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Abstract 
 

The NE Atlantic margin plays host to numerous basins, developed in phases from the Devono-
Carboniferous through to the Cenozoic, which record the build up to plate separation and 
formation of the North Atlantic Ocean. Existing models for this invoke broadly NW-SE 
extension within the basins, which are segmented by regional-scale NW-SE trending strike-slip 
lineaments, which are commonly termed ‘transfer zones’. However, there is a general paucity 
of information concerning the true kinematics of the so-called transfer zones. In this study, the 
Palaeogene and later structural evolution of the NE Atlantic margin is investigated using 
abundant field data collected on the Faroe Islands, and systematic observations that 
characterise the related deformation structures developed in the Faroe Islands Basalt Group 
(FIBG). 

Structures in the Faroe Islands provide evidence for a 6-stage tectonic evolution, here split into 
3 broad phases: (1a) E-W to NE-SW extension, accommodated by dip-slip N-S and NW-SE 
trending faults. Continued NE-SW extension (1b) was then accommodated by the 
emplacement of a regionally significant NW-SE- and NNE-SSW-oriented dyke swarm. Event 1 
affects the majority of the FIBG stratigraphy, resulting in thickness variations, most notably 
across the Judd, Brynhild and Westray (‘transfer’) fault-zones. Continued magmatism and 
anticlockwise rotation of the extension vector led to (2a) the emplacement of ENE-WSW and 
ESE-WNW conjugate dykes, followed by intrusion of the large, saucer-shaped sills on the 
islands. Their intrusion heralded the onset of N-S crustal extension and was followed by (2b) 
crustal extrusion involving both E-W shortening and further N-S extension facilitated primarily 
by slip on ENE-WSW (dextral) and ESE-WNW (sinistral) conjugate strike-slip faults, interlinked 
with minor NE and SW dipping thrust faults. During the final stages of this event (2c), the 
regional extension vector rotated into a NW-SE orientation that was accommodated 
predominantly by slip along NE-SW oriented dextral-oblique-slip faults. Event 2 began towards 
the end of magmatism associated with the FIBG, and most likely continued through to the 
onset of oceanic-spreading on the Aegir ridge (ca. 55 Ma). Finally, (3) Event 1 and 2 structures 
were reactivated as extension and extensional-hybrid features, characterised best by the 
entrainment of clastic material along fault planes. Relative timings of Event 3 structures 
suggest they formed during a period of compression and uplift following the formation of a 
through-going mid-ocean ridge system (i.e. on the Reykjanes, Kolbeinsey and Mohns ridges).   

The progressive anticlockwise rotation of the extension vector identified here is broadly 
consistent with the most recent NE Atlantic continental break-up reconstructions. Importantly, 
this model does not require basin-scale transfer zones during the Palaeogene, suggesting 
instead that these NW-SE faults formed as normal faults during a pre-cursor margin-parallel 
extension episode (Event 1) prior to the onset of oceanic spreading in the Faroe-Iceland sector. 
This study emphasises the importance of carrying out detailed field studies in addition to the 
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more usual regional-scale modelling studies, in order to validate and add further detail to basin 
kinematic histories. 

Mineralised syn- to post-magmatic fault sets display a recurring zeolite-calcite-zeolite trend in 
mineralisation products, which precipitate during successive phases of fault development 
during each individual event. Fault style and damage zone width appear to be related to the 
stage of fault development, with early fault/vein meshes linking to form through-going 
structures with associated damage zones. Dykes and sills are found to form their own 
fractures, rather than exploiting pre-existing sets. Dyke propagation appears to be buoyancy-
driven, with magmatic pressure overcoming the minimum compressive stress. Sills, however, 
most likely seeded at an interface in the stratigraphy between a weak, more ductile material 
(i.e. a sedimentary horizon), and a rigid material (i.e. basalt lavas) above. Following this initial 
development, sill growth and propagation would likely be controlled by viscous dissipation, 
leading to the complex ramp and flat architecture, with rapid intrusion resulting in upward 
ramping of the sill. The alternation from fault events, to dyke events and back again 
corresponds to a switch from faulting with mineralisation along extensional hybrid veins, to 
magmatic intrusions into extension fractures followed by extensional hybrids (conjugates), and 
back to extensional and shear hybrid faults (again as conjugates). This alternation reflects 
variations in the differential regional stress, as well as the magmatic evolution of the margin, 
and most likely relates to the migration of lithospheric thinning northwestwards across the 
area, towards the eventual axis of break-up. 

We find that, in particular, faults in basalts are in many ways comparable to faults formed at 
shallow crustal depths in carbonate rocks and crystalline basement, most likely reflecting the 
similarities in their mechanical properties under near-surface pressures and temperatures. The 
nature and style of the post-magmatic fault infills provides compelling evidence to suggest that 
subterranean cavities associated with faults were persistent open features within the FIBG. 
Structures equivalent to these late, clastic-filled faults of the Faroes may occur in other parts of 
the NE Atlantic margin, particularly along the axes of gentle regional-scale folds that are widely 
developed in the region. The late fault displacements observed are all well below seismic 
resolution, and such structures may be more widespread across the region than previously 
anticipated. Importantly, the probable unsealed nature of the clastic infills makes them 
potential fluid-migration pathways, both up- and across-faults within the Cenozoic volcanic 
sequences of the NE Atlantic region.  
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1  

Introduction 

 

1.1 Introduction 

Existing interpretations of seismic reflection data and potential field modelling studies 

have proposed that faults and fractures in the Faroe Islands are related to a series of 

NW-SE trending lineaments, interpreted as broad ‘transfer-zones’ (Rumph et al., 1993; 

Ellis et al., 2009) that lie parallel to the regional extension direction during the 

Palaeogene. Along strike and to the NE on the Norwegian shelf, transfer-zones appear 

to segment Jurassic and later basins, and a similar model is applied in the Faroe-

Shetland Basin (FSB; Doré et al., 1999), although this region now lies buried by a 

significant thickness (up to 6km locally) of Tertiary basalts. Several ‘transfer zone’ 

lineaments identified offshore in the FSB project through the Faroe Islands and any 

structures related to these inferred fault zones should therefore be exposed on land. In 

particular, structures and offsets relating to the Judd, Westray and Brynhild lineaments 

(Ellis et al., 2002; Ellis et al., 2009) should be evident. The kinematics and surface 

expression of these ‘transfer zones’ are important if they are equivalent to transfer 

zones recognised in other basins worldwide (e.g. Gibbs, 1984; Rosendahl, 1987; Doré 

et al., 1997; Brekke, 2000). If they are analogous to these structures they should 

significantly influence or control the provenance and distribution of sediments into the 
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FSB through time. However, an alternative model has suggested that these NW-SE 

structures are related instead to changes in Palaeocene rift orientation immediately 

prior to and during continental break-up (Doré et al., 1999). In this model, variations in 

rift orientation would result in distinct successive fault and fracture sets, within which, 

the ‘transfer zones’ would simply relate to a single phase or event.  

 

The primary focus of this thesis is the documentation of the structural evolution of the 

Faroe Islands based on the observed geometric and kinematic development of 

deformation structures exposed on the islands. The main aim of this thesis is to create 

a four-dimensional (4-D) model for the development of structures on the Faroe Islands, 

as a critical test of the existing models. An ancillary aim (though equally important) is 

to characterise the hitherto poorly understood geological characteristics of faults in 

extrusive basaltic lava sequences. 

 

1.2 Methodology 

Datasets in this thesis have been collected at multiple scales, including: (1) large-scale 

remote-sensing mapping using high-resolution aerial imagery and topography; (2) 

meso-scale field-mapping; and (3) microstructural analysis of thin sections. 
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1.2.1  Remote sensing 

A more detailed methodology for remote sensing analysis is presented in Chapter 2; a 

synopsis is given here. Remote-sensing analyses were conducted using ArcGIS 

software, incorporating topographic (10m resolution; Munin) and bathymetric data 

(30m resolution; courtesy of the University of the Faroe Islands), and 2D aerial and 

satellite images (0.5m resolution; courtesy of Føroya Dátusavn). Contour datasets were 

processed to create topographic surfaces, from which derivatives such as hillshades, 

slope, break-in-slope and aspect maps could be made. Combined, these datasets were 

used to pick surfaces (independent of scale) and lineaments at 1:5,000, 1:50,000 and 

1:250,000 scales. All remote-sensed analyses have been conducted within the WGS 

1984, 29°N (projected) coordinate system. Lineament orientations were calculated 

within ArcGIS and verified using Global Mapper, and have been collated into rose-plots 

using the EZ-rose software (Baas, 2000). Lines picked in the field and remotely have 

also been used to create 3-D surfaces within Gocad, whilst orientation data gathered in 

the field was collated using stereographic projection software, MyFault™ (version 1.03; 

of Pangea Scientific). 

 

1.2.2  Outcrop and hand specimen data 

Detailed structural mapping and data collection were carried out at 406 localities on 10 

of the main islands (see Chapter 3 for full details). Field measurements were primarily 

concerned with outcrop-scale brittle-feature geometries, since large-scale features 

such as strike and dip variations in lava flow layering could be mapped remotely. 
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Orientation data have been collected in a standard compass-bearing system. At the 

time of study, magnetic deviation was calculated to the nearest ½ degree as 7°W 

(source: National Oceanic and Atmospheric Administration (NOAA)). Planar data were 

collected as dip-azimuth and dip; within the thesis text, this is converted to strike, dip, 

dip direction (e.g. 045.85° NW; where the strike is found at bearing 45° and dip is 85° 

from horizontal towards the NW). All locality coordinates are geo-referenced in UTM 

zone 29°N on the WGS 1984 geoid. Field data have been plotted using the MyFault™ 

software (version 1.03). This software can be used to display both orientation and 

kinematic data and has numerous calculation methods for stress inversions (detailed in 

the following section). Data collection in the field was based around reducing error for 

this style of analysis; plane measurements were collected as either: 1) strike azimuth, 

dip and downward-dip direction; or 2) dip azimuth and dip. Fault plane striations and 

slickenlines were taken as a rake upon that plane, thereby removing the possibility of 

an angular mismatch between the plane and the lineation. 

 

Oriented hand specimens were also collected from key localities in order to assess the 

meso- to micro-scale characteristics of the exhumed Faroese fault rocks, associated 

features (e.g. veins) and wall-rock characteristics. 
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1.3 Stress inversion techniques 

Palaeostress orientations have been calculated using standard inversion methods in 

MyFault™ (v. 1.03) stereonet software, produced by Pangaea Scientific Limited. The 

program offers five inversion methods, which are detailed below. This allows a quick 

and easy comparison between different methodologies (Fig. 1.1), each of which is 

based on different assumptions. Every dataset has been run through each 

methodology (provided data numbers are sufficient) in order to assess any mismatches 

in the resulting palaeostress orientation calculations. For all datasets, the methodology 

chosen has been based on the result that is most consistent with fault rock 

characterisation. For instance, where available, tensile veins are used to verify the 

orientation of σ3. Using the data set example in Figure 1, we would choose the simple 

shear tensor average, on the basis that: (1) σ3 is oriented within the densest pole 

cluster (not shown) of the tensile veins; (2) σ1 is horizontal and oriented within the 

acute angle between a mean ENE and a mean ESE conjugate strike-slip set; (2) the 

horizontal extension and shortening directions fit well with the observed fault rocks; 

and (4) calculation errors are minor, unlike other methods in which the program has 

attempted to switch σ2 and σ3 (though with no evidence for this in the field). Sceptics 

may question whether comparison between the different methods is valid, and in fact 

there is no generally accepted approach to deciding which method is used. 

Palaeostress calculations are based on varying assumptions (the most significant and 

widespread being that strain is equal to stress), and as such we used them simply as a 

guide. However, as strain in the Faroes appears to be reasonably minor (<<10%), thus 
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the degree of rotational strain is likely to be negligible, we feel this approach is suitable 

for the present study. 

 

 

Fig. 1.1. Palaeostress calculations for faults and extension fractures at Eiði, NW Eysturoy. 
Typical variation in Principal stress orientations is ~10-15°, though in some cases ranges from 
20-30° (for instance between the Fry’s hyperplane average, and the other methods). In this 
example set, the simple shear tensor average gives the least spread during recalculation (i.e. it 
has the tightest clusters), and is therefore used to represent the palaeostress calculation. 
Other methods for this data set appear to switch the maximum and intermediate principal 
stresses (σ1 and σ2 respectively) during recalculations resulting in the observed point-spread 
along the σ1-σ2 plane. The horizontal extension direction is within 15-20° across the different 
methodologies, and fits with a N-S extension as indicated by extension fractures in the data 
set. As such, this result is viewed as reliable. 
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1.3.1 Simple shear tensor average (Sperner et. al., 1993) 

In this method, a simple shear stress state is assumed for each fault, with the 

intermediate principal stress lying in the fault plane perpendicular to the slip direction. 

The individual stress tensors can then be averaged together to give an estimate of the 

collective stress tensor. The angle between the maximum principal stress and the fault 

plane can be varied to search for the minimum deviation between the faults in the set; 

MyFault™ automatically scans between 0 and 45°.  

 

The method assumes that slip occurs in the same direction as when the fault was first 

formed, and it does not allow for an estimate of the intermediate principal stress. Its 

average value will tend to lie close to 0.5, where the maximum and minimum principal 

stresses are normalised to 1 and 0, respectively. As such, in all the inversion methods 

detailed here, the stress ratio: (intermediate-minimum) / (maximum-minimum) is 

equal to the intermediate stress. 

 

The uncertainties in these quantities are estimated using the bootstrap resampling 

method (as is the case for all the methods described herein). For each calculation, 

MyFault randomly samples the record set, choosing the same number of records for 

the new set as were in the original. Since the sampling is random, there will necessarily 

be duplication of one or more of the original records. It then computes the principal 
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stress tensor for each resampled set and computes its tensor distance from the 

principal stress tensor of the full original record set (Michael, 1987a). 

 

1.3.2 Minimised Principal-stress variation (Reches, 1987) 

This method assumes that the stress resulting in fault slip obeys a Coulomb yield 

criterion, τ = C + μσ, where τ is the shear stress resulting in slip, C is the cohesion stress, 

μ is the friction coefficient and σ is the normal stress acting on the fault. Assuming that 

all faults in the set were subject to the same regional stress state, then the principal 

stresses should be the same for all faults. It should be noted, however, that local 

effects, such as variations in material properties, will cause the actual stress state to 

vary between faults. 

 

To estimate the regional stress, it is assumed that the best value is found by minimising 

the variations of the computed principal stresses within the fault set, using the same 

cohesion and friction coefficient for all faults. This assumption leads to determination 

of a set of linear equations in C, μ and six principal stress components. C represents the 

hydrostatic or lithostatic component, and is therefore unknown; It is assumed to be 

zero because the mean stress (and hence the absolute normal stress) is unknown. All 

stresses are normalised so that the maximum principal stress equals 1 and the 

minimum equals 0. To find the value of μ, MyFault™ solves the equations using a range 
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of friction angles from 0 to 45°, choosing the value that gives the minimum variation in 

principal stresses for all faults. 

 

1.3.3 Minimised shear-stress variation (Michael, 1984, 1987a, 1987b, 1991) 

Slip on a fault surface occurs when the resolved shear stress on that surface exceeds 

the frictional resistance to slip. For a uniform regional state of stress, the direction of 

slip will depend on the orientation of the fault and local factors such as frictional 

anisotropy. Thus the actual slip direction may not coincide with the maximum resolved 

shear stress. To estimate the regional stresses, this method applies the assumption 

that the magnitude of the slip stress on the fault is similar for all faults in the set at the 

time of slip. Thus, minimising the variations in slip stress among the faults leads to 

determination of a set of linear equations, which are solved by the standard 

eigenvector method, giving the three principal stresses and their direction. 

 

1.3.4 Minimised non-slip shear-stress (Angelier, 1984) 

The deviations between the maximum resolved shear stress on the fault plane and the 

actual slip direction lead to a non-linear minimisation problem. A set of linear 

equations can be derived instead by minimising the variations in the non-slip stress 

(the shear stress component in the fault plane normal to the slip direction) among the 

faults. These equations are solved by the standard least squares technique, giving the 

three principal stresses and their direction. Again, because the mean stress during slip 
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is generally unknown, the principal stresses are normalised such that the maximum 

stress equals 1 and the minimum equals 0. 

 

1.3.5 Fry’s hyperplane average (Fry, 1999, 2001) 

In order to estimate the regional stresses, this method transforms the data to a 5-

component reduced stress space. In such coordinates, idealised slip on all possible 

faults occurs on a hyperplane, whose normal is the stress tensor giving rise to the slip. 

Thus the problem is reduced to finding the hyperplane best fitting the measured fault 

slip data (Shan et al., 2003, 2004; Li et al., 2005). Using the eigenvectors of the 

measurements in the 5-component space, the minimum eigenvector gives the best-

fitting stress components. Converting back to normal space gives the stress tensor. 

 

1.4 Definitions 

1.4.1 Faults, fractures and kinematic indicators 

1.4.1.1  Fault classification 

A fracture can be defined as a brittle discontinuity or rupture within a material (e.g. 

rock) and can form on all scales, from micro-fractures to plate-scale faults. In terms of 

fracture mechanics, meso-scale fractures are subdivided into 3 subsets, based on the 

relative displacement of the wall rock materials across the fracture (Fig. 1.2; e.g. 

Atkinson, 1987): (1) Mode I, tensile opening with no shear, (2) Mode II, in-plane shear, 
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and (3) Mode III, anti-plane shear. Joints and extension veins are examples of Mode I 

fractures, whereas shear fractures, faults and slickenfibre veins are examples of Mode 

II and III fractures. 

 

Typically, tension fractures will form perpendicular to the minimum principal stress, σ3, 

and parallel to the maximum principal stress, σ1, resulting in uniaxial strain. Shear 

fractures on the other hand will typically form in confined compression at angles <45° 

to σ1. In biaxial stress states, shear fractures are oriented parallel to the intermediate 

stress, σ2, and will form a conjugate pair at an angle <45° to the σ1-σ2 plane (Hancock, 

1985). 

 

Faults are classed based on their geometry and direction of slip, which has led to the 

formation of two classification schemes: (1) Anderson’s dynamic classification, and (2) 

simple geometric classifications. Anderson’s dynamic classification of faults (Fig. 1.2b; 

Anderson, 1951) is based on the assumption that one principal stress (σ1/σ2/σ3) will 

be oriented normal to the Earth’s surface (i.e. vertical). Fault terminology arising from 

this classification includes: normal faults (where σ1 is vertical); Wrench or strike-slip 

faults (where σ2 is vertical); and reverse faults (where σ3 is vertical). 
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Fig. 1.2. (a) Fracture types (Mode I, II, and III) based on the relative displacement of material on 
either side of a fracture. (See text for explanation). (b) Andersonian and (c) geometric fault 
classification schemes (from McClay, 1987). 
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Geometric and kinematic fault classifications (Fig. 1.2c; e.g. McClay, 1987) are based on 

the relative direction of slip across a fault plane, and are split into five divisions: (1) 

Normal faults (extension of horizontal datum surfaces); (2) Reverse faults (shortening 

of horizontal datum surfaces); (3) Strike-slip faults (horizontal motion, with no change 

in length of horizontal datum surfaces); (4) Oblique-slip faults (combining strike- and 

dip-slip motion); and (5) Rotational faults. References to fault classes in the present 

thesis use the geometric/kinematic classification, with the exception of rotational 

faults, of which none were identified during the study. 

 

1.4.1.2  Kinematic indicators 

The sense of slip can be determined simply by the presence of offset geological 

structures. However, in instances where these are not available, brittle shear-sense 

indicators can be used (Fig. 1.3). These include: (1) fault plane striations; (2) fault plane 

undulations; and (3) secondary fracture systems. 

 

Fault plane striations can take two general forms (Fig. 1.3a): (a) striae, where 

fragments or asperities scratch against the fault surface during movement; or (b) 

slickenfibres, which are syn-kinematic, elongate crystals that grow on the shear plane 

as fault movement occurs. In the case of fault striae, the end of the indentation points 

in the direction of the missing counterpart surface. Slickenfibres grow at low angles to 

the fault wall, and will tend to break along or across the fibres, resulting in a roughly 
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stepped surface. These steps indicate the direction of motion, with the missing block 

travelling in the down-step direction (Fig. 1.3a). 

 

Fault plane undulations (i.e. bends along the plane) can result in the formation of 

localised tensile jogs, or zones of compression, depending on the relative kinematics of 

the fault, and are commonly used in conjunction with striae and/or secondary fractures 

in order to determine the sense of displacement. 

 

Secondary fractures developed during shear along a main fault form a reproducible set 

of structures observed in numerous types of material under a wide range of confining 

pressures and strain rates (Cloos, 1955; Byerlee et al., 1978; Fig. 1.3b). The most 

abundant elements are R, R’, P and T fractures. The synthetic R (Riedel) fractures are 

extensional, and form at a low angle (10-20°) to the mean fault plane, whereas R’ 

fractures are antithetic and conjugate to R, and form at a high angle to the mean fault 

plane (70-90°). Contractional P fractures are synthetic and form at an angle of 10-20° 

to the mean fault plane. T fractures are tensile, and develop at an angle of 30-90°. The 

various morphologies of these secondary fractures are shown in Figure 1.3b. 
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Fig. 1.3. Forms of kinematic indicators resulting from brittle deformation: (a) fault plane striae 
(grooves) and slickensides (mineral fibres) (From Petit, 1987; Twiss and Moores, 1992). (b) 
Shear sense criteria from secondary fractures: M, main fracture; R and R’, synthetic and 
antithetic Riedel shears respectively; T, tensile fractures; P, synthetic shears associated with 
dextral shear (in this example) (After Petit, 1987). 

 

Chapter 1

15



1.4.1.3  Hydrofractures 

Anderson’s theory of faulting assumes that faulting is controlled by a Mohr-Coulomb 

type failure criterion (Anderson, 1951; Fig. 1.4a). Slip will occur when the applied 

stresses equal the rock strength. Brittle faulting of intact rock can therefore be 

described by the Coulomb Criterion for shear failure: 

 

τ = C + μi σ’n   or   τ = C + μi (σn-Pf) 

 

where, τ  is the shear stress at failure (shearing resistance), σn is the normal stress (σ’n 

is the effective normal stress, σn-Pf, ), C is the cohesive strength, μ is the coefficient of 

internal friction, and Pf is the pore fluid pressure. Pore fluid is important when 

considering the formation of fractures, as it decreases the normal stress required for 

failure by an amount equal to the pore fluid pressure (i.e. the second part of the 

equation above; Fig. 1.4b). Therefore we can define tensile hydrofractures here as 

fluid-assisted mode I fractures that form planes perpendicular to the minimum 

compressive stress (σ3; Sibson, 1985; e.g. Fig. 1.4a). As such, hydrofractures are 

commonly used to infer the orientation of the regional stress field. The principal 

effective stresses in order of decreasing magnitude are denoted σ’1 = σ1 – Pf, σ’2 = σ2 – 

Pf, σ’3 = σ3 – Pf. Under low values for differential stress (i.e. σ1 – σ3 < 4T, where T is the 

tensile strength of the rock) hydrofractures will form when the condition σ’3 = -T is 

achieved (Hubbert and Rubey, 1959). 
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Fig. 1.4. (a) Mohr diagram (shear stress (T) against effective normal stress (σl

n)) with composite 
failure envelope for intact rock (bold black line) and reshear condition for a cohesionless fault 
(dash-dot line). Critical stress circles are shown for 3 modes of brittle failure and for reshear on 
an optimally oriented cohesionless fault. Expected orientations with respect to the principal 
stress axes of newly-formed compressional shear, extensional shear and extension fractures 
are shown in the attached cartoons (Sibson, 2004). (b) Effect of fluid pore pressure on the 
formation of a fault. 

 

Complex hydrofracture systems with orthogonal sets of tensile hydrofractures related 

to a single tectonic phase are common in nature. This requires local permutations in 

the relative magnitudes of the principal stresses (e.g. Colletini et al., 2006 and 

references therein), for which there are several proposed mechanisms depending on 

the specific geological conditions. Of particular note with reference to the present 

study is the effect of pore pressure charge, release and recharge following fracture 

events (as detailed by Colletini et al. 2006 for the Zuccale Fault Zone on Elba, Italy). In 

their study, a complex system of mutually cross-cutting vertical and horizontal 

hydrofractures was interpreted as being the result of local stress permutations induced 

by the cyclic build-up and subsequent release of overpressure below the low-

permeability Zuccale Fault Zone (Fig. 1.5). In this model, fluid pressure release results 

in the formation of a fluid filled crack, and a drop in the normal effective stress to zero. 

Since the fluid filled crack has a tensile strength of zero, it cannot decrease further with  

Chapter 1

17



 

Fig. 1.5. Model for the development of 3 orthogonal vein sets: (a) During overpressure build-
up, the principal effective stresses are reduced. As each principal effective stress reaches –T, 
fractures open in perpendicular planes and that same principal effective stress jumps up to 
zero. (b) The stress states plotted as Mohr circles when each set of hydrofractures is about to 
open. The Cartesian axes system, north direction and the orientations of the 3 fracture sets are 
shown below. 
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increasing fluid pressure, provided that this increase exceeds the cementation (healing) 

rate (otherwise the fracture would regain tensile strength and future deformation 

would occur along it). A constant supply of fluids would result in lowering of σ’1 and 

σ’2, until the point that σ’2 and σ’3 were switched (at zero) (Fig. 1.5). Failure would 

therefore occur perpendicular to the previous σ2 orientation. With further recharge 

(which again has to be faster than the healing rate), σ’1 would continue to drop until 

failure when the normal effective stress reached –T, forming a fracture perpendicular 

to the original orientation of σ1 (Fig. 1.5). 

 

1.4.1.4 Fault rocks 

The fault rock terminology used in this thesis follows the nomenclature and definitions 

of Schmid and Handy (1991) for cohesive rocks (i.e. cataclasites and foliated 

cataclasites). For breccias, of which there are numerous examples in the Faroes, we 

use the classifications of Woodcock and Mort (2008) (Fig. 1.6a), which is based on grain 

size, rather than the lack of cohesion during faulting. Breccias are therefore split into: 

(1) crackle breccias, (2) mosaic breccias, and (3) chaotic breccias; terms that simply 

describe how well the clasts fit together (Fig. 1.6b-d). 

 

Cataclasites are composed predominantly of mechanically disaggregated minerals, the 

clasts of which have undergone subsequent frictional grain-boundary sliding, rotation 
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and disaggregation. In some cases, cataclasites contain a foliation (i.e. foliated 

cataclasite), which is defined by either bands of fine and coarse comminuted clasts, 

fine grained material localised along parallel fractures, or bands of syn-tectonic 

alteration products (Chester et al., 1985). Cataclasites can be segregated depending on 

the relative proportion of matrix (Schmid and Handy, 1991), into: microbreccia (0-10%), 

protocataclasite (10-50%), cataclasite (50-90%) and ultracataclasite (90-100%). 

 

 

Fig. 1.6. (a) Ternary diagram for a brecciated fault rock classification, and examples of (b) 
crackle breccia, (c) mosaic breccia, and (d) chaotic breccia from the Dent Fault Zone, NW 
England. (From Woodcock and Mort, 2008) 
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1.4.1.5  Fault damage zones and fault cores  

The nomenclature referring to fault zones in this thesis is based on the definitions 

detailed in Caine et al. (1996). Depending on its stage of development, a fault zone in 

an upper crustal protolith may comprise wall rocks, a fault core and damage zone (Fig. 

1.7). The terminology is not dependant on the presence of all three components (i.e. 

fault core; damage zone; wall rocks), nor is any scaling relationship implied. Hence, a 

fault core is defined here as ‘the structural, lithological, and morphological part of a 

fault zone where most of the displacement is accommodated’ and the damage zone as 

‘a network of subsidiary structures that bound the fault core’ (Caine et al., 1996). 

 

  

Fig. 1.7. Fault related damage: (a) Conceptual model of a fault zone: k, bulk 2-D permeability 
(from Caine et al., 1996); (b) Detailed conceptual sketch of a fault zone in carbonate rocks, 
viewed perpendicular to the shear direction (from Billi et al., 2003). 
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By definition, a fault core can range from a single slip surface, or collection of slip 

surfaces, to a broader zone of cataclasis. Damage zones are typically made up of 

networks of small faults, fractures and veins that can cause anisotropy, particularly in 

terms of the permeability and elastic properties of the material. 

 

1.4.2 Fault reactivation 

We define fault reactivation as ‘the accommodation of geologically separable 

displacement events (at intervals >1Ma) along pre-existing structures’ (after 

Holdsworth et al., 1997). Reactivation can be split into two geometric types, where: (1) 

reactivated faults display different senses of relative displacement during successive 

events, and (2) faults display similar senses of relative displacement during successive 

events.  

 

In the text we also refer to ‘recurrent reactivation.’ We define this simply as repeated 

kinematic episodes accommodated by the same fault zone during successive events 

that may occur at intervals <1Ma. 

 

1.4.3 Transfer and accommodation zones 

Transfer and accommodation zones (e.g. Fig. 1.8) occur in all tectonic settings, from 

thrust belts to rifts. In the simplest of geometric expressions, for every dip-slip fault, 
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contractional or extensional, there are four end-member terminations; two parallel, 

and two perpendicular to strike (Faulds and Varga, 1998), beyond which there must be 

transfer or accommodation. In reality, brittle failure does not involve the formation of 

a single fault, rather the linking together of segments (Peacock, 2002; Walsh et al., 

2003). Nevertheless, the complexity of transfer-zone geometry has potentially been far 

underestimated. 

 

Transfer and accommodation zone studies have been applied to regions undergoing 

shortening (e.g. Dahlstrom, 1970; O’Keefe and Stearns, 1982), regions of extension 

(e.g. Gibbs, 1984; Rosendahl, 1987; Morley et al., 1990), and in analogue modelling of 

the two (e.g. Calassou et al., 1993; Acocella et al., 1999). The nomenclature has also 

been applied to oblique- or strike-slip settings (e.g. McClay and White, 1995), with 

transfer and accommodation geometries varying considerably from their dip-slip 

equivalents. The distinction between transfer- and accommodation- zones commonly 

appears to be arbitrary, and frequently the two terms are used interchangeably. This 

has resulted in their usage becoming quite confused and cumbersome (e.g. Peacock et 

al., 2000). ‘Transfer zone’ in particular appears to have become a vernacular phrase, 

used to link any overlapping fault set. Most often, ‘transfer zone’ is just used to 

describe any lineament trending normal to a set of basin-bounding faults, and the 

kinematics are assumed to be strike-slip or oblique in order to fit with the observed 

basin geometry. For the purposes of this thesis, we define transfer and 
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Fig. 1.8. Idealised sketch representations of (a) sinistral and dextral transfer zones and (b-c) 
accommodation zones. (From Faulds and Varga, 1998). 
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accommodation zones following the Faulds and Varga (1998) definitions, i.e. a transfer 

zone is defined as a discrete zone of strike-slip and oblique-slip faulting that generally 

trends parallel to the extension direction and typically facilitate a transfer of strain 

between extended domains arranged in an en echelon pattern (e.g. Fig. 1.8a). An 

accommodation zone is an area of soft-linked rift segmentation, typically characterised 

by a zone of overlapping normal faults where strain is transferred as a set of relay 

structures (e.g. Fig. 1.8b, c). 

 

1.5 Thesis outline 

Chapters 2-6 are described individually below. The main data sections, Chapters 2-5, 

have been written as standalone manuscripts to be submitted for publication; these 

are recast for the thesis if/when appropriate. As such, each chapter contains a specific 

introduction, background, discussion and conclusions. The background sections for 

each chapter represent a content-specific synopsis of Chapter 2, and may therefore be 

skipped at the reader’s discretion. This also applies to deformation-history recap 

sections in Chapters 4 and 5, which provide a synopsis of Chapter 3. Co-authors for 

each manuscript provided scientific advice and discussion, and appropriate editorial 

guidance. For the sake of consistency, pronouns referring to the author (myself) will 

appear in the plural form (i.e. we replaces I) throughout as an acknowledgement of co-

author contributions. The thesis only contains manuscripts for which I am the 1st 
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author, and I have been responsible for more than 90% of the primary data collection, 

interpretation and paper writing. 

 

Chapter 2 – The geological context of the study. 

This chapter represents a summary of the geology of the Faroe Islands and the 

formation of the Faroe-Shetland basin and the NE Atlantic, based primarily on 

published references, but also incorporating regional-scale remote-sensed analyses of 

the islands carried out as part of the present study. 

 

Chapter 3 – Island- to outcrop-scale fault kinematic study. 

This chapter is a structural study of the Faroe Islands detailing fault/fracture kinematics 

related to tectonics, based on detailed remote-sensed analyses and field-mapping. 

Detailed mapping and structural analyses are used to determine distinct deformation 

events, which are fitted into a regional to super-regional context. 

 

Chapter 4 – Outcrop-scale study of ‘regionally late’ faults on the Faroe Islands. 

This chapter provides an in-depth characterisation of the regionally post-magmatic 

structures detailed in Chapter 3, primarily based on field analysis, but incorporating 

evidence from micro-structural analysis. 
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Chapter 5 – Meso- to micro-scale analysis of Faroese fault-zones and fault-rocks. 

This chapter focuses on fault zone architecture in order to understand the deformation 

mechanisms associated with the large-scale kinematic events (as detailed in Chapter 3).  

Chapter 6 – Discussion, conclusions, and future work. 

This chapter elaborates on the discussion section of the preceding chapters, and 

conclusions drawn throughout the body of the thesis are summarised. This study also 

reveals areas of interest for possible future research, with suggestions as to studies 

that may be of importance to both the scientific and industrial communities. 
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2  
The Faroe Islands Basalt Group: North Atlantic Igneous Province, 
NE Atlantic margin 
 

2.1 Introduction 

The NE Atlantic margin is a passive continental margin extending from Lofoten, 

Norway, in the northeast to offshore western Ireland in the southwest (Fig. 2.1a). It is 

characterised by a continuous chain of NE-SW oriented Devono-Carboniferous and 

later basins that appear to be segmented along their axis by NW-SE trending 

lineaments commonly referred to as “transfer zones” (Rumph et al., 1993; Doré et al., 

1997; Kimbell et al., 2005). Much of the outer, oceanward region of the margin is 

covered by a thick pile of flood-volcanics, forming part of the Palaeogene North 

Atlantic Igneous Province (NAIP; Fig. 2.1b, c). As far as the petroleum industry is 

concerned, the basins are somewhat underexplored, in part due to this volcanic 

masking, but also to the previously prohibitively deep waters. In the past decade, the 

Faroes sector of the margin has been opened for licensing rounds, and based on the 

presence of several large fields in the nearby UK sector (e.g. Clair, Foinaven and 

Schiehallion) a rapid exploration upsurge has been sparked. 
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Fig. 2.1. (a) Super-regional plate tectonic map of the NE Atlantic, Labrador Sea / Baffin Bay and 
Arctic Ocean. (Figure 1 of Doré et al., 2008; abbreviations: AD, Alpin Dome; FR, Fugløy Ridge; 
HD, Hedda Dome; HHA, Helland Hansen Arch; HSD, Havsule Dome; ID, Isak Dome; IIM, Iceland 
Insular Margin; LBD, Lousy Bank Dome; LFC, Lyonesse Fold Complex; MA, Modgunn Arch; 
MGR, Munkagunnar Ridge; MHFC, Mid-Hatton Bank Fold Complex; ND, Naglfar Dome; NHBA, 
North Hatton Basin Anticline; NHBC, North Hatton Bank Fold Complex; OL, Ormen Lange 
Dome; VD, Vema Dome; WTR, Wyville Thomson Ridge; YR, Ymir Ridge). (b) North Atlantic 
tectonic reconstruction for the Palaeocene/Eocene boundary, immediately prior to plate 
separation between Europe and Greenland (Figure 7 in Saunders et al., 2008); (c) Structural 
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(Fig. 2.1 continued) elements map of the Faroe-Shetland Basin, NE Atlantic Margin. EFH, East 
Faroe High; FS-B, Flett Sub-Basin; JB, Judd Basin; CR, Corona Ridge; FR, Flett Ridge; RR, Rona 
Ridge; BFZ, Brynhild Fault-Zone; CFZ, Clair Fault-Zone; EFZ, Erlend Fault-Zone; GKFZ, Grimur 
Kamban Fault-Zone; JFZ, Judd Fault-Zone; VFZ, Victory Fault-Zone; WFZ, Westray Fault-Zone. 
(After Stoker et al., 1993; Rumph et al., 1993; Lundin and Doré, 1997; Sørensen, 2003; White et 
al., 2003; Jolley and Morten, 2007; Ellis et al., 2009). 

