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Abstract. In evidential clustering, uncertainty about the assignment
of objects to clusters is represented by Dempster-Shafer mass functions.
The resulting clustering structure, called a credal partition, is shown
to be more general than hard, fuzzy, possibilistic and rough partitions,
which are recovered as special cases. Three algorithms to generate a
credal partition are reviewed. Each of these algorithms is shown to im-
plement a decision-directed clustering strategy. Their relative merits are
discussed.

1 Introduction

Clustering is one of the most important tasks in data analysis and machine
learning. It aims at revealing some structure in a dataset, so as to highlight
groups (clusters) of objects that are similar among themselves, and dissimilar to
objects of other groups. Traditionally, we distinguish between partitional cluster-
ing, which aims at finding a partition of the objects, and hierarchical clustering,
which finds a sequence of nested partitions.

Over the years, the notion of partitional clustering has been extended to
several important variants, including fuzzy [3], possibilistic [12], rough [17] and
evidential clustering [8,9,15]. Contrary to classical (hard) partitional clustering,
in which each object is assigned unambiguously and with full certainty to one
and only one cluster, these variants allow ambiguity, uncertainty or doubt in the
assignment of objects to clusters. For this reason, they are referred to as soft
clustering methods, in contrast with classical, hard clustering [18].

Among soft clustering paradigms, evidential clustering describes the uncer-
tainty in the membership of objects to clusters using a Dempster-Shafer mass
functions [20]. Roughly speaking, a mass function can be seen as a collection of
sets with corresponding masses. A collection of such mass functions for n objects
is called a credal partition. Evidential clustering consists in constructing such a
credal partition automatically from the data, by minimizing a cost function.

∗This research was supported by the Labex MS2T, which was funded by the French
Government, through the program “Investments for the future” by the National Agency
for Research (reference ANR-11-IDEX-0004-02).



In this paper, we provide a comprehensive review of evidential clustering
algorithms, implemented in the R package evclust3 [7]. Each of the main al-
gorithms to date can be seen as implementing a decision-directed clustering
strategy: starting from an initial credal partition and an evidential classifier, the
classifier and the partition are updated in turn, until the algorithm has converged
to a stable state.

The rest of this paper is structured as follows. In Section 2, the notion of
credal partition is first recalled, and some relationships with other clustering
paradigms are described. The main evidential clustering algorithms are then
reviewed in Section 3. Finally, Section 4 concludes the paper.

2 Credal partition

We first recall the notion of credal partition in Section 2.1. The relation with
other clustering paradigms is analyzed in Section 2.2, and the problem of sum-
marizing a credal partition is addressed in Section 2.3.

2.1 Credal partition

Assume that we have a set O = {o1, . . . , on} of n objects, each one belonging to
one and only one of c groups or clusters. Let Ω = {ω1, . . . , ωc} denote the set
of clusters. If we know for sure which cluster each object belongs to, we have a
(hard) partition of the n objects. Such a partition may be represented by binary
variables uik such that uik = 1 if object oi belongs to cluster ωk, and uik = 0
otherwise.

If objects cannot be assigned to clusters with certainty, then we can quantify
cluster-membership uncertainty by mass functions m1, . . . ,mn, where each mass
function mi is a mapping from 2Ω to [0, 1], such that

∑
A⊆Ωmi(A) = 1. Each

mass mi(A) is interpreted as a degree of support attached to the proposition
“the true cluster of object oi is in A”, and to no more specific proposition. A
subset A of Ω such that mi(A) > 0 is called a focal set of mi. The n-tuple
M = (m1, . . . ,mn) is called a credal partition [9].

