archives-ouvertes

Decomposition of a tribological system by chaos theory
on rough surfaces

Maxence Bigerelle, Jean-Marie Nianga, A. lost

» To cite this version:

Maxence Bigerelle, Jean-Marie Nianga, A. Tost.
chaos theory on rough surfaces. TRIBOLOGY INTERNATIONAL, 2015, 82, pp.561-576.
10.1016/j.triboint.2014.07.011 . hal-01170300

HAL Id: hal-01170300
https://hal.archives-ouvertes.fr/hal-01170300

Submitted on 21 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Decomposition of a tribological system by


https://hal.archives-ouvertes.fr/hal-01170300
https://hal.archives-ouvertes.fr

Science Arts & Métiers

Archive ouverte Arts Meétiers ParisTech

is an open access repository that collects the work of Arts et Métiers ParisTech
researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/9667

To cite this version :

M. BIGERELLE, J.M. NIANGA, A. IOST - Decomposition of a tribological system by chaos theory
on rough surfaces - Tribology International - Vol. 82, p.561-576 - 2015

Any correspondence concerning this service should be sent to the repository
Administrator : archiveouverte@ensam.eu



http://sam.ensam.eu
http://hdl.handle.net/10985/9667
mailto:archiveouverte@ensam.eu

Science Arts & Métiers ‘J

Archive ouverte Arts Meétiers ParisTech

is an open access repository that collects the work of Arts et Métiers ParisTech
researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/null

To cite this version :

Maxence M BIGERELLE, J.M. NIANGA, Alain IOST - Decomposition of a tribological system by
chaos theory on rough surfaces - Tribology International - Vol. 82, p.561-576 - 2015

Any correspondence concerning this service should be sent to the repository
Administrator : archiveouverte@ensam.eu



http://sam.ensam.eu
http://hdl.handle.net/null
mailto:archiveouverte@ensam.eu

Decomposition of a tribological system by chaos theory

on rough surfaces

M. Bigerelle **, J.M. Nianga®, A. lost*®

2 Laboratoire TemPo/LAMIH UMR8201, Université de Valenciennes, Le Mont Houy, 59313 Valenciennes, France
P Equipe Mécanique des Structures, Hautes Etudes d'Ingénieur, 13 Rue de Toul, 59046 Lille Cedex, France
€ Arts & Metiers ParisTech; Mechanics, Surfaces and Materials Processing (MSMP), 8, boulevard Louis XIV, 59046 Lille, France

Keywords:

Tool machining
Chaos theory
Roughness
Machinability

ABSTRACT

The purpose of this paper is to analyze the turning machinability of a martensitic steel, according to the
cutting speed, and through signal analyses of the morphology of the machined surface. We initially
carried out the classification of a large number of parameters of roughness, on the basis of their
relevance with regard to cutting speed. The originality of the proposed method lies in the combination of
the classical technique of analysis of variance with the statistical technique of resampling of data, called
Bootstrap. Another characteristic of the study consists in the addition to the traditional categories of
roughness parameters (Amplitude, Frequency, Morphological and Hybrid parameters) to analyze multi-
scale aspect of surface topography through fractal analysis. According to the analysis carried out, the
fractal dimension and the slope of the signal (dz/dx) of the topographical signal of the studied surface
appear much more relevant than all the other Euclidian parameters. The fractal dimension and the slope
of profile allow us to estimate a critical transition speed between the cutting states by generalized strain
hardening and those by localized strain hardening. This parameter is also more relevant than the others,
because it allows a good analysis of the influence of cutting speed, within each of the two machining
modes. The obtained result is relevant because it provides a practical and inexpensive method for the
quality control of the machined surface, to manufacturers and engineering companies, without
removing some mechanical part, but only through a direct analysis of the slopes of the profile, with,
in particular, the help of a portable instrument. We establish later that the transition between disorder
and order of the aspect of the observed profiles is essentially due to an instability, which we analyze by
the chaos theory. For that purpose, we propose an original construction of an attractor that presents a
fixed point for low cutting speeds. This attractor characterizes, beyond the critical cutting speed, an
instability described by a phenomenon of successions of states on the attractor between work hardening
by localized shear plastic deformation and softening due to the rise in temperature.

1. Introduction

such as the average deviation of roughness R, (arithmetic mean of
all the ordinates of the profile over a basic length), have appeared in

The improvement of the processes of quantification of the state
of machined surfaces is always one of the major concerns for many
researchers and industrialists. However, quality control of these
surfaces generally requires an analysis of their roughness (signal of
the surface), whose choice of parameters has often been the object
of many controversies because of multiple possibilities of collec-
tion and interpretation of data, in general related to statistical
analysis, and in particular to roughness profiles (roughness signal).
We point out that certain parameters of roughness usually used,

* Corresponding author. Tel.: +33 616 297 604.
E-mail address: maxence.bigerelle@utc.fr (M. Bigerelle).

the international standards (ISO 4287) only since roughly fifteen
years. Previously, each country had its own parameters, and in
addition, had its own methods of calculation. The question of
choosing the most relevant parameter of roughness thus remains
particularly delicate, especially if we take into account the condi-
tions of measure as well as the characteristics of the measuring
device. Thus in this study, we consider the various evolutions in
the relation between the tool, the matter and the process, in order
to ensure an optimal use of the machined surfaces, as well as
possible productivity gains. We thereafter use the chaos theory to
explain the transition between generalized strain hardening and
localized strain hardening. This transition is, in particular,
described through the analysis of the evolution of the average
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Nomenclature