 

The purpose of this chapter is to introduce the margin- to island-scale geological 

history of the Faroes and the NE Atlantic Margin, including formation of the NE 

Atlantic, and its marginal basins, and emplacement of the NAIP. The second half of the 

chapter details remote-sensing analyses undertaken as part of this study, upon which 

field-based analyses were then directed (as detailed in Chapters 3-5). 

 

2.2 Geological setting: a review 

2.2.1  The North Atlantic Igneous Province 

The NAIP was emplaced during the Palaeocene and Eocene, across an area of 1.3 x 106 

km2, and is believed to represent a volume of mainly mafic igneous extrusive rocks 

(basalts) in excess of 1.8 x 106 km3 (Eldholm and Grue, 1994). Magneto-stratigraphy 

and radiometric dating (U-Pb and Ar-Ar) indicate that the NAIP was emplaced in two 

main phases (Fig. 2.1b; Saunders et al., 1997, 2007). The first phase occurred within 

magnetochron 26r (Selandian, 62-59Ma), with intra-plate magmatism in the British 

Isles, SE and W. Greenland, and Baffin, and possibly, central E. Greenland (Saunders et 

al., 2007). Phase 2 occurred within Chron 24r (Palaeocene - Eocene, ~56.5-54Ma), and 

was focussed on the passive margins between NW Europe, and E. Greenland. 
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Fig. 2.2. (a-f) Stepwise plate reconstructions from the Middle Jurassic (a) to the Early Tertiary 
(f). (Mosar et al., 2002; Torsvik et al., 2002). (g-i) Pre-break-up plate tectonic reconstructions 
during the Late Permian (g: 250 Ma), Early Cretaceous (h: 135 Ma – Valanginian) and Late 
Cretaceous (i: 83 Ma - Santonian/Campanian). (Adapted from Figure 9 of Mosar et al., 2002). (j) 
Sequential reconstruction of separation between Greenland and Scandinavia (Figure 10 in 
Mosar et al., 2002). 
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The emplacement of the NAIP is believed to be contemporaneous with rifting of the 

continental lithosphere that occurred during the build up to the opening of the NE 

Atlantic. The genesis of the igneous province can be, and has been related to the 

development of regional elevated asthenosphere temperatures driven by a mantle 

hot-spot (i.e. the putative Iceland Plume; e.g. White, 1988; Hansen et al., 2009, and 

references therein). At present this hot-spot lies beneath Iceland and is responsible for 

the generation of igneous crust in excess of 15km thickness, and has, during the 

development of the N. Atlantic, led to the formation of the 25-30km thick igneous 

Greenland-Faroe ridge (Fig. 2.1c; Vink 1984). 

 

2.2.2  The development of the NE Atlantic continental margins 

From the early Permian until the Early Palaeocene, North America, Greenland and 

Europe were conjoined, forming parts of the evolving Pangaean and Laurasian 

continents (Fig. 2.2a-f). From as early as the Carboniferous, the present-day NE Atlantic 

region, like its neighbouring areas and much of Pangaea, was subjected to a series of 

rift events during a prolonged period of continental reorganisation. By the mid-Jurassic 

(Fig. 2.2a), continental break-up was achieved in the central Atlantic. During the late 

Jurassic (Fig. 2.2b), sea-floor spreading in the Central Atlantic connected north-

eastwards to Neotethys, via the Gibraltar-Azores transform, resulting in the break-up 

of Pangaea, and the birth of Laurasia and Gondwana. Throughout the Cretaceous (Fig. 

2.2c-e) and into the Palaeogene (Fig. 2.2f), Central Atlantic spreading continued as a 
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northward unzipping of Laurasia, between North America and Greenland through the 

Labrador Sea, and out into Baffin Bay. During the Palaeocene, and into the early 

Eocene, continental rifting between Eurasia and Greenland culminated in formation of 

the NE Atlantic, eventually causing a shut-down of spreading in the Labrador Sea. 

Numerous studies have addressed the continental break-up between Greenland and 

Eurasia (Lundin and Doré, 1997; Doré et al., 1999; Lundin and Doré, 2002). Only a brief 

synopsis is given here. 

 

The build-up to the formation of the NE Atlantic arguably extends back to the 

Devonian, with collapse of the Caledonian Orogeny leading to the development of 

several basins in the proto North Atlantic region (Roberts et al., 1999), followed by 

subsequent rifts in the Devono-Carboniferous, Permo-Triassic, Cretaceous and 

Palaeocene (Coward, 1990). In the Carboniferous to the Permo-Triassic, N-S trending 

half-grabens (Fig. 2.2g) accommodated continental conglomerate and sandstone 

deposits in East Greenland, with shelf to deep-shelf carbonate deposition recorded in 

the Barents Sea region (Torsvik et al., 2002). Rift basins of that age were reactivated 

during Jurassic-Cretaceous rift events (Fig. 2.2h, i), before outboard migration of the 

rift axis. The reactivation of pre-existing faults and fabrics in the continental 

lithosphere as it experiences rift-related deformation is recognised worldwide (e.g. 

Sibson, 1995; Holdsworth et al., 1997; Wilson et al., 2009), and such a phenomenon is 
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commonly invoked to explain Cretaceous and later rift segmentation on the Atlantic 

margins. 

 

During the Late Jurassic, and possibly as early as the Permo-Triassic, E-W extension in 

the northern North Sea resulted in the development of N-S trending rift basins such as 

the Viking and Central grabens (Badley et al., 1988; Bartholomew et al., 1993; Færseth 

et al., 1995; Doré et al., 1999; Fig. 2.2j). Rifting continued into the Early Cretaceous, 

with the regional extension vector rotated into a more NW-SE orientation (Fig. 2.2j). 

Rifting became refocused onto the Atlantic margin, at this time initiating a NE-SW 

trending chain of basins extending from the SW Barents Sea, through the Faroe-

Shetland basin and down to the Rockall trough (Doré et al., 1999). As mentioned 

previously, basins formed at that time and trend are thought to be segmented by a 

series of NW-SE trending lineaments, termed ‘transfer-zones,’ that appear to run sub-

parallel to the oceanic transform faults. Onshore studies of the geology exposed 

adjacent to transfer zones in the Faroe Islands (Ellis et al., 2009) have interpreted them 

as major strike-slip fault zones. Recent offshore studies in the Faroe-Shetland Basin 

(Moy and Imber, 2009) however, indicate that some of these features may be related 

to igneous intrusions, transfer of extensional stress between en-echelon rift segments, 

and low seismic data-resolution, with little or no evidence for the regional 

development of strike-slip fault zones. Extension continued along a NW-SE vector 

through the Cretaceous and into the Palaeogene, as a precursor to continental break-
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up and ocean-floor spreading during Chron 24r (ca. 56 – 54 Ma; Berggren et al., 1995; 

Saunders et al., 1997). Evidence for this continental extensional faulting is best 

preserved in sections west of Lofoten, such as in the Vøring Basin, and down to the 

Møre Basin (Figs. 2.2h, i). The Palaeocene stratigraphy thickens rapidly westwards 

from the Møre Basin, before becoming obscured by a cover of thick trap-style basalts 

of the NAIP. 

 

Three post-North Atlantic opening compressional phases have been reported within 

the Faroe-Rockall region, based on the development of folds and basin inversion 

structures (Anderson and Boldreel, 1995; Boldreel and Anderson, 1998; Fig. 2.1a, c), 

the timings of which are constrained to be as follows: 1) Late Palaeocene to Early 

Eocene, affecting the Wyville-Thompson, Munkegrunnar and Ymir Ridges, possibly 

related to the interplay between ridge-push from the newly formed NE Atlantic, and 

Tethyan closure events and associated Alpine stresses; 2) Oligocene, forming NE-SW to 

ENE-WSW-trending fold axes developed between the Hatton Bank and to the east of 

the Faroe Islands, related to initiation of the Kolbeinsey ridge; and 3) Miocene, forming 

NW-trending anticlines to the N, W, and SW of the Faroe Islands, which have been 

related to changes in the magnitude of forces driving the Eurasian plate. 
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2.2.3 The development and significance of NW-SE-trending lineaments 

Many of the regional basins developed along the NE Atlantic margin appear to be 

segmented by NW-SE-trending lineaments that are commonly referred to as transfer 

zones (e.g. Rumph et al., 1993; Doré et al., 1997; Naylor et al., 1999; Ellis et al., 2002; 

Ellis et al., 2009). Such zones are believed to facilitate differential extension within the 

basins, and may be rooted in the pre-existing Precambrian and younger structures 

developed in the continental basement along the margin (e.g. Wilson et al., 2006 and 

references therein). Structures of this kind should have a dominantly strike-slip motion 

sense associated with them. In terms of the Faroe-Shetland Basin (FSB), left-lateral 

oblique-slip displacements are commonly invoked along transfer-zones prior to and 

during continental break-up (e.g. Ellis et al., 2009). Plate reconstructions indicate that 

prior to continental break-up, the Faroe Islands were located no more than 120km 

from the Kangerlussuaq region of East Greenland (Saunders et al., 1997; Larsen et al., 

1999; Figs. 2.1b, 2.2g-j). Studies of the sedimentary succession of Kangerlussuaq 

indicate that sedimentation in the area was controlled by major NW-SE-trending faults 

(Larsen and Whitham, 2005). Similarly, heavy mineral and phytogeographic analyses 

suggest a strong NW-SE-oriented control on infilling within the FSB from the East 

Greenland and Shetland areas (Jolley and Morten, 2007). Notably, distinct heavy 

mineral segregations within the FSB require NW-SE sediment channelling from point 

sources along the margin. When considering the nature of these NW-SE lineaments, it 

is therefore important to include evidence from East Greenland. 
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Primarily on the basis of sedimentary thickness variations, the Kangerlussuaq basin 

(Fig. 2.3a) is believed to have developed over 3 broad stages, involving: (1) initiation, 

(2) infill, and (3) re-inititiation to extinction phases, lasting from the late Cretaceous 

through to the Palaeogene (Larsen and Whitham, 2005). Thickening appears to have 

occurred within the Cretaceous, pre-volcanic and post-volcanic Palaeogene, most 

notably from NE to SW across Nansen Fjord, a large NW-SE trending fjord located east 

of Kangerlussuaq (Fig. 2.3b). Problematically, this therefore puts the critical controlling 

 

Fig. 2.3. (a) Geological map of the Kangerlussuaq area in southern East Greenland showing 
distribution of Cretaceous-Palaeogene sediments and Palaeogene basaltic rocks. Red lines 
indicate positions of cross-sections in b. (Figure 2 of Larsen and Whitham, 2005). (b) Geological 
cross sections corresponding to lines in a. (Redrawn from Figure 7 of Larsen and Whitham, 
2005). 
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structure in the sub-sea and sub-ice regions of the fjord, i.e. it is not exposed at the 

surface (Fig. 2.3a). 

 

Neither the FSB nor East Greenland have yet yielded true kinematic data to constrain 

the development of the NW-SE trending lineaments that span the continental margins. 

Due to a lack of sub-areal exposure, inferences as to the actual kinematics have been 

built largely on the resultant stratigraphic thickness variations, rather than on observed 

structures. Offshore studies specifically targeting the so-called ‘transfer’ lineaments 

have found no obvious evidence for large lateral displacements (e.g. Moy and Imber, 

2009; see also Wilson et al. 2006 for an equivalent onshore study of such features in 

the Lofoten margin in Norway). Instead, they appear to be complex zones with varying 

characteristics from one lineament to the next, as well as along the trend of a single 

lineament. Furthermore, and rather curiously, the lineament spacings in the FSB are 

markedly shorter than they are between lineaments elsewhere along the margin. We 

therefore argue that this presents grounds for viewing the NW-SE trending lineaments 

on a case-by-case basis, rather than collectively. 

 

Projections of three of the Faroe-Shetland transfer zone lineaments intersect the Faroe 

Islands: from SW to NE, the Judd, Brynhild, and Westray lineaments (Fig. 2.1c). (The 

Clair lineament trend is also aligned with a fjord in the Faroes, between Svinoy and 

Fugloy (Figs. 2.1c and 2.4), however intriguingly, no structural maps of the region show 
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a continuation of the lineament into the islands). The Faroe Islands present a unique 

opportunity in the region to study the sub-seismic-scale nature, kinematics, and 

possible effects on sedimentation/magmatic emplacement, of these basin-scale 

transfer zones. 

 

2.2.4 The Faroe Islands Basalt Group 

The Faroe Island Basalt Group (FIBG) represents a small part of the NAIP (Figs. 2.1 and 

2.4), and was emplaced between Chrons 26 and 24 (59 – 56 Ma), at which time the 

Faroe Islands and East Greenland were less than 120km apart, based on plate 

reconstructions and geochemical correlations between sequences (Larsen et al., 1999; 

Lundin and Doré, 2002). Remnants of the FIBG are exposed on the Faroe Islands, with a 

true thickness of ~3km, and an overall stratigraphic thickness in excess of 6.6km (Fig. 

2.4; Passey and Bell, 2007), of which about 3km is exposed above sea level (Ellis et al., 

2002). The FIBG is dominated by tholeiitic basalt lavas indicating that their eruption 

was during a period experiencing a high degree of partial melting of the mantle 

(Waagstein, 1988). The FIBG is divided into some 7 Formations based on lithology and 

the development of mappable disconformity surfaces (Rasmussen and Noe-Nygaard, 

1969 & 1970; Passey et al. 2006) and geochemistry (Waagstein, 1988). The lower-most 

of these, the Lopra Formation, is not exposed sub-aerially, and has only been 

encountered in the onshore borehole Lopra-1/1A (Rasmussen and Noe-Nygaard, 1970; 

Hald and Waagstein, 1984; Passey and Bell, 2007). The Lopra Formation comprises a 
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Fig. 2.4. Simplified geological map of the Faroe Islands, with gross stratigraphic column for the 
Faroe Islands Basalt Group, and typical facies architectures of the 4 major formations in the 
group (Lopra, Beinisvørð, Malinstindur and Enni Formations). (After Passey and Bell, 2007; 
Passey, 2008). 
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>1km thick sequence of volcaniclastic rocks and hyaloclastites (Ellis et al., 2002), and 

was emplaced into marine waters believed to be, initially, about 200m deep. 

Prograding clinoform sets imaged in seismic-sections (Smallwood and Gill, 2002; 

Jerram et al., 2009) indicate that regional subsidence was continuous at this time, and 

faster than emplacement of the Lopra Formation. 

 

Above the Lopra Formation is the ca. 3.3km thick Beinisvørð Formation (Fig. 2.4), of 

which only 900m is exposed on the islands. The Beinisvørð Formation generally 

comprises aphyric, laterally extensive sheet lobes, with minor intercalated 

volcaniclastic horizons, and was emplaced at or around sea level, requiring that 

subsidence and emplacement rates were comparable throughout. Exposure of the 

Beinisvørð Formation is limited to the southern island, Suðuroy, and in the west of the 

northern islands, Vagar and Mykines (Fig. 2.4). Lavas of the Beinisvørð Formation 

typically display very well developed columnar (cooling) jointing, which ranges from 

simple colonnades in lower parts of the flows, to complex upper entablature zones in 

some instances. Above this lies the 3-15m thick Prestfjall Formation, comprising coals, 

mudstones and sandstones deposited in swamps, lacustrine and fluvial environments, 

during a hiatus in volcanic activity (Rasmussen and Noe-Nygaard, 1969 & 1970; Lund, 

1983 &1989; Passey and Bell, 2007). Volcanic activity resumed, resulting in the 

deposition of about 50m of basaltic tuffs interbedded with volcaniclastic floodplain 
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facies and flow deposits forming the Hvannhagi Formation. Exposure of the Prestfjall 

and Hvannhagi Formations is limited to Suðuroy and west Vagar (Fig. 2.4). 

 

Trap-style volcanism continued with the eruption of the <1.4km thick Malinstindur 

Formation (Fig. 2.4), subaerial compound basalt lavas that are initially olivine-phyric 

evolving upwards within the sequence to aphyric, and then plagioclase-phyric. The 

Malinstindur Formation is particularly well exposed on the northern islands of Vagar, 

Streymoy and Eysturoy, at low-altitudes on the north-eastern islands, and in the north 

of Suðuroy. Jointing within the Malinstindur Formation is more poorly developed than 

that in the Beinisvørð Formation, however it remains a notable and easily identifiable 

feature. Above the Malinstindur Formation lie the c.25m thick, laterally extensive 

volcaniclastic sandstones and conglomerates of the Sneis Formation, which is divided 

into two parts: the basal, ~50cm thick Sund bed, and the thick conglomerates above. 

The Sund bed is a reddened unit, predominantly composed of medium grained 

volcaniclastic sands. The conglomerates above are generally greyish red, matrix-

supported, with sub-angular to sub-rounded clasts. Lateral variations of the 

conglomerate dominated facies, from N-S, indicate that it was sourced from the North, 

and transported southwards, with the internal architecture and lithofacies indicating 

mass flow events of varying concentrations. 

 

The Sneis Formation is overlain by about 900m of the Enni Formation (Fig. 2.4), which 
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comprises low-TiO2 and high-TiO2 (MORB-like) interbedded simple (sheet lobes) and 

compound tholeiitic lavas. The 900m is a minimum thickness, with a significant amount 

(in the order of hundreds of metres) eroded from the top of the volcanic pile 

(Waagstein et al., 2002). The Enni Formation is exposed in a north to north-east arcing 

trend from Sandoy across the northern islands (Fig. 2.4). 

 

There are a number of notable sheet-like intrusions on the islands, including the large 

‘saucer-shaped’ Streymoy and Eysturoy sills, and the Fugloy-Svinoy sill. The Streymoy 

and Eysturoy sills are transgressive, lying stratigraphically close to the Sneis Formation 

(Fig. 2.4). The Eysturoy sill occupies an area of about 16km2, and ranges in thickness 

from 10-55m (Rasmussen and Noe-Nygaard, 1970). Generally the Eysturoy sill dips SW, 

displaying a pronounced flat section at the level of the Sneis Formation. The Streymoy 

sill also ranges from ~10-55m thickness, but only covers an area of about 13km2, and 

displays a much more saucer-like geometry, again with numerous ramp- and flat-

sections, cutting upwards from within the top part of the Malinstindur Formation, 

becoming flat at the level of the Sneis Formation, and then ramping upwards again into 

the Enni Formation.The Fugloy-Svinoy sill is slightly higher in the succession and is 

found entirely within the Enni Formation. Again it is transgressive, ramping upwards on 

Svinoy to the SE, and to the NE on Fugloy (Rasmussen and Noe-Nygaard, 1970). In 

total, the sill has an area of about 2.5km2, and ranges in thickness from 15-36m. 
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2.3 Remote-sensed data: acquisition and implications 

2.3.1 Stratigraphic horizon modeling 

Individual lava units commonly display considerable relief at their upper and lower 

contacts, due to the effects of erosion (during periods of volcanic quiescence) or 

fluidization of wet sediments as a result of fuel-coolant interaction (FCI) processes (e.g. 

Kokelaar, 1982) during emplacement (Fig. 2.5). In such cases it is difficult to accurately 

measure a representative true-dip of the horizons at a local or outcrop scale using a 

compass-clinometer. The method employed here uses a combination of field 

observations and remote-sensing analyses to create a regional structural map of the 

horizons developed across the islands. 

 

Field observations (Fig. 2.6a) were used to identify flow-unit tops that form crag-lines, 

or topographic benches, which were mapped and digitized using high-resolution aerial 

 

Fig. 2.5. (a) Centimetre and (b) decimetre scale topographic undulations on sedimentary 
horizons within the FIBG (both examples from the Malinstindur Formation, Eysturoy). Such 
undulations are common and, combined with the surface topography of the lava units, reduce 
the accuracy of field-based unit inclination measurements. 
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photographs and topography from digital elevation data (Fig. 2.6b). The locations of 

the crag-lines were then verified using derivatives of the topography (such as slope and 

break-in-slope) in ArcGIS™. These georeferenced lines can then be directly imported 

into 3D modeling software packages such as GOCAD® (of Paradigm™). The lines can 

then be used to model geometrically accurate surfaces, provided that there are more 

than two points (two points only representing a plunging line) and that the points are 

more than 10m apart, as dictated by the resolution of the topographic data (Fig. 2.6c). 

 

The layering orientation data that result from this method (Fig. 2.7a) closely parallel 

the results of more typical, detailed field studies (notably Rasmussen, 1990) and are 

therefore deemed to accurately represent horizon geometry (e.g. Fig. 2.6a). The 

layering data record the development of an apparent broad monoclinal fold-like 

feature (Fig. 2.7b), with an arcing hinge located offshore to the west and around to the 

north. Based on available seismic data (e.g. Sørensen, 2003), it is however more likely 

that beyond the fold hinge lies an antithetic fold-limb, completing an asymmetrical fold 

architecture, with the Faroes sitting near the apex on the steep limb. Generally, 

horizon inclination decreases up-stratigraphy through the FIBG, with the largest, ~8° 

(SE) dips, observed on Mykines within the Beinisvørð Formation (Fig. 2.7a). This 

decreases to ~3° (SE) in the Malinstindur Formation on Vagar, and Streymoy, and again 

to ~1-2° (SE) in the Enni Formation in the NE (e.g. Borðoy, Viðoy, etc.). High eastward 

dips, ~6° (E), are recorded on Sandoy within the youngest exposed units of the FIBG. In 
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Fig. 2.6. (Previous page) Methodology for creating geological horizons: (a) Crag-lines 
representative of flow unit tops, bottoms and sedimentary strata are mapped in the field. (b) 
Field maps are digitised in ArcGIS, and crag line positions verified using high-res aerial/satellite 
imagery and topographic derivatives such as hillshades, slope and aspect (not shown). (c) Geo-
referenced crag line shapefiles are imported into Gocad, and draped onto topography. 3D 
curves with a sufficient extent (>30m) are used to create planes, representative of the 
geological horizon. 

 

 

 Fig. 2.7. (a) Simplified horizon orientation map for the Faroe Islands, based on the analysis 
described in Figure 6. (b) Simplified conceptual model for the fold architecture of the Faroe 
Platform. Folds have developed through time, resulting in a decreasing horizon inclination up 
stratigraphy. Evidence from offshore seismic surveys indicates that the Munkegrunnar and 
Fugloy ridges are marginally asymmetric folds, with the Faroes located off-axis on the steeper 
fold limb.  

 

the south, on Suðuroy, units are more E to NE dipping, with values of 8° (E) in the east, 

decreasing westwards to ~1° (NE) at the coast (Fig. 2.7a). 
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Fold architecture across the islands is indicative of progressive fold growth through 

time. Areas that do not obey this relationship are closely associated with large offset 

faults (e.g. Skopunarfjorður, between Streymoy and Sandoy; Passey, 2009), and may 

indicate localised fault-block-rotations (see Chapter 3). The westward decrease in dip 

on Suðuroy may relate to the effect of down-warping during subsidence-related 

movement on the Judd Fault Zone nearby offshore, or to the proximity of a fold-axis 

(i.e. the Munkegrunnar Ridge; Figs. 2.1 and 2.7b). 

 

2.3.2 ‘Saucer-shaped’ sill geometry 

The Faroe Islands are host to numerous large ‘saucer-shaped’ sills. Here we focus on 

two such intrusions: the main Streymoy and Eysturoy sills. Both are located on their 

respective island’s western coasts and form a prominent crag that is lower in the SW 

and generally ramps upwards towards the island interior in both cases. Some previous 

workers (e.g. Geoffroy et al., 1994) have suggested that the sills relate to an island-

wide, synmagmatic, compression event, based on their apparent geometric similarities 

with thrust-faulting on the Islands. 

 

The model created in this study uses a similar methodology to that used for the 

stratigraphic horizon modelling. As these sills form a prominent crag-line, the top 

exposure can easily be mapped using topography and aerial photographs (Fig. 2.8a-c). 

Again, remote-sensed picks have been verified during field study to assess the validity 
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of the methodology. An obvious limitation to the technique is that the top surface of 

the sills may not represent the actual top, more an erosional surface. However, field-

based observations indicate that the picked surfaces are likely within (+/-) 5m of the 

actual height of the sill top and therefore within the limiting resolution of the 

topography used during modelling. However, other sills on the islands (e.g. the Fugloy-

Svinoy sill) are not such prominent features, and are therefore not included here. 

 

From these models, it is clear that the sill geometries are rather more complex than 

previously detailed. In particular, the Streymoy sill displays numerous ramp and flat 

sections, and both sills display a broad flat section running NW-SE, roughly through the 

midline of their extent (Fig. 2.9). In the field it is clear that this flat section in some 

areas relates to the presence of the sedimentary Sneis Formation and it may be that 

other flat sections are related to the presence of other minor volcaniclastic horizons 

within the stratigraphy. The sills are also cut by numerous mineralised thrust and 

strike-slip faults (though not dykes; see Chapter 3), associated with N-S extension and 

E-W compression (event 2b; this study). It is therefore inferred that non-tectonic 

processes such as intrusion rate, and thickness of the overburden, likely control sill 

geometry in these two cases (e.g. Menand, 2008). 

 

Fig. 2.8. (Next page) Methodology for creating 3D models of the Streymoy and Eysturoy sills. 
(Method described in Figure 6). 
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Fig. 2.9. (Previous page) Surfaces representative of the sill exposures (shown in Figure 8) are 
simplified and projected in order to fill gaps in the model (i.e. where the sills continue below 
the surface, or where they have been eroded). (Topography is displayed with a 50% 
transparency). See text for details. 

 

2.3.3 Lineament analysis 

2.3.3.1 Lineament analyses 

Three lineament analyses targeting the orientations, lengths and spacing of dykes and 

faults, were conducted at different scales, using topographic (10m resolution) and 

bathymetric data (30m resolution), and 2D aerial and satellite images (0.5m 

resolution). The scales (1:250k, 1:50k and 1:5k) were strictly adhered to during 

analyses in order to appreciate any scaling bias and length vs. orientation relationships. 

Cross-referencing with published maps combined with close examination of the aerial 

photographs and field observations (Fig. 2.10a-c), ensures that the lineaments picked 

correspond to faults and dykes, and avoids the picking of any man-made or purely 

erosional features (e.g. road-cuttings and cliff or crag lines respectively). The spatial 

analyses of the lineaments were performed in ArcGIS™, with orientations recalculated 

and verified in Global Mapper™. Lineaments have been grouped into rose diagrams 

using arbitrarily referenced 5km grids (Fig. 2.11), by island, and by the youngest 

Formation they cut. Lineaments from the 1:50,000 analysis have been projected onto 

the topography to create planes within GOCAD®, in order to assess their 3D 

orientations. 
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Problems arise when trying to assess the nature of individual lineaments, as well as in 

attempting statistical analysis of lengths and spacing. In terms of their nature, it is not 

possible to remotely identify dykes as opposed to faults due in part to the resolution of 

the aerial images. In the field it is apparent that most dykes are reactivated by later 

faults (see Chapter 3). Nor can any means of discrimination be derived from the 

lineament orientation; fault and dyke sets (relating to specific events: Chapter 3) are 

closely grouped in terms of trend and large scale inclination (i.e. inclined individual 

faults appear to stack more or less vertically as fault zones, to the same collective 

inclination as similarly oriented dykes). The results of lineament spacing, and 

orientation vs. length analyses have not been included within this study for the 

following reasons: (1) Exposure, and the resolution of aerial images and digital 

elevation models is insufficient to resolve a representative proportion of faults and 

dykes; (2) There is evidence for numerous events and therefore, without detailed 

structural reconstructions, it is not possible to determine original spacings within an 

individual event; (3) The shape and size of the islands results in data truncation and 

censoring.  

 

Lineament orientation analysis appears to be relatively unbiased by scaling, in that 

orientation dominance does not appear to change markedly across the different 

picking scales. Any differences between the 1:5,000 and 1:50,000 analyses are 

attributed to the resolution of the aerial images at those scales (i.e. minor lineaments,  
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Fig. 2.10. (Previous page) (a-c) Methodology for creating 3D representations of lineaments 
across the Faroe Islands. (Method described in Figure 6). 

 

 

 

 

Fig. 2.11. 1:5k lineament analysis rose diagrams separated into 5km2 bins. (Streymoy and 
Eysturoy sills outlined in white). 
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which commonly occur as subsidiary features to larger structures, are not so apparent 

in the larger scale analysis). At both scales, the dominant lineament trend and style 

varies markedly across the islands, correlating well with the age of the host lithology 

(Figs. 2.11, 2.12). In the southern island, Suðuroy, the dominant trend is generally NW-

SE to NNW-SSE, corresponding to surfacing of the Beinisvørð Formation. In the west of 

the Northern Islands, there is a trend dominance of ESE-WNW through to ENE-WSW, 

which generally corresponds to the Malinstindur Formation. In the east of the 

Northern Islands, the dominant trend is ENE-WSW to NE-SW, and corresponds to the 

areal extent of the Enni Formation. This trend also appears dominant further to the 

west, most notably over significant outcrops of the Streymoy and Eysturoy saucer-

shaped sills (white outlines in Figure 2.11). This relationship is indicative of a change in 

structural orientation through time, here suggesting a progressive anticlockwise 

rotation in strike/trend. In 3D, poles-to-planes created for the lineaments of the 

1:50,000 analysis (Fig. 2.12) appear to show an apparent bimodal distribution in the 

majority of cases. However, it is likely that this bimodal grouping is an artifact of the  

 

Fig. 2.12. (Next page) Lineaments picked at (a) 1:250,000, (b) 1:50,000 and (c) 1:5,000 scales, 
with rose diagrams for the major formations (Beinisvørð, Malinstindur and Enni Formations) 
exposed on the islands where possible. The dominant trend appears to change through time 
with NW-SE dominance in the Beinisvørð Formation, E-W dominance in the Malinstindur and 
ENE-WSW dominance in the Enni Formation. The clearest changes are observed in the 
1:50,000 analysis, perhaps reflecting a fault damage:length and dyke width:length relationship. 
(d) Planes representative of the 1:50,000 lineaments, generated in Gocad, split by island and 
age, displayed as poles to planes in equal area, lower hemisphere stereographic projections. 
Again, a strong correlation is observed between plane orientation and host-rock age. 

Chapter 2

56



 

  

Chapter 2

57



methodology and the scale of the analysis (i.e. the lineaments do not represent 

individual fault surfaces, rather fault zones), with fault data sets collected in the field 

displaying a more quadrimodal distribution. Notably, the majority of the stereonets 

display near symmetrical pole groupings, the exceptions being those with very few 

data points, and Suðuroy and the Beinisvørð Formation. These two examples show that 

the SW dipping planes are shallower than the NE dipping counterparts. This could be a 

reflection of their age relative to the timing of the regional tilting. Strata on Suðuroy 

are generally inclined at about 4-6° E to NE (Fig. 2.7); conjugate structures formed prior 

to this eastward tilting may therefore have a relatively steeper eastward dipping set 

and shallower westward dipping set. 

 

A progressive rotation of the structural trend is also supported by cross-cutting 

evidence preserved across the islands, with NW-SE- and N-S-oriented lineaments 

consistently cut by ENE-WSW- to ESE-WNW-oriented lineaments, which are in turn cut 

by NE-SW- to NNE-SSW-oriented lineaments, where observed (detailed in the following 

chapter). These cross-cutting relationships are apparent on all scales used during the 

analysis, most commonly at the metre-scale, but potentially up to hectometre-scale, as 

indicated by lateral shifts in deep bathymetric troughs (e.g. Fig. 2.13). This may explain 

the trend irregularities of the ‘transfer zone’ lineaments as they pass through the 

islands, with lateral shifts of the order of hundreds of metres occurring across ENE and 

ESE trending lineaments (e.g. the Brynhild ‘transfer zone’: Fig. 2.13a-d). Some 
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correlation is also possible between these lineament trends and the shape of the 

islands. For instance, the SW coast of Suðuroy is markedly linear, oriented NW-SE (e.g. 

Fig. 2.4); embayments and promontories are aligned with ENE-WSW- and ESE-WNW-

oriented troughs in the bathymetry, which continue on the eastern side of the island 

(e.g. Fig. 2.12a). The island of Kalsoy, a thin NW-SE oriented slither, becomes abruptly 

wider at its southern end, where it is apparently abutted against an ESE-WNW oriented 

bathymetric trough; across that trough, the coast of Eysturoy is, again, highly linear in 

the same orientation (e.g. Fig. 2.4). Furthermore, an ESE-WNW trending straight line 

can be drawn through Skopunarfjorður (Fig. 2.13e), along the north coast of Sandoy, 

and the SW coast of Vagar into a lineament on Mykines, as well as an ENE-WSW line 

drawn along the north of the northern islands; again, perhaps an indication of regional-

scale structural trends (Fig. 2.12a). 

 

2.3.3.2 Dyke trends vs. compositions 

Lava compositions in the FIBG vary most notably in TiO2 content, with a clear division 

between the relatively high-TiO2 (2.09-3.90%) and low-TiO2 (0.73-1.93%: MORB-type) 

groups (Hald and Waagstein, 1991). These variations occur both through time and 

spatially: the older Beinisvorð and Hvannhagi Formations and the lowermost 500m of 

the Malinstindur Formation have high-TiO2 compositions, whereas the rest of the 

younger Malinstidur Formation and the northern Enni Formation have low-TiO2 

compositions, inter-fingering with high-TiO2 compositions from the southern Enni 
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Fig. 2.13. (a-d) The NW-SE trend of the Brynhild ‘transfer zone’ appears to shift laterally in 
close association with ESE-WNW trending lineaments, perhaps indicating relatively large 
offsets (i.e. hectometre-scale). (e) The Skopunarfjørður strait is marked by a continuous ESE-
WNW bathymetric low that appears to line up with an ESE trending lineament on Mykines. 
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Formation (Hald and Waagstein, 1991). On the basis that the dominant lineament 

trends appear to relate to the age of the host lithology, the lineament analysis has also 

been compared to published data on dyke orientations (Fig. 2.14; Rasmussen and Noe-

Nygaard, 1969) and chemistry (Hald and Waagstein, 1991) in order to assess the 

possibility of orientation-controlled composition. Like the lavas, intrusives on the 

Islands can be grouped by relative enrichment of TiO2. In general however, there 

appears to be no statistical correlation between dyke chemistry and orientation (Fig. 

2.14). Nor is there a notable correlation between dyke orientation and the age of the 

country rock. These points most likely indicate that both high- and low-TiO2 magmas  

 

 

Fig. 2.14. Dyke orientations split by island (based on data from Rasmussen and Noe-Nygaard, 
1969). No statistical correlation between orientation and host age is observed, with the 
exception of the Beinisvørð Formation on Suðuroy, which again has a dominant NW-SE trend, 
and nor is there any correlation between age and chemistry (based on data from Hald and 
Waagstein, 1990). 
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were emplaced until the end of magmatism associated with the FIBG. Low- TiO2 

magmas appear to be concentrated in the north, and could be an indication of their 

relative proximity to a MORB-type source (i.e. that related to the incipient NE Atlantic). 

 

2.4 Summary 

As part of the NAIP, the FIBG was emplaced during a period of continental rifting 

immediately prior to break up and the onset of sea-floor spreading in the NE Atlantic. 

The tectonic history captured on the Faroe Islands is therefore short compared with 

the proposed deformation history of the NW-SE lineaments in the region (i.e. the 

transfer zones). However, lineament analyses suggest that brittle deformation has 

occurred as a set of distinct events resulting in rotation of the dominant structural 

trend through time, rather than as a continuous deformation controlled by transfer 

zones. Stratigraphic layering analyses (section 2.3.1; Figs. 6, 7) indicate a progressive 

folding throughout emplacement of the FIBG, and most likely into post-magmatic 

times. In the following chapters, we aim to build upon, test and discuss these 

hypotheses with the addition of detailed kinematic and fault rock studies on the Faroe 

Islands. 
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3  
Onshore evidence for progressive changes in rifting directions 
during continental break-up in the NE Atlantic and the role of NW-
SE trending structures in the Faroe-Shetland Basin 
 

Abstract 
The NE Atlantic margin plays host to numerous Cretaceous and later 
basins, developed during the build up to plate separation and formation of 
the N. Atlantic Ocean. Current models for this invoke NW-SE extension 
within the basins, which are segmented by regional-scale NW-SE trending 
strike-slip faults, termed ‘transfer zones’. Currently there is a paucity of 
information concerning the true kinematics of the so-called transfer zones; 
the present paper aims to fill this gap using abundant field data collected 
on the Faroe Islands. 