Example 1 Consider, for instance, the “Butterfly” dataset shown in Figure
1(a). Figure 1(b) shows the credal partition with c = 2 clusters produced by
the Evidential c-means (ECM) algorithm [15]. In this figure, the masses mi(∅),
mi({ω1}), mi({ω2}) and mi(Ω) are plotted as a function of i, for i = 1, . . . , 12.
We can see that m3({ω1}) ≈ 1, which means that object o3 almost certainly
belongs to cluster ω1. Similarly, m9({ω2}) ≈ 1, indicating almost certain assign-
ment of object o9 to cluster ω2. In contrast, objects o6 and o12 correspond to two
different situations of maximum uncertainty. Object o6 has a large mass assigned
to Ω: this reflects ambiguity in the class membership of this object, which means
that it might belong to ω1 as well as to ω2. The situation is completely different

3This package can be downloaded from the CRAN web site at
https://cran.r-project.org/web/packages.



for object o12, for which the largest mass is assigned to the empty set, indicating
that this object does not seem to belong to any of the two clusters.
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Fig. 1. Butterfly dataset (a) and a credal partition (b).

2.2 Relationships with other clustering paradigms

The notion of credal partition boils down to several alternative clustering struc-
tures when the mass functions composing the credal partition have some special
forms (see Figure 2).

Hard partition: If all mass functions mi are certain (i.e., have a single focal
set, which is a singleton), then we have a hard partition, with uik = 1 if
mi({ωk}) = 1, and uik = 0 otherwise.

Fuzzy partition: If the mi are Bayesian (i.e., they assign masses only to sin-
gletons, in which case the corresponding belief function becomes additive),
then the credal partition is equivalent to a fuzzy partition; the degree of
membership of object i to cluster k is uik = mi({ωk}).

Fuzzy partition with a noise cluster: A mass function m such that each
focal set is either a singleton, or the empty set may be called an unnormalized
Bayesian mass function. If each mass function mi is unnormalized Bayesian,
then we can define, as before, the membership degree of object i to cluster k
a uik = mi({ωk}), but we now have

∑c
k=1 uik ≤ 1, for i = 1, . . . , n. We then

have mi(∅) = ui∗ = 1−
∑c
k=1 uik, which can be interpreted as the degree of

membership to a “noise cluster” [5].
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Fig. 2. Relationship between credal partitions and other clustering structures.

Possibilistic partition: If the mass functions mi are consonant (i.e., if their
focal sets are nested), then they are uniquely described by their contour
functions

pli(ωk) =
∑

A⊆Ω,ωk∈A

mi(A), (1)

which are possibility distributions. We then have a possibilistic partition,
with uik = pli(ωk) for all i and k. We note that maxk pli(ωk) = 1−mi(∅).

Rough partition: Assume that each mi is logical, i.e., we have mi(Ai) = 1 for
some Ai ⊆ Ω, Ai 6= ∅. We can then define the lower approximation of cluster
ωk as the set of objects that surely belong to ωk,

ωLk = {oi ∈ O|Ai = {ωk}}, (2)

and the upper approximation of cluster ωk as the set of objects that possibly
belong to ωk,

ωUk = {oi ∈ O|ωk ∈ Ai}. (3)

The membership values to the lower and upper approximations of cluster ωk
are then, respectively, uik = Beli({ωk}) and uik = Pli({ωk}). If we allow
Ai = ∅ for some i, then we have uik = 0 for all k, which means that object
oi does not belong to the upper approximation of any cluster.

2.3 Summarization of a credal partition

A credal partition is a quite complex clustering structure, which often needs to
be summarized in some way to become interpretable by the user. This can be



achieved by transforming each of the mass functions in the credal partition into a
simpler representation. Depending on the representation used, each of clustering
structures mentioned in Section 2.2 can be recovered as different partial views
of a credal partition. Some of the relevant transformations are discussed below.

Fuzzy and hard partitions: A fuzzy partition can be obtained by transform-
ing each mass functionmi into a probability distribution pi using the plausibility-
probability transformation defined as

pi(ωk) =
pli(ωk)∑c
`=1 pli(ω`)

, k = 1, . . . , c, (4)

where pli is the contour function associated to mi, given by (1). By selecting,
for each object, the cluster with maximum probability, we then get a hard
partition.