X,— vector of physical parameters in the space phase i
B(x) Uniform noise in the range 0 and 1

D Euclidian dimension of the space phase

M, Ms, ....Mp mechanisms creating the space phase

Ra mean of signal amplitude R, = 1/L [ 1z(x)|dx

R: range of signal amplitude

T cutting temperature

U(x) Modeled signal of tooled surface

Ve cutting speed

X scanning length of signal roughness

Z(X) signal amplitude of the surface

s a factor lying between 0 and 100

Aq mean slope of profile Aq = (1/L) f; |0z(x)/dx|dx
otr/dy  strain hardening

y shear strain

T shear stress

slope of the estimated profiles (dz/dx, where z is the amplitude of
the topography and x the sampling length of the surface). Two
types of behavior are likely to cause a change in the machined
surface: chatter and machinability. Whereas the first concerns
primarily the vibratory aspect of the tool, appearing, except in the
event of instability, through a topography of the machined surface
with relatively periodic patterns, the second is dependent on the
stakes of balance between strain hardening, which tends to harden
the material, and thermal softening, due to the heat that is
released at the cutting time. A localized shear plastic deformation
will thus tend to support the machinability of the surface, while a
prevalence of strain hardening would block it. The cutting process
is then carried out through a wrenching of material. The instability
of the structure observed for high speeds that we propose to
model by the means of the chaos theory would thus be explained
by the alternation of a strain hardening state and a thermal
softening of material. The studied surfaces come from a stainless
steel martensite of type Z210CW12. The tests were carried out
under the following conditions:

- cutting speeds V¢ in m min~! (65 < V< 200),
- feed rate: 0.15 mm tr ! and
- cutting depth: 0.5 mm.

The measurement of surface roughness is carried out perpen-
dicularly to the machining grooves using a mechanical profil-
ometer (KLA Tencor P10™) with an evaluation length of 15 mm
and a sampling length of 0.4 um.

The paper is organized as follows: in Section 2, the method of
statistical treatment used to analyze the relevance of conventional
roughness parameters is presented. Section 3 is devoted to the
results of this conventional analysis of roughness. In Section 4, we
analyzed the topography via the chaos theory. Section 5 deals with
the results' interpretation of the machinability analysis via the
same highlighted theory.

2. The conventional analysis of roughness

The studied surfaces are machined at the 10 following cutting
speeds: 65, 80, 95, 110, 125, 140, 155, 170, 185 and 200 m/min. For
each of these 10 samples, 30 profiles are implemented by means of
the software Mesrug™ that is conceived by our research teams
[1,2]. Besides, for each of the profiles, 95 roughness parameters are
measured and distributed according to 10 classes (Fig. 1) contain-
ing amplitude parameters (Rg, Rs...), frequency parameters (num-
ber of peaks, spectral moments, length of autocorrelation), hybrid
parameters (slopes of the profiles, area ratio of surface), and
parameters resulting from the fractal analysis (fractal dimension,
slope of the spectral density).

However, for the determination of the most relevant para-
meters, we propose in this paper an original technique of variance
analysis: ANOVA by bootstrap [3,4]. This technique is of such great

importance that the statistical approach used in this study
requires a large number of parameters. Besides, similar to the
classic ANOVA, this technique allows the determination of the
parameter containing maximum information on a given class.
It allows later an estimation of the influence of this class, through
the definition of a Fischer variable F, as well as of a critical
probability below which we could wrongly assert the aforemen-
tioned influence. However, unlike the traditional ANOVA, the
variable F is considered as a random variable according to ANOVA
by bootstrap. This random behavior is essentially due to data
variation which, besides, implies a variation of the critical prob-
ability. Let us note too that the more the value observed by the
variable F corresponding to a given cutting parameter is large, the
more this last one will be considered as a discriminant parameter
according to the cutting speed (Fig. 2).

3. Results of the conventional analysis of roughness

According to the conventional analysis described in the pre-
vious paragraph, the three most relevant parameters (Table 1)
were examined:

Although the average deviation of roughness R, is one of the
roughness parameters that is most usually used in the tradi-
tional analysis of machined surfaces, it is not, in this study, the
most relevant parameter for the characterization of cutting
speed effect on machinability. In order to illustrate these
results, Figs. 3 and 4 present the comparison of the histograms
of the Fischer variable for the three selected parameters, as
well as the comparative studies of the box-plot for these last
ones, according to cutting speed. These results are also con-
firmed on the basis of 8000 discretization points obtained
using a portable profilometer Perthometer™ M4Pi, with a
probe tip radius of 5 pum. One of the major consequences of
this study is the possibility of quantifying the machinability
in situ without taking off the machined part from the tool
machine (Table 1).