Structures in the Faroe Islands provide evidence for a 6-stage tectonic 
evolution, here split into 3 broad phases: (1a) E-W to NE-SW extension, 
accommodated by dip-slip N-S and NW-SE trending faults. Continued NE-
SW extension (1b) was accommodated by the emplacement of a regionally 
significant NW-SE- and NNE-SSW-oriented dyke swarm. Event 1 affects the 
majority of the FIBG stratigraphy, resulting in thickness variations, most 
notably across the Judd, Brynhild and Westray (‘transfer’) fault-zones. 
Continued magmatism and anticlockwise rotation of the extension vector 
led to (2a) the emplacement of ENE-WSW and ESE-WNW conjugate dykes. 
Their intrusion heralds the onset of N-S crustal extension and was followed 
by (2b) crustal extrusion involving both E-W shortening and further N-S 
extension facilitated primarily by slip on ENE-WSW (dextral) and ESE-WNW 
(sinistral) conjugate strike-slip faults. During the final stages of this event 
(2c), the regional extension vector rotated into a NW-SE orientation that 
was accommodated predominantly by slip along NE-SW oriented dextral-
oblique-slip faults. Event 2 began towards the end of magmatism 
associated with the FIBG, and most likely continued through to the onset of 
oceanic-spreading on the Aegir ridge (ca. 55 Ma). Both Events 1 and 2 
display multiple generations of calcite and zeolite hydrothermal 
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mineralisation as tensile and shear hydraulic veins, implying some degree 
of burial. Finally, (3) Event 1 and 2 structures were reactivated as extension 
and extensional-hybrid features, characterised best by the entrainment of 
clastic material along fault planes. Relative timings of Event 3 structures 
suggest they formed during a period of compression and uplift following 
the formation of a through-going mid-ocean ridge system (i.e. on the 
Reykjanes, Kolbeinsey and Mohns ridges). 

The progressive anticlockwise rotation of the extension vector identified 
here is broadly consistent with the latest NE Atlantic continental break-up 
reconstructions. Importantly, the evidence preserved onshore for the 
Palaeogene and onwards, suggests that basin-scale NW-SE structures acted 
as normal faults during a precursor margin-parallel extension event prior to 
oceanic opening in the Faroe-Iceland sector. This model does not preclude 
the possibility that the NW-SE structures reactivate pre-Cenozoic transfer 
faults in the underlying margin. 

This study emphasises the importance of carrying out detailed field studies 
in addition to the more usual seismic-scale modelling studies, in order to 
validate basin kinematics. 
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3.1 Introduction 

Basins located along the NE Atlantic margin are long believed to share similarities in 

terms of their tectono-magmatic styles and timings (Lundin and Doré, 1997). As a 

result, structural models formulated in basins with relatively minor igneous content 

(e.g. the Møre and Vøring basins) are commonly applied to the less well understood 

regions masked by volcanics, such as the Faroe-Shetland basin (FSB). Basins along the 

margin appear to be segmented by NW-SE trending lineaments that are commonly 

referred to as transfer zones (e.g. Rumph et al., 1993; Doré et al., 1997; Naylor et al., 

1999; Ellis et al., 2002; Ellis et al., 2009). Such zones are believed to facilitate 

differential extension within the basins, and may be rooted in the pre-existing 

structure of the basement along the margin (e.g. Wilson et al., 2006 and references 

therein). Structures of this kind should have a dominantly strike-slip motion sense 

associated with them. In terms of the FSB, left-lateral oblique-slip displacements are 

commonly invoked along transfer zones prior to and during continental break-up (Ellis 

et al., 2009). 

 

The thick sequence of volcanic rocks preserved in the Faroes region form part of the 

extensive Palaeogene flood basalts of the North Atlantic Igneous Province (NAIP) that 

cover much of the continental margin (Fig. 3.1). The NAIP is estimated to have a 

volume of 1.8 x 106 km3, covering an area of 1.3 x 106 km2 (Eldholm and Grue, 1994). 

Thicknesses on the NE Atlantic margin range from >6km, towards the continent-ocean  
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Fig. 3.1. Structural elements map of the Faroe-Shetland Basin, NE Atlantic Margin. EFH  East 
Faroe High; FS-B  Flett Sub-Basin; JB  Judd Basin; CR  Corona Ridge; FR  Flett Ridge; RR  Rona 
Ridge; BFZ  Brynhild Fault-Zone; CFZ  Clair Fault-Zone; EFZ  Erlend Fault-Zone; GKFZ  Grimur 
Kamban Fault-Zone; JFZ  Judd Fault-Zone; VFZ  Victory Fault-Zone; WFZ  Westray Fault-Zone. 
(After Stoker et al., 1993; Rumph et al., 1993; Lundin and Doré, 1997; Sørensen, 2003; White et 
al., 2003; Jolley and Morten, 2007; Ellis et al., 2009). 

 

boundary, to 0km in the south-eastern FSB (Fig. 3.1; White et al., 2003). Remnants of 

the Faroe Islands Basalt Group (FIBG; after Passey and Bell, 2007) on the Faroe Islands 

(Fig. 3.2) represent the only onshore exposures of the NAIP in the region, and are 

therefore collectively the only location where sub-seismic scale structures can be 

studied. The purpose of this study is to use structures exposed on the Faroe Islands to 

make inferences about the regional tectonics during late-continental break-up and sea-

floor spreading; features that are otherwise ambiguous using current geophysical 

techniques. 
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Fig. 3.2. (Previous page) (a) Simplified hillshaded geological and bathymetric map of the Faroe 
Islands and insular shelf, with gross stratigraphic column for the Fare Islands Basalt Group 
(after Passey and Bell 2007; Passey, 2009). (b) Laterally extensive simple (sheet) lava units of 
the Beinisvørð Formation, at Beinisvørð, on the SW coast of Suðuroy. Units range in thickness, 
from <5m to >20m. (c) Overlapping compound lava units and lava tubes of the Malinstindur 
formation at Viðareiði, NW Viðoy. Individual units are less extensive laterally, than simple 
lavas, and range in thickness from <1m to slightly over 2m. (d) The Enni Formation above 
Hvannasund, SW Viðoy. Simple lava units generally form prominent benches, with the thinner 
compound units forming the steep slopes in between. (e) The large Steymoy ‘saucer-shaped’ 
sill at Sátán, West Streymoy. The sill broadly displays a ramp-flat-ramp architecture, with the 
flats corresponding to volcaniclastic horizons (such as the Sneis Formation). 

 

‘Transfer zone’ trends in the FSB are thought to project through the Faroe Islands (Fig. 

3.1; Rumph et al., 1993) and should therefore be apparent onshore (Fig. 3.2). In 

particular, structures and offsets relating to (from southwest to northeast) the Judd, 

Brynhild and Westray lineaments should be evident on the Islands. Recent work has 

suggested that movements along those faults are responsible for all structures seen on 

the Faroe Islands, as part of a complex and continuous deformation regime (Ellis et al., 

2009). Such 3-D (non-plane strain) non-coaxial strains may occur when continental 

separation is oblique to the plate boundary and/or when the basin bounding or 

intrabasinal faults reactivate pre-existing structures that lie at an oblique angle to the 

regional extension direction (Dewey, 2002; De Paola et al., 2005). In this case, the 

transfer zone trends (NW-SE) are parallel to the inferred plate separation direction 

(also NW-SE). 
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An alternative model has proposed that structures are related to a rotation of Cenozoic 

rifting directions immediately prior to and during continental break-up (Doré et al., 

1999). In this model, variations in rift orientation would result in successive fault and 

fracture sets, though these could ultimately be influenced by pre-existing material 

anisotropies within the basin (e.g. basin-wide dykes or dyke swarms and basement 

structure). It is generally agreed by most authors that, following continental break-up, 

Cenozoic compression has resulted in the development of  mild growth folds on 

various scales and orientations along the margin (e.g. Anderson and Boldreel, 1995; 

Boldreel and Anderson, 1998; Ritchie et al., 2008). Such features should also be evident 

in the Faroes. 

 

In the present paper, we summarise the onshore structural geometries and kinematics 

preserved in the Faroe Islands and reconstruct the tectonic evolution using abundant 

cross-cutting relationships preserved at multiple scales, and supported by deformation 

history systematics (e.g. Potts and Reddy, 1999).  These findings are then compared to 

the predictions made by existing regional tectonic models in order to better constrain 

the regional evolution of the NE Atlantic margin during continental breakup. 
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3.2 Regional geological setting 

3.2.1 Faroe Islands stratigraphy 

Much of the NE Atlantic volcanic passive margin is covered by Palaeocene trap-style 

volcanics (Fig. 3.1); the NAIP, of which the Faroe Island Basalt Group (FIBG) is a part, 

which is believed to have been emplaced immediately prior to continental break-up. 

Remnants of the FIBG are exposed on the Faroe Islands, with an overall stratigraphic 

thickness in excess of 6.6 km (Fig. 3.2a; Passey and Bell, 2007). The FIBG is dominated 

by tholeiitic basalt lavas, divided into 7 formations based on lithology and 

disconformity surfaces (Rasmussen and Noe-Nygaard, 1969 & 1970; Passey et al. 2006) 

and geochemistry (Waagstein, 1988). The lower-most of these, the Lopra Formation, is 

not exposed sub-aerially, and has only been encountered in the (onshore) borehole 

Lopra-1/1A (Rasmussen and Noe-Nygaard, 1970; Hald and Waagstein, 1984;  Passey 

and Bell, 2007). 

 

The Lopra Formation is a >1km thick sequence of hyaloclastites, volcaniclastic rocks 

and invasive lavas/sills (Fig. 3.2a; Ellis et al., 2002). Above the Lopra Formation lies the 

ca.3.3km thick Beinisvørð Formation, of which only the upper 900m is exposed on the 

islands. The Beinisvørð Formation generally comprises aphyric, laterally extensive 

sheet lobes, with minor intercalated volcaniclastic horizons (Fig. 3.2b). Exposure of the 

Beinisvørð Formation is limited to the southern island, Suðuroy, and to the west of the 

northern islands, Vagar and Mykines. Above this lies the 3-15m thick Prestfjall 
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Formation, comprising coals, mudstones and sandstones deposited in swamps, 

lacustrine and fluvial environments, during a hiatus in volcanic activity (Rasmussen and 

Noe-Nygaard, 1969 & 1970; Lund, 1983 &1989; Passey and Bell, 2007). Volcanic activity 

resumed, resulting in the deposition of about 50m of basaltic tuffs interbedded with 

volcaniclastic floodplain facies and flow deposits forming the Hvannhagi Formation. 

Exposure of the Prestfjall and Hvannhagi Formations is limited to Suduroy and west 

Vagar. 

 

Trap-style volcanism continued with eruption of the <1.4km thick Malinstindur 

Formation, subaerial compound basalt lavas (Fig. 3.2c) that are initially olivine-phyric 

evolving to aphyric, and then plagioclase-phyric. The Malinstindur Formation is 

particularly well exposed on the northern islands of Vagar, Streymoy and Eysturoy, at 

low-altitudes on the north-eastern islands, and in the north of Suduroy. Above these lie 

the laterally extensive volcaniclastic sandstones and conglomerates of the Sneis 

Formation. These are overlain by about 900m of the Enni Formation, which comprises 

low-TiO2 and high-TiO2 interbedded simple (sheet lobes) and compound tholeiitic lavas 

(Fig. 3.2d), which is exposed in a north to north-east arcing trend from Sandoy across 

the northern islands. The 900m is a minimum thickness, with a significant amount (in 

the order of hundreds of metres) eroded from the top of the volcanic pile (Waagstein 

et al., 2002). 
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Notable intrusions on the islands include the large ‘saucer-shaped’ Streymoy and 

Eysturoy sills, and the Fugloy-Svinoy sill. The Streymoy and Eysturoy sills are 

transgressive, lying stratigraphically around the level of the Sneis Formation (Fig. 3.2a). 

The Eysturoy sill occupies an area of about 16km2, and ranges in thickness from 10-

55m (Rasmussen and Noe-Nygaard, 1970). Generally the Eysturoy sill dips SW, 

displaying a pronounced flat section at the level of the Sneis Formation. The Streymoy 

sill (Fig. 3.2e) covers an area of about 13km2, and displays a much more saucer-like 

geometry, again with numerous ramp- and flat-sections, from within the top part of 

the Malinstindur Formation, becoming flat at the level of the Sneis Formation, and 

then ramping upwards again into the Enni Formation. The Fugloy-Svinoy sill is slightly 

higher in the succession, found entirely within the Enni Formation (Fig. 3.2a). Again it is 

transgressive, ramping upwards on Svinoy to the SE, and to the NE on Fugloy 

(Rasmussen and Noe-Nygaard, 1970). In total, the sill has an area of about 2.5km2, and 

ranges in thickness from 15-36m.  

 

3.2.2 Existing structural models 

Few structural studies have focused on the Faroe Islands; the two of note (Geoffroy et 

al., 1994; Ellis et al., 2009) address the problem using very different approaches, and 

the resulting structural models also contrast markedly. The two models will be referred 

to here simply as the Geoffroy and Ellis models, respectively. 
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3.2.2.1  The Geoffroy model 

The Geoffroy model derives from an extensive kinematic analysis of structures in a 

selection of locations in the Faroe Islands, East Greenland and the British Tertiary 

Igneous Province, forming part of the principal author’s largely unpublished Ph.D. 

thesis. On the Faroes, some 2700 kinematic measurements were taken at 90 sites 

across the Islands. Kinematic data were grouped using cross-cutting relationships 

observed on published maps (Rasmussen and Noe-Nygaard, 1969) and in the field, and 

principal stresses calculated using the stress inversion method described by Angelier 

(1990). The results suggest a polyphase brittle deformation sequence, which were split 

into four events: three synmagmatic, and one post-magmatic. The first event, 

supposedly occurring during emplacement of the Malinstindur Formation, records a 

NE-SW to ENE-WSW extension, facilitated on strike-slip faults trending between 150° - 

170°, and similarly oriented dykes. The second event (supposedly contemporaneous 

with the Enni Formation) is characterised by widespread ENE-WSW (dextral) and ESE-

WSW (sinistral) conjugate strike-slip faults, later intruded by similarly oriented dykes, 

which collectively result in a N-S extension, and E-W compression. The third event, 

occurring purportedly towards the end of emplacement of the Enni Formation, 

represents a period of pure compression, termed the “Faeroe Compressional Crisis”, 

immediately preceeding and continued through the emplacement of the saucer shaped 

sills on the islands. The final event (believed to be post-magmatic, based on the lack of 

associated intrusives) represents a WNW-ESE transtension facilitated by strike-slip 

tectonism. 
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Key relationships underlying this model centre around those that exist between 

intrusions and faults/fractures. Hence, it is suggested that: a) the dykes are intruded 

along existing strike-slip faults and (b) that the sills are intruded coeval with thrust 

faulting during a regional compression. The model predicts the following in terms of 

cross-cutting relationships: (1) a series of cross-cutting relationships where: NW-SE 

faults and dykes are cut by E-W trending conjugate faults and dykes, that are in turn 

cut by NE/SW dipping thrust faults and the major sills, all of which are cut by NE-SW 

trending conjugate faults; (2) Dyke margins should exhibit slip-indicators, inherited 

from the existing (reactivated) faults. Dykes are predicted to have been subjected to 

shear reactivation and should therefore display internal features indicative of this. 

These predictions and relative timings are appraised in section 3.3.4. 

 

3.2.2.2  The Ellis model 

The Ellis model is based on tectonostratigraphic evidence resulting from a recent 

intensive stratigraphic mapping and characterization of the FIBG by the Faroese Earth 

and Energy Directorate, Jarðfeingi. In some respects, the Ellis model is simpler than the 

Geoffroy model, requiring only one continuous deformation regime, resulting from 

boundary fault conditions (i.e. the development of transfer zones). In the model, faults, 

fractures and intrusives result from a complex 3-D strain, with continued recurrent 

deformation producing the observed structural orientations. On the Islands it is noted 

that a repeated thickening of the FIBG occurs, from NE to SW, into the narrow seaways 
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where the Westray, Brynhild and Judd transfer zones are thought to be located as they 

run through/near to the islands. Key marker horizons on the Islands throughout the 

stratigraphy are shown to thicken in the inferred hangingwalls of these features. For 

example: (1) the coal measures of the Prestfjall Formation thicken from 0.5m to 2m, 

from east to west across Suðuroy, into the Judd transfer zone; (2) the Sneis Formation 

(and other notable marker units such as the Kvivik and Argir Beds (within the 

Malinstindur and Enni Formations respectively; Fig. 3.2) thicken and/or are lower on 

the NE side of the Brynhild and Westray transfer zones. This is also the case between 

Streymoy and Sandoy, and a branch or splay of the Brynhild Transfer zone has been 

invoked (following evidence in Passey, 2009) with a down-to-the south motion-sense.  

 

As the deformation is supposed to be continuous, this model predicts that all 

structures should mutually cross-cut and/or interact with each other. Somewhat 

problematically, the largest features (i.e. the transfer zones) are projected along the 

fjords, and as such, field studies have to rely on adjacent proxies in order to determine 

their presence, nature and kinematics. 

 

In the following section, we present a new set of detailed field observations concerning 

the geometry and kinematics of deformation structures preserved in the Faroe Islands 

and their evolution through time. 
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3.3 Main structural events 

3.3.1 Regional scale structure 

3.3.1.1 Lineament analysis 

Three, scaled lineament analyses were conducted using topographic (10m resolution) 

and bathymetric data (30m resolution), and 2D aerial and satellite images (0.5m 

resolution). During the lineament analysis, scales (1:250k, 1:50k and 1:5k) were strictly 

adhered to in order to appreciate any scaling bias and length vs. orientation 

relationships. Cross-referencing with published maps combined with close examination 

of the aerial photographs and field observations, ensures that the lineaments picked 

correspond to faults and dykes, and avoids any man-made or purely erosional features 

(e.g. road-cuttings and cliff or crag lines respectively). Spatial and statistical analysis of 

the lineaments was performed in ArcGIS™, using arbitrarily referenced 5km grids, by 

island, and by the youngest formation they cut. 

 

The dominant lineament trend and style varies markedly across the islands, correlating 

well with the age of the host lithology (Fig. 3.3). In the southern island, Suðuroy, the 

dominant trend is generally NW-SE to NNW-SSE, corresponding to surfacing of the 

Beinisvørð Formation. In the west of the Northern Islands, there is a trend dominance 

of ESE-WNW through to ENE-WSW, which generally corresponds to the Malinstindur 

Formation. In the east of the Northern Islands, the dominant trend is ENE-WSW to NE-

SW, and corresponds to the areal extent of the Enni Formation. This trend also appears  
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Fig. 3.3. 1:250,000, 1:50,000 and 1:5,000 scaled lineament analyses (top left to top right), with 
corresponding rose diagrams (left) detailing lineament trends with respect to formation age, 
and fold architecture across the islands (bottom right - see text for explanation). (Offshore 
extent of formations is unknown, hence no discrimination is made for the 1:250,000 study). A 
clear rotation through time in orientation dominance is noted. 
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dominant further to the west, most notably over significant outcrops of the Streymoy 

and Eysturoy saucer-shaped sills. This relationship is indicative of a change in structure 

orientation through time, here suggesting a progressive anticlockwise rotation. This is 

supported by cross-cutting evidence across the islands, with NW-SE and N-S oriented 

lineaments cut by ENE-WSW to ESE-WNW oriented lineaments, which are in turn cut 

by NE-SW to NNE-SSW oriented lineaments, where observed (detailed later in this 

chapter). Those cross-cutting relationships are apparent on all scales used during the 

analysis, most commonly at the metre-scale, but potentially up to hectometre-scale, as 

indicated by lateral shifts in deep bathymetric troughs (Fig. 3.3). This may explain the 

trend irregularities of the ‘transfer zone’ lineaments as they pass through the islands; 

lateral shifts in the order of hundreds of metres occurring across ENE and ESE trending 

lineaments. Some correlation is also made between these lineament trends and the 

shape of the islands. For instance, the SW coast of Suðuroy is markedly linear, oriented 

NW-SE; embayments and promontories are aligned with ENE-WSW and ESE-WNW 

oriented troughs in the bathymetry, which continue on the eastern side of the island. 

The island of Kalsoy, a thin NW-SE oriented slither, becomes abruptly wider at its 

southern end, where it is apparently abutted against an ESE-WNW oriented 

bathymetric trough; across that trough, the coast of Eysturoy is, again, highly linear in 

the same orientation. Furthermore, an ESE-WNW trending straight line can be drawn 

through Skopunarfjorður (Fig. 3.3), along the north coast of Sandoy, and the SW coast 

of Vagur, as well as an ENE-WSW line drawn along the north of the northern islands; 

again, perhaps an indication of the regional-scale structure. 
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3.3.1.2  Stratigraphic horizon modeling 

Individual lava units commonly display considerable relief at their upper and lower 

contacts, due to erosion (during periods of volcanic quiescence) or fuel-coolant style 

reactions with wet sediments during emplacement, making it difficult to accurately 

measure true-dip of the horizons at a local or outcrop scale using conventional field 

equipment (i.e. compass-clinometer). A combination of field observations and remote-

sensing analyses were used here to create a structural map of the horizons across the 

islands. 

 

Generally, horizon inclination decreases up-stratigraphy through the FIBG, with the 

largest, ~8° (SE), observed on Mykines within the Beinisvørð Formation (Fig. 3.3). This 

decreases to ~3° (SE) in the Malinstindur Formation on Vagar, and Streymoy, and again 

to ~1-2° (SE) in the Enni Formation in the NE (e.g. Borðoy, Viðoy, etc.). High eastward 

dips, ~6° (E), are recorded on Sandoy within the youngest exposed units of the FIBG. In 

the south, on Suðuroy, units are more E to NE dipping, 8° (E) in the east, decreasing 

westwards to ~1° (NE) at the coast. 

 

Fold architecture across the islands is indicative of a growth through time. Areas that 

do not obey this relationship are closely associated with large offset faults (e.g. 

Skopunarfjorður, between Streymoy and Sandoy; Passey, 2009), and may indicate 

fault-block-rotations. The westward decrease in dip on Suðuroy may relate to the 
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effect of down-warping during subsidence-related movement on the Judd Fault nearby 

offshore, or to the proximity of a fold-axis (i.e. the Munkegrunnar Ridge; Fig. 3.1). 

 

3.3.2 Outcrop-scale structures 

The outcrop-scale deformation structures preserved in the Faroe Islands are exclusively 

brittle and are associated both with the intrusion of igneous sheets (dykes or sills) and 

in many (though not all) cases by the associated development of mineral veins (mainly 

carbonate). Later structures are also associated with the development and 

deformation of clastic infills and generally lack associated mineralization. All features 

likely formed during deformation at shallow, upper crustal depths (up to 5km), with 

the final events likely occurring in near-surface environments (<1km depth). 

 

During this study, structural measurements and field observations were recorded from 

over 400 localities across the islands. These observations provide clear evidence for a 

polyphase history of faulting and igneous intrusion events, followed by regionally-late 

fault reactivation, possibly during uplift. For convenience, these events are split into 6 

groups based on orientations, kinematics and cross-cutting relationships: these are 

then interpreted to be the constituent manifestations of 3 broad regional tectonic 

events. In total, about 1800 slip surfaces were measured, and when possible, kinematic 

data have been inverted to infer the palaeostress orientations using MyFault™ 

software of Pangaea Scientific Limited. The program offers five inversion methods, 

Chapter 3

80



from a simple shear tensor average (Sperner et al., 1993), to the Fry’s Hyperplane 

average (Fry, 1999, 2001). This function is beneficial, as different methods invoke 

different assumptions, and so comparisons can be made quickly and easily. In this 

study, we have chosen methods that reflect the fault/fracture characteristics best, and 

produce the least spread in uncertainties during recalculations (using the bootstrap 

resampling method). Importantly the inversions are only used here as a guide, and 

based on the typical 10°-15° variation in principal stress orientations between different 

methodologies, we refer only to compass-quadrants to describe inferred horizontal 

stress directions. 

 

3.3.3 Event 1: ENE-WSW to NE-SW extension 

Event 1 is split into 2 parts: (1a) ENE-WSW extension typically facilitated on NW-SE and 

N-S trending dip-slip faults; and (1b) NE-SW extension accommodated by the intrusion 

of a regionally significant dyke swarm typically oriented NW-SE and NNE-SSW. Event 1 

features are best exposed in the Beinisvørð Formation on Suðuroy, particularly on the 

west coast at I Botni, Vagseiði and Sumba, but are also observed throughout the 

Malinstindur Formation on the northern islands. 
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3.3.3.1  Event 1a 

Event 1a faults are generally subvertical within the basaltic units, commonly becoming 

shallower within sediment interlayers, palaeosol sequences and volcaniclastic breccias 

(Fig. 3.4a). They are associated with numerous phases of calcite and zeolite  

 

Fig. 3.4. (a) Event 1 fracture plane reorientation at Vagseiði, Suðuroy. Within the lava unit, 
faults and fractures typically exploit the existing cooling joints, and as such, where possible, 
structural measurements have been taken within the interbasaltic volcaniclastic horizons. (b) 
Stereographic projections showing examples of Event 1a fault planes, and inversion 
calculations. (Locations indicated on Figure 3.3). 
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mineralisation, in the form of tensile (mode-I) and shear/hydraulic (mixed-mode) 

fractures, which consistently record dip-slip fault movements, resulting in a NE-SW 

extension vector (Fig. 3.4b). The numerous mineralisation overprints, coupled with the 

presence of well-developed fault-damage- and core-zones likely indicates a prolonged 

and recurring deformation on individual faults. Offsets range from a few centimetres 

(e.g. Vagseiði; Fig. 3.5a-e) to a few metres (e.g. Sumba; Fig. 3.5f, g), and in some cases, 

decametres (e.g. I Botni; Fig. 3.5h). The largest determined offsets occur on faults in 

(and obscured by) the present day fjords, and result in a repeated stratigraphic 

thickening across the islands from NE to SW (Ellis et al., 2009). The oldest stratigraphic 

marker horizon affected by this thickening is the coal-bearing Prestfjall formation 

which displays about 2m thickening from east to west on Suðuroy (Rasmussen and 

Noe-Nygaard, 1969, 1970; Ellis et al., 2009), over a lateral distance of some 7-8km, into 

the projected trend of the Judd Fault Zone (Fig. 3.2). In the Northern Islands, the 

Malinstindur and Enni Formations display notable offsets and thickening from NE to 

SW into the Westray Fault Zone (between Kalsoy and Eysturoy) and again into the 

Brynhild Fault Zone (between Eysturoy and Streymoy; Fig. 3.2). The youngest marker 

unit affected by these movements are the Argir beds, which occur roughly a third of 

the way up the Enni Formation. The depth of palaeo-accommodation on the NE side of 

the Brynhild and Westray Fault Zones is estimated to be a maximum of 50-80m, and 

again indicates a prolonged deformation with minor vertical offsets at any one time 

(Ellis et al., 2009). 
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3.3.3.2  Event 1b 

Event 1b dykes are typically 2-15m thick, vertical to subvertical, and commonly display 

irregular cm-m-scale offshoots and m-scale bifurcations (Fig. 3.6a, b). Commonly  

 

Fig. 3.5. Event 1a faults (a-e) N-S trending normal fault at Vagseiði, Suðuroy, displays ~15cm 
apparent offset down to the west. The fault displays a well developed fault core and damage 
zone, asymmetrically focused in the hanging-wall of the fault. The damage zone (a-c) is about 
6m wide and exhibits mode-I and mixed-mode fractures characterised by vuggy/euhedral 
crystal growths and shear-veins respectively. The core (d-e) is 5-40cm wide, and exhibits 
brecciation of the wall-rocks and mineral veins. (f-g) N-S and NW-SE trending dip-slip faults at 
Sumba, SW Suðuroy, displaying ~2.5m down to the west displacements across a well 
developed fault core. (h) Large offset (~30m) N-S trending fault at I Botni, Suðuroy, again 
displays a well developed fault core. 
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margins have a semi-polygonal shape in plan view, as dictated by the existing joint 

pattern within the host lava units (Fig. 3.6a-c) rather than exploiting existing faults (i.e. 

those of Event 1a) and a consistent absence of mineralisation in the NW-SE dykes of 

this event further suggests that they are later than the NW-SE and N-S faults. Where 

matched on opposite sides of a dyke, margin irregularities indicate a NE-SW extension 

vector. On some minor dykes, the trend changes locally, from NW-SE to ENE-WSW and 

back again; the ENE-WSW sections are consistently thinner compared to adjacent NW-

SE segments, in keeping with a NE-SW extension vector (Fig. 3.6d). Only minor vertical 

offsets are observed across Event 1b dykes, and it is inferred that NE-SW extension at 

this time was accommodated purely by the volume increase resulting from widespread 

intrusions.  

 

The height within stratigraphy to which Event 1 structures are observed, combined 

with the stratigraphic thickening evidence detailed in Ellis et al. (2009), indicates that 

Event 1 occurred during emplacement of the majority of the FIBG. Palaeostress 

inversions performed on related structures (e.g. Fig. 3.3b) combined with direct 

evidence from dyke-margin irregularities (e.g. Fig. 3.6) detail an island-wide 

deformation, characterised by a distinct NE-SW extension (Fig. 3.7). This extension 

vector is supported by inversions in Geoffroy et al. (1994), although this study finds 

that the faults are predominantly dip-slip as opposed to strike-slip, as suggested in 

their study. 
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Fig. 3.6. (a-b) Anastamosing N-S trending Event 2b dyke at Gjogv, NE Eysturoy, displays 
irregular margins and minor bifurcations and offshoots, ranging from mm-dm widths that are 
continuous for many metres, often along the cooling joint structure of the country rock. (c) 
NW-SE trending dyke at Hoyvik, S. Streymoy, exhibits an irregular margin and local thinning (d), 
indicating a NE-SW extension. (Locations indicated on Figure 3.3). 
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Fig. 3.7. Event 1 inferred horizontal stress summary map, indicating an island wide, ENE-WSW 
to NE-SW extension. 

 

3.3.4 Event 2: N-S to NW-SE extension 

Across the Islands and at multiple scales, Event 1 faults and dykes are consistently 

offset by ENE-WSW and ESE-WNW trending dykes and faults (Fig. 3.8). This 

relationship is abundantly clear at both map- and outcrop-scales at all observed 

intersections; selected examples are provided here. Event 2 is split into 3 subdivisions:  
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Fig. 3.8. (a) Location map for cross-cutting relationships at: (b) Dalagjógv and Djúpadalsgjógv, 
Streymoy; (c) Glyvursgjogv, Streymoy; (d) Skipagjogv, Eysturoy. Typically, offsets across the 
ENE-WSW set are minor (<10m) with larger offsets across the ESE-WNW set (10-30m). 

 

(2a) the emplacement of ENE-WSW and ESE-WNW conjugate dykes, facilitating N-S 

extension; (2b) crustal extrusion involving both E-W shortening and further N-S 

extension facilitated primarily by slip on ENE-WSW (dextral) and ESE-WNW (sinistral) 

conjugate strike-slip faults; During the final stages of this event (2c), the regional 
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extension vector rotated into a more NW-SE orientation that was taken up 

predominantly by slip along NE-SW oriented dextral-oblique-slip faults.  

 

3.3.4.1 Event 2a 

Event 2a dykes are typically vertical, 2-8m thick and oriented ENE-WSW and ESE-WNW 

forming a conjugate set, as exemplified by those that form the gullies of Dalagjógv and 

Djúpadalsgjógv on the west coast of Streymoy, to the north of Vestmanna (Fig. 3.8b). 

The dykes are poorly exposed, but are inferred to occur over a few kilometres based on 

the development of well-defined gully features. The dyke at Djúpadalsgjógv is 

continuous for about 2.3km and most likely continues eastwards between the 

mountains of Múlin (663m) and Moskursfjall (624m) (Fig. 3.8a). The dyke at Dalagjógv 

is continuous for about 2.9km, but is easily linked to numerous other dyke outcrops 

within gjogvs (meaning steeply sided canyons, gullies, or sea-inlets) towards the east-

northeast, across Saksunardalur, and into Glyvursgjogv (Fig. 3.8c). Gjogvs (and dyke 

outcrops) along that particular trend can be linked all the way to the east coast of 

Streymoy, totalling just over 10km (Fig. 3.8a). Where observed, NW-SE- and N-S-

oriented dykes are always offset across these dykes (e.g. at Dalagjógv/Glyvursgjogv and 

Djúpadalsgjógv, Streymoy; Skipagjogv, Eysturoy; Fig. 3.8b-d), with the larger offsets 

generally observed across the ESE-WNW set. 
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As with the Event 1 dykes, those of Event 2 display irregular margins that appear to 

exploit the polygonal jointing of the host lava units. Contrary to assessments in 

previous studies (e.g. Geoffroy et al., 1994), no evidence has been found to indicate 

that the dykes intrude existing faults of a similar orientation. However, commonly, 

ENE-WSW and ESE-WNW mineralised faults and fractures are observed within Event 2a 

dykes (Fig. 3.8a), with damage zones formed in both the dykes and adjacent country 

rocks. On that basis, we believe that the dykes were intruded first, and later exploited 

by faulting episodes (Events 2b and c). Further to this, in instances where the large 

saucer-shaped sills and Event 2 structures intersect, the dykes are clearly cut by the 

sills, which are in turn cut by the faults (i.e. the dykes are older than the sills, which are 

older than the faults). 

 

3.3.4.2  Event 2b 

Event 2a dykes are consistently host to similarly oriented (Event 2b) mineralised faults 

and tensile veins, again forming a conjugate set, which combined result in an E-W 

compression, and N-S extrusion (Fig. 3.9a). Such faults are not limited to the dykes, and 

in the northern islands are by far the most prevalent set of structures seen in 

exposures. Sub-vertical faults of this set almost always display strike-slip motion sense, 

as indicated by well developed slickenfibres in fault zones (two notable exceptions are 

addressed later in this section). As with Event 1 faults, mineralisation predominantly 

takes the form of calcite and various types of zeolite, with numerous mineral  
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Fig. 3.9. (Previous Page) Event 2b faults (a) ESE-WNW trending Sinistral strike-slip fault at 
Stikkið, Streymoy, exploits a similarly oriented Event 2a dyke which displays irregular polygonal 
margins. (b-c) Sinistral offsets of NW-SE trending Event 1b dykes at Sumba, Suðuroy, and 
Glyvursgjogv, Streymoy. (d) ENE-WSW trending dextral strike-slip fault at Eiði, N. Eysturoy, 
displays ~3.5m total displacement across a well developed fault core and damage zone. 
(Locations indicated on Figure 3.3). 

 

overprints and well developed fault-core/damage zones (Fig. 3.9) indicating a recurrent 

fault activity through time. In all observed strike-slip instances, the conjugate pair 

consists of an ENE-WSW (dextral) set and an ESE-WNW (sinistral) set. Offsets range 

from millimetres-centimetres (Fig. 3.9), to many metres (e.g. Fig. 3.8), and possibly to a 

few hundreds of metres (as suggested in section 3.3.1).  

 

As part of an extensive mapping campaign, Passey (2009) identified a large offset fault 

between Streymoy and Sandoy; the ESE-WNW trending Skopunarfjørður fault, with a 

purported dextral offset of 4.2-6.2 km and a vertical offset between 200-300 m (Fig. 

3.10). Though there is likely to be a fault within the fjord at that location based on the 

presence of an elongate steep bathymetric low, it is rather unlikely that a fault in that 

trend would display a dextral offset, on the basis that in all other instances, ESE-WNW 

faults are sinistral. However, localities most proximal to Skopunarfjørður display Event 

2b faults with a predominantly dip-slip motion sense (Fig. 3.10). We therefore suggest 

that the Skopunarfjørður fault is dip-slip with about 200-300 m vertical displacement. 

Notably, the other instance of predominantly dip-slip displacements associated with 

Event 2b occur in the northern-most part of the study area, in North Viðoy. It is  
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Fig. 3.10. Event 2 faults in S. Mykines and N. Viðoy are predominantly dip-slip, and may 
indicate the presence of large displacement (200-300m; Passey, 2009) faults in the nearby 
offshore. 

 

therefore proposed that there may be a large offset ENE-WSW oriented dip-slip fault in 

the nearby offshore region. This pattern of major dip-slip normal faults bounding a 

domain dominated by smaller-scale conjugate strike-slip faults may suggest a regional 

scale strain partitioning – it may also contribute to the current physiographic 

expression of the Faroe Islands. (Fig. 3.10).  

 

A component of the E-W shortening associated with Event 2b is accommodated by 

reverse faults (Fig. 3.11). Where observed, thrusts (and, occasionally, associated low-

angle normal faults reflecting a locally spoon-shaped geometry of some faults) clearly 
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interlink with the E-W conjugate faults, commonly operating as detachments to their 

strike-slip counterparts (Fig. 3.11b). In some instances, the two fault styles display a  

 

 

Fig. 3.11. Part of the E-W compression associated with Event 2 is taken up on minor 
displacement thrust faults, distributed across the islands. These range from metre-scale offsets 
(a), to cm- and mm-scale offsets (b). In some instances it is clear that the thrusts and E-W 
conjugate faults are genetically related (b) and in others that there is a mutual cross-cutting 
relationship (c). Thrusts are also clearly evident cross-cutting the large saucer-shaped sills (e.g. 
Streymoy sill; d) and must therefore post-date their intrusion. (Locations indicated on Figure 
3.3). 
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clear mutual cross-cutting relationships (Fig. 3.11c), and they are therefore deemed to 

be concurrent. Offsets are minor, ranging from millimetre to metre scales (Fig. 3.11a), 

but they appear to be widely distributed across the islands. 

