, the same test as in the previous section has been made. The prior 
used in the identification is a normal distribution with its center in the mean of the 
identified parameter in the previous time-step and a changepoint probability of 5%. 
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Figure 4.7 Identification and relative error of a parameter identified using 
changepoints 
 
 
The figure shows that the method identifies correctly the parameter, however due to 
the changepoint probability there are some points in which a new prior is used and 
the system doesn’t converge. To solve that, a smaller prior and changepoint 
probability should be taken. 
 
Then a identification with an unknown parameter that follows a ramp form has been 
tested.  
 �� = (H+ `�)��−1 - ��,						��~ �̧�0,2�     (4.4) 
 
 
It has been used the same prior and changepoint probability as before. The following 
picture shows that the result is really good. That’s because despite it has small peaks 
the interesting data is the bound and the identified parameter value are similar to the 
real one. 

 
Figure 4.8 Identified parameter and real value in the case of a time varying 
parameter 
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Then this method can be used in order to identify a time varying parameter with 
various sharper time dependent forms. The prior selected for the changepoint and 
the probability is the same used in both the tests made before. 

 
Figure 4.9 Identification and relative error of a time varying parameter identified using 
changepoints (�=5%) 

 
 
As the figure shows, the identification doesn’t change the set point quick enough. In 
order to asses this, a higher changepoint probability, �, can be used. By doing that, 
the system will be more sensitive and will use the prior distribution 
 
 

 
Figure 4.10 Identification and relative error of a time varying parameter identified 
using changepoints (�=10%) 
 
 
Doing that the parameter isn’t well identified and there are too much peaks in the 
process, some of them considerably big.  To solve this smaller variance in the normal 
distribution has been used. 
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Figure 4.11 Identification and relative error of a time varying parameter identified 
using changepoints (�=10% and lower variance) 
 
 
The figure shows that low variances and low changepoint probabilities have similar 
effects, so the form of the prior has been changed, in this case the prior will be the 
following uniform distribution 
 

�0
� ∗

~î(0.8�̅0GT
� , 1.2�̅0GT

� ) 
 
Using this prior, the parameter identification is really good taking into account that in 
the case of a LPV model, the needed data is the bound of the parameter. 
 

 
Figure 4.12 Identification and relative error of a time varying parameter identified 
using changepoints (�=10% and uniform prior) 
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Chapter 5 
Conclusions and Future works 

 

5.1. Conclusions 
 
The model of a quadrotor is easily modelized using the physical relationships and 
with them it’s possible to describe it as a LPV. To modelize this kind of models it’s 
needed to find the bound of time varying parameters. 
 
This model is nearly singular, so the methods that are included in the identification 
toolbox of Matlab aren’t good enough to identify the system linearized in a point. This 
toolbox is a good tool for models that However this can be done using probabilistic 
methods because they are focused in identify the parameters. 
 
In the case of a system that has a known shape, maximum likelihood shows good 
performances. However, the amount of data needed by this method is really big. 
 
Another proposed method is Liu and West. This Bayesian method has really good 
results with a continuous parameter. However, when the parameter evolves with 
time, this method doesn’t follow this temporal evolution. 
 
Using a parameter learning method changepoints this could be solved; however this 
method produces peaks and difficult the convergence towards the right value. In 
order to avoid this, the selection of a good prior and an adequate changepoint 
probability is important.  
 

5.2. Future works 
 
The parameter learning method with changepoints is a method that seems promising 
in order to identify the model. To accomplish that a study in depth of different kind of 
priors and how that affects the identification process is needed. 
 
When this can be accomplished, the next step would be to use it to identify a 
quadrotor and try a LPV control on it. 
 

5.3. Contributions 
 
The LPV model has been used in a conference [ref. 3] in which a tolerant control has 
been designed and also in another project in which various LPV control techniques 
have been compared. 
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