Fuzzy partition with noise cluster: In the plausibility-probability transfor-
mation (4), the information contained in the masses mi(∅) assigned to the
empty set is lost. However, this information may be important if the dataset
contains outliers. To keep track of it, we can define an unnormalized plau-
sibility transformation as πi(ωk) = (1 − mi(∅))pi(ωk), for k = 1, . . . , c.
The degree of membership of each object i to cluster k can then be de-
fined as uik = πi(ωk) and the degree of membership to the noise cluster as
ui∗ = mi(∅).

Possibilistic partition: A possibilistic partition can be obtained from a credal
partition by computing a consonant approximation of each of the mass func-
tions mi [11]. The simplest approach is to approximate mi by the consonant
mass function with the same contour function, in which case the degree of
possibility of object oi belonging to cluster ωk is uik = pli(ωk).

Rough partition: As explained in Section 2.2, a credal partition becomes equiv-
alent to a rough partition when all mass functions mi are logical. A general
credal partition can thus be transformed into a rough partition by deriving a
set Ai of clusters from each mass function mi. This can be done by selecting
a focal set Ai such that mi(Ai) ≥ mi(A) for any subset A of Ω, as suggested
in [15]. Alternatively, we can use the following interval dominance decision
rule, and select the set A∗i of clusters whose plausibility exceeds the degree
of belief of any other cluster,

A∗i = {ω ∈ Ω|∀ω′ ∈ Ω, pl∗i (ω) ≥ m∗i ({ω′})}, (5)

where pl∗i and m∗i are the normalized contour and mass functions defined,
respectively, by pl∗i = pli/(1 − mi(∅)) and m∗i = mi/(1 − mi(∅)). If the
interval dominance rule is used, we may account for the mass assigned to
the empty set by defining Ai as follows,

Ai =

{
∅ if mi(∅) = maxA⊆Ωmi(A)

A∗i otherwise.
(6)



3 Review of evidential clustering algorithms

Three main algorithms have been proposed to generate credal partitions: the
Evidential c-means (ECM) [15,16], EK-NNclus [8], and EVCLUS [9,10]. These
algorithms are described in the next sections.

3.1 Evidential c-means

In contrast to EVCLUS, the Evidential c-means algorithm (ECM) [15] is a
prototype-based clustering algorithm, which generalizes the hard and fuzzy c-
means (FCM) algorithm. The method is suitable to cluster attribute data. As
in FCM, each cluster ωk is represented by a prototype vk in the attribute space.
However, in contrast with FCM, each non-empty set of clusters Aj ⊆ Ω is also
represented by a prototype vj , which is defined as the center of mass of all
prototypes vk, for ωk ∈ Ak (Figure 3). Formally,

vj =
1

cj

c∑
k=1

skjvk, (7)

where cj = |Aj | denotes the cardinality of Aj , and skj = 1 if ωk ∈ Aj , skj = 0
otherwise.

v1

v2

v3
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v2

v3

v4

Fig. 3. Representation of sets of clusters by prototypes in the ECM algorithm.

Let ∆ij denote the distance between a vector xi and prototype vj , and let
the distance between any vector xi and the empty set by defined as a fixed value
δ. The ECM algorithm is based on the idea that mij = mi(Aj) should be high if
xi is close to vj , i.e. if ∆ij is small. Furthermore, if xi is far from all prototypes



vj , then mi∅ = mi(∅) should be large. Such a configuration of mass functions
and prototypes can be achieved by minimizing the following cost function,

JECM(M, V ) =

n∑
i=1

∑
{j|Aj 6=∅,Aj⊆Ω}

cαjm
β
ij∆

2
ij +

n∑
i=1

δ2mβ
i∅, (8)

subject to ∑
{j|Aj⊆Ω,Aj 6=∅}

mij +mi∅ = 1 ∀i = 1, n, (9)

whereM is the credal partition and V = (v1, . . . ,vc) is the matrix of prototypes.
This cost function depends on three coefficients: β controls the hardness of the
evidential partition as in the FCM algorithm; δ controls the amount of data
considered as outliers, as in the Davé’s Noise Clustering algorithm [5]; finally
parameter α controls the specificity of the evidential partition, larger values of
α penalizing subsets of clusters with large cardinality.