3.1. Analysis of the relevance of parameter A,

Mathematically, the mean value A, of the profile slopes over a
profile evaluation length L is described by a numerical function z,
generally unknown, and defined by

1 [|oz(x)
da=1 /L %2%)| 1x 1)

ox

- The experimental results analysis shows a great decrease of
the profile slopes A, around a critical cutting speed V. of
125 m/min. Indeed, for speeds lower than V. the profile
presents a disordered aspect, whereas beyond this value a
periodic component with weak noise appears. However, it is
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Fig. 1. Roughness profiles of tooled surfaces produced by turning process with different cutting speeds (in m/mn).
difficult to quantify the effect of a noise on the value of the A T profile is created using a half-cycle sinusoid that represents
slopes of the profile on experimental profile. To quantify this the modeling of the un-noised experimental profile. Then a

effect of parasite noise, a numerical simulation is performed: uniform white noise N bounded in the [0..0.1] amplitude is
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added to the T profile with an amplitude characterized by a
coefficient £ with 0 < < 100

200 = pATE) +(100 - fYNX) - 0.5)), @

When f =100, simulated “tooled” surfaces are assumed to be
machined without noise.

When f=0, simulated “tooled” surfaces are reduced to a
white noise.

The analysis of the A, evolution curve according to the f factor
(Fig. 5) reveals a decrease of the mean value of the profile slopes
with decrease in noise. As a consequence, the decrease in the
experimental slope of the profile with the increase of cutting
speed can be seen as a decrease of a noise on the
topographical map.

3.2. The conventional analysis interpretation

Many previous studies confirm the parameter A, relevance, like
its discriminant behavior. Consequently, it seems important to
establish why this parameter’s experimental values increase, when
the cutting speed decreases. Three explanations appear plausible:

(H1). The depth of the grooves observed during the turning
process would depend on the cutting speed.

(H2). A decrease of the cutting speed involves the cutting process
by generalized strain hardening, leading to an increase of cutting
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Fig. 4. Plot of the most pertinent parameters versus the cutting speed.
(a) arithmetic roughness, (b) the developed area and (c) the mean slopes value.

Table 1
Fisher values for three more relevant parameters: the mean slopes value, the ratio
of profile and the arithmetic roughness.

Selected parameter Fischer variable observed

average f
Mean value of the slopes of the profile, D, 1726
Ratio of profile, A 1413
Average deviation of roughness, R, 1042

power. This increase could lead to a low-frequency machine tool
vibration that would generate topographical waviness in the
profile.

(H3). The generalized strain hardening corresponding to a cut
carried out by plasticity would not allow a cut as regular as that
obtained by localized shear deformation. As a consequence, gen-
eralized strain hardening would involve more important
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fluctuations of the plasticized zone and a noise without a
narrow frequential signature (pink noise) would then be present
on the totality of the profile. This pink noise is characterized by
a signal or process with a frequency spectrum such that the
power spectral density (energy or power per Hz) is inversely
proportional to the power frequency of the signal according to
the power relationship P(f) oc 1/f* with a €[1,2]. These pink-like
noises occur widely in nature and are a source of considerable
interest in many fields. The noise with a broad range of a
approximately corresponds to a wide range of non-equilibrium
driven dynamical systems.

These attempts of explanation thus lead us to carry out a
spectral analysis of the profile of the machined surface.

3.2.1. Interpretation of the spectral analysis for the machined surface
profile

We have precisely carried out the calculation of the discrete
Fourier transform for each of the 30 profiles obtained for each
cutting speed, and thus have obtained the discretized spectrum
(fivcf P(fivcf')) i—12q )+ Where P(f;’Cj) indicates the power spectral

{iz3m}

density carried by the frequency of order j for the profile
obtained at speed v,. The graphic representation of the spec-
trum in a bi-logarithmic coordinates system, for each cutting
speed (Fig. 6b), presents a harmonic around 150 pm correspond-
ing to the feed rate of 0.15, o, mm/rev (Fig. 7). This value is
independent of the cutting speed. The machining process thus
allows a perfect control of the feed whatever the state of
generalized strain hardening. However, as the variation of the
maximum amplitude of the peak described above is weak,
compared to that of the noise level observed, one could, at first
approximation, regard it as a constant. As a consequence,
cutting depth is constant and assumption (H1) can be rejected.
This analysis suggests a formulation of the machinability in the
form of a sum of two independent functions. The first of these is
periodic function, depending on the tool shape, the feed rate
and the feed depth, respectively. The other one is an aperiodic
function which characterizes the machinability (pink noise).
Analytically, when indicating by U, the machined profile repre-
sentative function, and by B, the one which represents a unit
pink noise which can be added to the signal and the profile z(x)
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Fig. 6. (a) Power Spectrum density function of profiles shown on Fig. 1. (b) Zoom of
power spectrum of (a) around the highest amplitude frequency. (c) Slope analysis
of the power spectrum at varying cutting speeds.
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Fig. 7. Values of the wavelength of the highest amplitude frequency (Fig. 6b) at
different cutting speeds.

can be modeled by
z(x) = ReU(x)+ fB(x)
0<Bx)<1; 0<p<l1 3

Let us now introduce the discretized average spectrum, defined
on all the 30 profiles corresponding to the same cutting speed b, as
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follows:

1 30 ve, 1 30 ve,
3_0j§1fi ’%jglp(fi )> (4)

{i=1.2n;}

Under the conditions defined in [9], if the average spectrum
verifies the power relationship P(f) oc 1/f%, then the fractal dimen-
sion of the corresponding profile is then given by

A=GB-a)/2 (5)

where « indicates the median value of the spectrum slope in the
log-log plot. However, when =0 in Eq. (3) (half-sinusoidal
profile), the @ computation paradoxically provides 1.5 as fractal
dimension rather than unity. This error which systematically
appears, when evaluating the fractal dimension by the above
relation, was analyzed by Brewer et al. [10]. On the other hand,
as the analysis of the machined surfaces spectrum does not
highlight any harmonic for low frequencies (log(f) < —2.5), no
cutting tool vibration will be at the origin of the growth of R, for
low cutting speeds. As a consequence, hypothesis (H2) is rejected
and this R, growth would thus be essentially explained by the
presence of a characteristic pink noise introduced by the general-
ized strain hardening. In the following section, we then propose its
fractal analysis (Figs. 8 and 9).
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Fig. 10. Fractal dimension obtained from the power spectrum versus cutting speed.