 

3.3.4.3  Event 2c 

The final stage of Event 2 is characterised by limited strike-slip tectonism along NNE-

SSW and NE-SW oriented dextral faults, which are most common in the far north of the 

Islands, such as is observed at Tjornuvik, northern Streymoy. At Tjornuvik, Event 2a 

dykes and 2b faults/fractures are clearly offset by a pair of dextral faults (Fig. 3.12a-e). 

The most notable of these offsets occurs across the bay (Fig. 3.12b), where a large ESE-

WNW trending dyke displays a total apparent offset of 80-100m. At the western end of 

the bay, north of the beach, a single NE-SW trending Event 1 dyke appears to bifurcate 

just landward of the low-tide mark, springing an auxiliary NNE-SSW oriented dyke 

marked by a line of gullies parallel to the coast (Fig. 3.12b, c). At that locality, a set of E-

W oriented Event 2b zeolite and calcite veins invade the Event 1b dykes. Those veins 

appear to be cut by similar mineral veins oriented parallel to the dyke, apparently 

exploiting the cooling-joint structure (Fig. 3.12f, g); this set display a more oblique 

(dextral) motion sense to the E-W oriented slickenlines. It is therefore inferred that this 

represents a continuation of the anticlockwise rotation of structures, and by corollary, 

the extension vector, to NW-SE. A possible alternative, however, is that this may be a 

local reorientation caused by the existing material anisotropy, e.g. the Event 1 dykes, 
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and/or the existing cooling joints. The latter suggestion seems less likely as similar 

kinematics and cross-cutting relationships are observed in other localities, where no 

dykes are present, such as in eastern Viðareiði, Viðoy (Fig. 3.11b & c). 

 

Structures associated with Event 2 demonstrably post-date those of Event 1, and must 

therefore have occurred towards the end of emplacement of the FIBG or later. They 

are the most abundant features across the islands, and record a distinct, island-wide N-

S to NW-SE extension, coupled with an E-W compression (Fig. 3.13). Dykes of Event 1 

are cut by the large saucer-shaped sills on Streymoy and Eysturoy, which are all cut by 

the strike-slip and thrust faults of Event 2b and c. Structures associated with Events 2b 

and c are observed through to the top of the remaining stratigraphy, and may 

therefore entirely post-date the FIBG. 

 

 

 

 

 

Fig. 3.12. (Next page) (a-b) Aerial photograph of Tjornuvik, NE Streymoy, detailing major faults 
(yellow) and dykes (red). (c) Photograph of the west side of Tjornuvik bay, showing the Event 
2a dyke offset across the Event 2c faults. (d-e) Well developed Event 2b slickenfibres on 
exposed fault panels at the pier section (indicated in a-c). (f-g) Reactivated Event 1 dykes 
displaying Event 2c mineralisation. In (g), zeolite and calcite veins are clearly reoriented along 
the cooling joint system within the dyke. 
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3.3.5 Event 3: Regionally late reactivation 

The Faroe Islands Basalt Group was emplaced at or around sea-level to a stratigraphic 

thickness in excess of 6.6km (Passey and Bell, 2007), and therefore a comparable 

magnitude of subsidence is required. Volcaniclastic sediments deposited into marine 

waters are now elevated above sea-level in the order of hundreds of metres. To date, 

the mechanism leading to this uplift has remained uncertain and no onshore studies 

have identified the structures likely responsible for it. 

 

Fig. 3.13. (a) Event 2 inferred horizontal stress summary map from the E-W conjugate strike-
slip faults, indicating an island wide N-S to NW-SE extension. (b) Inferred horizontal stress 
summary map from the Event 2 thrust faults, generally indicating E-W to NE-SW compression. 
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On the Islands, there is significant evidence for a late-stage reactivation of the existing 

structures, particularly on the SW coast of Suðuroy (Fig. 3.14a, b, f). Reactivation of 

both Event 1 and 2 structures is exemplified by the entrainment and local deformation 

of clastic infils that display only very minor mineralisation (Walker et al., 2009). Event 3 

structures include: 

1) Thin (0.1-0.3m wide) clay smears associated with pre-existing faults, that have been 

reactivated, cross-cutting early fault rocks and mineralisation features (Fig. 3.14a). 

2) Wider (0.3-1m wide) clastic infills developed along pre-existing mineralised faults 

that display internal faults and/or asymmetric drag-fabrics defined by clast alignments, 

often suggesting the opposite sense of motion to the original kinematics of the host 

fault (Fig. 3.14b, c). 

3) Saucer-shaped, 0.1-0.6m thick, clastic horizons that display fluvial to debris-flow 

lithofacies, preserving sedimentary structures, such as cross-bedding, channel bar and 

scour-structures (Fig. 3.14d). 

4) Anastomosing mm-scale and planar dm-scale injection features are also developed 

that exploit pre-existing fractures within the surrounding basaltic units (Fig. 3.14e). 

 

Walker et al. (2009; Chapter 4 of the current thesis) provide a more detailed 

description of these features. The virtual absence of a cement, and the sedimentary  

 

Chapter 3

99



 

Fig. 3.14. Examples of Event 3 structures: (a) Reactivated Event 1 fault at I Botni. Calcite 
slickensides on the right are polished over, and Event 1 mineralisation (thick-long dashed lines) 
are cut and truncated by a later sub-vertical fabric (thin white dashed lines) within the clay 
horizon. The smear clearly contains mineralised, rotated clasts of Event 1 fault-wall rocks. (b) 
N-S trending Event 1 fault with later, matrix-supported chaotic breccia fill (ruler is 80cm tall). 
The clay horizon on the right has been dragged down to the west as well as being mixed with 
materials sourced from horizons above (not in photo). (c) Fine silts and clays deposited into an 
open Event 2 fault. The sedimentary material is well bedded, deposited during gravitational 
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(Fig.3.14 continued) settling, indicating the fault was open for a period of time. Faulting within 
the sediments is extensional, most likely relating to further dilation of the void through time. 
(d) At the Viðareiði pier section, otherwise subhorizontal clastic horizons commonly display 
ramp sections of about 45°, which cross-cut solid state features within the surrounding basalt 
units. Internally the clastic horizons display fragile sedimentary lithofacies such as planar and 
cross laminations, bar structures and imbrication, most likely indicating that the cavity was 
progressively filled by gravitational settling processes. (e) Clastic intrusions that commonly cut 
through lava solid state features such as pipe amygdales. (f) Location map for a-e. 

 

nature of the infills suggests that these features may have formed in the near surface, 

perhaps at depths less than 1km. 

 

3.3.6 Event summary and relevance to transfer fault models 

Structures on the islands provide evidence for a 3-phase tectonic evolution (Fig. 3.15): 

(1a) an initial anticlockwise rotation from earlier E-W, to NE-SW extension (Fig. 3.15a), 

accommodated by dip-slip N-S, then NW-SE trending faults. Continued NE-SW 

extension (1b) was accommodated by emplacement of a regionally significant NW-SE- 

and NNE-SSW-oriented dyke swarm (Fig. 3.15b). Event 1 affects the majority of the 

FIBG stratigraphy. It is suggested that movement along faults corresponding to the 

inferred locations of the Judd, Brynhild and Westray fault-zones where they pass 

through the islands resulted in the thickness variations recorded by Ellis et al., (2009). 

Continued magmatism and anticlockwise rotation of the extension vector led to (2a) 

the emplacement of ENE-WSW and ESE-WNW conjugate dykes. Their intrusion heralds 

the onset of N-S crustal extension and was followed by (2b) crustal extrusion involving 

both E-W shortening and further N-S extension (Fig. 3.15c) facilitated primarily by slip 
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on ENE-WSW (dextral) and ESE-WNW (sinistral) conjugate strike-slip faults. During the 

final stages of this event (2c), the regional extension vector rotates still further 

anticlockwise into a NW-SE orientation (Fig. 3.15d) that was taken up predominantly 

on NE-SW oriented dextral-oblique-slip faults. Event 2 began towards the end of 

magmatism associated with the FIBG, and most likely continued through to the onset 

of oceanic-spreading on the Aegir ridge (ca. 54 Ma, see below). Both events 1 and 2 

display multiple generations of calcite and zeolite mineralisation in both tensile and 

shear hydraulic vein arrays, which suggests that hydrothermal mineralisation occurred 

both as a precursor to the development of a through-going surface, and during fault- 

slip (Blenkinsop, 2008). Zeolite and calcite mineral growth implies some degree of 

burial, most likely to depths in excess of a kilometre. Finally, (3) the reactivation of 

some faults may have helped to facilitate uplift (Fig. 3.15e), an event characterised by 

the entrainment of clastic material along fault planes, with only minor mineralisation, 

suggesting a near surface deformation environment (<1 km depth). 

 

The Ellis model is based around large displacement strike-oblique-slip faults located 

within the fjords through the Faroe Islands, which project towards the FSB (Figs. 3.1, 

3.2). However, no direct kinematics are observed on these faults (or fault-zones), with 

the only dependable constraints coming from the stratigraphic thickening experienced 

across them. Importantly, in all observed instances, faults (and dykes) of this 

orientation  (NW-SE)  display  little  to  no  lateral  displacement.  It  therefore  seems 
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Fig. 3.15. Simplified summary block models for structures observed on the Faroe Islands (see 
text for details), and their timings relative to the FIBG, as constrained by stratigraphic 
thickening and offsets (Ellis et al., 2009; Passey, 2009; this study). 
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unlikely that the faults within the fjords are any different, and we propose that they 

should therefore be viewed simply as normal faults within the Faroes region. Our 

model is consistent with basalt thickness variations nearby offshore (Fig. 3.1; e.g. 

White et al., 2003), and supports heavy mineral trace studies that indicate NW-SE-

oriented palaeo-lows existed during the Palaeogene (e.g. Jolley and Morton, 2007). 

Evidence from the Faroes may therefore still find application within the Faroe-Shetland 

Basin, despite the clear differences in terms of stretching magnitude.  

 

3.4 Discussion 

3.4.1 Deformation history systematics 

If used throughout a study, the application of deformation history systematics can help 

to determine the most probable series of events with a given set of structures. An 

initial aim of this study was to test the two existing models concerning the 

development and timing of structures on the Faroe Islands, i.e. A single cyclic, left-

lateral transtension event on basin-scale transfer zones resulting in a complex 3D strain 

(Ellis et al., 2009) vs. a polyphase deformation history during the progressive 

reorientation of rifting vectors through time resulting in cross-cutting structural sets 

(Geoffroy et al., 1994). The findings of the present study support the latter model, but 

also reveal significant evidence that contradicts the sequence, timings and grouping of 

structures proposed by Geoffroy et al. (1994). 
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In this section we assess the deformation history deduced during the present study 

using the methodology described in Potts and Reddy (1999). In order to do this most 

effectively, Events 1, 2 and 3 are split into their constituent sub-groups to give six 

structure-sets (e.g. Event 1a and b, Event 2a, b and c, and Event 3). Note that we have 

not separated structures that are observed in the field to link together and to be 

kinematically compatible, e.g. the Event 2b conjugate strike slip faults, thrusts and 

LANF sets. For a non-cyclic deformation history, these sets will ideally have a total of 15 

relationships, as calculated using Equation 1 of Potts and Reddy (1999): 

2
)1( −

=Ρ
nnn  

 

where, n = the number of different structures and Pn = the number of relationships for 

a non-cyclic, polyphase deformation history. If more than 15 relationships are 

observed, then a progressive cyclic history should be invoked. However, only 12 

relationships are observed (Fig. 3.16), and so a non-cyclic history is the more likely. 

Thus key relationships that might lend support to the Ellis model are missing. 
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Fig. 3.16. Summary of cross-cutting relationships observed in the Faroe Islands. Instances 
where relationships are not observed can be fit in by tracking their position relative to the 
other relationships. 

 

3.4.2 Regional subsidence mechanisms 

The majority of the FIBG was emplaced at or around sea-level to a gross stratigraphic 

thickness in excess of 6.6km, requiring therefore a comparable magnitude of 

subsidence over the duration of the Palaeocene. Offsets across individual faults on the 

Faroe Islands rarely exceed 100m, and collectively, can only realistically account for a 

minor fraction of the overall regional subsidence. Clearly faulting within the Faroe 

Islands is not responsible for the regional subsidence, more the result of it. It would 

therefore be beyond the scope of the present study to infer the actual subsidence 

mechanisms. However, we would like to draw attention to the apparent coincidence 

between subsidence and lava emplacement rates. This could be indication that the 

load presented by the dense (~2.8kg/cm3; Nelson et al., 2009) basalts of the FIBG, 

could cause isostatic disequilibrium and subsidence. The Faroes Block is an isolated 

micro-continent (Bott, 1983), and would therefore potentially be prone to rapid 

Chapter 3

106



responses to loading or unloading. In this model, emplacement of the first extrusives 

(i.e. the Lopra Formation hyaloclastites) would induce minor subsidence, being only 

marginally denser than the underlying continental crust. This would cause infilling of 

the basin, by prograding hyaloclastites, until extrusion became subaerial (i.e. 

emplacement of the Beinisvord Formation). This could continue indefinitely, depending 

on the magmatic supply rate, as a positive feedback mechanism. 

 

3.4.3 The NE Atlantic Margin and continental break-up: constraints from the 

Faroe Islands 

Basins along the NE Atlantic margin preserve a record of processes that occurred 

during the build-up to continental separation and formation of the NE Atlantic. 

Inferences are often made concerning the kinematics responsible for the development 

of the present day structural architecture of those basins, based on the results of 

regional-scale numerical models and interpretation of seismic reflection datasets. The 

paucity of suitable field analogues means that subtleties within this process may be 

overlooked, which could have significant implications for basin-sediment distributions 

that are important in hydrocarbon exploration. Here the events described in section 

3.3 are addressed in terms of their regional and super-regional contexts. 

 

During emplacement of the FIBG (59-56Ma: Palaeocene), central North Atlantic 

spreading propagated northwards solely through the Labrador Sea and Baffin Bay, 
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separating the North American plate from Greenland, with no oceanic crust developed 

in the (present day) NE Atlantic (Pitman and Talwani, 1972; Srivastava and Tapscott, 

1986; Torsvik et al., 2001; Gaina et al., 2009; Fig. 3.17a). The FSB lies roughly along 

strike from the Møre Margin to the NE, from which Cretaceous rifting events likely 

propagated southwards into the FSB, before a northwesterly jump and eventual 

separation on the Aegir Ridge occurred (Carr and Scotchman, 2003). NW-SE and N-S 

oriented Event 1 structures record an ENE-WSW to NE-SW extension throughout this 

time; an angle of almost 90° to the eventual plate motion (NW-SE). NW-SE oriented 

structures are present across the region, and display varied degrees of throw. The 

largest offsets observed are in East Greenland (km-scale; Larsen and Whitham, 2005), 

decreasing through the Faroe Islands (hm-scale) into almost sub-seismic resolution 

scale in the FSB. This is apparently coincident with crustal thickness and elevation 

across the region, with the largest offsets in the topographic highs, decreasing into the 

lows (the FSB), and may therefore relate to gravitational potential stresses. We 

hypothesize that excess GPE is generated by regional-scale differences in surface heat 

flow, topography, and crustal thickness and density (related in part to magmatism) and 

could perhaps be related to the spreading direction of the central and northwestern 

North Atlantic at the time (i.e. through the Labrador Sea towards Baffin Bay). Despite 

the Faroes being well over a thousand kilometres from the Atlantic at the time, it is 

possible that with the East Greenland-Faroes region being higher than the spreading 
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Fig. 3.17. North Atlantic plate reconstructions from the Palaeocene to Miocene, focused on the 
Faroe Islands. (a) 60-55Ma: N. Atlantic spreading initially propagates northwards through the 
Labrador Sea and Baffin Bay, splitting the (now) North American plate from Greenland. Rifting 
in the Faroes region is NE-SW oriented. (b) 55Ma: Spreading begins to the east of Greenland, 
with a progressive ‘unzipping’ from north to south, from the Barents Sea down towards the 
southern N. Atlantic. Initial break-up occurs with formation of the Mohns, Aegir and Reykjanes 
ridges. Combined, the extension vector related to spreading on the Aegir and Reyjanes ridges is 
N-S at this time; ridge and transform faults form a conjugate set to facilitate this extension 
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vector. (c) 47.9Ma: Greenland begins to move relatively westwards away from the European 
continent with an associated anticlockwise rotation in the extension vector. (d) 20.1Ma: 
Spreading on the Aegir ridge shuts, jumping to the Kolbeinsey ridge. A combination of 
mechanisms (e.g. body force) led to compression and uplift of the surrounding continental 
margins. Present day continental outlines are shown for reference only. (Original images 
courtesy of StatoilHydro). 

 

ridge and its surroundings (i.e. the Møre and Kilda basins), excess GPE would be 

generated in the continental interior, resulting in extension (e.g. Pascal and Cloetingh, 

2008). Topographic reconstructions for the Palaeocene to Eocene (e.g. Jones and 

White, 2003; Maclennan and Jones, 2006; Nisbet et al., 2009; Fig. 3.18) suggest that 

the Faroes region was relatively high compared to the Atlantic ridge and the basins 

developed to the NE and SW. Such conditions could have resulted in NE-SW oriented 

extension in the Faroes region, and mild compression in the surrounding lows. 

 

By the early Eocene (55Ma), minor sea-floor spreading had initiated on the Mohns and 

Aegir Ridges in the Norwegian-Greenland Sea, propagating southwards, and the 

Reykjanes Ridge in the NE Atlantic, as the Greenland and Eurasian continents began to 

separate (Ziegler, 1988; Lundin, 2002; Fig. 3.17b). The Aegir Ridge represents a large 

embayment on the margin, and is linked to the Mohns and Reykjanes ridges by large 

transform faults. The ENE-WSW and ESE-WNW oriented continental margin to the 

north of the Faroes forms an open, northward-pointing ‘v’ (Fig. 3.17b). Faults with the 

same orientations are observed en-mass on the Faroe Islands as a conjugate pair that 

facilitates N-S extension. Evidence on the Islands therefore suggests that the initial 
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Fig. 3.18. (a) Palaeocene and (b) Palaeocene-Eocene topographic reconstructions for the N. 
Atlantic region (Figure 1 of Nisbet et al., 2009). Throughout the Palaeocene, and into the 
Eocene, the Faroe Islands are relatively high compared with their surroundings (i.e. the Møre 
(M) and Vøring (V) regions, and the Kilda basin (K) to the NE, and Rockall region (R) to the SW). 
The resultant gravitational potential energy caused by this relative elevation may be sufficient 
to drive extension preferentially in the Greenland, Faroe and Shetland areas. 

 

stages of plate separation involved N-S extension with, perhaps, oblique spreading on 

the Aegir and Reykjanes Ridges, and transtension on the linking transform faults. With 

time, Greenland began to drift relatively westwards from Europe resulting in an 

anticlockwise rotation of the extension vector into a more NW-SE orientation (Fig. 

3.17c). 
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Spreading on the Aegir ridge ceased as part of a ridge-jump to the Kolbeinsey Ridge 

(Talwani and Eldholm, 1977), with continued spreading to the present day (Fig. 3.17d). 

With sea floor spreading established, the dominant forces on the NE Atlantic 

continental margin became compressional, which throughout the Cenozoic is typically 

attributed to the action of a combination of body-forces. These include ridge-push and 

gravitational potential stresses related to lithospheric thickness and elevation 

variations in the continental interior (e.g. the Scotland Massif and the Scandes 

Orogenic belt), coupled to additional horizontal compressive stresses relating to 

Iceland and its insular margin (Cloetingh et al., 2008; Doré et al., 2008; Pascal and 

Cloetingh, 2008). Such lateral forces would undoubtedly be varied across the region 

due to the asymmetric structure and timings of the marginal basins. Further to this, the 

location of pre-existing structures of varied age (Caledonian to Recent) and significance 

(local to regional scales), could explain the multiple compressional-structure 

orientations developed along the margin. Significantly, the regionally-late structures 

developed on the Faroe Islands (Event 3) are typically tensile features with associated 

clastic infills. If developed during compression, it is possible the structures are local 

tensile features developed on the outer-edges of regional-scale compressional folds 

(e.g. Ramsay and Huber, 1987), or as a result of gravitational instabilities developed on 

topographic-highs. 
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3.5 Conclusions 

• Spatially and temporally-related suites of brittle faults, hydrothermal 

mineralization and intrusive igneous sheets (dyke swarms and sills) are 

recognized throughout the Faroe Islands and formed during and after extrusion 

of the FIBG.  

• Structural relationships observed in the field indicate a progressive 

reorientation in the regional stretching directions through time, from NE-SW to 

N-S to NW-SE extension, leading to polyphase deformation rather than a 

continuous, cyclic deformation regime. 

• NW-SE oriented faults are dip-slip in all observed cases. In the absence of any 

evidence to the contrary, it is inferred that these structures are indicative of 

movements on the basin-scale faults within the fjords (i.e. the Judd, Brynhild 

and Westray faults). The kinematics of these faults and the similarly oriented 

dykes indicates a distinct period of NE-SW extension, possibly relates to an 

excess gravitational potential energy within the continental interior relative to 

the mid-ocean ridge in the western North Atlantic. Progressive displacements 

on these faults throughout the Palaeocene are responsible for thickness 

variations within the FIBG, and similarly aged strata within the FSB. 

• The progressive anticlockwise rotation of the extension vector identified seems 

consistent with the most recently published NE Atlantic continental break-up 

reconstructions, and illustrates the importance of carrying out detailed field 
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studies, in addition to the more usual margin-scale modeling studies, in order to 

validate plate reconstructions. 
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4  
The nature and significance of post-magmatic faults and 
associated clastic infills on the NE Atlantic margin: evidence from 
the Faroe Islands 
 

Abstract 
Detailed geological observations have revealed the hitherto unrecognised 
development of regionally-late, fault-related deformation structures on the 
Faroe Islands that are typically associated with different styles of clastic 
sedimentary infilling. These include: 1) Thin (0.1-0.3m wide) clay smears 
associated with pre-existing faults that have been reactivated, cross-cutting 
early fault rocks and mineralisation features. 2) Wider (0.3-1m wide) clastic 
infills developed along pre-existing mineralised faults, that display internal 
faults and/or asymmetric drag-fabrics defined by clast alignments, often 
suggesting the opposite sense of movement to the original host fault. 3) 
Saucer-shaped, 0.1-0.6m thick clastic horizons that display fluvial to debris-
flow lithofacies, preserving sedimentary structures, such as cross-bedding, 
channel bar and scour-structures. 4) Anastomosing mm-scale and planar 
dm-scale injection features that exploit pre-existing fractures within the 
surrounding basaltic units. In general, the clastic infills (2) occur as 
discontinuous lenses developed along reactivated faults, sourced partly 
from the local volcanic wall rocks, but predominantly from the clastic strata 
preserved locally between individual basaltic flow units. These structures 
post-date all other episodes of faulting recognised in the Faroe Islands and, 
unlike earlier episodes, lack significant amounts of associated 
mineralisation. It is proposed that this reflects their development at 
shallow depths (near to the surface) and very late in the geological history, 
possibly during regional uplift. The saucer-shaped clastic horizons are 
associated with decametre-scale displacements and the development of 
tilted hanging-wall blocks adjacent to certain large faults. They are 
interpreted as sediment infills of subterranean cave networks formed due 
to the partial dismemberment of pre-existing lava flow units, related to 
adjacent, near-surface fault movements. Clastic injections in the area likely 
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result from the localised development of fluid overpressures in trapped, 
water-saturated sediment infills caused by the jostling of fault-blocks 
during subsequent faulting. 

Structures equivalent to the late, clastic-filled faults of the Faroes may 
occur in other parts of the NE Atlantic margin, particularly along the axes of 
gentle regional-scale folds that are widely developed in the region. 
Displacements observed are all well below seismic resolution, and such 
structures may be more widespread across the region than previously 
anticipated. Importantly, the probable unsealed nature of the clastic infills 
makes them potential fluid-migration pathways, both up- and across-faults 
within the Cenozoic volcanic sequences of the NE Atlantic region. 
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4.1 Introduction 

Much of the NE Atlantic Margin is covered in a thick pile of trap-style volcanics, part of 

the North Atlantic Igneous Province (NAIP; emplaced ~62-54 Ma; Saunders et al., 

1997), of which the Faroe Islands Basalt Group (FIBG; Passey et al., 2006; Passey and 

Bell 2007) is a constituent. The FIBG was emplaced at or around sea-level during the 

Palaeocene, to a true thickness of about 3km, requiring a comparable magnitude of 

subsidence during the eruption period. To date, most of the structures preserved on 

the Faroe Islands have been attributed to subsidence-related deformation (Geoffroy et 

al., 1994; Ellis et al., 2009; Passey, 2009). These record a progressive anticlockwise 

rotation in the regional extension vector, from NE-SW to NW-SE, which can be related 

to changes in the location and kinematics of ocean spreading in the North Atlantic 

region (Walker et al., 2008; Chapter 3). To date, no onshore studies have accounted for 

the subsequent events related to uplift that must have occurred to bring the Faroe 

Islands to their current elevation (the highest peak, Slættaratindur, at 882m a.s.l.). The 

principal aim of this study is to highlight the role of regionally late fault reactivation in 

forming open, subterranean voids, fissures and caves which subsequently have 

become infilled by clastic sediments. Unlike other earlier faulting episodes, these infills 

are not associated with widespread mineralisation and may represent unsealed faults. 

We also detail other styles of fault reactivation that are believed to be coeval with 

these late reactivations,  possibly during regional uplift following plate separation and 

sea-floor spreading. 
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4.2 Geological setting 

4.2.1  Faroe Islands stratigraphy 

The FIBG is dominated by tholeiitic basalt lavas, divided into seven formations based 

on lithology and the presence of regionally recognised disconformity surfaces 

(Rasmussen and Noe-Nygaard, 1969 & 1970; Passey et al. 2006) and geochemistry 

(Waagstein, 1988). The formations relevant to the present study are (from oldest to 

youngest) the Beinisvørð, Malinstindur and Enni Formations (Fig. 4.1). 

 

 

Fig. 4.1. Hill-shaded simplified geological, and bathymetric map of the Faroe Islands and insular 
shelf with gross stratigraphic column for the Faroe Islands Basalt Group (after Passey, 2009). 
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The Beinisvørð Formation (BF) is ca.3.3km thick, of which only 900m is exposed above 

sea level on the Islands. The BF generally comprises aphyric, laterally extensive sheet 

lobes, often separated by minor volcaniclastic horizons (Passey and Bell, 2007). The 

sheet lobes display well-developed columnar joints that are commonly exploited 

during faulting, and can result in a considerable local steepening in fault plane dips 

compared to faults cutting adjacent clastic horizons located between lava flows 

(Chapters 3 and 5). Exposure of the BF is limited to the southern island, Suðuroy, and in 

the far west on Vagar and Mykines (Fig. 4.1). 

 

The overlying Malinstindur Formation (MF) is <1.4km thick and comprises subaerially 

emplaced, compound basalt lavas that are initially olivine-phyric evolving to aphyric, 

and then plagioclase-phyric types. Again, lavas are commonly separated by minor 

clastic horizons, typically volcaniclastic sandstones and siltstones, which were 

deposited during periods of volcanic quiescence (Ellis et al., 2002). The MF is 

particularly well exposed on the northern islands of Vagar, Streymoy and Eysturoy, at 

low altitudes on the north-eastern islands (Kalsoy, Borðoy, Kunoy and Viðoy), and in 

the north of Suðuroy (Fig. 4.1). 

 

The lowermost 900m of the youngest unit, the Enni Formation (EF), is exposed on the 

Islands, and comprises low-TiO2 and high-TiO2 interbedded simple (sheet lobes) and 

compound tholeiitic lavas. The 900m is a minimum thickness, with a significant amount 
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(in the order of hundreds of metres) eroded from the top of the volcanic pile 

(Waagstein et al., 2002). The EF is exposed in a north to northeast arcing trend from 

Lítla Dímun across Sandoy and the northern islands, reflecting the general 

(southeasterly) dip direction (Fig. 4.1). 

 

Units on the Faroe Islands generally display a southeasterly dip, the largest of which 

are observed in the Beinisvørð Formation in Mykines, ~8°, and decreasing up-

stratigraphy to become sub-horizontal (i.e. ~1°) in the Enni Formation on Fugloy, Svinoy 

and Viðoy (Fig. 4.1). This architecture suggests regional-scale fold-growth throughout 

the Palaeocene during emplacement of the FIBG, as discussed in section 4.4.2. Notably, 

the complex interplay between Palaeogene uplift and regional differential subsidence, 

and the effects of fault-block rotation, have likely resulted in numerous over-

steepened units on outcrop (e.g. units in the Malinstindur Formation, Viðareiði, Viðoy: 

~15-20° increase in inclination) and island-scales (e.g. the Enni Formation on Sandoy: 

~3-4° increase in inclination). 

 

4.2.2  Faroe Islands structural evolution 

Structures developed in the FIBG provide clear evidence for a multi-phase rift-

reorientation through time (Geoffroy et al., 1994) before and during continental break-

up, followed by a significant phase of uplift (Walker et al., 2008; Chapter 3). Distinct 

phases of faulting and dyke intrusion are recognised. This began with (Event 1a) ENE-
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WSW to NE-SW extension, accommodated by N-S- and NW-SE-trending dip-slip faults. 

Continued NE-SW extension was accommodated by the emplacement of a regionally 

significant swarm of NW-SE- and NNE-SSW-oriented dykes (Event 1b). Collectively, 

Events 1a and b affect the majority of the FIBG stratigraphy, resulting in thickness 

variations, most notably across the Judd, Brynhild and Westray Fault Zones (Fig. 4.1). 

Continued magmatism and an anticlockwise rotation of the extension vector led to 

(Event 2a) the emplacement of ENE-WSW and ESE-WNW conjugate dykes. Their 

intrusion marks the onset of N-S crustal extension and was followed by (Event 2b) 

fault-accommodated crustal extrusion involving both E-W shortening and further N-S 

extension facilitated primarily by slip on ENE-WSW (dextral) and ESE-WNW (sinistral) 

conjugate strike-slip faults, many of which are developed in the same locations as the 

immediately preceding conjugate dykes. A component of this E-W shortening was 

facilitated additionally by the development of minor-offset thrust faults which dip 

mainly to the SW or NE. During the final stages of this event (Event 2c), the regional 

extension vector rotated into a more NW-SE orientation that was preferentially 

accommodated by slip along NE-SW trending (dextral) oblique-slip faults. Based on the 

timing relative to Event 1, and an apparent thickening of the Enni Formation across 

hectometre-scale offset, E-W-trending faults (Passey, 2009; Ellis et al., 2009), Event 2 

most likely began towards the end of magmatism associated with the FIBG, coeval with 

the onset of oceanic-spreading on the Aegir ridge (ca.54-51 Ma; Lenoir et al., 2003); it 

may have continued through to the linkage of the Reykjanes, Kolbeinsey and Mohns 

Ridges. Events 1 and 2 are associated with multiple generations of calcite and zeolite 
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mineralisation in linked arrays of tensile and shear hydraulic veins. Field and thin 

section observations suggest that mineral growth occurred both as a precursor to the 

development of through-going slip surfaces, and during fault-slip with precipitation of 

minerals along irregular fault surfaces (Blenkinsop, 2008). The final deformation (Event 

3), and the subject of the present paper, involves the reactivation of some faults, the 

entrainment of clastic material along fault planes, and a general absence of 

mineralisation. 

 

4.3 Event 3 features: detailed geological characteristics 

Event 3 fault-related deformation structures on the Faroe Islands are quite distinctive 

from, and consistently cross-cut structures formed during Events 1 and 2. 

Characteristically, these faults are usually associated with entrained clastic sediments 

and can be subdivided into four related categories based on their geological and 

textural characteristics and the processes believed to be responsible for their 

formation. The development of two of these categories is controlled directly by 

faulting processes, whilst the other two represent more complex interactions between 

near-surface deformation, fracturing, sedimentation and fluid flow processes. All are 

thought to have formed at very shallow crustal depths (<2km) and may have 

developed during regional uplift of the Faroe Islands. 
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4.3.1 Clastic smears 

A small proportion of faults in the Faroe Islands (<15%) preserve clastic materials 

smeared along or dragged into the exposed fault plane. In all cases, the clastic material 

appears to be derived from adjacent sedimentary horizons developed between lava 

flows that are offset along the faults. The two best preserved type examples detailed 

here result from the late reactivation of Event 1 faults located on the western coast of 

Suðuroy, at the I Botni power station (Fig. 4.2).  

 

The larger of the two faults at I Botni is a NNE-SSW (025°) trending dip-slip fault formed 

during Event 1 that displays ~30m displacement down to the east, across a well 

developed 3-5m wide damage zone (Fig. 4.2c). Fault rocks within the Event 1 damage 

zone display widespread calcite and zeolite mineralisation in tensile (mode I) veins and 

shear hydraulic veins/fractures, and also in vuggy infillings between brecciated blocks. 

Within the fault core, however, these features are cross-cut and therefore post-dated 

by the development of polished fault surfaces that lack mineralisation. The clastic 

marker horizon is also smeared and polished, with a minimum 1-1.5m down to the 

west displacement (Fig. 4.2d, e), as measured from the base of the marker horizon, to 

the lower limits of the exposed smear. This is the opposite offset sense compared to 

the Event 1 host fault, and again, the clastic smear cuts mineral veins within the fault. 
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Fig. 4.2. (a) Simplified hillshaded geological map of Suðuroy with surrounding bathymetry. 
Location of I Botni (Figures 4.2 and 4.3) and Vagseiði (Figure 4.5) indicated by the labelled 
boxes. (b) Satellite photograph centred on the reactivated faults at I Botni. Marker 
volcaniclastic horizons outlined in dark red. (Base image from GoogleEarth). (c) Overview of the 
NNE-SSW trending fault at I Botni. Note the large down-to-the-east sense of offset as indicated 
by the marker horizons. (Height of the peak, left of centre, is ~180m a.s.l.); (d) clay horizon on 
the right is dragged down ~1.5m to the west, cutting Event 1 mineralisation, opposite to the 
kinematics of the host fault; (e) Zoomed view of the extent of the clay smear, with corrugations 
on the surface. 
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The smaller of the faults, located about 150m to the south of the previous exposure, is 

a NW-SE- (149°) trending dip-slip fault (Fig. 4.2b, 4.3). Here a ~1m thick volcaniclastic 

clay unit is offset in the hangingwall down to the northeast. The exact amount of 

displacement is unknown due to a lack of exposure in the adjacent footwall, but is 

presumed to be ≤4m based on the surrounding stratigraphy. Clastic material is 

demonstrably dragged into the fault plane forming a layer 10-30cm wide (Fig. 4.3a, b). 

Again, the fault displays fracturing, brecciation and calcite and zeolite mineralisation 

associated with Event 1 movements, here focused mainly in the hangingwall, and along 

the master fault (Fig. 4.3c, d). Calcite slickenfibres are clearly overprinted on the 

master fault by a more oblique-slip set of slickensides associated with the later 

movement along a polished slip surface. Sub-horizontal to sub-vertical Event 1 calcite 

veins within the clastic horizon are truncated by a weakly developed vertical to sub-

vertical fabric within the clastic material that is smeared along the fault plane. 

Furthermore, mineralised Event 1 fault wall-rocks are entrained within the clastic 

smear whose matrix lacks mineralisation (Fig. 4.3b). 

 

Both examples are interpreted to represent typical shear-smears (Weber et al., 1978), 

with a minor addendum, resulting from the contrast in mechanical properties between 

the (weak) tuff horizon, and the (strong) basalt flow units. In the case of the second 

example (Fig. 4.3), the smear does not appear to obey typical shear-smear geometries 

(i.e. becoming thinner with distance from the source horizon). A likely reason for this is  
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Fig. 4.3. (a) NW-SE trending fault at I Botni. Calcite slickensides on the right are polished over, 
and Event 1 mineralisation (thick-long dashed lines) are cut and truncated by a later sub-
vertical fabric (thin white dashed lines) within the clay horizon. (b) Zoomed view of fault shear-
smear. The smear clearly contains mineralised, rotated clasts of Event 1 fault-wall rocks. (c & d) 
Red-tinted crossed-poles photographs of the basaltic tuff horizon (location indicated in 3a). 
Event 1 zeolite and calcite mineralization is a pervasive feature throughout the basaltic tuff 
horizon. A ‘late’ zeolite veining cross-cuts Event 1 mineralisation, and could be related to 
reactivation of the adjacent fault during Event 3. 
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the differential reactivation of minor faults and fractures in the hangingwall of the 

main fault, which could cause localised thickening and thinning of the smear. As with 

typical shear-smears, all materials within the fault plane are derived from the 

immediate wall rock horizons (i.e. basaltic rocks and a single volcaniclastic horizon).  