As in FCM, the minimization of the cost function JECM can be achieved by
alternating two steps: (1) minimize JECM(M, V ) with respect to M for fixed V ,
and (2) minimize JECM(M, V ) with respect to V for fixed M. The first step is
achieved by the following update equations,

mij =
c
−α/(β−1)
j ∆

−2/(β−1)
ij∑

Ak 6=∅ c
−α/(β−1)
k ∆

−2/(β−1)
ik + δ−2/(β−1)

, (10)

for i = 1, . . . , n and for all j such that Aj 6= ∅, and

mi∅ = 1−
∑
Aj 6=∅

mij , (11)

for i = 1, . . . , n. The second step implies solving a system of the form HV = B,
where B is the matrix of size c× p with general term

Blq =

n∑
i=1

xiq
∑
Aj3ωl

cα−1j mβ
ij (12)

and H the matrix of size c× c given by:

Hlk =
∑
i

∑
Aj⊇{ωk,ωl}

cα−2j mβ
ij . (13)

We can observe that Eqs (10)-(11) define an evidential classifier: given the
matrix V of prototypes, they make it possible to compute a mass function for
any new instance. The prototype-updating step can then be seen as a training
phase, where the classifier is fitted to the data. ECM can thus be seen as a
decision-directed clustering algorithm.

The Relational Evidential c-Means (RECM), a version of ECM for dissim-
ilarity data, was introduced in [16]. In this version, we assume that the data



consist in a square matrix D = (dij) of dissimilarities between n objects, so
that ECM cannot be used directly. However, if we assume the dissimilarities dij
to be metric, i.e., to be squared Euclidean distances in some attribute space,
we can still compute the distances ∆ij in (8) without explicitly computing the
vectors xi and vk, which allows us to find a credal partitionM minimizing (8).
Although the convergence of RECM is not guaranteed when the dissimilarities
are not metric, the algorithm has been shown to be quite robust to violations of
this assumption.

3.2 EK-NNclus

The EK-NNclus algorithm [8] is another decision-directed clustering procedure
based on the evidential k-nearest neighbor (EK-NN) rule [6]. The EK-NN rule
works as follows. Consider a classification problem in which an object o has to
be classified in one of c groups, based on its distances to n objects in a dataset.
Let Ω = {ω1, . . . , ωc} be the set of groups, and dj the distance between the
object to be classified and object oj in the dataset. The knowledge that object
o is at a distance dj from oj is a piece of evidence that can be represented by
the following mass function on Ω,

mj({ωk}) = ujkϕ(dj), k = 1, . . . , c (14a)

mj(Ω) = 1− ϕ(dj), (14b)

where ϕ is a non-increasing mapping from [0,+∞) to [0, 1], and ujk = 1 if oj
belongs to class ωk, ujk = 0 otherwise. In [6], it was proposed to choose ϕ as
ϕ(dj) = α0 exp(−γdj) for some constants α0 and γ. Denoting by NK the set of
indices of the K nearest neighbors of object o is the learning set, the K mass
function mj , j ∈ NK are then combined by Dempster’s rule [20] to yield the
combined mass function

m =
⊕
j∈NK

mj . (15)