3.2.2. Fractal analysis of the machining noise
The observation of the spectrum of Fig. 6 reveals 3 different
modes:

- Decorrelation mode for the machining noise: at low frequen-
cies, the spectral power is constant meaning that no informa-
tion exists.

- Fractal mode: this mode corresponds to the spectrum evolu-
tion according to the power relationship P(f)cc 1/f%. In this
case, a study of the fractal dimension evolution reveals a
A-quasi linear increase for the cutting speeds which are lower
than 125 m/min (Fig. 10). The increase of cutting speed gen-
erates a heterogeneous distribution of the plastic zones,
thereby increasing the heterogeneity of the generalized strain
hardening. On the other hand, a regime change (high increase
of fractal dimension) is observed after 125 m/min: the cut
mechanisms pass from generalized strain hardening to shear
plastic deformation, this latter being due to a localized strain
hardening of the material. In this case, a chaotic alternation of
hardening and softening appears that is characterized by a
fractal dimension of 1.5. This fractal dimension appears as a
particular Brownian process characteristic that we shall study
in the following paragraphs, by means of the chaos theory.

- Euclidean mode: this mode which corresponds to very high
frequencies reveals the impact of smoothing effect on the change
in spectra slopes. Note that this effect is due to the curvature
radius of the tip radius of the profilometer. Therefore, the
studied mode is simply related to a tactile measurement artifact.

»

Machinability analysis via the chaos theory

We have just established that the average slope of profiles is
the most relevant parameter of roughness. It indeed highlights a
transition between generalized strain hardening, which is char-
acterized by low cutting speed and high profiles slopes, and
localized strain hardening, characterized by high cutting speed
and weak profiles slopes [11]. Consequently, the purpose of this
study, in what follows, is thus to show that this transition is due to
an instability which can be analyzed by the chaos theory. First, it is
advisable to highlight the two types of behaviors which are
involved in surface roughness modification.

4.1. Origins of chaotic state
The instabilities in the cutting process that change the surface

topography can be due to 2 phenomena: machine tool chatter and
machinability of materials.



a) Chatter: it originates in a vibratory aspect of the cutting
machine, which involves a modification of the morphology of
the surface, whose modeling requires solving two second-order
differential equations of propagation type, and whose coupling
is likely to involve an instability which characterizes the chaos
[12-14]. On the other hand, the system tool-matter is char-
acterized by a system mass-spring, implying a modeling in the
elastic range. We thus postulate that chattering is a purely
oscillatory phenomenon, which involves a disturbance of the
morphology of surface on scales definitely more important
than those corresponding to the interaction tool-matter.

b) Machinability: the term machinability refers to the ease with
which a metal can be machined to an acceptable surface finish.
It is characterized by a transitory behavior resulting from the
confrontation between the phenomena of strain hardening and
thermal softening. Indeed, a surface will be machined much
better under localized shear plastic deformation cutting. On the
other hand, it will become weakly machinable if strain hard-
ening is prevalent. The transition then occurs when the strain
hardening effects are balanced by the thermal softening ones.

As regards the characterization of the tool-material coupling by
the chaos theory, the general principle of approach which is
suggested in this paper is as follows: for generalized strain
hardening, the strain hardening mechanism is the only major
phenomenon. Nevertheless, for localized shear plastic deforma-
tion, we postulate an alternation, for high cutting speeds, between
the softening mechanism due to the heat released during the
cutting process and the strain hardening phenomenon which
tends to harden the material.

4.2. The mathematical problem of machinability by the chaos theory

We start with a short introduction to the chaos theory, and in
particular, with a presentation of the famous Henon's attractor.

4.2.1. Introduction to the Henon attractor

The French astronomer Henon (1976) deducted a two-dimensional
attractor from a three-dimensional Lorenz attractor, by considering
the intersection of a fluid subjected to natural convection, with a
transverse section in the flow direction [15,16]. The corresponding
discrete time system is defined as follows:

X(t+1) =y(t)+ 1 —ax(t)]?
y(t+1) = bx(t) (6)
a=14:b=03

The attractor graph (x, y) allows a multi-fractal structure which
means that the fluid distribution in the space is not uniform
(Fig. 11). It is then possible to obtain a graphic representation of
the frequency at which an attractor point can belong to a fixed size
cell. For that, after carrying out a discretization of the zone
containing the attractor, through a mesh of size 1000 x 1000, we
simulated 108 iterations. Fig. 11(b) represents, indeed, the prob-
ability density function of the presence within the phase's space of
the attractor for which a simple observation allows the description
of the subjacent multi-fractal structure. In the same way, it can be
interesting to study the attractor behavior according to the
parameter a of Eq. (6). For that, we build the Feigenbaum diagram
(Fig. 12), which represents its state evolution x(t), according to the
parameter a. Then successive divisions called bifurcation appear
due to chaos emergence. However, because the attractor is not
known in our study, we will carry out its approximate rebuilding
using the so-called delays method [17], on the basis of the only
series of measures carried out on the cutting profile.
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Fig. 11. Henon's Attractor in the x-y plane (a) and the empirical density probability
function of the presence of (x, y) points.