 

4.3.2 Clastic infills and drags 

Displacements along irregular fault planes can lead to the development of features 

such as dilation jogs and pure tensile (mode I) fractures in the subsurface. At shallow 

crustal depth (<1-2km), this can result in the formation of persistent voids or even cave 

systems (Loucks 1999; Woodcock et al., 2006; Wright et al., 2009). Such voids may 

become infilled more-or-less immediately (i.e. by implosion brecciation; Sibson, 1987), 

or remain open for a longer period of time, depending on the relative strength of the 

surrounding wall rocks and the amount of rock overburden (i.e. depth). In the latter 

situation, faults can become filled through time, for instance, by gravitational collapse 

or fault-related brecciation of the roof/wall rocks, sedimentary deposition during 

intrastratal fluid-flow, mineral-veining, or a combination of these processes. In several 

locations within the FIBG (six identified localities during the present study; Fig. 4.1), the 

development of such voids has been followed by infilling with clastic sediment which 

has then, in some cases, undergone deformation during subsequent fault movements. 

Here we present two examples of such clastic fault infills; one of predominantly fine 
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sediments at Glyvursnes, Streymoy (Figs. 4.1, 4.4), and one of matrix-supported breccia 

at Vagseiði, Suðuroy (Figs. 4.2a & 4.5). 

 

Glyvursnes quarry is located about 3.5km south of the capital, Torshavn, in the SE of 

Streymoy (Fig. 4.4a, b). The subvertical Event 2 fault of interest here trends ESE-WNW 

and displays a negligible offset (cm scale) down to the north (Fig. 4.4c). Faults, fault-

rocks and fractures in the area are typically calcite and zeolite mineralised, which often 

form vuggy growths on the wall rocks as a result of predominantly tensile mode of 

opening. Event 2 mineralisation is truncated against a sediment fill that forms lenses 

developed along the irregular fault plane (Fig. 4.4c); the sediments lack mineralisation 

and must therefore post-date Event 2. The sediment infill comprises a matrix-

supported conglomerate, overlain by sub-horizontal laminated silts and muds (Fig. 

4.4d) indicating a progressive infilling from bottom to top by means of gravitational 

settling. The laminae are themselves offset by a linked network of minor normal faults 

suggesting further fault activity following and possibly during deposition. In some 

places, the laminations are rotated into subvertical dips adjacent to faults and are 

partially dismembered (Fig. 4.4e). In such instances it is suggested that contiguous 

blocks of laminated sediments were dragged and rotated during repeated 

displacements and minor dilation along the main fault. 
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Fig. 4.4. (Previous page) (a) Simplified geological and topographic map centred on south 
Streymoy with surrounding bathymetry. Location of the study fault at Glyvursnes is indicated 
by the circle. (b) Aerial photograph of Glyvursnes quarry; locations of c-e indicated by red 
circle. (c) Overview of the fault at Glyvursnes quarry, one of many Event 2 faults observed in 
the quarry walls. (d) Zoomed view of the lowermost section of the fault exposure, with late, 
matrix supported clastic material abutted against Event 2 mineralisation. (e) Fine clastics 
(≤1mm, clays and silts) deposited by gravitational settling, from the bottom upwards. Extension 
faults offset the laminae, most likely reflecting the continued dilation of the host fault. Note 
that some laminations have been faulted, rotated and dragged during this dilation (bottom 
right; f). (f) Rotated and faulted laminations probably resultant of continued reactivation and 
dilation of the host fault. 

 

The second example is found at Vagseiði (Fig. 4.5a), located on the west coast of 

Suðuroy, about 1.25km west of Vagur (Fig. 4.2a). The fault trends NW-SE (152°) and 

originally formed during NE-SW extension associated with Event 1a, displaying ~10-

15m down-to-the-northeast displacement (Fig. 4.5b). The Event 1a fault rocks are 

mineralised with numerous phases of calcite and zeolite. Clastic infills up to 1.5m wide 

are periodically exposed along the fault at various localities, the lowermost of which is 

close to the shore, several tens of metres up the hill slope (Fig. 4.5a). Lenses of 

volcaniclastic materials derived from intrastratal sedimentary horizons are observed 

being entrained along the main fault, although compared to the sediments at 

Glyvursnes, they are generally much coarser, forming a matrix-supported chaotic 

breccia (Fig. 4.5c, d, e) (Woodcock et al., 2006). The provenance of the clasts is not 

always entirely apparent, although it is presumed that the majority are genetically 

related to the succession exposed immediately above, based on mineralogical and 

petrological similarities. About 70m from the coast along the fault (at 40m a.s.l.), the 

infill bifurcates to the east up a subsidiary fault (Fig. 4.5d). Here the stratigraphy is  
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Fig. 4.5. (Previous page) (a) Satellite photograph of the coast at Vagseiði. (b) Overview of the 
fault at Vagseiði (location indicated in Figure 4.2). The fault is NW-SE trending and displays 
~10-15m displacement, down to the east (height to ‘d’ is ~95m a.s.l.). (c) Lowermost exposed 
lens of matrix-supported chaotic breccia, bound by Event 1 mineralised fault-rocks (large 
divisions on ruler are 10cm). (d) N-S trending offshoot fault with matrix-supported chaotic 
breccia fill (ruler is 80cm tall). Clay horizon on the right (E) has been dragged down to the west, 
opposite to the sense of motion of the host fault. (e) Chaotic breccia with asymmetric fabric 
again indicating a down to the west sense of motion. No mineralisation is observed within the 
clastic material along this fault. (f & g) Plane-polarised photographs of the clastic infills, 
sampled from just below e. Individual clasts contain basaltic Event 1 fault rocks and associated 
zeolite mineralisation (e.g. centre of f; right of centre of g). Generally, clasts are held together 
by clay minerals and (in these instances, zeolite mineralisation. (h)Summary model for the 
formation of persistent subsurface fissures and voids, based on the outcrops at Vagseiði. 
Reactivation of the Event 1a faults results in voids along the irregular fault plane. These voids 
are later filled by inward collapse of the wall rocks, and by more exotic materials from further 
afield in the stratigraphy. 

 

relatively offset 75cm down to the west, resulting in drag and mixing of the clastic 

(tuff) horizon with the more distally-sourced breccia material. Further up the fault, 

about 170m to the NW (at 95m a.s.l.), the chaotic breccia displays a clear drag-fabric, 

picked out by clast alignments, indicating a down to the west sense of movement 

which is cut by a dip-slip, unmineralised fault (Fig. 4.5e). Again, claystone material is 

interleaved with coarse breccia, but here the clastic infill appears to display a highly 

inclined grading. As with the Glyversenes fault, this is interpreted as representing a 

sedimentary grading, resulting from gravitational depositional processes; the grading 

was most likely sub-horizontal, and has subsequently been dragged by later fault 

movements into its present inclination.  
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It appears that materials (particularly the fines forming the matrix) within both of these 

examples are not solely sourced from the surrounding wall rocks, and the development 

of graded bedding in the uppermost clastic fills may indicate the development of 

persistent open cavities along the pre-existing fault (Fig. 4.5h). These subsurface 

fissures would have been open for a period of time and infilled, followed by repeated 

subsequent faulting episodes. The lack of mineralisation coupled with the deposition of 

sediment, suggests that these features formed at very shallow crustal depths, close to 

the surface. 

 

4.3.3 Saucer-shaped clastic infills 

These features are only found clearly preserved in one location on the west coast of 

Viðoy, at the village of Viðareiði (Fig. 4.6a, b, c). The topographic low in which the 

village of Viðareiði sits, appears to be bound by large offset (≥20m) faults, creating an 

E-W trending graben. Immediately to the north of the Viðareiði pier section, a fault-

bound block appears to be rotated; units are inclined to around 15-20° rather than the 

typical 1-3° regional dip (Fig. 4.6b, c). This rotation may have resulted from reactivation 

of Event 2 faults, in the near surface during Event 3. 

 

The pier section at Viðareiði is host to an overlapping succession of compound lavas, 

and lava tubes of the Malinstindur Formation, separated by numerous irregular saucer-

shaped clastic horizons 0.3-0.6m thick (Fig. 4.6b-e). The lava units typically preserve a  
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Fig. 4.6. (a) Simplified geological and topographic map of Viðoy with surrounding bathymetry. 
(b) Aerial photograph of the Viðareiði pier section detailing major faults and the location of the 
Viðareiði clastic horizons (outlined in dark red). (a) Overview of the west coast of Viðoy at 
Viðareiði. To the north of the village on the coast, a fault-bound section exhibits a much 
steeper inclination than that of the surrounding units, most likely indicating a rotation resulting 
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(Fig. 4.6 continued) from faulting. (d) The Viðareiði pier section comprising overlapping, 
subhorizontal compound lava units, separated by 0.3-0.6m thick clastic horizons (delimited by 
dashed lines). In some instances the clastic horizons are linked by vertical injections, exploiting 
mineralised faults (detailed in Figure 4.8); (e and f) Clastic horizons commonly display ramps 
sections of about 45°, which cross-cut solid state features within the surrounding basalt units. 

 

well developed lower crust, core, and upper crust. The lower crust is characterised by 

pipe amygdales that start a few centimetres from the base of the unit and are often 

curved in the palaeoflow direction. The core is generally a massive zone with more 

globular-shaped amygdales, and irregular joints ranging in orientation, from sub-

horizontal to sub-vertical. In the upper crust, amygdales are spherical to globular, and 

the groundmass often exhibits a progressive reddening towards the top. Both the 

lower and upper crusts commonly exhibit classic rope-structures on the bounding 

surfaces that are characteristic of pahoehoe-type lavas. These lava flow features are 

important when considering the nature of the contact relationships between the clastic 

horizons and the lava units. 

 

The clastic horizons are typically sub-horizontal, but in some instances more steeply 

inclined (45-75°) ramp sections are observed. Mineralised Event 2 strike-slip faults are 

developed within the basalt units and are either cross-cut by, or sometimes filled with 

clastic material. The ramp sections are also discordant, cross-cutting solid-state lava 

unit features (Fig. 4.6d-f). Ramps of this nature occur in three-dimensions, and overall 

give the clastic horizons a saucer-shaped geometry, akin to that of saucer-shaped 

intrusions. However, the sedimentary units preserve clear sedimentary structures on 
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mm- to cm-scales, including planar and cross-laminations, bar structures and scour 

structures (Fig. 4.7). These features are completely undeformed and show that the 

clastics were not emplaced by forceful injection, but rather were laid down as fluvial- 

to debris-flow-type deposits. Planar laminations at the top of the horizons appear to 

‘drape’ the topography of the lava unit above, and are equivalent to gravitational 

settling laminae, implying that there was free space between the lava flows that 

became filled through time, followed by settling of the units above ‘indenting’ the 

sediment fills. In order to gravitationally deposit those materials, we infer that the free 

space must therefore have been larger than the thickness of the exposed remnants. 

Further evidence for a filling through time is provided by the clast-provenance. In some 

instances, fragments of the lava unit above have clearly fallen down into and become 

buried by the clastics below (Fig. 4.7a); the fragile lithofacies above such fragments are 

undisturbed and must therefore have been deposited afterwards. Internally, the 

sediments display only very minor mineralisation. Where discrete veins are observed, 

they are markedly more passive than those observed in in-situ volcaniclastic sediments 

(e.g. Fig. 4.7c), anastamosing around and between grains, rather than through them; in 

no observed instances do they appear to cause grain-scale deformation (Fig. 4.7d). 

 

Collectively, the cross-cutting relationships with the lava flows and features observed 

within the clastic horizons indicate that there was an open cave network in the 

subsurface, which post-dates faulting associated with Event 2. It is well known from  
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Fig. 4.7. Internally the clastic horizons display fragile sedimentary lithofacies such as: (a) planar 
and cross laminations, bar structures and imbrication, as well as (b) erosional features (scour 
structures) infilled with cross laminated sedimentary fill. In a there is a raft of the lower crust of 
the basalt unit above, surrounded by undisturbed sedimentary structures, indicating a 
progressive filling through time. Also, the planar laminations at the top of both a and b drape 
the bottom surface topography of the unit above, most likely indicating that the cavity was 
larger during deposition and has subsequently closed. (c) Plane-polarized photograph of ‘in-
situ’ volcaniclastic sediments from an Event 2 fault on Eysturoy. Zeolite mineralisation is 
dominant in this section, and has resulted in brecciation at the grain-scale. (d) Zeolite veins 
within the Viðareiði sediments (outlined in centre) anastamoses around grains, with no 
evidence for grain-scale deformation. 

 

direct field evidence and analogue modeling that rocks such as basalt commonly 

exhibit pre-existing weaknesses and anisotropies that may be reactivated at some 
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distance from active faults (e.g. Gudmundsson, 1992, 1995; Acocella et al., 2003; 

Holland et al., 2006). Partial fragmentation of the stratigraphy along such weaknesses 

could therefore result in the formation of interlinked voids, fissures, or cave networks, 

particularly at the near surface where fault movements are likely to have had a 

significant tensile component (Holland et al., 2006). It has also been shown that the 

style of faulting differs between thick and thin layered sequences, with preferential 

disintegration of thin layers, and the development of through-going master-faults in 

thick layers. Furthermore, fault-bound blocks are likely to become rotated during 

faulting. It is proposed, therefore, that the faults bounding the E-W trending graben 

were reactivated during Event 3 (Fig. 4.8), in the near surface (<1km depth), leading to 

the tilting, fracturing and partial dismemberment of the lava flows due to 

tensile/mixed-mode faulting. The resulting cave-systems are only observed within the 

graben, and coincide with the thinner overlapping terminations of the compound-lava 

units; to the north and south, the individual units display a regular thickness in the 

order of 2m or more. We therefore suggest that the cave-system relates to preferential 

disintegration of the thinner units, during reactivation of the large bounding faults. 

 

4.3.4 Clastic intrusions 

Clastic intrusions have been reported from several geological settings worldwide, with 

various associated causative mechanisms being proposed (e.g. Richter, 1966; Jolly et 

al., 1998; Rijsdijk et al., 1999; Phillips and Alsop, 2000; Jonk et al., 2004; Le Heron and  
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Fig. 4.8. Summary model for the clastic horizons and intrusions observed at Viðareiði. (a) The 
existing stratigraphy is dominated by compound lava units that are individually thinner at the 
pier section. (b) Reactivation of existing Event 2 faults during uplift results in fault-block 
rotations and a preferential disintegration in the thinner cover units. This disintegration creates 
a subterranean cave network. Permeating waters carry and deposit clastic debris throughout 
the cave network. (c) Further movements on nearby faults results in localised overpressure and 
fluidisation of the clastic materials, and intrusion along existing material anisotropies (i.e. faults 
etc.). 
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Etienne, 2005; Goździk and van Loon, 2007). At Viðareiði, two styles of clastic veins are 

observed: 1) 0.1-0.3m wide planar veins exploiting pre-existing mineralised faults; and 

2) thin anastamosing veins which cross-cut lava unit solid-state features (Fig. 4.9a,b) 

and sedimentary features within the subhorizontal clastic horizons. The wider veins 

appear to be sourced from the coarse clastic materials (0.5-10cm) within the 

subhorizontal horizons, cutting the planar marginal laminations and dragging them 

upwards (Fig. 4.9c). They display a chaotic matrix-supported texture, and where 

observed, are clearly injected from below, up pre-existing faults and joints. The thinner 

vein style generally ranges from 0.1-1cm wide, and are continuous up to many metres. 

They range in attitude and inclination along a single vein, and are not linked or 

associated with any particular existing structures or anisotropies (i.e. they will exploit 

existing weaknesses and form their own fracture along a single vein). Internally, these 

veins are composed of fine materials (≤1mm), such as clays and silts, and in some cases 

(though very rarely) display a poorly developed margin parallel lamination. Within the 

subhorizontal clastic horizons, clays appear to have been remobilised and injected 

through the coarser materials (Fig. 4.9d-e). 

 

It is proposed that the clastic injections in the area likely result from the localised 

development of fluid overpressures in water-saturated, cave sediments. This was 

probably triggered by the jostling of fault blocks and fragmented lava flow lobes during 

nearby fault movements (Fig. 4.8c). 
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Fig. 4.9. Clastic intrusions that: (a-b) display various orientations and cut through lava solid 
state features such as pipe amygdales; (c) exploit Event 2 mineralised faults; and (c) cut 
through the original clastic horizons. (d-e) Micro-scale clay injections with the Viðareiði 
sediments. 

 

4.3.5 Summary 

The features detailed in the previous section demonstrably post-date and locally 

reactivate the mineralised subsidence-related structures (i.e. Events 1 and 2) detailed 
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by Walker et al., (2008) (see Chapter 3). These (Event 3) structures consistently lack 

intrinsic mineralisation, and consistently develop a significant tensile component in 

their formation. The absence of a cement, and clear preservation of delicate 

sedimentary features in the infills suggests that these features may have formed in the 

near surface, perhaps at depths less than 1-2km.  

 

4.4 Discussion 

4.4.1 The nature and significance of the fissures and caves 

It would be useful to know whether the features described here formed as persistent 

sub-surface fissures, voids or caves and at what time they were infilled with sediment. 

The fissure fills at Vagseiði (section 4.3.2) are well exposed as lenses over a vertical 

distance in excess of 100m, rather than a continuous conduit along the extent of the 

fault. This suggests that the fissures are the result of irregularities on the fault surfaces; 

geometric incompatibilities, that result in the localised formation of voids. The exotic 

polymict nature of the infills may indicate that the lenses are connected laterally by 

thinner fissures, or that the void and cave systems were extensive enough to source 

numerous stratigraphic source lithologies. There is no clear evidence of linkage by thin 

fissures (though out-of-plane connectivity cannot be discounted at this time). 

However, the parent Event 1 fault displays a 10-15m offset, so the resulting 

juxtaposition provided a greater number of possible source lithologies for individual 

voids.  
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Palynological studies could be used to decipher whether the fissures and caves were 

open at surface. If not connected to the surface, the only palynomorphs present in 

cored samples would be of Palaeocene age, i.e. material derived wholly from 

reworking of the interlava sedimentary horizons. Unpublished works on Viðareiði have 

shown that the fine-grained sediments contain abundant aseptate fungal mycellae, 

which are not age diagnostic. However, spore colour indicates a thermal alteration 

index (TAI) of 1.5 (D. W. Jolley, 2009, pers. comm.), which could suggest that either 

mildly hydrothermal springs were feeding the cave-system water, or that the spores 

are of Palaeocene age. In the latter case, the TAI would result from heating of the 

source material during lava emplacement, or during burial. 

 

It is not possible at the present time, with the evidence at hand, to suggest whether 

the features detailed in this study occur within the phreatic or vadose zones, nor is 

there any reasonable constraint on the actual depth of their formation, besides the 

assumption that deep (>1km) fault rocks are likely to display increasing proportions of 

cement. In all cases, there are numerous reasonable hypotheses for the source of 

sediment, and for the styles of their deposition. For instance, the nature of the infills in 

the Glyvursnes case (fine fills) may indicate that the void lay within the vadose zone, 

above the water table, allowing a progressive infilling with fine sediments. However, 

this would also be possible were they deposited in a hydrodynamic system within the 

phreatic zone. 
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On the basis of the available evidence, the extent of the exposures and the available 

palynology, we believe the clastic infills do represent pervasive features, and would 

therefore suggest that they are further examples of subsurface fissure infills to be 

added to the growing literature on the subject (e.g. Loucks 1999; Woodcock et al., 

2006; Wright et al., 2009). 

 

4.4.2 Regional significance of Event 3 

The Event 3 structures demonstrably post-date those associated with Events 1 and 2 

and therefore must have formed at some time following the Palaeocene. In general, 

mid-Palaeogene to Neogene structures developed along the NE Atlantic Margin are 

related to compression and regional uplift. There is a rich literature on the nature and 

timings of compression and uplift in the Faroe-Shetland Basin (FSB) and adjacent 

regions (e.g. Boldereel and Anderson, 1993, 1998; Anderson and Boldreel, 1995; Doré 

and Lundin, 1996; Ritchie et al., 2003; Sørensen 2003; Smallwood, 2004; Johnson et al., 

2005). Within the FSB, Cenozoic compression has generally resulted in the mild 

development of growth folds of varying scale and orientation (Ritchie et al., 2008). 

Whilst these have developed at low strain levels (NE-SW-directed, post-basalt crustal 

shortening of <1% across the Faroes Platform; Anderson et al., 2002), the substantial 

amplitudes and areal extent of the resultant folds and domes makes them interesting 

hydrocarbon exploration targets (Doré et al., 2008). The Faroe Islands sit at the 

junction of three such anticlinal structures: the ENE-WSW trending Fugloy Ridge (to the 
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east); the NNW-SSE trending Munkagrunnur Ridge (to the south); and the NW-SE 

trending Iceland-Faroe Ridge (to the NW) (Smallwood, 2008) (Fig. 4.10). The first two 

are anticlinal structures that relate, at least in part, to compression, with their location 

and orientation most likely controlled by basement structure (Doré et al., 1997). The 

Fugloy Ridge grew during several tectonic episodes in the Palaeocene, through to, 

perhaps, the mid-Miocene. Growth of the Munkagrunnur Ridge is more difficult to date 

as there are no preserved post-lava sediments on the ridge. The Iceland-Faroe Ridge 

relates to interaction between the proto-Iceland plume and the Mid-Atlantic ridge, 

throughout continental break-up and sea floor spreading (Bott and Gunnarsson, 1980). 

 

Compression in this setting is typically attributed to a combination of body-forces, such 

as ridge-push and gravitational potential stresses related to lithospheric thickness and 

elevation variations in the continental interiors, coupled to additional horizontal 

compressive stresses relating to Iceland and its insular margin (Cloetingh et al., 2008; 

Doré et al., 2008; Pascal and Cloetingh, 2008). Kilometre-scale uplift also affected a 

large area during emplacement of the North Atlantic Igneous Province, including the 

continental margins of NW Europe, Greenland and Canada (Maclennan and Jones, 

2006; Saunders et al., 2007). This consisted of transient uplift, related to the regional, 

rapid emplacement of hot asthenosphere, and a permanent uplift caused by addition 

of igneous material into and onto the crust, before and during continental break-up 

(Larsen and Saunders, 1998). 
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Fig. 4.10. (a) Hill-shaded simplified geological map of the Faroe Islands, with hill-shaded 
bathymetric map of the Faroes shelf detailing axial-lines of the Munkagrunnur, Fugloy, and 
Iceland-Faroes ridges (after Boldreel and Anderson, 1998; Passey and Bell, 2007; Bathymetry 
courtesy of Knud Simonsen, Univ. Faroe Islands). (b) Secondary features associated with 
tangential longitudinal folding and (c) typical orientations of normal faults and thrusts 
developed in a thick, flexured unit (after Price and Cosgrove, 1990). 

 

Most Event 3 features on the Faroe Islands are not shortening structures; on the 

contrary, they are typically extensional or tensile features. In the absence of age dating 

for these features, it is not yet possible to determine whether they formed concurrent 

with, or subsequent to compression and uplift features found along the NE Atlantic 
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margin. It is worth pointing out, however, that there are numerous mechanisms that 

would allow localised extension during regional shortening (e.g. dilational fractures on 

folds: Ramsay and Huber 1987 Price and Cosgrove, 1990; Cosgrove and Ameen, 2000; 

Fig. 4.10b, c), particularly in a regional topographic high (i.e. outer arc of an anticlinal 

hinge zone), such as that represented by the Faroe Islands and insular margin. Event 3 

structures are found throughout the available onshore exposures of the lavas, though 

rarely does this exceed a few hundred metres thickness. It is unknown whether these 

features formed at greater depths. If they are present, they are potentially of major 

importance to hydrocarbon trapping and migration, since they represent significant 

potential fluid-flow pathways. If these structures relate to the development of 

regional-scale Cenozoic folds (i.e. the Munkagrunnar and Fugloy ridges), then it is likely 

that they would not be limited to the Faroes, and would be expected to be developed 

along the hinge zones of similar antiformal folds along the margin, including in offshore 

regions. Further work, in equivalent onshore settings could aim to test this hypothesis. 

As the Faroes archipelago represents the only land mass in the region, such studies 

would need to find suitable analogues elsewhere, such as East or West Greenland, or 

within the British Tertiary Igneous Province, or further afield on another volcanic 

passive margin (e.g. the South Atlantic). 

 

Chapter 4

147



4.5 Conclusions 

• The features detailed in the present paper post-date, and commonly reactivate the 

faults, fault-rocks and fractures developed during Events 1 and 2 (see Chapter 3). The 

minor input, and passive nature of late mineralisation within the clastic materials most 

likely indicates post-burial, near-surface fault movements (<1km depth?). Based on the 

relative timing, it is proposed that these movements relate to uplift during continental 

break-up and sea-floor spreading on the NE Atlantic. 

• The kinematics indicated by offset markers and the localized development of clastic 

drag fabrics are the opposite sense to those of the host fault. In most cases, the inland 

area lies in the fault footwalls; if the footwalls are uplifted, this may partially explain 

the location of the Faroe Islands. 

• The fault smears and infills may be widespread offshore. The likely unsealed nature 

of the clastic infills may mean that these faults present fluid-flow pathways, particularly 

at higher levels, but also potentially deeper, within the Faroe-Shetland Basin. The open 

cavities that originally form would introduce very significant localised permeability, 

facilitating both cross-fault and cross-stratal rapid migration of fluids, including 

hydrocarbons. 
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5  
Faults, fault-rocks and fractures in basalts: Faroe Islands, NE 
Atlantic Margin 
 

Abstract 
To date, few field studies have focused on the characterization of faults, 
fractures and the associated fault rocks within continental flood basalt 
provinces. The Faroe Islands are largely made up of basaltic lava units of 
the Faroe Islands Basalt Group (FIBG) and are situated above the 
Palaeogene rift axis of the Faroe-Shetland Basin (FSB) on the NE Atlantic 
margin, forming part of the extensive Palaeogene flood basalts of the 
North Atlantic Igneous Province (NAIP) that blanket the area. Exhumed 
brittle deformation structures developed on the islands are 
kinematically and temporally related to the period leading up to 
continental separation and the onset of sea-floor spreading on the NE 
Atlantic, and can be split into syn- and post-regional magmatic fault 
events. This study documents the development of these regionally syn-
magmatic fault arrays, and contrasts them with later post-magmatic 
fault-reactivation at shallow burial depths, and the development of 
potentially high-permeability pathways through the FIBG during the 
latter event, and assesses the mechanics of dyke and sill intrusion on the 
islands. Mineralised syn- to post-magmatic fault sets display a recurring 
zeolite-calcite-zeolite trend in mineralisation products, which precipitate 
during successive phases of fault development. Fault style and damage 
zone width appear to relate to the stage of fault development, with 
early fault/vein meshes linking to form through-going structures with 
associated damage zones. Dykes and sills are found to form their own 
fractures, rather than exploiting existing sets. Dyke propagation appears 
to be buoyancy-driven, with magmatic pressure overcoming the 
minimum compressive stress, whereas sills more likely relate to 
exploitation of weak layers in the stratigraphy, with propagation 
controlled by the effects of viscous dissipation. We find that, in 
particular, faults in basalts are in many ways comparable to faults 
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formed at shallow crustal depths in carbonate rocks and crystalline 
basement, most likely reflecting the similarities in their mechanical 
properties under near-surface pressures and temperatures. The nature 
and style of the post-magmatic fault infills provides compelling evidence 
to suggest that subterranean cavities associated with faults were 
persistent features within the FIBG, and if they are structurally linked to 
faults cutting the underlying basin fill sediments, could facilitate 
significant hydrocarbon migration from deep reservoirs. 
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5.1 Introduction 

Important advances have been made in the characterisation of fault-rock assemblages 

in layered clastic sequences focusing on 2-D and 3-D geometries (e.g. Brock and 

Engelder; 1977; Billi et al., 2003), as well as damage-growth through time (e.g. Aydin 

and Johnson, 1978; Cox and Sholz, 1988; Antonellini and Aydin, 1994; Shipton and 

Cowie, 2001), but to date this has not been attempted in layered volcanics. In clastic 

rocks, variations in lithology and layer thickness controls, result in different styles of 

fault-rock formation, and greatly influence the distribution of fault-related damage 

(e.g. Kim et al., 2004). Basalt morphology (and by corollary, physical properties; Planke, 

1994; Bücker et al., 1998) can vary markedly vertically between thick, jointed simple 

flows (sheet-lobes) and thinly layered compound flows (e.g. Jerram, 2002), and 

individually with internal morphologies including highly vesicular flow-tops, massive 

flow-cores and amygdaloidal bases. Lateral variations are also important, with varying 

vesicularity and textures dependant on eruptive style, flow supply-rate and 

emplacement mechanisms. Flow units are also commonly interlayered with 

volcaniclastic horizons, again with contrasting physical properties, particularly between 

well-lithified and poorly-lithified units. 

 

Many upper crustal fault zones contain significant volumes of brecciated wall rock, 

which can potentially form permeability pathways for the migration of mineralising 

hydrothermal fluids or hydrocarbons (Sibson, 1986, 1989; Roberts, 1994; Cowan, 1999; 
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Woodcock et al., 2006, 2007). Commonly fault-breccia formation is assumed to be a 

geologically instantaneous process, resulting from a sudden difference in fluid 

pressures between a dilational fault jog and its surrounding country rocks following 

fault slip, which leads to inward implosion (e.g. Sibson, 1986). However, at shallow 

crustal depths (0-2km), mechanically strong rocks (e.g. crystalline/carbonate rocks) 

may be able to support dilational fault jog features as persistent, high permeability, 

open subterranean cavities, that become more gradually filled by fragments of the 

surrounding wall rocks through time (Woodcock et al., 2006; Wright et al., 2009). 

Understanding the development of fault breccias is therefore scientifically and 

economically important, as the two breccia types have markedly contrasting sealing 

and fluid flow histories. 

 

The Faroe Islands - the location of the present study - sit above the Palaeogene axis of 

the Faroe-Shetland basin on the NE Atlantic margin. The islands are largely made up of 

Palaeocene-age basaltic lava units (the Faroe Islands Basalt Group: FIBG; part of the 

North Atlantic Igneous Province: NAIP) that were emplaced during precursor igneous 

events to continental break up, and sea-floor spreading in the NE Atlantic. Deformation 

structures developed on the islands include variously oriented fault-sets (relating to 

anticlockwise rotation of the extension direction through time) and broad regional 

anticlines that form a trilete pattern centred on the islands (e.g. the Munkegrunnar and  
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Fig. 5.1. (Previous page) (a) Simplified structural elements map of the Faroe-Shetland Basin, NE 
Atlantic margin with location of the Faroe Islands: EFH, East Faroe High; FS-B, Flett Sub-Basin; 
JB, Judd Basin; CR, Corona Ridge; FR, Flett Ridge; RR, Rona Ridge; BFZ, Brynhild Fault-Zone; 
CFZ, Clair Fault-Zone; EFZ, Erlend Fault-Zone; GKFZ, Grimur Kamban Fault-Zone; JFZ, Judd Fault-
Zone; VFZ, Victory Fault-Zone; WFZ, Westray Fault-Zone. (After Stoker et al., 1993; Rumph et 
al., 1993; Lundin and Doré, 1997; Sørensen, 2003; White et al., 2003; Jolley and Morten, 2007; 
Ellis et al., 2009). (b) Simplified geological map of the Faroe Islands and gross stratigraphic 
column for the Faroe Island Basalt Group (after Passey, 2009). (c-e) Photographs of the 
Beinisvord (c), Malinstindur (d) and Enni (e) Formations with block diagrams displaying their 
typical characteristics (after Passey and Bell, 2007). (f) Photographs of the Streymoy sill which 
cuts through stratigraphy from the Malinstinur Formation, into the Enni Formation. 

 

Fugloy ridges; Fig. 5.1a). These deformation structures were formed and evolved 

immediately before, during and following continental break-up (see Chapters 2 and 3). 

Folds on the islands, and similar structures offshore, are active targets for hydrocarbon 

exploration in the Faroes sector of the NE Atlantic margin. Recent work in the Faroe 

Islands has highlighted the role of syn-magmatic, and post-magmatic (regionally-late) 

fault-reactivation in the development of, potentially, very high-permeability pathways 

(fault voids and infills) through the FIBG (see Chapter 4). This is supported by evidence 

from layered clastic sequences which indicate that open fissures, similar to those 

observed on the Faroes, are common along upper crustal fault-zones (e.g. Woodcock 

et al., 2006; Woodcock and Mort, 2008; Wright et al., 2009) and in crystalline 

basement rocks below unconformities with sedimentary sequences (e.g. Beacom et al. 

1999). The principal aim of the present paper is to characterise faults, fault rocks and 

fractures within the FIBG, with respect to timings, kinematics, confining pressure, fluid 

pressures and temperature. We also critically test the applicability of fault-

Chapter 5

154



characterisation models developed in layered clastic-sequences to fault architectures 

in layered basaltic sequences. 

 

5.2 Geological context 

5.2.1 Stratigraphy of the Faroe Islands 

The Faroe Island Basalt Group (FIBG) represents a small part of the North Atlantic 

Igneous Province (NAIP; Fig. 5.1), and was emplaced between Chrons 26 and 24 (59 – 

56 Ma), at which time the Faroe Islands and East Greenland were less than 120km 

apart, based on plate reconstructions and geochemical correlations between 

sequences (Larsen et al., 1999; Lundin and Doré, 2002). Parts of the FIBG are exposed 

on the Faroe Islands, with an overall stratigraphic thickness in excess of 6.6km (Fig. 

5.1b; Passey and Bell, 2007), of which about 3km is exposed above sea level (Ellis et al., 

2002). The FIBG is dominated by tholeiitic basalt lavas indicating that their eruption 

occurred a period experiencing a high degree of partial melting of the mantle 

(Waagstein, 1988). This study focuses on fault outcrops and fault rocks within four of 

the seven formations of the FIBG (the Beinisvørð, Prestfjall, Malinstindur and Enni 

Formations) and also the Streymoy sill, and therefore we will forego a full description 

of the stratigraphy (a more complete description can be found in Passey and Bell, 2007; 

Passey, 2009; and Chapter 2). 
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The lowermost and oldest formation exposed on the islands is the ca.3.3km thick 

Beinisvørð Formation (Fig. 5.1b, c), of which only the upper 900m is exposed. The 

Beinisvørð Formation generally comprises aphyric, laterally extensive sheet lobes, with 

minor intercalated volcaniclastic horizons, emplaced at or around sea level, requiring 

that subsidence and emplacement rates be comparable throughout. Exposure of the 

Beinisvørð Formation is limited to the southern island, Suðuroy, and in the west of the 

northern islands, Vagar and Mykines (Fig. 5.1b). Above this lies the 3-15m thick 

Prestfjall Formation (Fig. 5.1b), comprising coals, mudstones and sandstones deposited 

in swamps, lacustrine and fluvial environments, during a hiatus in volcanic activity 

(Rasmussen and Noe-Nygaard, 1969 & 1970; Lund, 1983 &1989; Passey and Bell, 

2007). 

 

Trap-style volcanism continued with the eruption of the <1.4km thick Malinstindur 

Formation (Fig. 5.1b, d), subaerial compound basalt lavas that are initially olivine-

phyric evolving upwards within the sequence to aphyric, and then plagioclase-phyric. 

The Malinstindur Formation is particularly well exposed on the northern islands of 

Vagar, Streymoy and Eysturoy, at low-altitudes on the north-eastern islands, and in the 

north of Suduroy. Above the Malinstindur Formation are the ~25m thick volcaniclastics 

of the Sneis Formation. 
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Above the Sneis Formation are 900m of the uppermost Enni Formation (Fig. 5.1b, e), 

which comprises low-TiO2 and high-Ti O2 (MORB-like) interbedded simple (sheet lobes) 

and compound tholeiitic lavas. The 900m is a minimum thickness, with a significant 

amount (in the order of hundreds of metres) likely eroded from the top of the volcanic 

pile (Waagstein et al., 2002). The Enni Formation is exposed in a north- to north-east-

arcing trend from Sandoy across the northern islands (Fig. 5.1b). 

 

There are a number of notable sheet-like intrusions on the islands, including the large 

‘saucer-shaped’ Streymoy and Eysturoy sills, and the Fugloy-Svinoy sill. The Streymoy 

sill is transgressive, lying stratigraphically close to the Sneis Formation (Fig. 5.1b, f). The 

sill ranges from ~10-55m thickness, and covers an area of about 13km2, displaying a 

saucer-like geometry with numerous ramp- and flat-sections, cutting upwards from 

within the top part of the Malinstindur Formation, becoming flat at the level of the 

Sneis Formation (Fig. 5.1b), and then ramping upwards again into the Enni Formation. 