A decision can finally be made by assigning object o to the class ωk with the high-
est plausibility. We can remark that, to make a decision, we need not compute
the combined mass function m explicitly. The contour function plj corresponding
to mj in (14) is

plj(ω`) = (1− ϕ(dj))
1−uj` , (16)

for ` = 1, . . . , c. The combined contour function is thus

pl(ω`) ∝
∏
j∈NK

(1− ϕ(dj))
1−uj` , (17)

for ` = 1, . . . , c. Its logarithm can be written as

ln pl(ω`) =

n∑
j=1

wjuj` + C, (18)



where C is a constant, and wj = − ln(1−ϕ(dj)) if j ∈ NK , and wj = 0 otherwise.
The EK-NNclus algorithm implements a decision-directed approach, using

the above EK-NN rule as the base classifier. We start with a matrix D = (dij)
of dissimilarities between n objects. To initialize the algorithm, the objects are
labeled randomly (or using some prior knowledge if available). As the number
of clusters is usually unknown, it can be set to c = n, i.e., we initially assume
that there are as many clusters as objects and each cluster contains exactly one
object. If n is very large, we can give c a large value, but smaller than n, and
initialize the object labels randomly. As before, we define cluster-membership
binary variables uik as uik = 1 is object oi belongs to cluster k, and uik = 0
otherwise. An iteration of the algorithm then consists in updating the object
labels in some random order, using the EKNN rule. For each object oi, we
compute the logarithms of the plausibilities of belonging to each cluster (up to
an additive constant) using (18) as

sik =
∑

j∈NK(i)

wijujk, k = 1, . . . , c, (19)

where wij = − ln(1 − ϕ(dij)) and NK(i) is the set of indices of the K nearest
neighbors of object oi in the dataset. We then assign object oi to the cluster
with the highest plausibility, i.e., we update the variables uik as

uik =

{
1 if sik = maxk′ sik′ ,

0 otherwise.
(20)

If the label of at least one object has been changed during the last iteration,
then the objects are randomly re-ordered and a new iteration is started. Other-
wise, we move to the last step described below, and the algorithm is stopped.
We can remark that, after each iteration, some clusters may have disappeared.
To save computation time and storage space, we can update the number c of
clusters, renumber the clusters from 1 to c, and change the membership variables
sik accordingly, after each iteration. After the algorithm has converged, we can
compute the final mass functions

mi =
⊕

j∈NK(i)

mij , (21)

for i = 1, . . . , n, where each mij is the following mass function,

mij({ωk}) = ujkϕ(dij), k = 1, . . . , c (22a)

mij(Ω) = 1− ϕ(dij). (22b)

As compared to EVCLUS, EK-NNclus yields a credal partition with simpler
mass functions, whose focal sets are the singletons and Ω. A major advantage
of EK-NNclus is that it does not require the number of clusters to be fixed in
advance. Heuristics for tuning the two parameters of the algorithm, K and γ,
are described in [8]. Also, EK-NNclus is applicable to non-metric dissimilarity
data.



3.3 EVCLUS

The EVCLUS algorithm [9,10] applies some ideas from Multidimensional Scaling
(MDS) [4] to clustering. Let D = (dij) be an n×n dissimilarity matrix, where dij
denotes the dissimilarity between objects oi and oj . To derive a credal partition
M = (m1, . . . ,mn) from D, we assume that the plausibility plij that two objects
oi and oj belong to the same class is a decreasing function of the dissimilarity
dij : the more similar are two objects, the more plausible it is that they belong
to the same cluster. Now, it can be shown [10] that the plausibility plij is equal
to 1 − κij , where κij is the degree of conflict between mi and mj . The credal
partition M should thus be determined in such a way that similar objects oi
and oj have mass functions mi and mj with low degree of conflict, whereas
highly dissimilar objects are assigned highly conflicting mass functions. This
can be achieved by minimizing the discrepancy between the pairwise degrees of
conflict and the dissimilarities, up to some increasing transformation. In [10], we
proposed to minimize the following stress function,