4.2.2. Attractor rebuilding method

From the quantity y(n) that represents the amplitude of the nth
profile point, one can introduce, on the basis of a translation of the
variable n, a so-called delays vector, which allows obtaining an
attractor approximation, defined as follows:

z(n) = (y(n),y(n+kt),y(n+2k7), ...,y(n+(D—1)kr)) (7)

wherer is the implemented sampling step and k is a number to be
determined, representing a characteristic length. y(n) represents,
indeed, a pseudo-phase of the evolution of a state towards
another. According to the delays theorem, z(n) constitutes an
attractor point. The rebuilding problem then consists, through a
method allowing a visualization of the attractor projections, of
determining the length k as well as the dimension D, beyond
which the collected information does not result in any more
precision. The application of this method to the Henon attractor
leads to D=2, which means that the representation of vectors
z(n) = (y(n),y(n+1)) constitutes sufficient information for an
attractor rebuilding (Fig. 13).

4.2.3. Attractor characterization for the machined surface profile

The creation mechanisms of the machined surface are sup-
posed to be unknown and denoted by My, Ms,..., Mp. They depend
on variables x4, x»,..., Xp, defined in a phases space (a phase space
is a space in which all possible states of a system are represented,
with each possible state of the system corresponding to one
unique point in the phase space). On the other hand, the studied
system M can then be expressed in the following form:

ox;(t) /ot = Mi(Aj, X1 (£), X2(8), ..., Xp(t)) ®)
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Fig. 12. Feigenbaum's plot of Henon's Attractor versus the parameter.

where A; is a vector of physical parameters that are not necessarily
independent of the time variable t. We suppose, on the other hand,
that x; is the observed profile amplitude and that t can also
represent the length of the profile (the profile length is propor-
tional to t, because of a constant cutting speed). The attractor is
then defined in the D-Volume, through the vector (x;(t)xx(t),...,
xp(t)), which thus makes the study of the behavior of the system M
easier. Nevertheless, two major difficulties relating to the manner
of finding x,(t),..., and xp(t), as well as to that of the determination
of the volume dimension of the phases space remain and will be
overcome by recent techniques, concerning x,(t),..., and xp(t), and
by an original method developed by the authors as regards the
choice of D.

Remark. In order to facilitate the visualization of the attractor,
with the maximum of information to allow the research of the
characteristics of the signal dynamics, the method developed by
the authors consists of a attractor projection, as defined by the
delays vector of dimension D, in a space of size equal to its
Euclidean dimension E (D > E). We obviously make sure that the
projected scatter plot inertia z(1), z(2),...et z(N) defining a graph G
is maximum. The Renyi dimensions built on G and determining a
multi-fractal spectrum are thus identical to the attractor dimen-
sions. This therefore means that the attractor fractal characteristics
will remain unchanged, when the projected space dimension is
identical to that of the attractor. Let us now note that each axis of
the projections space is a linear combination of phase variables for
the attractor. Let us note, on the other hand, that Fig. 14 is an
illustration of the Henon attractor representation on the first two
axes of the projection space. In the paragraphs that follow, our
analysis process will be applied to simulated profiles, before
considering the machined surfaces.
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Fig. 13. Temporal plot of the x coordinate of Henon's Attractor versus the time t
(a) and its reconstruction by the delay method (b).
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two-dimensional plane.

4.3. Attractor characterization for the simulated surface profile

We choose a sinusoidal profile to illustrate our method. This
choice seems appropriate for our analysis, since the profiles of
machined surfaces we are studying possess an intrinsic periodicity.
Indeed, both the calculation of delay vectors and the analysis of
the graph (y(n;), y(n;+1)) representing the sinusoid attractor in
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dimension 2 (Fig. 15) show a strong linear correlation between the
points y(n;) and y(n;+ 1), which considerably complicates a correct
visualization. To avoid this difficulty the attractor is, at first, and
according to our method, projected on the two-dimensional vector
space (Fig. 16a) formed by the two first axes F; and F, of the
projection space. We then obtain a circle, which finally proves the
non-fractal aspect of the initial profile. Besides, by observing its
projection on the space formed by the factorial second and third
axes (Fig. 16b), the attractor appears as being almost reduced

to a horizontal line parallel to axis 2, and then axis 3 seems to
contain no relevant information. However, to better interpret these
results, we chose to introduce the following fundamental theorem
concerning the projection of the observed scatter diagram.

Theorem 1. Let Fy be a subspace carrying the maximum inertia of a
scatter diagram, then the subspace of dimension k+1 carrying the
same maximum inertia is the direct sum of F, with a subspace of
dimension 1, orthogonal to F, and carrying the maximum inertia too.
The subspace Fy, is thus built by successive estimates, or step by step,
by seeking at first the subspace of dimension 1 of the maximum
inertia, then a subspace of the same dimension 1, orthogonal to the
precedent, and of maximum inertia, and so on.