 

5.2.2 Deformation history 

Structures developed in the FIBG provide clear evidence for a multi-phase rift-

reorientation through time (Geoffroy et al., 1994; Chapter 3) before and during 

continental break-up, followed by a significant phase of uplift (see Chapters 3 and 4). 

Distinct phases of faulting and dyke intrusion are recognised which, based on 

kinematics, geometry and cross-cutting relationships, can be split into 3 broad events. 
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This began with (Event 1a) ENE-WSW to NE-SW extension, accommodated by N-S- and 

NW-SE-trending dip-slip faults. Continued NE-SW extension was accommodated by the 

emplacement of a regionally significant swarm of NW-SE- and NNE-SSW-oriented dykes 

(Event 1b). Collectively, Events 1a and b affect the majority of the FIBG stratigraphy, 

likely resulting in thickness variations, most notably across the Judd, Brynhild and 

Westray Fault Zones (Fig. 5.1a, b). Continued magmatism and an anticlockwise rotation 

of the extension vector led to (Event 2a) the emplacement of ENE-WSW and ESE-WNW 

conjugate dykes. Their intrusion marks the onset of N-S crustal extension and was 

followed by (Event 2b) fault-accommodated crustal extrusion involving both E-W 

shortening and further N-S extension facilitated primarily by slip on ENE-WSW (dextral) 

and ESE-WNW (sinistral) conjugate strike-slip faults, many of which are developed in 

the same locations as the immediately preceding conjugate dykes. A component of this 

E-W shortening was facilitated additionally by the development of minor-offset thrust 

faults which dip mainly to the SW or NE. During the final stages of this event (Event 2c), 

the regional extension vector rotated into a more NW-SE orientation that was 

preferentially accommodated by slip along NE-SW trending (dextral) oblique-slip faults. 

Based on the timing relative to Event 1, and an apparent thickening of the Enni 

Formation across hectometre-scale offset, E-W-trending faults (Passey, 2009; Ellis et 

al., 2009), Event 2 most likely began towards the end of magmatism associated with 

the FIBG, coeval with the onset of oceanic-spreading on the Aegir ridge (ca.54-51 Ma; 

Lenoir et al., 2003); it may have continued through to the linkage of the Reykjanes, 

Kolbeinsey and Mohns Ridges. Events 1 and 2 are associated with multiple generations 
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of calcite and zeolite mineralisation in linked arrays of tensile and shear hydraulic 

veins. The final deformation (Event 3), involves the post-magmatic reactivation of some 

faults, and is most clearly observed in instances where clastic material has been 

entrained along fault planes (see Chapter 4). 

 

5.2.3 Faults in Basalts 

The general characteristics and mechanics of near-surface faults in basalts are well 

documented (e.g. Gudmundsson 1992, 2000; Acocella et al., 2003; Grant and 

Kattenhorn, 2003; Martel and Langley, 2006), but few studies have addressed the 

internal architecture and structure of basalt-hosted fault zones (e.g. Holland et al., 

2006). Most existing studies are focused around the use of scaled models in order to 

address fault character at larger scales (dam-km), with little to no account of smaller 

scale features such as fracture/fault linkage, fault rock assemblages and mineralisation 

phases. 

 

Using analogue modeling studies (cohesive hemihydrate powders) and field 

observations, Holland et al. (2006) have shown that near-surface faults in basalts 

display a dominant tensile component, due to the solid, brittle nature of the material. 

This tensile opening produces a near-surface cavity, within which brecciated fault 

rocks, surface waters and sediments can accumulate. At deeper levels, faults close and 

will display typical characteristics reflecting fault slip and/or hydrofracture processes. 
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This depth-controlled relationship is rarely observed along the same fault in the field, 

due to limitations in the surface topographic separation, but has clear implications for 

fluid flow and transmission models, particularly in relation to depth, and the presence 

of poorly lithified/cemented sediments and/or open cavities along faults. 

 

5.3 Fault characteristics 

5.3.1 Event 1 faults 

Event 1 faults and fractures are typically oriented NW-SE to N-S, displaying dip-slip 

motion senses and locally tensile openings, accommodating an ENE-WSW extension. 

These faults typically display centimetre- to metre-scale offsets, and rarely exceed 

decametre-scale total displacements. The best exposures of these faults are found in 

the Beinisvørð Formation (Figs. 5.1b, 5.2a), particularly in the SW of Suðuroy at 

Vagseiði (Figs. 5.2b, 5.3), Sumba (Figs. 5.2c, 5.4) and I Botni (Figs. 5.2d, 5.5). Figures 3-

5 are ordered in sequence from small displacement (Fig. 5.3) through to large 

displacement faults (Fig. 5.5).  

 

Faults associated with Event 1 commonly display prominent damage zones which are 

particularly well developed in the fault hanging walls (e.g. Figs. 5.3b, 5.4a,b and 

5.5a,b). These zones vary in nature and damage intensity depending on the distance 

from the master fault, and magnitude of displacement. However, damage width does  
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Fig. 5.2. (a) Simplified geological map of Suðuroy, with locations of b-d, and Figures 5.3, 5.4, 
5.5. (b-d) Satellite images and structural (field) interpretations for Vagseiði, Sumba and I Botni 
respectively. 

 

not appear to be markedly affected by increased displacement (e.g. Figs. 5.3b, 5.4b, 

5.5b). On larger displacement faults (e.g. I Botni: Fig. 5.5) damage intensity clearly 

increases rapidly into the master fault, from gouge and breccias in the core, to 

cataclasite and foliated cataclasite (Fig. 5.5c-e). Smaller offset faults also display 

increased damage towards the master fault, with either a reduction in grain size (Fig. 

5.4f-g), or increased brecciation (Fig. 5.3c-h), depending on the magnitude of offset. In 

some cases (e.g. Vagseiði: Fig. 5.3), faults also switch from being tensile (Fig. 5.3c, d),  
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Fig. 5.3. (a) Event 1 faults at Vagseiði (location in Figure 5.2). (b) N-S trending dip slip fault 
displaying ~15cm displacement down to the west, and a large (~6m) damage zone focused in 
the fault hanging wall. The nature and intensity of deformation changes markedly towards the 
master fault, with (c-d) pure tensile veining at distances of 4-6m from the master fault; (e-f) 
minor offset shear tensile faults 1-4m from the master fault; and (g-h) intense brecciation 
within a 1m wide zone from the master fault (i.e. the fault core). 
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Fig. 5.4. (a) N-S and NW-SE trending dip-slip faults displaying a cumulative 4.5m, down to the 
west displacement (location in Figure 5.2). (b) The fault displays a well developed fault core 
and damage zone focused in the hanging wall of the N-S trending fault. (c-e) The fault core is 
characterised by variously oriented tensile (mode I) and shear-tensile (mixed-mode) veins. (f) 
Fault-related mineralisation is dominated by zeolites (zeo), which in places, (g) are brecciated 
and entrained along later slip planes. 
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Fig. 5.5. (Previous page) (a) N-S trending dip-slip, Event 1a fault (reactivated during Event 3), 
displaying ~30m displacement, down to the east at I Botni (location in Figure 5.2). (b) The 3-5m 
wide fault zone displays extensive zeolite mineralisation (zeo) as discrete veining, and well 
developed dip-slip corrugations on fault surfaces. (c) Fault rock sample (located in b), shows 
increasing deformation intensity towards the master fault, from brecciation, to foliated 
cataclasite (f-cat), and only minor mesoscopic mineralisation. (d) Plane polarized light 
photograph of breccia and (e) cataclasite (cat) from the respective zones in c. Cross-cutting 
fabrics in e indicate recurrent reactivation: a NNW-SSE fabric is cut by a NNE-SSW fabric. (f) 
Zeolite and calcite mineralisation (cal) is fragmented and entrained within cataclasites, again, 
most likely indicating reactivation, with phases of faulting, mineral precipitation and further 
faulting episodes. 

 

to shear-tensile (Fig. 5.3e, f), to shear with localised compression (developing crumpled 

vein sets within the fault core: Fig. 5.3g, h) towards the master fault. This change is 

most likely caused by the elastic response of the material, as the unit is dragged into 

the master fault. 

 

In all observed cases, it is clear that Event 1 faults have acted as conduits for hydrous 

fluids through the basalt pile. Calcite and zeolite mineralisation are a ubiquitous 

feature in Event 1 fault zones, with brecciation and reworking relationships indicating 

that they precipitate in three stages (earliest to latest): (1) minor elongate and blocky 

zeolite mineralisation; (2) blocky calcite mineralisation forming equant crystals; (3) 

zeolite mineralisation forming predominantly elongate crystals. Commonly, fragments 

of the host rock and/or bubble trails are observed within the early zeolite and calcite 

mineralisation (Fig. 5.6), most likely representing a previous position of the vein wall, 

and indicating a crack seal mechanism for vein formation (Ramsay, 1980; Petit et al., 
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1999). These mineralising fluids are also likely responsible for the preferential chemical 

decomposition of feldspars (producing various clay minerals) observed within the fault 

zones. On the basis of cross-cutting relationships, the formation of these clays appears 

to be a precursor to the precipitation of the early zeolite (e.g. Fig. 5.4f, g), and most 

likely results from the formation of a mesh of micro-fractures and faults in the build-up 

to the formation of through-going faults. Material degradation in this manner along 

early faults may sufficiently weaken the incipient fault zone and further focus  

 

Fig. 5.6.  Crossed poles micrograph of calcite (cal) and zeolite (zeo) mineralisation of Event 1 
within a volcanic tuff at I Botni. (a) Zeolite vein material and host rock fragments indicate the 
location of the vein walls before further dilation and calcite mineralisation. (b) Fragments of 
the country rock are arranged in an en echelon pattern, and indicate the previous location of 
the vein walls. Unlike in a, zeolite mineralisation remains fixed to the vein wall. 
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deformation through them, rather than forming new faults. Clear evidence of the 

recurrent reactivation of the existing fault zones is seen from the development of 

foliated clay-rich cataclasites containing variously deformed clasts and fragments of 

calcite and zeolite (e.g. Fig. 5.5c, f), together with numerous examples of brecciated 

and cross-cutting zeolite and calcite mineralisation (e.g. Figs. 5.3g and 5.4g). 

 

5.3.2 Event 1 and 2 dykes 

Event 1 and 2 faulting episodes are separated by a period of dyke and sill 

emplacement. These intrusions require the formation of fractures, which rather than 

being filled by hydrous fluids, become filled by magma instead. Event 1 dykes are 

typically oriented NW-SE to NNE-SSW, and Event 2 dykes are typically oriented ENE-

WSW to ESE-WNW. Widths are similar between the sets, with most being 2-5m wide, 

occasionally (<10%) reaching 20m. In plan view, the dykes appear to exploit existing 

cooling joints within the lavas, forming localised corners which are offset normal to the 

main dyke trend. No instances of faults reactivated by intrusions have been observed 

during this study (which will be discussed in section 5.4.3), and in all observed cases, 

there are minor to no lateral offsets. In section view, in certain cases, dykes appear to 

have an en-echelon style segmentation (e.g. Fig. 5.7a,b), and in both orientations, 

numerous, variously oriented offshoots and bifurcations are observed splaying from 

the main dyke (e.g. Fig. 5.7c). This indicates that dykes were not emplaced as a single 

buoyant sheet, but rather as a set of inter-fingering sheets or lobes that link through  
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Fig. 5.7. (a-b) En echelon segmentation of dykes, with very minor (cm-dm-scale) vertical offsets 
indicates mixed mode (I/III) opening during dyke propagation. (c) Minor dyke offshoots 
peripheral to the main dyke (not pictured – 2m to right of photo) are most likely indication that 
dykes propagated as a set of linking lobes or sheets. 

 

time during propagation (e.g. Pollard et al., 1975). It is also suggestive that, although 

ultimately minor, based on the total offsets, there was a component of out-of-plane 

slip during dilation (i.e. a mixed mode I/mode III opening).  

 

In the case of dykes and sills, magmatic pressure drives fracture propagation. This can 

result from: (1) excess magma at the source body; (2) magma buoyancy (relative to the 

country rock); and (3) gradients of tectonic stress normal to the dyke plane (Speight et 

al., 1982; Walker, 1987; Rubin, 1995; Gudmundsson and Brenner, 2004). With respect 

to point 3, dyke orientations are similar to faults of their associated events, and 

demonstrably opened at ~90° to the main trend of the dyke. This suggests that they 
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likely relate to the same tectonic episodes as their respective fault-sets (i.e. Event 1 is a 

NE-SW oriented extension event, and early-mid Event 2 is a N-S oriented extension 

event), with extension accommodated by an increase in volume, rather than vertical 

thinning. This in itself is a possible indication that regional stresses outweighed those 

imposed by overpressure at the magmatic source, since the inferred orientation of σ3 

is consistent in the presence and absence of magmatism. 

 

5.3.3 Event 2 sills 

In all observed instances, Event 1 and 2 dykes are cut by the large saucer-shaped sills 

on Eysturoy and Streymoy, which are in turn cut by Event 2 faults (Fig. 5.8a-c). The 

Eysturoy and Streymoy sills are reasonably large, covering an area of 16km2 and 13km2 

respectively (Rasmussen and Noe-Nygaard, 1969, 1970), and both range from 10-55m 

thickness. Sill geometry is reasonably complex, with numerous flat and ramp sections 

giving them a general transgressive saucer-shape, with the lowest points in the west to 

west-southwest, nearest their respective fjords (please see Chapter 2 for full details on 

sill geometry). The sills are reasonably high within the stratigraphy (Fig. 5.1b) occurring 

only within the uppermost kilometre, which could relate to a controlling influence of 

the zone of neutral buoyancy, though there are clearly further controls to consider 

based on the transgressive nature of the sills. 
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Fig. 5.8. (a) Models for the Streymoy and Eysturoy sills based on outcrop data, and projected 
through the subsurface. The sills display a complex ‘saucer-shaped’ geometry with numerous 
flat and ramp sections. A notable flat section occurs within the centre of each of the sills, 
corresponding to the stratigraphic level of the sedimentary Sneis Formation. (b) An Event 1 
dyke is cut by the Eysturoy sill and (c) and Event 2 dyke is cut by the Streymoy sill. Both sills are 
cut by Event 2 faults (e.g. c). 

 

Flat sections of the sills are apparently coincident with sedimentary horizons in the 

stratigraphy. In particular, a large flat section in both the Eysturoy and Streymoy sills 

occurs roughly in the middle of their elevation range, corresponding loosely to the 

position of the Sneis Formation (Fig. 5.1b, f). Horizontal weaknesses such as bedding 

are a commonly invoked reason for the attitude and placement of sills within a 

particular stratigraphic column (e.g. Pollard, 1973; Pollard and Johnson, 1973; 
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Kavanagh et al., 2006), and this feature is most likely a reflection of the relative 

weakness of the Sneis Formation compared with the basalt lavas above and below. 

Internally, the sills appear to comprise a set of lobes, which, as with dyke 

emplacement, would have inflated and linked through time, rather than forming as a 

single sheet. The ramp geometry may therefore be related to this inflation process. As 

the sill propagates, extending its length, it becomes thicker due to the elastic 

deformation of the adjacent country rocks (Menand, 2008). As a result, the viscous 

dissipation induced by magma flow decreases, and unless the source pressure 

decreases at a comparable rate, propagation must accelerate in order to balance the 

pressures. If sill propagation accelerates, it will continue to thicken, and strain rate 

within the surrounding country rock will have to follow suit. Hence, faster propagation 

will lead to the transgressive emplacement of the sill through brittle deformation (i.e. 

fault propagation) of the country rock into the relatively stronger, rigid Enni Formation 

basalts above the relatively weaker, elastic Sneis Formation sands (though this 

upwards propagation may only be as far as the next weak layer). This method of 

propagation is clearly different to the dynamics of dyke propagation, which instead 

appear to be controlled by time-dependant failure of the country rock (whereby failure 

at the dyke tip results from pressure build up within the dyke), rather than the effects 

of viscous dissipation. These differences are likely reflected in the widths/thicknesses 

of the dykes (2-20m) relative to the sills (10-55m). During a time-dependant failure 

mechanism, a dyke would propagate at an approximately constant velocity, even if the 

source pressure remained constant (Menand and Tait, 2002). Hence, for identical 
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source pressure conditions, sills would in general propagate faster and be thicker than 

dykes. 

 

The emplacement of the saucer-shaped sills implies a switch of the minimum 

compressive stress to a vertical orientation, similar to that of the later thrust faults 

associated with Event 2. This is could be considered to be a problem in terms of the 

regional stress field, since generally at the time σ3 is thought to be horizontal in a N-S 

orientation. However, like the thrust faults, sill emplacement is most likely a testament 

to the 3-dimensional complexity of the event (as will be detailed in the following 

section).  

 

5.3.4  Event 2 faults 

Event 2 faults and fractures are typically oriented between ENE-WSW and ESE-WNW as 

conjugate strike-slip sets with a dextral (mean ENE) and sinistral (mean ESE) pair that 

accommodate a N-S oriented extension, and simultaneous E-W compression. 

Kinematically, Event 2 is seemingly more complex than Event 1, and perhaps as a 

consequence, fault-rock styles are also more complex. Here we separate the varied 

styles into groups based on interpretations as to their development and their possible 

relationship to displacement magnitude. 
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5.3.4.1 Shear hydraulic fracture/vein sets 

Minor offset faults, fractures and veins are the most common feature of brittle 

deformation in the Faroe Islands, with few (if any) outcrops being completely barren of 

fractures (e.g. Fig. 5.9c-f). Generally, these structures are small (mm-cm widths and 1-

3m in length) and isolated (Fig. 5.9c), and terminate within a single basalt flow unit. In 

more developed instances, individual structures link to form broader and more 

continuous sets or meshes, though again, offsets are negligible (e.g. Fig. 5.9d-f). 

 

These faults, fractures and veins are most likely representative of the regionally 

distributed, relatively low strain within the FIBG. Had deformation been more 

sustained, these features could have continued to grow and link to form through-going 

faults with related damage zones (e.g. Fig. 5.10). 

 

5.3.4.2 Fault zone-forming clusters 

Larger displacement faults in the FIBG have typically been preferentially eroded by 

surface processes, forming deeply incised gullies and inlets that can be mapped at the 

macro-scale (e.g. Fig. 5.10a). At the meso-scale, it is clear that these gullies comprise 

well developed and linked clusters of faults, fractures and veins arranged in broad 

zones of damage, across which statigraphic horizons are offset (e.g. Fig. 5.10b). The 

damage zones of Event 2 are comparable to those of Event 1 (see section 5.3.1.1), 

displaying characteristics such as brecciation (Fig. 5.10c) and the development of 
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Fig. 5.9. (a) Simplified geological map of NE Streymoy and NW Eysturoy indicating locations of 
Tjornuvik (b), and East and West Eiði (Figures 5.8, 5.9, 5.11, 5.12). (b) Aerial photograph of 
Tjornuvik bay showing the locations of c-f, and major structures responsible for significant 
displacements. (c) Structural log (section view; location in b) showing hydraulic fracture/vein 
distributions across the section. Veins tend to be isolated from each other, causing very little 
damage to the surrounding host unit. (d-f) Better developed veins form linkages with those 
nearby resulting in minor clusters (e.g. d). There is still little damage associated with these 
veins, and negligible offsets are observed. Resulting exposed fault surfaces comprise a 
collection of mis-oriented vein surfaces rather than a single plane (e.g. e,f). 
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tensile and extensional hybrid veins (Fig. 5.10d), which can generally be split into a 

damage zone and fault core based on the intensity of the damage and identification of 

master slip surfaces (e.g. Fig. 5.10e). As with Event 1 faults, those of Event 2 developed 

with successive phases of early zeolite, calcite and further, later, zeolite mineralisation 

(Fig. 5.11a, b), with cross-cutting and reworking relationships indicating they were 

precipitated in that order. Changes in zeolite texture are observed in most veins, with 

numerous small crystals closer to the margin, increasing in size and decreasing in 

number towards the interior. This coincides with a notable preferred crystallographic 

orientation in the elongate crystals, which appear to have grown inward from the 

margin, forming a medial line in the centre. This is most likely indication that 

competitive growth favoured well oriented crystals (Dickson, 1993; Oliver and Bons, 

2001; e.g. Fig. 5.11c). Vein-wall parallel host rock fragments are also observed within 

the smaller crystals (e.g. Fig. 5.11c) presumably marking the former position of the vein 

wall, indicating episodic opening and the operation of a crack-seal style mechanism. 

The larger crystals in the vein centre do not display such features, most likely indicating 

that they grew into an open, fluid-filled cavity (detailed further in section 5.3.4.3).  

 

5.3.4.3 Fault cavity infills 

As noted in the previous section, some vein fills indicate precipitation into a fluid-filled 

cavity, rather than by an incremental crack-seal mechanism. Veins of this style are a 

common feature of fault zones in the FIBG, occurring up-/down-dip and along-strike of  
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Fig. 5.10. (Previos page) (a) Aerial photograph of eastern Eiði, NW Eysturoy (location in Figure 
5.7) showing structures with notable displacements, and locations of b and Figure 5.10. (b) 
Photograph of an ENE-WSW trending Event 2b fault zone displaying an overall dextral offset 
with downthrow to the south (total ~4.5m displacement), which varies depending on the 
lithology with (c) basaltic units disaggregating to form breccias, and (d) volcaniclastic units 
being dragged into the master fault plane, and forming discrete tensile and shear tensile veins. 
(e) Fault damage varies both along strike and up/down dip of the master fault, becoming much 
thinner through the volcaniclastic horizon. Below c, the fault zone decreases to a single plane, 
with a minimal (cm-scale) peripheral damage zone. 

 

the fault-zone forming clusters described previously. They are also commonly 

superimposed on existing shear hydraulic fractures and veins (e.g. Fig. 5.11c). Though 

these features also occur along Event 1 faults, there are far fewer compared to Event 2. 

 

Cavity infills appear to take two forms which are differentiated based on their internal 

characteristics and mode of formation. They include: (1) individual or linked sets of 

tensile veins comprising >90% cement/crystalline infill and (2) cemented breccias that 

are emplaced rapidly into a cavity containing <<90% mineral cement. Individual or 

linked sets of tensile veins occur across the islands in most outcrops (e.g. Fig. 5.9), 

usually in conjunction with shear hydraulic fracture/vein sets, presumably 

accommodating a part of the extension of Event 2. Typically these veins are no more 

than 1-2cm wide, but in some cases they can be over 0.5m (Fig. 5.12a,b) and 

occasionally exceed 1 metre in thickness. Vuggy mineral precipitates in these larger 

examples indicate that there was an open cavity, allowing unencumbered growth from 
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Fig. 5.11. Event 2 mineralisation phases. (a) Early calcite is dragged into a later fault, followed 
by zeolite precipitation. (b) Early zeolite is followed by calcite mineralisation. The fractures are 
developed in the calcite, into which further zeolite has precipitated. (c) Multi-phase zeolite 
mineralisation, with early, small zeolite crystals lining the margins of the vein, followed by 
later, large zeolite crystals in the vein core. The size of the crystals most likely reflects the 
available space within a fluid filled cavity, indicating an increase in strain rate through time. 

 

the margins inwards (Fig. 5.12c,d). In all observed cases, an initial zeolite mineralisation 

is superseded by calcite (Fig. 5.12c), which is followed by a final zeolite phase (Fig. 

5.12d). 
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Cemented breccias are only associated with larger displacement faults (e.g. Figs. 5.10, 

5.13, 5.14), and appear to occur along zones of dilation resulting from irregularities on 

the fault surface, and/or oblique motion during faulting. The intensity of brecciation 

varies from fault to fault, with examples of mosaic breccias (e.g. Fig. 5.13) to chaotic 

breccias being preserved (e.g. Fig. 5.13; Woodcock and Mort, 2008). The style does not 

 

Fig. 5.12. Vein fills from Tjornuvik (a, c, d: fault location indicated in Figure 7) and Langasandur 
(b: eastern Streymoy). (a-b) Thick (0.5-0.75m) tensile vein fills comprising >90% mineralisation. 
In both cases, the majority of the infill is zeolite, with small (<1cm) crystals lining the vein walls, 
and enclosing a larger (up to 1.5cm) crystal core. (c) Acicular zeolite minerals nucleating on the 
vein wall in a hemi-radial configuration, requiring an open space in the vein during growth. (d) 
Blocky calcite mineralisation with later, vuggy zeolite growth, again, indicating an open space 
and free transmission of fluids through the vein. 
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Fig. 5.13. Dextral, Event 2b fault at Eastern Eiði, NW Eysturoy (location in Figures 7 and 8). (a) 
The fault displays a well developed fault core bound by master faults, and minor peripheral 
damage. (b) The fault core changes in nature across the volcaniclastic horizon, from shear 
hydraulic fractures/veins below, to intensely mineralised breccias above. These styles can be 
split into two zones (c) with these breccias limited to a zone of dilational jogs between the 
master faults. (d) Structural log of the fault shows that damage is focused in the fault footwall, 
as opposed to the hanging wall, as in Event 1 faults (e.g. Fig. 5). 

 

appear to be related to displacement magnitudes, with the faults in Figures 5.13 and 

5.14 both displaying ~4.5m displacement, yet very different infills. In both cases, a 

proportion of the clasts are cement supported (Figs. 5.13b, 5.14b, c, d), indicating that 

cementation was synkinematic. However, vuggy overgrowths on those clasts (e.g. Fig. 
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5.14c) require a persistent open space, and it is therefore unlikely that cementation 

was fully sealing in the case of chaotic breccias. It is also likely therefore, that fluid flow 

through these cavities was relatively long-lived, continuing into post-kinematic times. 

 

Generally, the rapidly filled cavity breccias (e.g. Fig. 5.14) are equivalent to the 

implosion breccias of Sibson (1986), and most likely form as a result of implosion 

caused by a sudden difference in fluid pressures between a dilational fault jog and its 

surrounding country rock following fault slip. Fluid transmission would generally be 

limited to the period of fault movement, and the fault cavity itself would therefore be a 

transient feature. However, the following exceptions to this are noted based on the 

following observations: (1) the occurrence of cm-thick tensile zeolite veins within the 

chaotic breccias as well as brecciated calcite mineralisation (e.g. Fig. 5.14b, c, e). This is 

consistent with faults which were subjected to repeated opening and filling, and as a 

result, fluids would be able to flow through the fault zone at numerous times; and (2) 

vuggy overgrowths on chaotic breccias suggests that the cavities were not fully 

cemented following implosion – it is therefore possible that the infilling of these faults 

was not entirely associated with fault movements, but could instead be the result of a 

gradual filling through time. 
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Fig. 5.14. (a) Overview of Event 2 faults in western Eiði, indicating the location of the fault of 
interest. (b) The fault varies in width from about 5-75cm. The thicker parts correspond to the 
development of chaotic breccias, with thinner sections, and the periphery of the thicker 
section, displaying tensile veining as standard. (c-d) The chaotic breccia zone is composed of 
large volumes of zeolite mineralisation (up to ~75% volume), with polymictic clasts that appear 
to have been sourced from the surrounding basaltic wall rocks, and a nearby volcaniclastic 
horizon. Twinned calcite mineralisation is brecciated and supported within the zeolites, 
suggesting repeat opening events. (e) Tensile veins in the core zone are typically composed of 
zeolite, with occasional, minor calcite. 
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5.3.5  Event 3 

Fault styles and fault rock assemblages of Event 3 are described in Chapter 4: only a 

synopsis is given here. 

 

Event 3 structures are best exposed where faulted clastic materials are developed 

along pre-existing weaknesses (i.e. reactivated Event 1 and 2 faults), and can be split 

into 2 groups based on their textural characteristics: (1) shear and (2) tensile 

reactivation. Event 3 shear faults effectively entrain the contiguous host rocks into the 

fault plane as a shear-smear (e.g. Fig. 5.15a-b; see Weber et al., 1978), whereas the 

tensile faults become filled with new sedimentary materials from the surface, or from 

the stratigraphic succession above (i.e. gravitational filling: e.g. Fig. 5.15c-d) or below 

(i.e. fluidization filling: e.g. Fig. 5.15e-f). Event 3 is associated with little to no additional 

mineralisation. In some cases, a very minor amount of silicate (most likely zeolite) 

veining (<<1% volume) is observed, but this appears to have been emplaced very 

passively (intergranular fracturing around intact grains as opposed to intragranular or 

transgranular fracturing). Typically, the infills are loosely held together by the 

lithostatic pressure (overburden) and/or by the presence of a weak clay cement (which 

is easily displaced by hydrous fluids). As a result of this relative absence of cement, the 

volcaniclastic materials entrained along the fault are likely to be effectively unsealed, 

and therefore represent a potentially high permeability pathway, even to the present 

day.  
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Fig. 5.15. Event 3 fault rock styles can broadly be split into: (a-b) Shear smears, (c-d) tensile 
infills, and (e-f) injection fills. See text for explanation. 
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5.3.6 Summary: Structural style and development  

Based on observations made in the field during the present study, faults in the Faroe 

Islands appear to develop through a series of stages of fault linkage and damage zone 

formation (Fig. 5.16), broadly similar to those developed in layered clastic sequences 

(Childs et al., 1996; Walsh et al., 2002, 2003; Childs et al., 2003). Figure 14 details an 

example of fault growth for an Event 2 fault system – Event 1 faults develop similarly, 

but with σ1 and σ2 switched, resulting in a typical normal fault configuration; Event 3 

faults may develop similarly to Figure 5.16c-d, along the existing Event 1 or 2 faults. 

During the initial stages of deformation, in cases where jointing is poorly developed, a 

mesh of extension fractures and micro faults will form and link (Fig. 5.16a-b; e.g. 

Sibson, 1996). Once established, this mesh focuses deformation, forming a through-

going fault zone and bypassing other early-developed fractures and faults immediately 

adjacent to it. In cases where columnar jointing is well developed, faults are focused 

along the existing anisotropy, forming through-going faults that are typically initially 

tensile-dominant due to their steep pre-existing dips in a stress field where sigma 3 is 

horizontal. Further movement across the fault zone may then result in the formation of 

a preferential master fault (Fig. 5.16c-i), or continue within the fault zone, resulting in 

the local development of dilational jogs (Fig. 5.16c-ii). Recurrent reactivation of the 

master fault will result in preferential damage within the hangingwall, leading to the 

formation of an asymmetric damage zone and fault core (Fig. 5.16d). 
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Fig. 5.16. (Previous page) Generic fault evolution model based on a conjugate E-W trending 
Event 2 fault-pair: (a) Initial fault development occurs as a mesh of faults and extension 
fractures which through time (b) link to form a set. (c) Repeat movements on this fault set 
result in either the development of (c-i) a through-going shear-tensile (mixed-mode) fault or (c-
ii) zones of tensile (mode-I) on fault planes perpendicular to the extension direction, and shear-
tensile (mixed-mode) on fault planes oblique to the extension direction. (d) Recurrent 
reactivation of the fault will result in damage development preferentially focused into the 
hangingwall, with decreasing intensity away from the master fault. 

 

Mineralisation associated with Events 1 and 2 most commonly occurs as synkinematic 

growth of zeolites, followed by calcite, and finally synkinematic to postkinematic 

zeolite overgrowths. Early zeolite growth most likely relates to the inital stages of fault 

development (Fig. 5.16a-b), with calcite following shortly after (Fig. 5.16b-c). Later 

zeolites generally form in more mature fault zones (Fig. 5.16c-d), and are particularly 

well developed where fault plane asperities produce dilational jogs during movement. 

Event 3 faults are relatively barren of mineralisation, and as such, the fault rocks are 

likely notably permeable even to the present day. The repeat occurrence of zeolite-

calcite-zeolite mineralisation in both Events 1 and 2, probably implies a change in fluid 

chemistry during fault development. Our suggestion is that initial zeolite mineralisation 

could be due to the influx of surrounding alkaline pore fluids, which precipitate in the 

newly formed fracture. Once this zeolite precipitation has removed the various 

oversaturated metals in the fluid, the relatively increased saturation of Calcium may 

then allow the precipitation of calcite. Final zeolite mineralisation may then simply 

indicate recharge and a return to the normative ‘dirty’ waters percolating through the 

FIBG. Clearly this tentative hypothesis remains to be tested by future studies. 
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5.4 Discussion 

5.4.1 Damage vs. displacement 

Faults in the Faroe Islands do not generally appear to obey a ‘damage vs. displacement’ 

relationship (i.e. where damage increases proportionally to increasing displacement), 

since the largest offsets directly observed across a fault zone (~30m, such as those at I 

Botni: Fig. 5.5), display damage zone widths similar to minor (centimetre-scale) 

displacements, such as those at Vagseiði (Fig. 5.3). This is true of individual events, as 

well as for cross-comparisons between Events 1 and 2. Event 3 is not considered here 

as the related damage and displacements are not necessarily quantifiable. 

 

A possible reason for damage zone width limitation may be related, at least in part, to 

the pre-fault structure of the basalts. Commonly, the lava flow units display a well 

developed jointing. In particular, thicker units, such as those of the Beinisvørð 

Formation (Fig. 5.1b, c) exhibit zones of vertical columnar (polygonal) jointing. Such 

joints likely have very little (perhaps no) tensile strength, and often display vuggy or 

euhedral crystal growths indicating that they have been dilated, allowing infilling by, 

and flow of mineral-bearing fluids. During faulting it is possible that the joints acted as 

decoupling surfaces, resulting in sustained movement within a certain distance of any 

one fault, and no further (i.e. the joints help to partition and localise strain). This is 

supported by the observation that sedimentary interbeds often host faults and 
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fractures that are more widely distributed and display a more typical Andersonian 

geometry compared to adjacent basalt lava flows (Fig. 5.17).  

 

The effect of jointing within the basalt flow units could be considered a limitation in 

terms of palaeostress calculations, and as such we suggest where possible, that such 

analyses should in the first instance, be verified using faults in the sedimentary 

interbeds within the succession (as has been standard practice during the present 

study). 

 

5.4.2 Depth and temperature during deformation: mineralogical constraints 

5.4.2.1  Zeolites 

Deformation-related mineralisation within the FIBG is principally spread between 

calcite and numerous members of the zeolite family. Zeolites are a common result of 

the reaction between volcanic rocks and alkaline waters, and are therefore very  

 

Fig. 5.17. Event 1 fracture reorientation through a lava-sediment-conglomerate sequence at 
Vagseiði, Suðuroy. Exploitation of vertical to sub-vertical joints in the lava results in 
oversteepened fractures, whereas sedimentary units, lacking joints, display more typical 
normal fault inclinations (i.e. between 58°-68°: Anderson, 1942). 
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widespread in the FIBG. In principle, index zeolite minerals can be used to constrain the 

regional geothermal gradient, and this zonation property has previously been used to 

constrain thicknesses and relative timing of regional deformation of volcanic piles 

(Walker, 1960; Jorgensen, 1984; Neuhoff et al., 1997). However, since the Faroese 

faults demonstrably act as fluid flow pathways, it is possible to rapidly distribute 

relatively hot fluids throughout the FIBG, and fault-bound zeolites could therefore be 

affected by fluid temperatures in addition to the geothermal gradient. Future, 

geochemically-oriented studies could test this assumption by sampling mineralised 

fault rocks and the adjacent country rock zeolites. This could provide information on 

the temperature differential between faults and their surroundings, and if sampled as 

sets moving away from the fault, could potentially be used to look at heating effects 

and heat dissipation in the country rock. 

 

5.4.2.2  Calcite 

Various, definable styles of calcite twinning (such as tabular thin or thick twins) will 

form at different temperatures, hence they can be used as a rough guide to micro-scale 

differential stress, as well as temperatures during deformation (Jamison and Spang, 

1976; Laurent et al., 1990). Twinning will occur if the critical resolved shear stress 

(between 5-15MPa; Jamison and Spang, 1976; Lacombe and Laurent, 1996; Laurent et 

al., 2000) on potential twin planes is exceeded (Passchier and Trouw, 2005). It should 

be noted that the reliability of this technique is dependent on a homogenous stress 
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distribution within the sample, which is perhaps unlikely, so, calcite twinning will only 

be used as a qualitative guide here. 