J(M) = η
∑
i<j

(κij − δij)2, (23)

where η =
(∑

i<j δ
2
ij

)−1
is a normalizing constant, and the δij = ϕ(dij) are

transformed dissimilarities, for some fixed increasing function ϕ from [0,+∞)
to [0, 1]. A suitable choice for ϕ is a soft threshold function, such as ϕ(d) =
1 − exp(−γd2), where γ is a user-defined parameter. A heuristic for fixing γ is
described in [10]. The stress function (23) by the Iterative Row-wise Quadratic
Programming (IRQP) [10,21]. The IRQP algorithm consists in minimizing (23)
with respect to each mass function mi at a time, leaving the other mass functions
mj fixed. At each iteration, we thus solve

min
mi

∑
j 6=i

(κij − δij)2, (24)

such that mi(A) ≥ 0 for any A ⊆ Ω and
∑
A⊆Ωm(A) = 1, which is a linearly

constrained positive least-square problem that can be solved efficiently. We can
remark that this algorithm can be seen as a decision-directed procedure, where
each object oi is classified at each step, using its distances to all the other
objects. The IRQP algorithm has been shown to be much faster than the gradient
procedure, and to reach lower values of the stress function.

A major drawback of the EVCLUS algorithm as originally proposed in [9]
is that it requires to store the whole dissimilarity matrix D, which precludes its
application to very large datasets. However, there is usually some redundancy
in a dissimilarity matrix. In particular, if two objects o1 and o2 are very similar,
then any object o3 that is dissimilar from o1 is usually also dissimilar from o2.
Because of such redundancies, it might be possible to compute the differences
between degrees of conflict and dissimilarities, for only a subset of randomly
sampled dissimilarities. More precisely, let j1(i), . . . , jk(i) be k integers sampled



at random from the set {1, . . . , i − 1, i + 1, . . . , n}, for i = 1, . . . , n. Let Jk the
following stress criterion,

Jk(M) = η

n∑
i=1

k∑
r=1

(κi,jr(i) − δi,jr(i))
2, (25)

where, as before, η is a normalizing constant. Obviously, J(M) is recovered as
a special case when k = n − 1. However, in the general case, the calculation of
Jk(M) requires only O(nk) operations. If k can be kept constant as n increases,
or, at least, if k increases slower than linearly with n, then significant gains in
computing time and storage requirement could be achieved [10].

4 Conclusions

The notion of credal partition, as well as its relationships with alternative cluster-
ing paradigms have been reviewed. Basically, each of the alternative partitional
clustering structures (i.e., hard, fuzzy, possibilistic and rough partitions) corre-
spond to a special form of the mass functions within a credal partition. A credal
partition can be transformed into a simpler clustering structure for easier inter-
pretation. Recently, evidential clustering has been successfully applied in various
domains such as machine prognosis [19], medical image processing [13, 14] and
analysis of social networks [22]. Three main algorithms for generating credal
partitionsand implemented in the R package evclust have been reviewed. Each
of these three algorithms have their strengths and limitations, and the choice
of an algorithm depends on the problem at hand. Both ECM and EK-NN are
very efficient for handling attribute data. EK-NN has the additional advantage
that it can determine the number of clusters automatically, while EVCLUS and
ECM produce more informative outputs (with masses assigned to any subsets of
clusters). EVCLUS was shown to be very effective for dealing with non metric
dissimilarity data, and the recent improvements reported in [10] make it suitable
to handle very large datasets. Methods for exploiting additional knowledge in
the form of pairwise constraints have been studied in [1, 2], and the problem of
handling a large number of clusters has been addressed in [10].

In future work, it will be interesting to performed detailed comparative ex-
periments with these algorithms using a wide range of attribute and dissimilarity
datasets. Such a study will require the definition of performance indices to mea-
sure the fit between a credal partition and a hard partition, or between two
credal partition. This approach should provide guidelines for choosing a suitable
algorithm, depending on the characteristics of the clustering problem.
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