The analysis of the sinusoid attractor by means of this result
gives the following interpretation: when the attractor is a circle, its
fractal dimension is 1, and only two dimensions are enough to
characterize it. To confirm this analysis, it is possible to rebuild the
studied profile starting from each projection. Thus, Fig. 17a allows
the rebuilding of the sinusoid starting from the first two axes of
projection, whereas the third axis (Fig. 17b) does not almost
contain any information, the trajectory amplitude being too low.
The observed variations are primarily due only to a noise related to
numerical calculations, and precisely due to the estimate of
eigenvectors and eigenvalues necessary for projection.

4.4. Application of the analysis to a disturbed sinusoid

We initially start by analyzing an uncorrelated white noise which,
naturally, is not easily analyzable by the chaos theory, but whose
interest in the present study is to highlight a better comprehension
of the noise which, a fortiori, sullies the experimental data.

4.4.1. Signature quantification of an uncorrelated white noise

For reasons of simplification, we consider a bounded noise
between 0 and 1. However, a white noise is uncorrelated and then
no relation occurs between y(n;) and y(n;+p) for p # 0, Vi. Conse-
quently, the attractor points are uniformly distributed in a square of
dimensions [0, 1] x [0, 1], so that the attractor is identified with a
plane of fractal dimension 2, for a sufficiently significant number of
points. So, for a volume, that is when the attractor is built from
coordinates (y(n;),y(n;+1),y(n;+2)), it will be identified with a
multitude of points uniformly distributed in the volume [0,1]® of
fractal dimension 3. The same reasoning leads to a fractal dimen-
sion equal to n, for an attractor built in dimension n. Let now us
proceed to the analysis of the white noise, when this last one is
projected according to the method we implemented. The theorem
that follows thus specifies the probability distribution shape of the
projection of the delays vectors for a white noise.

Theorem 2. Let y(n;) be the delays vector of dimension p, for a white
noise, and let P(y,p’) be the operator of orthogonal projection that
maximizes the projected scatter diagram on a space of dimension p/,
(p’ <p). Let G(a,e;,ej) be the a-orthogonal projection on the plane
defined by both basic vectors e; and e;, with i+#j<dima, and let
¥ij(n,p,p) be the set of points defined by

We.e,(n,p,p") = {G(P(Y1(p, D)), €:, €)),
G(P(y,(p. D). €i, €)), ... GPYn(p. D). €i. €)} )
Let I'(We,¢(n,p,p") be the probability density of the distribu-

tion of points built on the basis of (e;, €)). If y(p) is a random vector
of uniform probability distribution between 0 and 1, then:

lim I'| ¥ x0 (n.p.p) =4le—(x2+y2>/<4> (10)
n—oo ©.) T
p—ooo
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Remark. The delay vectors are projected on a subspace of dimen-
sion 2. The histogram of such a projection is obtained by
maximization of the inertia of the projected scatter diagram, and
thus presents the shape of a two-dimensional Gaussian distribu-
tion, when the space dimension tends towards infinity. However,
this theorem does not provide any indication on the convergence
rate for the distribution of delays vectors, according to the
projection subspace dimension. Nevertheless, Fig. 18 presents
the probability density function of 50,000,000 delay vectors in
4-dimension on two subspaces.

4.4.2. Effect of the addition of a white noise on attractor rebuilding

For a studied system, the difficulty generally lies in the
differentiation between the signal intrinsic noise (white noise)
and the chaotic one which characterizes the nonlinear dynamics
(pink noise). Besides, the infinity of dimensions which occupies a
noise in the phases space complicates the determination of real
dimension of the attractor. In order to illustrate this point,
simulated profiles similar to the experimental ones (Fig. 19) are
generated and a white noise is added with various amplitudes. The
analysis of Fig. 20 represents the attractor projection on the first
two axes according to the added noise amplitude. The following
conclusions can be stated:

- The attractor tends towards a curve of fractal dimension 1 when
the noise decreases. The signal thus becomes deterministic.

- No fundamental modification of the histogram shape is
observed when the noise increases. This result proves the
robustness of the original highlighted method for the attractor
visualization. The analysis of the system dynamics properties

which have generated the machined surface is therefore
established.

- The dimension allowing an observation of the system
dynamics, apart from the noise influence, is thus obtained.
The attractor can, indeed, be perfectly characterized by the first
two axes, i.e., in a subspace of dimension 2.

— The observed maximum of the probability density function
does not depend on the noise intensity. It then characterizes
the signal shape in the absence of noise.

- The profile dynamics is thus carried by the second axis,
independent of the profile amplitude, as illustrated by the
symmetry of the histogram with regard to a straight line
passing by the second axis origin and parallel to the first one.

4.5. Application to the analysis of machined surfaces profiles

Experimentally, we have 30 surface measurements carried out in
the same cutting conditions. Individual attractors are computed from
each profile and all the points of these individual attractors are
gathered to estimate global attractor probability density function.
Fig. 21 represents these densities and their associated response
surfaces for projection on a subspace of dimension 2 according to
axes 1 and 2. Let us note that these last ones are obtained at various
cutting speeds, and it results in the following remarks:

1. The projection of the initial attractor on the principal axes is
carried out on a vector subspace whose eigenvectors, which
actually are the basic vectors in the new coordinates system,
are identical. On the other hand, a statistical analysis shows
that the coordinates of the first axis vector in the former base
(the initial attractor base) only depend very slightly on the
cutting speed (Fig. 22.) We will thus admit for these coordi-
nates, constant values:

Xo =1 = 0.50015 . 00025 ~ 0.5 11

This means that the attractor point of coordinates (xp,x;) is
projected on the first axis of the direction vector (0.5xp, 0.5x)).
Assuming that the chaotic mechanism is expressed in dimen-
sion 2, its equations can then be formulated as follows:

0xo(t)/ 0t = agMo(Ag, X (1), X (1)) + a1 M1(A1, X, (1), X] (1)) (12)

Consequently, the first axis contains the two mechanisms M
and M; which model the dynamic system.