 

Calcite is common in Event 1 and 2 fault zones in the Faroe Islands (Fig. 5.18). The 

calcite twinning style varies from fault-to-fault, and between the Events, with common 

thick tabular twins developed in Event 1 faults (Fig. 5.18a-c), and a mix of tabular thick 

and thin twins developed in Event 2 faults (Fig. 5.18d-e). Narrow twinning (<1μm thick; 

Burkhard, 1993) is generally considered to indicate temperatures below 200°C. Thicker 

twinning (<1μm) may be an indication of an elevated temperature during deformation 

(i.e. ~200°C; Groshong et al., 1984; Rowe and Rutter, 1990; Ferrill et al., 2004), since at 

higher temperatures, existing twins will widen rather than create new ones. The 

paucity of thick twins in small offset fault samples (e.g. Fig. 5.18f) compared with 

higher magnitude offset faults (e.g. Fig. 5.18b) may therefore be an indication of the 

strain rate, or simply be a reflection of the total strain. Thus, low strain-rates at 

temperatures in excess of 200°C may result in low numbers of thick twins, with 

increased strain-rates resulting in increased twin numbers. Alternatively, large offset 

faults may be (and likely are) the result of prolonged and incremental deformation 

within a fault zone, which could result in creation of new twins, despite higher 

temperatures. 
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Fig. 5.18. Calcite twinning in Event 1 (a-c) and 2 (d-f) fault rocks. (a-c) Calcite in Event 1 faults 
typically displays intense tabular thick twins, and in most cases is also well fractured and 
brecciated, relating to its early precipitation, and later reworking during fault evolution. (d-f) 
Calcite twinning in Event 2 faults is split between tabular thin and tabular thick sets. Again, 
crystals are fractured by later fault movements. 
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5.4.2.3  Feldspars and quartz 

Plagioclase feldspars occur in abundance in the basaltic units throughout the FIBG, as 

both a constituent of the groundmass, and as phenocrysts (e.g. Fig. 5.19a-c). Quartz is 

very rare due to the low total silica of the basalts, but occasionally phenocrysts are 

observed (e.g. Fig. 5.19d). In very low-grade metamorphic conditions (<300°C), quartz 

and feldspar will deform by brittle fracturing, with quartz, lacking a cleavage, 

demonstrably the stronger of the two (Chester and Logan, 1987; Evans, 1988). At low  

 

  

Fig. 5.19. Feldspar (a-c) and quartz (d) phenocrysts display markedly different magnitudes of 
fracturing, here most likely indicating very-low grade metamorphic conditions (<300°C) during 
deformation. 
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to medium grades however, this is reversed, with quartz deforming first by dislocation 

creep, and feldspar becoming stronger (e.g. Tullis and Yund, 1977; Simpson, 1985). 

 

Feldspar phenocrysts (e.g. Fig. 5.19a-c) in the FIBG are markedly more deformed than 

their quartz counterparts (e.g. Fig. 5.19d), indicating that quartz acts as the stronger of 

the two minerals. This could be a reflection of the temperatures during deformation, 

and by proxy, may indicate reasonably shallow depths. This is supported by the calcite 

twinning observations referred to above, and when combined, indicates that 

temperatures likely did not exceed 300°C, and were most likely to have been around 

150-200°C. With a geothermal gradient of less than 50°C (Glassley, 2006), the ultimate 

maximum depth at which these fault rocks formed was ~6km, and most likely 

substantially shallower (2-4km) if only a few hundred metres of the FIBG has been 

removed (Waagstein, 2002), and the total thickness of the remnant FIBG exposed on 

the islands is less than 3.5km (i.e. the maximum burial depth at any point on the Faroe 

Islands is unlikely to exceed 4km). Again, it should be noted that faults cutting through 

the FIBG formed conduits to hydrous fluids, and if these were hydrothermal in origin, 

temperatures experienced within faults may have been elevated compared to those of 

the surroundings. In such a case, depths indicated by calcite deformation may 

therefore only be considered a maximum - it is suggested that fluid inclusion studies 

could be used to test these results. 
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This may cause problems, however, when considering the tensile nature of the 

evolving faults, and the formation of open cavities. For example, assuming a lithostatic 

pressure gradient of 25-29MPa/km for the basalt pile, under dry conditions, a fault will 

form at 2km depth (~50MPa) when the rock strength is overcome. After a stress drop 

during fault formation, a pre-faulting stress condition is restored, at which point a 

compressive σ3 (typically 0.6 of σ1 in extensional systems) will return to ~30MPa, 

directed against the fault-cavity walls. The occurrence of numerous mineralisation 

products within the faults is a likely indication that faulting did not occur under dry 

conditions. It is therefore likely that the rock strength was overcome primarily due to 

increased pore-fluid pressures, which could then pressurize a resulting fault cavity. It is 

then dependant on the pressures in the cavity, and the mechanical strength of the 

basalt wall rocks whether cavity will remain open as a fluid-filled feature. In the case of 

Event 3, faulting is most likely to have occurred in the absence of pressurised fluids, 

and with these constraints in mind, it must therefore have formed in the upper 2km or 

so in order to maintain a persistent subterranean cavity without wall rock failure. This 

is however very poorly constrained at the present time, and future studies using fluid 

inclusion techniques could be used to further elucidate the P-T conditions during 

formation. Furthermore, there is a notable difference in the relative mechanical 

strengths between basalts and the presumably weaker interleaved volcaniclastic 

horizons, which may or may not be important in the development, persistence and 

extent of these cavities. Indeed this difference may help to explain the 

entrainment/smearing of clastic interbeds observed in many fault zones. 
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5.4.3 Why don’t magmatic intrusives exploit existing faults? 

Understanding the controls on dyke propagation direction is important in inferring 

both ancient and modern stress fields from dyke trends. Clearly, there is a significant 

difference in conditions between dykes that propagate their own fractures, and those 

that exploit existing faults and fractures. In the former case, a set of dykes should form 

normal to the minimum compressive stress (σ3) of the host rock (Anderson, 1936; Fig. 

5.20a). In the latter case, dykes may reactivate existing, optimally oriented fractures 

(forming magma-filled, extensional hybrids), provided the magmatic pressure exceeds 

the ambient compressive stress perpendicular to the fracture (i.e. the normal stress; 

Fig. 5.20b), however, this condition will not last if the fracture is mis-oriented to the 

principal stress directions since the ambient resolved shear stress on that fracture is 

reduced to zero by the intrusion itself (Rubin, 1995). This condition would be most  

 

Fig. 5.20. (a) Stresses controlling the mode of opening of a magma-filled crack. Fluid pressure 
(Pf) must exceed the normal stress (σn) acting on the walls of the crack. The normal stress can 
be expressed in terms of fracture orientation (θ), and the maximum (SH) and minimum (Sh) 
principal stresses (Delaney et al., 1986). (b) Mohr diagram with failure envelope for intact rock 
(solid, bold line) and reshear condition for a cohesionless fault (or joint), and critical stress 
circles for 3 modes of brittle failure, and for reshear on an optimally oriented cohesionless fault 
(Sibson, 2004). 
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likely to occur in a system with high differential stress. Since no examples of dykes 

exploiting pre-existing faults are observed, it can be inferred that the magmatic 

pressure only exceeded the minimum compressive stress, and perhaps, that 

differential stress was low (which is further supported by the tensile, to hybrid opening 

observed across dykes; Fig. 5.20b). However, preferentially oriented faults (i.e. those 

that are normal to σ3) would be expected to reactivate during hydraulic tensile 

fracturing, particularly considering the majority of faults are comprised of 

predominantly incohesive fault rocks such as gouge and breccia. 

 

The answer may lie in the well developed joint networks inherent to the basalts, and 

the relative amounts of sealing mineralisation that has occurred along joints and faults 

during earlier events. Fault zones and joint networks in the Faroes are typically well 

mineralised, but there are notable characteristic differences between the styles. The 

faults tend to have developed through time, with phases of mineralisation, 

shear/hydraulic fracturing and cementation which may lead to some degree of re-

strengthening of the fault zone. Joints on the other hand, though mineralised, are 

activated as tensile features during deformation. Mineralisation is not sealing in these 

cases, and joints have the potential to remain relatively weak leading to their 

exploitation during magmatic events, thus bypassing the faults. The role of jointing in 

fault development on the otherhand is particularly clear in instances where faults 

exploit dykes, which is a very common feature on the islands. 
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5.4.4 Fracture/vein set evolution 

In section 5.3, fault styles and damage have been demonstrably related to fault 

evolution, whereby, maturing fractures will develop into linked sets, which will then 

develop into clusters, forming wider zones of damage (Fig. 5.16). So far this has been 

described in terms of parallel to sub-parallel sets of hydrofractures related to a single, 

continuous deformation event. However, commonly mutual cross-cutting relationships 

are observed between sets of sub-vertical, and sub-horizontal veins (Fig. 5.21). The 

reciprocal cross-cutting indicates that they are part of the same continuous event, even 

though such changes in vein orientation require significant permutations in the local 

principal stresses. The tensile nature of the veins suggests that the minimum 

compressive stress (σ3, where σ1> σ2>σ3) is oriented at ~90° to the vein walls for each 

set (Secor, 1965; Sibson, 1981), which therefore seemingly requires that the principal 

stress orientations are rotated cyclically. This seems unlikely. As these veins are related 

to the same tectonic phase, it is more likely that these permutations of the principal 

 

Fig. 5.21. Commonly, fault zones comprise numerous, variously oriented hydrofracture sets, 
requiring local principal stress permutations, and perhaps indicating phases of pressure release 
and recharge, brought about by the sealing potential of individual vein sets, and low 
permeability barriers in the FIBG. 
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stresses are due to local, possibly pore-elastic effects (e.g. Ramsay and Huber, 1983; 

Bai et al., 2002) and that there is a low value for the differential stress (e.g. see Colletini 

et al., 2006). 

 

Under low values for differential stress (i.e. σ1-σ3< 4T, where T is the tensile strength 

of the rock) hydraulic fractures will form when the condition σ’3 = -T (Sibson, 1981, 

2000; where σ’3 = σ3 – P; P being the pore pressure: Hubbert and Rubey, 1959) is 

achieved. It is possible that, if mineral precipitation along joints, fractures and faults is 

sealing, and the influx of (hydrothermal) fluids is continuous, pore fluid pressure will 

build up, resulting in failure if supra-lithostatic values are reached (Colletini et al., 

2006). Failure results in the formation of a fluid-filled crack, and a drop in the normal 

effective stress to zero. Since the fluid filled crack has a tensile strength of zero, it 

cannot decrease further with increasing fluid pressure, provided that this increase 

exceeds the cementation (healing) rate (otherwise the fracture would regain tensile 

strength and future deformation would occur along it). Recharge of the system, and 

further reductions in normal effective stresses will result in a switch in the minimum 

compressive stress orientation forming orthogonal tensile vein arrays (first between σ2 

and σ3, then between σ1 and σ3 in successive fracturing episodes). This model fits with 

faults and fault zones across the islands, which require numerous fault and recharge 

events, and the hypothesis that material failure is driven by elevated pore-fluid 

pressures. This may also be an indication not only that early faults are sealing in sub-
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parallel sets (i.e. stages indicated in Fig. 5.16a-b), but that there are existing barriers to 

fluid flow within the volcanic pile in order to allow the initial fluid build-up (such as the 

presence of relatively impermeable lavas or tuffs acting as pressure seals). 

 

5.5 Conclusions 

Deformation processes and phases of mineralisation are similar between Event 1 and 2 

faults (i.e. zeolite – calcite – zeolite), but contrast markedly with the hydrofracture-free 

conditions of Event 3, potentially relating to syn-magmatic (1-2) vs. post-magmatic (3) 

timings and palaeodepths at which the events occurred. This may also indicate that 

fluids circulating within the FIBG were hydrothermally dominated, with only a minor 

meteoric input. 

 

Event 1 and 2 faults through basaltic units of the FIBG appear to develop through 

stages of fault linkage and damage zone formation, similar to models for the 

development of faults in layered clastic sequences. During the fault rock evolution, 

early fault meshes and linked fault sets displaying little damage appear to be sealing. 

By contrast those that are more evolved, comprising zones of fault-related damage, 

and that cut the stratigraphy, act as conduits for hydrous fluids. 
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Event 1 and 2 dykes appear to have formed their own fractures, rather than exploiting 

existing faults. This implies that the stresses induced by buoyancy only exceeded the 

minimum compressive stress, rather than the ambient compressive state of the host 

rock. Dyke propagation was most likely magmatic buoyancy-driven, resulting in a time-

dependant failure of the host rock. This is in contrast to the emplacement of the sills, 

which most likely seeded at an interface in the stratigraphy between a weak, more 

ductile material (i.e. a sedimentary horizon), and a rigid material (i.e. basalt lavas) 

above. Following this initial development, sill growth and propagation would likely be 

controlled by viscous dissipation, leading to the complex ramp and flat architecture, 

with rapid intrusion resulting in upward ramping of the sill. 

 

The deformation characteristics of calcite, feldspars and quartz indicate deformation 

depth of the exhumed Event 1 and 2 fault rocks is quite shallow, at about 2-4km. 

Constraints imposed by the lithostatic pressure gradient and mechanical strength of 

basalts and their ability to sustain open fractures in the absence of fluid overpressures 

suggest that Event 3 faults most likely occurred at shallower depths; perhaps in the 

order of 0-2km. 

 

Infilled cavities at dilational jogs along irregular fault planes were filled during, and 

commonly for a period after movement on the fault, rather than geologically 

instantaneously as a result of a simple implosion. Fluid transmission along and across 
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the faults may therefore have been reasonably long-lived in the case of mineralising 

fluids. If structurally linked to faults cutting the underlying basin fill sediments, this 

could facilitate significant hydrocarbon migration from deep reservoirs. 
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6  
Discussion, conclusions and future research 

6.1 Discussion 

6.1.1 Structural evolution: the fault-dyke-fault cycle 

As shown in the preceding chapters, the Cenozoic structural evolution of the Faroes 

region involves an anticlockwise reorientation through time in the regional extension 

direction, from NE-SW to NW-SE (e.g. Fig. 6.1a). However, the mode of extension 

during rifting changed markedly throughout this rotation (e.g. Fig. 6.1b, c), most 

notably in terms of an apparent switch from hydrous fluid-driven (faulting) events, to 

magma-driven (dyke) events and back again (e.g. Fig. 6.1). Since the timing and 

kinematics of rift rotation can be temporally linked with the build-up to, and onset of 

sea-floor spreading, the change in structural style may too be linked to these 

processes. We must, however, first consider all coincident conditions during the 

structural evolution of the NE Atlantic region. For instance, structures associated with 

Events 1 and 2 are syn-magmatic, and late Event 2 and Event 3 structures are post-

magmatic. Exhumed faults therefore record deformation at increasing distances from 

the main rift axis (Fig. 6.1d), and at variable depths (Fig. 6.1e) with respect to the 

thickness of the FIBG through the time. 
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Fig. 6.1. (Previous page) Summary diagram detailing the mode of failure, stress directions 
mineralisation phases, as well as hypothesized relative relationships to and between 
deformation temperature, fluid/magmatic pressure, and regional differential stresses, for 
structural Events 1, 2 and 3. 

 

A switch from faults to dykes could lead to an increase in deformation temperatures 

within faults/fractures, with Event 1 fault rocks suggesting temperatures in the order of 

170-200°C, and basaltic dykes likely intruded with a local magma temperature in excess 

1000°C; Fig. 6.1f). Magmatism at this time could relate to a thinned lithosphere or the 

introduction of hot asthenosphere, or both. In any case, the ambient temperature 

would also likely be elevated (Fig. 6.1f) as a reflection of the steeper geothermal 

gradient imposed due to thinning. 

 

Dykes in the Faroe Islands do not obviously reactivate existing faults, perhaps 

indicating that hydrous-fluid pressures had decreased following Event 1a and that 

fractures were sealed by mineralization.  It appears that magmatic-fluid pressure then 

increased to a point where magma-driven fractures were generated widely during 

dyking (Fig. 6.1g). The switch from faults to dykes is also consistent with a drop in the 

(regional) differential stress (Fig. 6.1h), from just under 8T (where T is the tensile 

strength of the rock) during the shear to hybrid hydrofracturing  seen during Event 1a 

faulting, to less than 4T during tensile fracturing accompanying dyke intrusion (Fig. 

6.1b) (Hancock, 1985; Sibson, 1998). The change in dyke geometry, from tensile (Event 

1b) to hybrid (Event 2a), and the later switch back to shear fracturing and faulting 
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(Events 2b,c), is a likely indication that regional differential stress progressively 

increased during Event 2. The tensile nature of Event 3 faults is again, likely indication 

of a drop in differential stress, though, as speculated in this thesis, this would also be 

expected as a reflection of the relatively near-surface faulting conditions during the 

event.  

 

Rifting in the area was reasonably prolonged, occurring in phases from the Devono-

Carboniferous, through to break-up in the Eocene (Moy and Imber, 2009). The location 

of the rift axis changed through time, apparently shifting NW from the Faroe Shetland 

Basin (FSB) towards the eventual continent-ocean boundary (COB) (Fig. 6.1d), which 

coincides with an increase in strain rate: relatively slow during the Mesozoic in the FSB, 

and fast in the Cenozoic to the NW (Geoffroy, 2005). A slow strain rate could result in 

an outboard rift migration if the upwelled asthenosphere has time to thermally 

equilibrate (since this material will essentially be an unfaulted peridotite, and therefore 

be stronger than the surrounding faulted crust; e.g. Allen and Allen, 2005)1

                                                      
1 Thermal equilibration in this manner can lead to subsidence following rifting, as the new, cooled 
material will be denser than the asthenosphere below. Hence, though no longer actively rifting, the FSB 
could continue to thermally subside, with the amount of subsidence varying depending on the degree of 
rift segmentation, and the presence of intrusives within the crust. 

. Given the 

observed large time gaps between rift events along the insipient margin (e.g. between 

Permo-Triassic rifting and Cretaceous rifting; Coward, 1990), it would be highly likely 

that the lithosphere would heal in this way, and result in a shift in the focus of rifting. 

The increase in strain rate in the Cenozoic may, therefore, simply be a function of the 
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growth of the Iceland plume, resulting in an increase in the areal extent of lithospheric 

thinning by hotter-than-normal mantle, taking over from a ‘healed’ rift system. Due to 

the effects of strain softening, a fast strain rate, could result in localized extension 

(Kusznir and Park, 1987). In theory then, the Faroe Islands could be situated between 

an old diffuse rift system (the FSB) and a relatively young localized rift system (i.e. the 

developing rift to the NW, prior to sea-floor spreading), and were never on the active 

axis of rifting. The resulting strain recorded between the two rifts would be reasonably 

distributed, and, at any single location, strain would be relatively minor, as it is on the 

Faroes. This could also mean that from the Palaeocene onwards, the axis of rifting was 

not focused on the FSB rift axis, but to the NW, thereby explaining the rather subdued 

Cenozoic fault histories in the southeastern FSB (e.g. Moy and Imber, 2009); 

subsidence in the FSB could therefore be simply related to thermal subsidence. 

 

With this as a working hypothesis, we can perhaps relate the switch from faults to 

dykes to faults, to changes in the locus of active deformation relative to the Faroe 

Islands. In this model, the axis of rifting during the Late Cretaceous to Early Palaeocene 

would be focused on the margins of the FSB (Fig. 6.2a), bypassing its older, strain 

hardened sub-basins. Deformation at the Faroes for this time would therefore be 

accommodated by faulting (i.e. resulting in Event 1a faults) Following this, Palaeocene 

deformation would jump towards the growing Iceland plume in the NW (Fig. 6.2b), 

where the upwelling mantle would result in a quickly developing, localized rift. This 
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period corresponds to the Event 1b and 2a dykes on the Faroes. As the area of active 

deformation associated with this rift increased, and as the effective distance between 

the heat source and the Faroes increased (through crustal stretching), deformation in  

 

Fig. 6.2. Summary model for the switch in rifting in the NE Atlantic area, from SE of the Faroes 
towards the NW, from (a) the Late Cretaceous to the (b) Palaeocene, through to the (c) 
Palaeocene-Eocene. See text for explanation. (Based on Figure 15 of Kusznir and Park, 1987). 
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the Faroes area switched back to faulting (Fig. 6.2c). This would then continue to be 

the dominant style of deformation through break-up, until a time when all extension 

was accommodated by sea floor spreading. 

 

6.2 Conclusions 

1. Spatially and temporally-related suites of brittle faults, hydrothermal veins and 

intrusive igneous sheets (dyke swarms and sills) that formed during and after extrusion 

of the FIBG are recognised throughout the Faroe Islands. These are split into three 

groups based on geological characteristics and cross-cutting relationships termed 

Events 1, 2 and 3. Stress inversion techniques and structural relationships observed in 

the field indicate a progressive reorientation in the regional stretching directions, from 

NE-SW, to N-S, to NW-SE, through time, leading to the observed polyphase 

deformation. 

2. Event 1 and 2 faults cutting basaltic units of the FIBG appear to develop through 

stages of fault linkage and damage zone formation, broadly similar to those seen in 

layered clastic sequences. During fault rock evolution, early fault meshes and linked 

fault sets displaying little damage are likely to be sealing; by contrast, those that are 

more evolved, comprising zones of fault-related damage, and that cut the stratigraphy, 

appear to act as conduits for hydrous fluids. Sequential phases of mineralisation are 

similar between Event 1 and 2 faults (i.e. zeolite – calcite – zeolite), and contrast 

markedly with the generally hydrostatic fluid pressure conditions of Event 3, 
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potentially reflecting the syn-magmatic (1-2) vs. post-magmatic (3) timings of the 

events, together with their different palaeodepths (2-4 km vs. 0-2km). This may also 

indicate that fluids circulating within the FIBG during events 1 and 2 were 

hydrothermally dominated which is perhaps unsurprising given their close association 

with magmatic intrusions (Event 1 and 2 dykes and the Event 2 sills). 

3. Event 1 and 2 dykes appear to have formed their own fractures, rather than 

exploiting existing faults. This implies that the stresses induced by buoyancy only 

exceeded the minimum compressive stress, rather than the shearing resistance of the 

host rock. Dyke propagation was most likely magma buoyancy-driven, resulting in 

failure of the host rock. This is in contrast to the emplacement of the sills, which most 

likely seeded at an interface in the stratigraphy between weak, more ductile material 

(i.e. a sedimentary horizon), and rigid material (i.e. basalt lavas) above. Following this 

initial development, sill growth and propagation would likely be controlled by viscous 

dissipation, leading to the complex ramp and flat architecture, with rapid intrusion 

resulting in upward ramping of the sill. 

4. The deformation characteristics of calcite, feldspars and quartz indicate 

deformation depths for the exhumed Event 1 and 2 fault rocks to be quite shallow, at a 

maximum of about 2-4km. Constraints imposed by the lithostatic pressure gradient 

(~25MPa/km) suggest that Event 3 faults most likely occurred at still shallower depths; 

perhaps in the order of 0-2km. This is consistent with recognition of sediment fills 

during event 3 and, more generally with the range of likely burial depths possible given 

the likely thickness of the FIBG. 

Chapter 6

210



5. Infilled cavities at dilational jogs along irregular fault planes were filled during 

and for a period after movement on the fault, rather than geologically instantaneously 

as a result of implosion. Fluid transmission during Events 1 and 2, along and across the 

faults may therefore have been reasonably long-lived in the case of mineralising fluids. 

If structurally linked to faults cutting the underlying basin fill sediments, this could 

facilitate significant hydrocarbon migration from deep reservoirs during these periods 

following fault movements. 

6. NW-SE oriented Event 1 faults are dip-slip in all observed cases. In the absence 

of any evidence to the contrary, it is inferred that these structures are indicative of 

movements on the basin-scale faults located within the fjords (i.e. the Judd, Brynhild 

and Westray faults). The kinematics of these faults and the similarly oriented dykes 

indicates a distinct period of early NE-SW extension, which could theoretically relate to 

an excess gravitational potential energy within the continental interior relative to the 

mid-ocean ridge in the western North Atlantic at this time. Progressive displacements 

on these faults throughout the Palaeocene are responsible for thickness variations 

within the FIBG, and probably similarly aged strata within the FSB offshore. 

7. The progressive anticlockwise rotation of the extension vector identified seems 

to be consistent with the most recently published NE Atlantic continental break-up 

reconstructions, particularly in terms of an initial N-S extension during early sea floor 

spreading on the Reykjanes, Aegir, and Mohns ridges, and a rotation to NW-SE 

extension, following a ridge jump, from the Aegir ridge to the Kolbeinsey ridge. This 
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illustrates the importance of carrying out detailed field studies, in addition to the more 

usual margin-scale modeling studies, in order to validate plate reconstructions. 

8. Post-FIBG deformation typically involves the entrainment of clastic materials 

along faults during reactivation of deformation structures developed during Events 1 

and 2. The general lack of mineralisation within the clastic materials most likely 

indicates post-burial, near-surface fault movements (<2km depth?). Based on the 

relative timing, it is proposed that these movements relate to or follow uplift during 

continental break-up and sea-floor spreading on the NE Atlantic. 

9. The kinematics indicated by offset markers and the localised development of 

clastic drag fabrics are typically the opposite sense to those of the host fault. In most 

cases, the inland area lies in the fault footwalls; if the footwalls are uplifted, this may 

partially explain the location of the Faroe Islands above sea level at the present day. 

10. Event 3 fractures may be related to fold growth on the margin. If so, they may 

be widespread offshore, particularly where such large, open folds are developed. The 

likely unsealed nature of the clastic infills may mean that these faults present fluid-flow 

pathways, particularly at higher levels, but also potentially deeper, within the Faroe-

Shetland Basin. The open cavities that originally form would introduce very significant 

localised permeability, facilitating both cross-fault and cross-stratal rapid migration of 

fluids, including hydrocarbons. 
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6.3 Future research 

6.3.1 High-resolution geophysics 

This study has predominantly been limited to the areal extent of the Faroe Islands. All 

but the largest deformation structures observed on the islands would not be apparent 

in seismic reflection data sets, presenting a clear problem in terms of the scalability 

from onshore to offshore. Few studies of the deep structure of the Faroe Islands have 

been attempted, with most geophysical acquisition being terminated on the flanks of 

the Faroes Platform to the southeast. 

 

Recent, high-resolution magnetic surveys over the Norway Basin have highlighted the 

existence of margin-normal lineaments that trend NW-SE and pass out into the oceanic 

crust (Gernigon et al., 2009). These lineaments have only become apparent with the 

acquisition of the high-resolution magnetic data – features within the more regional 

data remain ambiguous. A similar high-resolution magnetic study over the Faroes 

Platform could potentially be used to detail the extent of known fracture zones and 

dykes, and indicate the location and extent of previously unidentified deformation 

structures. This would be particularly useful in assessing the continuity of the NW-SE 

faults through the Faroese fjords. Structural element maps of the FSB (e.g. Ellis et al., 

2009) often show a set of continuous NW-SE lineaments that extend from the West of 

Shetland area, to the Faroe Islands (a distance in excess of 250km in places). However, 

displacement estimates and kinematic analyses suggest that, at least in the Faroes, 
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these are dip-slip faults with offsets of no more than ~80m. The trend of these 

lineaments is also disrupted by local promontories in the Faroes, which appear 

coincident with later faults and dykes, and most likely represent hectometre scale 

offsets of the NW-SE features. It is therefore highly unlikely that each lineament is a 

single line along its entire length as is typically shown. High-resolution geophysical 

surveys over the Faroes Platform would therefore be of benefit, not only in terms of 

better defining the position of the lineaments, but may also help in understanding their 

evolution through time with respect to later rift events. 

 

6.3.2 Experimental rock deformation and permeability and fracture 

distribution studies 

To date few studies have addressed the mechanical properties of basalts, and none 

have focused on the FIBG. The physical properties of basalt change markedly from the 

bottom to the top of a single flow unit, as well as laterally (due to differing vesicularity 

from proximal to distal flows formed relative the original source) and from unit to unit. 

These lithological variations may well be reflected in the mechanical strength of the 

rocks. Of particular importance could be the differences deformation style between 

hyaloclastites (e.g. the Lopra Formation), simple flow units (e.g. the Beinisvørð 

Formation) and compound lava units (e.g. the Malinstindur Formation). Results from 

recently drilled wells in the Faroes sector of the margin indicate significant fluid losses 

throughout the basalt flow units, but not in the hyaloclastites beneath. This may 

suggest that differences between continuous flow units are not as important as the 
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differences between flow units and hyaloclastites. Alternatively, it may be an indication 

that deformation style changes with depth, from shallow open fractures, to sealed 

deeper fractures. Certainly this would mirror the changes in fracture styles seen 

onshore through time. 

 

Simple triaxial friction experiments (at room temperature, effective normal stress of 

~25-30MPa, and loading rates of 0.1μm/s and 1μm/s) could be used on cored well and 

hand samples collected from the islands to provide some insights into the mechanical 

behavior of FIBG rocks. It would be preferable, however, to perform the deformation 

experiments at more realistic temperatures and strain rates. Mineralogical constraints 

from Faroese fault rocks suggest deformation more likely occurred at ~200°C.The 

results could be used to test the frictional properties and permeability of the fault 

rocks, which would therefore have direct applicability to drilling prospects in the 

Faroes sector, and potentially to future drilling campaigns in the Icelandic and 

Norwegian Jan Mayen licenses. 

 

This study has shown that faults in the FIBG grow and link through time. The different 

stages of this growth are characterised by an increasing degree of damage during 

development. The permeability characteristics of those faults are therefore dependant 

on the stage of their development. Ideally, changes in fault rock permeability could be 

tested using experimental deformation techniques, as well as using available samples 
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from fault rocks on the islands. The purpose of this would be to test damage zone 

development and permeability at different stages of fault development experimentally 

(using triaxial deformation apparatus: see section 6.3.4) as well as measuring differing 

permeabilities across developed fault zones (i.e. from a fault core, into the damage 

zone, and through into undeformed wall rock). 

 

Future studies could also specifically target fault rocks and fault/fracture/vein spacings 

and orientations in order to quantify their local connectivity, as well as, more broadly, 

their regional significance as fluid flow conduits or barriers. Previous studies in layered 

sedimentary rocks have shown that there is a strong correlation between host lithology 

and vein spacing (e.g. Simpson, 2000; Gillespie et al., 2001), and therefore, it is unlikely 

that existing fracture/vein distribution models can be applied to the FIBG. 

 

6.3.3 Radiogenic and stable isotope analyses and fluid inclusion studies in 

mineralised fault-rocks 

During the present study, we have indicated a relative time-scale for the development 

of deformation structures in the FIBG (determined from cross-cutting relationships and 

stratigraphic extent), as well as identifying a general fluid flow history for sampled fault 

rocks. Future studies could use radiogenic and stable isotope analyses to: (1) Provide 

absolute dates for the development of faults in the FIBG using Ar/Ar dating techniques 

on fault-bourne alkali feldspars, or potentially U/Pb dating techniques on minor galena 
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mineralisation observed; (2) Oxygen isotope analysis on fluid inclusions in order to 

assess the likely sources of mineralising fluids. 

 

Fluid inclusions, hosted primarily in quartz and calcite can provide an opportunity to 

determine fluid compositions, densities, temperatures and pressures at the time of 

fluid entrapment (Touret, 2001). Fluid inclusion analysis therefore has the potential to 

provide a vast range of important data pertaining to the development of Faroese fault 

rocks, such as constraining the depth of fault formation and mineralisation, as well as 

evolution of vein materials through time within a single fault. 

 

Collectively, these analyses on mineralised fault rocks could substantially improve our 

knowledge of fluid transmission during fault rock development in the FIBG, and could 

be applied more broadly to the related offshore stratigraphy. Changes in the style, rate 

of formation and physical properties of faults at different levels within the FIBG are of 

critical importance to the hydrocarbon industry in terms of being able to establish fluid 

flow histories and the sealing potential of basalt fault rocks for both sub- and intra-

basalt plays. 
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6.3.4 Numerical Modeling and passive margin studies 

Models for the formation of the NE Atlantic margin rely heavily on basin-scale 

structural studies, from which the kinematics are inferred through changes in 

sedimentary thicknesses and fault architectures, rather than being directly observed. 

The NE-SW trending continental basins along the NE Atlantic margin (e.g. Faroe-

Shetland, Møre, and Vøring basins) attest to the overall relative NW-SE extension that 

must have occurred to produce the present day regional plate configuration. Structures 

that lie at a high angle to the basin trend (i.e. NW-SE trending structures) are typically 

given a strike- to oblique-slip motion sense for the sake of compatibility with the 

model: these are the so-called “transfer zones”. However, this study indicates that 

structures oblique to the NE-SW basin-bounding faults differ in relative timing, and are 

formed due to an early phase of margin-parallel extension. Thus the earliest structures 

observed on the islands are NW-SE to N-S trending dip-slip faults and dykes, which 

record a prolonged NE-SW extension during the mid- to late-Palaeocene (59-55Ma) 

with little or no strike-slip displacement. Similarly oriented structures in the Faroe-

Shetland Basin, and for that matter, in East Greenland, are temporally linked and are 

potentially kinematically related. If so, immediately prior to the onset of plate 

separation and sea-floor spreading, the NE Atlantic was subjected to regional NE-SW 

extension: almost 90° to the present day kinematics. 
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One possibility is that the Faroes and East Greenland, being elevated relative to the 

basins to the NE and SW, may have been in a state of extension, due to excess 

gravitational potential energy (GPE). Numerical models could be used to test this as a 

possible driving mechanism, taking into account palaeo-topography, -crustal 

thicknesses, and -heat flow, in order to gauge the resulting gravitational potential 

stresses (e.g. Pascal, 2006). However, margin-perpendicular lineaments are seen along 

the entire NE Atlantic margin, and many other passive margins for that matter. 