2. The modeling of disturbed machining led to forms of statistical
distributions different from those represented by the histo-
grams of Fig. 20; we deduce from it that the measured surface
is not simply a perfectly machined surface on which a white
noise is added.

3. When the cutting speed grows, the histogram changes from a
unimodal distribution to a bimodal one. Both obtained modes
are separated by a straight line perpendicular to the first axis
and passing through the origin. This last one represents the
gravity center projection for the initial attractor. Physically, this
point represents an inertia center, i.e. a balance point for all
points subset. Fig. 23 represents the scatter plot distribution
which is projected on the first axis, according to the cutting
speed. When the cutting speed is lower than 125 m/min, the
attractor probability density is unimodal and involves for the
dynamic system a convergence towards a fixed point that is the
mode value. The system is thus not unstable and always turns
over towards a balanced state whatever system disturbances
are introduced by material heterogeneities and process varia-
bility. The stability of the dynamic system would thus result in
the mechanisms My and M; being closely bound, in the sense
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Fig. 19. Zoom of a roughness profile for a machined surface.

where none of them dominates the other during the cutting
process. On the other hand, starting from a speed of 125 m/min,
the attractor reaches a bifurcation and the system oscillates
between two states xy(t) and x;(t). The alternation of the
mechanisms My and M; thus makes the system evolve from
state A to state B, then A, then B, and so on. Consequently, one

can admit the alternation of the two mechanisms My and M;
during the cutting process.

4.5.1. Attractor characterization space dimension

In what follows, we will try to establish that the mechanisms
My and M; are enough to describe the machinability dynamics.
We will first start by examining the projection quality on each axis
characterizing the attractor. By considering 10 axis, Fig. 24 reveals
that nearly 99.9% of the scatter diagram inertia is carried by the
first axis of projection that justifies all the analyses we have
carried out on this axis. On the other hand, the observation of
this same graph shows that the second axis is also carrying certain
information, in spite of the small percentage of inertia which is
due for it. In fact, this information is only subjective. One also
notes, because of the shift observed between the mode, compared
to the second axis, and for high cutting speeds, that this axis
contains, contrary to axes 3 to 10, information on the dynamic
processes Mg and M. It thus appears, taking into consideration all
these observations, that dimensions higher than 2 do not bring
any information on machinability, which implies for the attractor a
dimension equal to 2.

4.5.2. Profiles rebuilding and analyses according to the axes
Fig. 25, which represents a signal rebuilding according to the
first four axes, allows the following remarks:
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- Axes 3 and 4, the profiles can be identified as a white noise and
obviously appear different from the first two axes.

- Whereas the first axis contains information on the macroscopic
aspect of the machined profile, the second rather seems to

contain on its micro-roughness (machining noise). In order to
confirm this last assertion, the fractal dimension of the profiles
projected, in particular on the first five axes, was calculated
according to an original method [18]. Fig. 26 shows its evolution
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according to the cutting speed. It is followed from there, that the
projection on axis 1 had the effect of regulating (smooth) the
profile and leading to a fractal dimension close to 1, independent
of the cutting speed. The highlighted method is thus robust and
corresponds to an analysis of the profile carried out in the same
Euclidean dimension whatever the machined profile shape.
However, on the second axis, there is a fractal dimension ranging
between 1.5 and 1.6. This value confirms that this axis contains
information on the fractal nature (microscopic scale), excluding
the presence of an uncorrelated noise. The existence of a common
structure implies linear growth of the fractal dimension, accord-
ing to the dynamic system oscillations, when the cutting speed
increases. For lower speed, there is a fractal dimension of 1.5,
meaning a long positive correlation length of the tool surfaces
(diffusion or persistent state). For large cutting speeds, fractal
dimensions reach 1.6, which involves a negative correlation
length (sub-diffusive or antipersistance state). This clearly means
that under the cutting speed of 125 m/mn the dynamical system

Fig. 21. Empirical density functions and associated response surfaces of attractor of experimental profiles with different cutting speeds (see Fig. 1) obtained by an orthogonal
projection on a two-dimensional plane defined by the axes 1-2.

is long and persistent and after this threshold it becomes anti-
correlated, involving the succession of different states. The
kinetics of the chaos generated by machining when the cutting
speed increases is then carried by axis 2.

- Concerning axes 3, 4 and 5, the obtained fractal dimension
tends towards 2 (fractal dimension of a white noise) without
reaching this value (smoothing effect at small length due to
tactile profilometer recording). This indicates the absence of
relevant information on these axes.

Note: the methodology of projection that we developed thus
made it possible to reveal only two dual scales for the machin-
ability analysis of workability: one macroscopic and carried by the
first axis, and the other microscopic and carried by the second.
On the other hand, when the fractal dimension is calculated using
the initial profiles (Fig. 27), it does not appear as a relevant
parameter for characterizing the effect of cutting speed on
machinability because measurements include simultaneously
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macroscopic and microscopic roughness. Nevertheless, its mea-
surement via our projection method allows its decomposition
according to axes 1 and 2, and therefore highlights the cutting
speed’s influence on machinability carried by the second axis.

5. Results' interpretation of the machinability analysis via the
chaos theory

We have clearly shown that the machinability was explained by
two physical mechanisms that coincide at low speeds and alternate
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Fig. 24. Inertia of the projected attractor obtained at different cutting speeds
versus the number of orthogonal axis.

at high cutting speed, generating an unstable chaotic behavior with
two levels. This phenomenon can be explained in machining as
follows: the process of cutting is governed by generalized strain
hardening for low cutting speeds and by localized shear plastic
deformation at high cutting speeds. In the latter case, the severity of
plastic deformation and work-hardening at the surface region
increase the yield stress near the surface. Indeed, the uniaxial
traction constitutive relation is defined as follows:

6 =(A+Be")(1-CT)(1+(¢/D)™) (13)

where A, B, C, D, m, and n are material constants determined by quasi
static, hot and dynamic compression, € the true strain, & the true
strain rate and finally ¢/+/3 =7 represents the shear plastic defor-
mation stress and y = £+/3 the shear plastic deformation strain. The
increase in cutting temperature in the shear plastic deformation
plane is thus due to an increase in the shear plastic deformation
stress, and thus to an increase in the corresponding strain when the
cutting speed increases (see Loewen and Shaw relation in [8]):

To = 09 e
= 1+1.328Kiy /Vef PCo

where y is shear strain, 7 is shear stress, G, is heat capacity of the
material, K; is fracture toughness, T is cutting temperature, T,, is
room temperature, V. is cutting speed, f is feed rate and p is density
of the material.

As the temperature yield stress increases, there appears a very
large increase in temperature during cutting. This increase in
temperature causes softening of the material, and consequently
there is a shear plastic deformation stress reduction; it then follows
a temperature reduction, with a return to the initial temperature.
Consequently, a succession of cycles appears between the phases of
hardening and softening. As regards the existence of the attractor
fixed point, the explanation comes from the balance reached by the
system. For sufficiently low cutting speeds (the cutting process only
occurring by generalized strain hardening), the cutting process is an
un-adiabatic process: since the heat has time to propagate through
the material. The transition between the two highlighted mechan-
isms was analyzed by Recht [19]. This shows, as confirmed by our
analysis, that the transition from the shear plastic deformation
mode, which corresponds for this system to instability, occurs when
the strain hardening effects are balanced by the thermal softening
ones. The relation (15) then follows:

T— (14)

dt ot ordT

dy oy TaTdy (1
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Recht thus established that strain hardening, which is the cause

of cutting, can be expressed in the form of a linear combination of
two differential mechanisms. In order to characterize the cutting
speed influence on machinability, he then established the criterion
based on the calculation of the term R defined as follows:

at /oy

= /e aT/dn 1o

a) If R=1 (V,=125 m/min), there appears a transition mode, and

=

the cutting speed is thus associated with the first bifurcation in
Feigenbaum's diagram.
If R<1 (V.> 125 m/min), there appears a zone of localized
shear plastic deformation, meaning the presence of chaotic
mode with two states.

c) If R>1 (V. <125 m/min), there appears a generalized shear

plastic deformation zone, with an equilibrium state and fixed
points in the attractor.

Conclusion

- Starting from roughness conventional parameters, we pro-

posed in this work an original method for characterization of
machinability, and then implemented a characterization
method for analyzing the cutting speed influence on machin-
ability, via the chaos theory.

- Regarding the conventional characterization of machinability,

we highlighted the relevance of the average slope of the
profiles, compared to a hundred other parameters, among
which the parameter R, is the most usually used. Indeed, the
average slope of the profiles enabled us to differentiate two
cutting modes, of which one is related to generalized strain
hardening (low cutting speed, high slopes of the profiles), and the
other is dependent on localized shear plastic deformation (high
cutting speed, weak slopes of the profiles). The slope of profiles
also allowed us, contrary to the parameter R, to quantify the
cutting speed effect during each mode. The slope of profiles is
relevant to easily determine in situ the effects of process
parameters (cutting speed, type of cutting machine, cutting depth,
feed rate, etc,) and to increase surface integrities (internal
stresses reduction, shape defects minimization, cutting power
decreasing, increase in lifetime of the cutting machine, etc.).

- From the chaos theory, it appears that the transition (generalized

strain hardening / localized strain hardening) corresponds to a
bifurcation on a Feigenbaum diagram built from roughness
profiles. The highlighted original technique of projection allows
us to establish that the two dimensions of the attractor

characterize the two physical mechanisms, namely strain hard-
ening of material and heat transfer during cutting operation. The
apparition of a two chaotic mode highlights the balance
between the strain hardening and the generalized shear plastic
deformation that governs the transition mode in cutting process
(adiabatic cutting). Let us note, on the other hand, that any
calculation on the attractor itself (multifractal spectrum, Lyapunov
exponent, etc.) was voluntarily excluded from this study to
provide to the machinist during the adjustment of cutting
conditions a simple graphic interpretation (the attractor plot).
In future works, we will measure roughness in the machining
direction to confirm our analyses. It is proposed to extend this
study to high-speed machining, in order to search for other
bifurcations (Feigenbaum constant estimation). Finally, an ana-
lytical formulation of the attractor characteristics, through func-
tions related to the hardening and the thermal effect, will be
proposed in relation to morphological and microstructural study
of the chips.
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