Typically, these lineaments are also termed transfer zones, and designated a strike-slip 

sense in order to accommodate margin-normal extension. This assumption needs to be 

reconsidered in the light of the findings of the present study. In some cases (e.g. the 

East African Rift and Madagascar; e.g. Rabinowitz et al., 1983; Coffin and Rabinowitz, 

1987, 1988), phases of margin parallel extension have been identified, suggesting that 

such margin-parallel early rifting phases may represent a previously overlooked feature 

of rift dynamics. Future research projects could target this subject area. Identification 

of a region with a combination of accessibility (for kinematic data acquisition) and 

detailed geophysical coverage (in order to assess the deeper structure) would, 

however, be crucial in advancing the topic beyond current understanding. 
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Rasmussen and Noe-Nygaard (1969)
Repeated dyke numbers counted as a single dyke during this study

Fugloy
8 9

Viðoy
24 25
20 21
15 16

Borðoy
3 4 70
5 6
8 14
65 63
60 59 58 57
12 13
28 29
32 33 35
34 36
52 51 50
47 46 45 44 43

Kunoy
3 6 7
15 16 36 37 39
31 32 33
28 29 30
17 27
22 23

Kalsoy
3 4
4 5
47 48 49
8 45
9 10 40
11 44
14 39
15 38 37
18 19 35 34
21 22
24 33
25 26 32
27 31
28 30

Eysturoy
2 4
3 5
7 8
17 18
31 32 33 34
48 49
23 24
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65 66 67 92
71 72 73
145 144
112 113 114
130 131 132
107 109
94 95 96
98 88 87 59 196 197
81 82 83
53 57 58
52 54 55 56
174 192 191 186 51
182 183
17 18
19 20 22
187 188
189 190
168 169 170 180
171 175
177 195
203 204
157 158 159 160

Streymoy
27 36 38
39 40
78 79
80 81
50 51
52 53
83 84
85 86
62 63
64 65
108 109 111 116 115
106 107 114 113
105 81 60
59 81 60
59 75 77
88 89
90 91
92 93 112 118
120 134
150 151 152
156 160 161
139 140 141
129 130
132 133
143 144 146
182 183
145 179
147 148
187 190 191 192
188 189 193
215 197 198 199 200 221 216
204 205
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209 217
222 223
218 219
226 227 228 229
1 7 8
4 5

Vagar
76 105
84 85 86
87 88
100 101 99
78 81
37 39
38 45
43 44
61 62 63
52 55
66 67
32 29
26 27
30 31

Hestur
1 3

Nolsoy
2 3

Sandoy
3 4
7 8

Suðuroy
10 11
17 18
20 22 23
27 28
29 30
42 43
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Palaeostress calculations

Event 1

2. Hvannhagi trend plunge 6. Gasadalur trend plunge
Stress Or. Stress Or.
1 267 69 1 11 87
2 13 6 2 198 3
3 105 20 3 288 0

std. dev. std. dev.
Stress ratio 0.44 Stress ratio 0.38 0.02
Mean misfit angle 31.8 37.5 Mean misfit angle 15.8 13.9
Mean fault angle 30.8 13.3 Mean fault angle 44.7 11.9
Mean friction angle 37 Mean friction angle 44
Mean shear stress angle 0.324 0.038 Mean shear stress angle 0.418 0.0008

Shortening/extension 264 40 Shortening/extension 124 89

3. Froðba trend plunge
Stress Or.
1 276 79
2 171 3
3 81 11

std. dev.
Stress ratio 0.24 0.05
Mean misfit angle 9.9 10.8
Mean fault angle 39.8 9.2
Mean friction angle 40
Mean shear stress angle 0.427 0.005

Shortening/extension 250 79

4. Vagseiði trend plunge
Stress Or.
1 41 89
2 135 0
3 225 1

std. dev.
Stress ratio 0.37 0.01
Mean misfit angle 19.3 17.6
Mean fault angle 31.3 14
Mean friction angle 32
Mean shear stress angle 0.363 0.016

Shortening/extension 212 83

Appendix III

272



Event 2

1. Muli trend plunge 5. Eiði trend plunge
Stress Or. Stress Or.
1 272 20 1 270 7
2 75 69 2 150 77
3 180 5 3 1 11

std. dev. std. dev.
Stress ratio 0.55 Stress ratio 0.57 0.05
Mean misfit angle 43.4 28 Mean misfit angle 44.7 50.2
Mean fault angle 20.7 11.1 Mean fault angle 20.3 15.9
Mean friction angle 19 Mean friction angle 22
Mean shear stress angle 0.229 0.033 Mean shear stress angle 0.207 0.053

Shortening/extension 207 4 Shortening/extension 358 4

2. Norðdepil trend plunge 6. Funnigfjorður trend plunge
Stress Or. Stress Or.
1 255 3 1 74 29
2 353 74 2 221 56
3 164 16 3 336 15

std. dev. std. dev.
Stress ratio 0.59 0.07 Stress ratio 0.8 0.1
Mean misfit angle 35.1 40.5 Mean misfit angle 46.1 30
Mean fault angle 15.2 10.8 Mean fault angle 28.3 17.1
Mean friction angle 15 Mean friction angle 32
Mean shear stress angle 0.205 0.032 Mean shear stress angle 0.259 0.028

Shortening/extension 174 19 Shortening/extension 0 9

4. Gjogv trend plunge 7. Strendur trend plunge
Stress Or. Stress Or.
1 77 21 1 74 6
2 234 67 2 291 83
3 344 8 3 164 4

std. dev. std. dev.
Stress ratio 0.39 0.04 Stress ratio 0.59 0.04
Mean misfit angle 26.6 31.4 Mean misfit angle 32.7 47.8
Mean fault angle 21.3 8.6 Mean fault angle 23.8 16.9
Mean friction angle 22 Mean friction angle 24
Mean shear stress angle 0.294 0.013 Mean shear stress angle 0.248 0.05

Shortening/extension 56 23 Shortening/extension 152 8
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8. Gotogjogv trend plunge 12. Skarvanes trend plunge
Stress Or. Stress Or.
1 79 14 1 248 11
2 341 29 2 2 65
3 193 57 3 154 22

std. dev. std. dev.
Stress ratio 0.38 0.1 Stress ratio 0.41
Mean misfit angle 60.7 52.6 Mean misfit angle 80.8 63
Mean fault angle 15.7 8.8 Mean fault angle 10 6.7
Mean friction angle - Mean friction angle 10
Mean shear stress angle 0.09 0.018 Mean shear stress angle 0.064 0.021

Shortening/extension 346 21 Shortening/extension 65 2

9. Lambi trend plunge 13. Tjornuvik trend plunge
Stress Or. Stress Or.
1 80 30 1 87 10
2 337 21 2 315 76
3 217 52 3 179 10

std. dev. std. dev.
Stress ratio 0.58 0.14 Stress ratio 0.41 0.03
Mean misfit angle 79.8 42.4 Mean misfit angle 35.5 43.3
Mean fault angle 20.7 17.6 Mean fault angle 13.4 8.7
Mean friction angle 10 Mean friction angle 11
Mean shear stress angle 0.019 0.04 Mean shear stress angle 0.185 0.024

Shortening/extension 232 11 Shortening/extension 87 13

10. Mik. - Husar trend plunge 14. Tjornuvik - Haldarsvik trend plunge
Stress Or. Stress Or.
1 262 4 1 89 10
2 39 85 2 327 72
3 172 4 3 182 15

std. dev. std. dev.
Stress ratio 0.59 0.06 Stress ratio 0.2 0.11
Mean misfit angle 40.4 43.6 Mean misfit angle 40.4 50.1
Mean fault angle 21.8 13.2 Mean fault angle 17.1 10.8
Mean friction angle 17 Mean friction angle 14
Mean shear stress angle 0.253 0.033 Mean shear stress angle 0.222 0.031

Shortening/extension 198 5 Shortening/extension 90 18

11. Mykinesholmur trend plunge 15. Langasandur trend plunge
Stress Or. Stress Or.
1 167 79 1 93 0
2 267 2 2 191 87
3 358 11 3 3 3

std. dev. std. dev.
Stress ratio 0.14 0.09 Stress ratio 0.7 0.1
Mean misfit angle 17.7 15.4 Mean misfit angle 36.6 26.9
Mean fault angle 31.3 16.8 Mean fault angle 29.8 14.5
Mean friction angle Mean friction angle 37
Mean shear stress angle 0.342 0.016 Mean shear stress angle 0.303 0.019

Shortening/extension 349 66 Shortening/extension 187 5
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16. Saksunardalur trend plunge 20. Stykkið trend plunge
Stress Or. Stress Or.
1 86 15 1 279 7
2 264 75 2 169 80
3 355 1 3 8 6

std. dev. std. dev.
Stress ratio 0.3 Stress ratio 0.3 0.29
Mean misfit angle 50.3 61.1 Mean misfit angle 78.4 74.2
Mean fault angle 15.4 17.8 Mean fault angle 18.4 23.6
Mean friction angle - Mean friction angle -
Mean shear stress angle 0.152 0.57 Mean shear stress angle 0.005 0.052

Shortening/extension 26 9 Shortening/extension 18 10

17. Dalasgjogv/Djup'gjogv trend plunge 21. Leynar trend plunge
Stress Or. Stress Or.
1 271 8 1 261 35
2 148 75 2 81 55
3 3 12 3 171 0

std. dev. std. dev.
Stress ratio 0.6 0.08 Stress ratio 0.62
Mean misfit angle 36.9 39.5 Mean misfit angle 34.7 50.9
Mean fault angle 19.8 12.4 Mean fault angle 32.6 18.4
Mean friction angle 21 Mean friction angle 43
Mean shear stress angle 0.247 0.026 Mean shear stress angle 0.312 0.07

Shortening/extension 348 7 Shortening/extension 176 16

18. Dakid trend plunge 22. Kaldbaksbotnur trend plunge
Stress Or. Stress Or.
1 256 2 1 57 18
2 11 85 2 148 5
3 166 5 3 252 72

std. dev. std. dev.
Stress ratio 0.44 Stress ratio 0.44 0.06
Mean misfit angle 49.9 62.2 Mean misfit angle 35.2 38.2
Mean fault angle 13.2 9.8 Mean fault angle 27.4 15
Mean friction angle 10 Mean friction angle 23
Mean shear stress angle 0.134 0.048 Mean shear stress angle 0.253 0.042

Shortening/extension 53 30 Shortening/extension 59 9

19. Vestmanna trend plunge 23. Kaldbaksfjorður trend plunge
Stress Or. Stress Or.
1 269 3 1 230 0
2 135 86 2 136 87
3 359 3 3 320 3

std. dev.
Stress ratio 0.48 0.09 Stress ratio 0.47 0.06
Mean misfit angle 37.6 45.4 Mean misfit angle 71.5 57.2
Mean fault angle 30 14.2 Mean fault angle 18.6 13.8
Mean friction angle 33 Mean friction angle 10
Mean shear stress angle 0.242 0.077 Mean shear stress angle 0.041 0.076

Shortening/extension 228 1 Shortening/extension 232 3
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24. Hvannhagi trend plunge 28. Gasadalur trend plunge
Stress Or. Stress Or.
1 230 86 1 247 81
2 106 2 2 110 7
3 16 3 3 19 6

std. dev. std. dev.
Stress ratio 0.15 0.11 Stress ratio 0.44
Mean misfit angle 21.7 44.1 Mean misfit angle 8.3 5
Mean fault angle 18.2 20.7 Mean fault angle 42.9 4.5
Mean friction angle - Mean friction angle 44
Mean shear stress angle 0.197 0.017 Mean shear stress angle 0.473 0

Shortening/extension 349 64 Shortening/extension 316 82

25. Famjin trend plunge 29. Sandavagur trend plunge
Stress Or. Stress Or.
1 269 25 1 74 7
2 51 59 2 203 79
3 172 17 3 343 8

std. dev. std. dev.
Stress ratio 0.21 Stress ratio 0.5
Mean misfit angle 19.4 48.5 Mean misfit angle 60.6 63.3
Mean fault angle 27.7 15.7 Mean fault angle 15.6 11.3
Mean friction angle - Mean friction angle 10
Mean shear stress angle 0.343 0.036 Mean shear stress angle 0.139 0.065

Shortening/extension 308 11 Shortening/extension 298 8

26. Hov trend plunge 30. N. Vidareiði trend plunge
Stress Or. Stress Or.
1 269 48 1 248 55
2 64 39 2 66 35
3 164 13 3 157 1

std. dev. std. dev.
Stress ratio 0.51 Stress ratio 0.82 0.09
Mean misfit angle 32 33.1 Mean misfit angle 35.5 22.5
Mean fault angle 42.3 13.1 Mean fault angle 9.6 7.6
Mean friction angle 44 Mean friction angle 14
Mean shear stress angle 0.336 0.049 Mean shear stress angle 0.187 0.015

Shortening/extension 321 9 Shortening/extension 153 1

27. Vagseiði trend plunge 31. E. Vidareiði trend plunge
Stress Or. Stress Or.
1 272 83 1 76 1
2 62 6 2 171 78
3 153 3 3 346 12

std. dev. std. dev.
Stress ratio 0.41 0.03 Stress ratio 0.46 0.08
Mean misfit angle 15.4 9.4 Mean misfit angle 39.8 46.9
Mean fault angle 38.9 12.2 Mean fault angle 20.8 6
Mean friction angle 41 Mean friction angle 22
Mean shear stress angle 0.416 0.004 Mean shear stress angle 0.23 0.04

Shortening/extension 281 84 Shortening/extension 320 8
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32. W. Vidareiði trend plunge
Stress Or.
1 246 16
2 50 73
3 155 4

std. dev.
Stress ratio 0.49 0.04
Mean misfit angle 43.3 52.6
Mean fault angle 19.4 9.4
Mean friction angle 16
Mean shear stress angle 0.192 0.056

Shortening/extension 275 15
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Event 2 thrusts
4. E.Sandur trend plunge

1. Strendur trend plunge Stress Or.
Stress Or. 1 223 78
1 243 12 2 331 4
2 151 9 3 62 11
3 25 75 std. dev.

std. dev. Stress ratio 0.49
Stress ratio 0.47 Mean misfit angle 10.8 6.7
Mean misfit angle 49.7 57.9 Mean fault angle 49.6 11.5
Mean fault angle 15.5 9.3 Mean friction angle 44
Mean friction angle 10 Mean shear stress angle 0.437 0.012
Mean shear stress angle 0.156 0.059

Shortening/extension 65 65
Shortening/extension 60 7

5. Satan trend plunge
2. Rituvik trend plunge Stress Or.
Stress Or. 1 61 8
1 254 5 2 152 9
2 164 2 3 289 78
3 50 84 std. dev.

std. dev. Stress ratio 0.54
Stress ratio 0.5 0.01 Mean misfit angle 47.7 67.4
Mean misfit angle 16.5 13.1 Mean fault angle 23.6 8.9
Mean fault angle 17.2 6.6 Mean friction angle 22
Mean friction angle 18 Mean shear stress angle 0.182 0.105
Mean shear stress angle 0.268 0.009

Shortening/extension 261 68
Shortening/extension 261 69

6. Skaelingsfjjall trend plunge
3. W. Sandur trend plunge Stress Or.
Stress Or. 1 67 5
1 54 1 2 336 20
2 144 5 3 170 69
3 314 85 std. dev.

std. dev. Stress ratio 0.55 0.05
Stress ratio 0.57 Mean misfit angle 107 56.3
Mean misfit angle 13.7 10.8 Mean fault angle 20 16.4
Mean fault angle 18 4.6 Mean friction angle 10
Mean friction angle 19 Mean shear stress angle 0.085 0.068
Mean shear stress angle 0.288 0.005

Shortening/extension 157 81
Shortening/extension 310 84

7. Kaldbaksbotnur trend plunge
Stress Or.
1 231 5
2 321 4
3 84 84

std. dev.
Stress ratio 0.58 0.04
Mean misfit angle 17 14.3
Mean fault angle 19.2 6.4
Mean friction angle 20
Mean shear stress angle 0.291 0.008

Shortening/extension 58 72
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8. Kaldbaksfjorður trend plunge
Stress Or.
1 243 4
2 153 5
3 12 83

std. dev.
Stress ratio 0.61 0.03
Mean misfit angle 21 22.5
Mean fault angle 21.1 11.9
Mean friction angle 21
Mean shear stress angle 0.289 0.016

Shortening/extension 305 84

9. Hov trend plunge
Stress Or.
1 268 9
2 176 10
3 39 77

std. dev.
Stress ratio 0.56
Mean misfit angle 14.8 5.5
Mean fault angle 34.9 20.8
Mean friction angle 44
Mean shear stress angle 0.365 0.009

Shortening/extension 94 67

10. Bour trend plunge
Stress Or.
1 203 14
2 111 9
3 350 74

std. dev.
Stress ratio 0.45
Mean misfit angle 13.4 9.1
Mean fault angle 21.7 5.8
Mean friction angle 21
Mean shear stress angle 0.321 0.005

Shortening/extension 223 56

11. W. Vidareiði trend plunge
Stress Or.
1 244 6
2 334 1
3 78 84

std. dev.
Stress ratio 0.51 0.01
Mean misfit angle 8 8
Mean fault angle 17.6 8.2
Mean friction angle 18
Mean shear stress angle 0.272 0.011

Shortening/extension 242 72
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Faroe Islands: Event 1Data localities

7°W

62°N

Enni Formation

Malinstindur
Formation

Beinisvørð
Formation

Hvannhagi
Formation
irregular
intrusions

saucer-shaped
sills

Key

Sneis Formation

Prestfjall
Formation

Viðoy

Suðuroy

Mykines

Vagar

Sandoy

Borðoy

Eysturoy

Streymoy

Kalsoy
Kunoy

Svinoy

Fugloy

1

2
3

4

5

6 7

n= 10

Suðuroy

Sandoy

Event 1
data point

insufficient kinematic data for inversion

2: Hvannhagi - 6°49’47.773”W  61°35’0.024”N

n= 11

1: W. Sandur - 6°49’34.438”W  61°50’46.809”N
N

N N

Max. maximum principal stress
Int. intermediate principal stress
Min. minimum principal stress
P S/E Principal Shortening/Extension
(values: trend . plunge)

S.R. Stress Ratio
MMA Mean Misfit Angle
MFaA Mean Fault Angle
MFrA Mean Friction Angle
MSSA Mean Shear Stress Angle

km
0 5 10 15 20

Max. 267.69
Int. 013.06
Min. 105.20

S.R. 0.44
MMA 31.8
MFaA 30.8
MFrA 37
MSSA 0.324

P S/E 264.40
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n= 3

n= 3

n= 50

n= 30

n= 189

Suðuroy

Vagar

insufficient kinematic data for inversion

insufficient kinematic data for inversion

5: Sumba - 6°43’38.802”W  61°24’23.195”N

7: Sandavagur - 7°9’44.689”W  62°5’5.258”N

6: Gasadalur - 7°26’12.974”W  62°6’25.501”N

3: Froðba - 6°44’51.395”W  61°32’52.033”N

4: Vagseiði - 6°50’15.869”W  61°27’51.419”N

N

N

N

N

N

N

N

N

Max. 011.87
Int. 198.03
Min. 288.00

S.R. 0.38
MMA 15.8
MFaA 44.7
MFrA 44
MSSA 0.418

P S/E 124.89

Max. 276.79
Int. 171.03
Min. 081.11

S.R. 0.24
MMA 9.9
MFaA 39.8
MFrA 40
MSSA 0.427

P S/E 250.79

Max. 041.89
Int. 135.00
Min. 225.01

S.R. 0.37
MMA 19.3
MFaA 31.3
MFrA 32
MSSA 0.363

P S/E 212.83

.2 .4 .6 .8 1

.2

.4

Normal Stress

S
he

ar
 S

tre
ss

.2 .4 .6 .8 1

.2

.4

Normal Stress

S
he

ar
 S

tre
ss

.2 .4 .6 .8 1

.2

.4

Normal Stress

S
he

ar
 S

tre
ss

Appendix IV

281



Faroe Islands: Event 2 Data localities

Borðoy

7°W

62°N

Enni Formation

Malinstindur
Formation

Beinisvørð
Formation

Hvannhagi
Formation
irregular
intrusions

saucer-shaped
sills

Key

Sneis Formation

Prestfjall
Formation

Viðoy

Suðuroy

Mykines

Vagar

Sandoy

Borðoy

Eysturoy

Streymoy

Kalsoy
Kunoy

Svinoy

Fugloy

1

2

3

4
5

6

7
8

9

10

11
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14
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17 18

19 20

21

22

23

24

25
26

27

28
29

30
3132

Event 2
data point

km
0 5 10 15 20

2: Norðdepil - 6°31’40.019”W  62°17’20.214”N to 6°31’18.444”W  62°16’30.955”N

n= 12

1: Muli - 6°34’55.921”W  62°20’5.811”N to 6°34’6.392”W  62°19’29.661”N

n= 8

3: Klaksvik - 6°36’24.089”W  62°14’19.245”N

n= 9

insufficient kinematic data for inversion

N

N

N

N

N

Max. maximum principal stress
Int. intermediate principal stress
Min. minimum principal stress
P S/E Principal Shortening/Extension
(values: trend . plunge)

S.R. Stress Ratio
MMA Mean Misfit Angle
MFaA Mean Fault Angle
MFrA Mean Friction Angle
MSSA Mean Shear Stress Angle

Max. 255.03
Int. 353.74
Min. 164.16

S.R. 0.59
MMA 35.1
MFaA 15.2
MFrA 15
MSSA 0.205

P S/E 174.19

Max. 272.20
Int. 075.69
Min. 180.05

S.R. 0.55
MMA 43.4
MFaA 20.7
MFrA 19
MSSA 0.229

P S/E 207.04
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n= 57

8: Gotogjogv - 6°45’54.711”W  62°11’12.513”N
N N Max. 079.14

Int. 341.29
Min. 193.57

S.R. 0.38
MMA 60.7
MFaA 15.7
MFrA - - -
MSSA 0.09

P S/E 346.21

n= 18

n= 98

n= 18

n= 19

Eysturoy
4: Gjogv - 6°56’37.847”W  62°19’34.748”N

5: Eiði - 7°4’29.959”W  62°18’28.778”N

6: Funningfjorður - 6°56’23.14”W  62°16’6.079”N to 6°56’49.279”W  62°14’28.847”N

7: Strendur - 6°51’32.206”W  62°9’20.541”N to 6°47’2.891”W  62°6’22.968”N

N

N

N

N

N

N

N

N

Max. 077.21
Int. 234.67
Min. 344.08

S.R. 0.39
MMA 26.6
MFaA 21.3
MFrA 22
MSSA 0.294

P S/E 056.23

Max. 270.07
Int. 150.77
Min. 001.11

S.R. 0.57
MMA 44.7
MFaA 20.3
MFrA 22
MSSA 0.207

P S/E 358.04

Max. 074.29
Int. 221.56
Min. 336.15

S.R. 0.8
MMA 46.1
MFaA 28.3
MFrA 32
MSSA 0.259

P S/E 000.09

Max. 074.06
Int. 291.83
Min. 164.04

S.R. 0.59
MMA 32.7
MFaA 23.8
MFrA 24
MSSA 0.248

P S/E 152.08
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n= 32

9: Lambi - 6°43’6.514”W  62°8’14.466”N
N N Max. 080.30

Int. 337.21
Min. 217.52

S.R. 0.58
MMA 79.8
MFaA 20.7
MFrA 10
MSSA 0.019

P S/E 232.11
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Kalsoy

n= 26

n= 22

Mykines

10: Mikladalur to Husar - 6°44’0.327”W  62°17’59.005”N to 6°41’58.574”W  62°16’9.236”N

11: Mykinesholmur - 7°39’41.409”W  62°6’1.007”N to 7°40’17.859”W  62°5’51.23”N

N

N

N

N

Max. 262.04
Int. 039.85
Min. 172.04

S.R. 0.59
MMA 40.4
MFaA 21.8
MFrA 17
MSSA 0.253

P S/E 198.05

Max. 167.79
Int. 267.02
Min. 358.11

S.R. 0.14
MMA 17.7
MFaA 31.3
MFrA - - -
MSSA 0.342

P S/E 349.66
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12: Skarvanes - 6°45’2.946”W  62°48’8.177”N

n= 9

Sandoy

N N Max. 248.11
Int. 002.65
Min. 154.22

S.R. 0.41
MMA 80.8
MFaA 10.0
MFrA 10
MSSA 0.064

P S/E 065.02
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n= 63

n= 15

Streymoy
13: Tjornuvik - 7°8’56.581”W  62°17’34.693”N

14: Tjornuvik to Haldarsvik - 7°8’3.856”W  62°17’44.104”N

N

N

N

N

Max. 087.10
Int. 315.76
Min. 179.10

S.R. 0.41
MMA 35.5
MFaA 13.4
MFrA 11
MSSA 0.185

P S/E 087.13

Max. 089.10
Int. 327.72
Min. 182.15

S.R. 0.2
MMA 40.4
MFaA 17.1
MFrA 14
MSSA 0.222

P S/E 090.18
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n= 19

n= 22

n= 18

Streymoy

17: Dalasgjogv & Djupadalasgjogv - 7°14’0”W  62°11’20”N to 7°10’50”W  62°12’32”N

16: Saksunardalur - 7°7’27.668”W  62°13’41.716”N to 7°6’45.692”W  62°13’33.459”N

15: Langasandur - 7°3’12.881”W  62°14’6.047”N

N

N

N

N

N

N

Max. 271.08
Int. 148.75
Min. 003.12

S.R. 0.6
MMA 36.9
MFaA 19.8
MFrA 21
MSSA 0.247

P S/E 348.07

Max. 086.15
Int. 264.75
Min. 355.01

S.R. 0.3
MMA 50.3
MFaA 15.4
MFrA - - -
MSSA 0.152

P S/E 026.09

Max. 093.00
Int. 191.87
Min. 003.03

S.R. 0.7
MMA 36.6
MFaA 29.8
MFrA 37
MSSA 0.303

P S/E 187.05

n= 9

n= 12

n= 16

18: Dakid - 7°11’28.125”W  62°11’4.102”N to 7°8’41.158”W  62°9’43.576”N

20: Stykkið - 7°3’40.462”W  62°6’54.736”N

19: Vestmanna - 7°10’26.216”W  62°8’51.47”N to 7°7’17.234”W  62°7’12.272”N

N

N

N

N

N

N

Max. 256.02
Int. 011.85
Min. 166.05

S.R. 0.44
MMA 49.9
MFaA 13.2
MFrA 10
MSSA 0.134

P S/E 053.30

Max. 279.07
Int. 169.80
Min. 008.06

S.R. 0.3
MMA 78.4
MFaA 18.4
MFrA - - -
MSSA 0.005

P S/E 018.10

Max. 269.03
Int. 135.86
Min. 359.03

S.R. 0.48
MMA 37.6
MFaA 30
MFrA 33
MSSA 0.242

P S/E 228.01
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n= 15

n= 26

Streymoy
21: Leynar - 7°2’31.278”W  62°6’53.314”N

22: Kaldbaksbotnur - 6°56’56.502”W  62°4’22.779”N

N

N

N

N

Max. 261.35
Int. 081.55
Min. 171.00

S.R. 0.62
MMA 34.7
MFaA 32.6
MFrA 43
MSSA 0.312

P S/E 176.16

Max. 057.18
Int. 148.05
Min. 252.72

S.R. 0.44
MMA 35.2
MFaA 27.4
MFrA 23
MSSA 0.253

P S/E 059.09
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n= 9

n= 9

26: Hov - 6°46’22.9”W  61°30’28.184”N

25: Famjin - 6°53’13.528”W  61°31’36.976”N

N
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Max. 269.48
Int. 064.39
Min. 164.13

S.R. 0.51
MMA 32.0
MFaA 42.3
MFrA 44
MSSA 0.336

P S/E 321.09

Max. 269.25
Int. 051.59
Min. 172.17

S.R. 0.21
MMA 19.4
MFaA 27.7
MFrA - - -
MSSA 0.343

P S/E 308.11

n= 15

Suðuroy
24: Hvannhagi - 6°49’48.017”W  61°35’0.312”N

N N
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Max. 230.86
Int. 106.02
Min. 016.03

S.R. 0.15
MMA 21.7
MFaA 18.2
MFrA - - -
MSSA 0.197

P S/E 349.64

n= 19

23: Kaldbaksfjorður - 6°53’16.896”W  62°3’43.441”N to 6°51’13.173”W  62°3’25.869”N
N N
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Max. 230.00
Int. 136.87
Min. 320.03

S.R. 0.47
MMA 71.5
MFaA 18.6
MFrA 10
MSSA 0.041

P S/E 232.03
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n= 6

n= 9

n= 13

n= 20

Suðuroy

Vagar

Viðoy

28: Gasadalur - 7°26’6.302”W  62°6’22.695”N

29: Sandavagur - 7°8’28.385”W  62°5’46.699”N

30: N. Viðareiði - 6°32’11.929”W  62°22’36.941”N

31: E. Viðareiði - 6°31’3.296”W  62°21’16.332”N

N

N

N

N

N

N

N

N

Max. 247.81
Int. 110.07
Min. 019.06

S.R. 0.44
MMA 8.3
MFaA 42.9
MFrA 44
MSSA 0.473

P S/E 316.82

Max. 074.07
Int. 203.79
Min. 343.08

S.R. 0.5
MMA 60.6
MFaA 15.6
MFrA 10
MSSA 0.139

P S/E 298.08

Max. 248.55
Int. 066.35
Min. 157.01

S.R. 0.82
MMA 35.5
MFaA 9.6
MFrA 14
MSSA 0.187

P S/E 153.01

Max. 076.01
Int. 171.78
Min. 346.12

S.R. 0.46
MMA 39.8
MFaA 20.8
MFrA 22
MSSA 0.23

P S/E 320.08
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n= 21

27: Vagseiði - 6°50’15.449”W  61°27’51.331”N
N N
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Max. 272.83
Int. 062.06
Min. 153.03

S.R. 0.41
MMA 15.4
MFaA 38.9
MFrA 41
MSSA 0.416

P S/E 281.84
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Viðoy

n= 47

32: W. Viðareiði - 6°32’40.754”W  62°21’36.984”N
N N Max. 246.16

Int. 050.73
Min. 155.04

S.R. 0.49
MMA 43.3
MFaA 19.4
MFrA 16
MSSA 0.192

P S/E 275.15
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Faroe Islands: Event 2 (thrust system) Data localities

7°W

62°N

Enni Formation

Malinstindur
Formation

Beinisvørð
Formation

Hvannhagi
Formation
irregular
intrusions

saucer-shaped
sills

Key

Sneis Formation

Prestfjall
Formation

Viðoy

Suðuroy

Mykines

Vagar

Sandoy

Borðoy

Eysturoy

Streymoy

Kalsoy
Kunoy

Svinoy

Fugloy

1
2

3 4

5
6 7

8

9

10

11

Eysturoy

2: Rituvik - 6°51’32.206”W  62°9’20.541”N to 6°47’2.891”W  62°6’22.968”N

n= 39

1: Strendur - 7°9’44.689”W  62°5’5.258”N

n= 7

Event 2 thrust
data point

N

N

N

N

Max. maximum principal stress
Int. intermediate principal stress
Min. minimum principal stress
P S/E Principal Shortening/Extension
(values: trend . plunge)

S.R. Stress Ratio
MMA Mean Misfit Angle
MFaA Mean Fault Angle
MFrA Mean Friction Angle
MSSA Mean Shear Stress Angle

Max. 243.12
Int. 151.09
Min. 025.75

S.R. 0.47
MMA 49.7
MFaA 15.5
MFrA 10
MSSA 0.156

P S/E 060.07

Max. 254.05
Int. 164.02
Min. 050.84

S.R. 0.5
MMA 16.5
MFaA 17.2
MFrA 18
MSSA 0.268

P S/E 261.69

km
0 5 10 15 20

Depth / m

190

0

.2 .4 .6 .8 1

.2

.4

Normal Stress

S
he

ar
 S

tre
ss

.2 .4 .6 .8 1

.2

.4

Normal Stress

S
he

ar
 S

tre
ss

Appendix IV

289



Sandoy

Streymoy

3: W. Sandur - 6°50’37.284”W  61°50’6.378”N

n= 6

4: E. Sandur - 6°47’9.594”W  61°50’2.664”N

n= 9

5: Satan - 7°0’11.098”W  62°6’41.998”N

n= 10

6: Skaelingsfjall - 6°57’22.45”W  62°5’16.181”N

n= 28

7: Kaldbaksbotnur - 6°56’56.748”W  62°4’23.704”N

n= 16

N

N

N

N

N

N

N

N

N

Max. 054.01
Int. 144.05
Min. 314.85

S.R. 0.57
MMA 13.7
MFaA 18
MFrA 19
MSSA 0.288

P S/E 310.84

Max. 223.78
Int. 331.04
Min. 062.11

S.R. 0.49
MMA 10.8
MFaA 49.6
MFrA 44
MSSA 0.437

P S/E 065.65

Max. 061.08
Int. 152.09
Min. 289.78

S.R. 0.54
MMA 47.7
MFaA 23.6
MFrA 22
MSSA 0.182

P S/E 261.68

Max. 067.05
Int. 336.20
Min. 170.69
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Eiði is located in the NW of Eysturoy, set within
the upper third of the Malinstindur Formation.
Most Faults and fractures are E-W oriented,
displaying strike-slip lineations where
apparent, which record a N-S extension, and
E-W compression.

The fault of interest displays a dextral, down
to the south, ~4.5m total offset, across a 0.1m
to 2.0m damage zone, which varies depending
on the host lithology: basaltic units
disaggregate to form breccias, and
volcaniclastic units being dragged into the
master fault plane, and forming discrete
tensile and shear tensile veins. Fault damage
varies both along strike and up/down dip of
the master fault, becoming much thinner
through the volcaniclastic horizon. Below c,
the fault zone decreases to a single plane,
with a minimal (cm-scale) peripheral damage
zone.
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The fault in western Eiði, displays a 4m, down to the
south offset, across a 0.5m to 6m damage zone.
Internally the damage zone can be split into 2 zones
(left), with a zone of tensile fractures enclosing a chaotic
breccias core zone (above and next page).

Tensile fractures are filled with zeolite and/or calcite
mineralisation that appear to have developed during
successive faulting episodes of the same tectonic event.

The chaotic breccia comprises fragments of what are
likely the wall rocks of the developing fault, including
basalt clasts and vein fragments. The zone also harbours
fragments of clastic sedimentary rock, presumably from
the nearby sedimentary horizons. Zeolite overgrowth
on these fragments most likely indicates that the system
was not fully sealed following breccias, but instead,
that fluid transmission was a prolonged process.

Eiði is located in the NW of Eysturoy, set within the upper
third of the Malinstindur Formation. Most Faults and
fractures are E-W oriented, displaying strike-slip lineations
where apparent, recording a N-S extension, and E-W
compression. Strain is accommodated across the area by
small-offset extensional hybrid fractures, with sporadic
larger (metre scale) offset faults developed every 50m or
so. Of particular interest is a fault on the western coast
of the headland, labelled c above.
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Gjogv is located in the NE of Eysturoy, and is set within the upper third of the Malinstindur Formation. The area is host to dykes of Event 1
and 2, and strike slip faults of Event 2. At the end of the coastal inlet (termed a gjogv, and hence the village name) is a well exposed Event
1 dyke, which can be traced for some 200m on the southern side of the gjogv, and seen in vertical section in the cliffs on the northern side.
The margins of the dyke are exposed in plan and section view and provide a detailed insight into the 3-D geometry of the intrusion. In both
planes, the dyke displays irregular margins, as well as numerous offshoots and bifurcations.

A set of strike-slip fault panels makes up the northern cliff face at the western end of the gjogv. The panels are linked to form one large fault
plane, which also displays larger corrugations on the surface, parallel to the slip direction. Individual fault panels record slight variations in
the slip direction, most likely indicating dilatation on either side of the fault.
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Gotogjogv, Eysturoy

n= 57

Gotogjogv is located in the eastern central part of  Eysturoy, towards the top of the Malinstindur Formation. Structures in the
area are predominantly E-W oriented. The fault of interest forms the northern face of a quarry, and displays obliquely oriented
corrugations on the master fault surface, that lie roughly parallel to slickenfibres on the same surface. This part of the fault,
and much of the peripheral damage (about 10m wide) are associated with Event 2. Within the fault damage zone, numerous
zeolite and calcite mineralised fault panels display strike-slip slickenfibres, or tensile/vuggy mineral growth, indicating a N-S
opening. However, these panels also display a polished surface in places, with dip-slip grooves and no clear contemporaneous
mineralisation. Such features are therefore inferred as being later than Event 2, perhaps relating to Event 3 deformation.
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Eysturoy Sill

The Eysturoy sill is a transgressive intrusion on the western side of Eysturoy (top left), occupying an area of about 16km2,
and ranging in thickness from 10-55m. Generally the sill dips SW, displaying a pronounced flat section at the level of the
Sneis Formation (top right). Where observed, the sill clearly cuts Event 1 and 2 dykes, but is cut by Event 2 faults (right),
most likely indicating its intrusion was towards the end of Event 2a, and therefore at a similar time to the Streymoy sill.
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Streymoy Sill
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The Streymoy sill is located on the western side of central Streymoy (above), and like the
Eysturoy is transgressive, rising from the west towards the east and northeast. The sill ranges
from ~10-55m thickness, and covers an area of about 13km2, displaying a saucer-like
geometry in 3-D (top right). Within this general trasngressive geometry are numerous ramp-
 and flat-sections, cutting upwards from within the top part of the Malinstindur Formation,
becoming flat at the level of the Sneis Formation, and then ramping upwards again into the
Enni Formation. More minor flat sections may therefore be a reflection of variations in the
lithology of the country rock. Like the Eysturoy sill, the Streymoy sill cuts Event 1 and 2
dykes, but is cut by Event 2 faults, including numerous, minor thrusts (right). A poorly
consolidated breccia-filled fault is also observed cutting the sill, which may be related to
Event 3 (bottom right).
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Tjornuvik, NE Streymoy
Location Overview

Event 2b: Structural characteristics

Event 2c: Structural
characteristics
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A gully marks the location of the NNE-trending dyke at the pier section, with sporadic outcrops where it comes on land,
where it is clearly heavily mineralised with zeolite and calcite and brecciated. Across this dyke, structures and other dykes
(including the prominent dyke across the bay) are offset by about 20m, with a dextral motion sense. Following the dyke
to the SSW, it joins the NE-SW trending dyke, perhaps as a bifurcation of the same intrusion. Again this dyke is heavily
mineralised (right), but cut by E-W trending veins. Upon entering the dyke, those veins become aligned along the jointing
pattern. Examples of dilational jogs in mineral veins in the dyke indicate a dextral offset sense: this may therefore explain
the large offset of the dyke across the bay (see top left).

Tjornuvik is located in the NE of Streymoy, set in
the middle third of the Malinstindur Formation.
Structures in the area are predominantly ENE-
WSW to ESE-WNW oriented, but with two notable
dykes oriented NNE-SSW and NE-SW. The most
prominent feature is an ESE-trending dyke that
can be seen on both sides of the bay, across which
it is apparently offset by 80-100m. At the pier
section (e.g. structural log) numerous fault panels
are exposed displaying strike-slip kinematics and
tensile openings that record a N-S extension, and
E-W compression. Displacements on these faults
are negligible however, and do not appear to
markedly offset the stratigraphy.
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Vagseiði, Suðuroy

Vagseiði is located on the western coast of Suðuroy, and is set within the lower third
of the exposed section of the Beinisvørð Formation. Structures in the area are typically
NW-SE to N-S oriented dip-slip faults and dykes (recording a NE-SW extension), with a
small proportion of E-W trending faults. Fault displacements range from cm-scale (e.g.
right, this page) to dam-scale (e.g. top, next page). Damage zone widths vary depending
on the scale and nature of the fault. Minor offset faults (e.g. right, this page: ~15cm)
commonly display wide damage zones (~6m), reflecting the extensional failure mode
(perhaps providing open conduits for hydrous fluids for a prolonged period of time),
whereas larger offset extensional and shear hybrids (e.g. top of next page: 30m) display
a similar damage zone width (i.e. ~6m). Small offset faults display increased damage
towards the master fault, with either a reduction in grain size or increased brecciation
(right, this page) depending on the magnitude of offset. For example, across the N-S
trending fault on the right, the nature and intensity of deformation changes markedly
towards the master fault, with (left to right) pure tensile veining at distances of 4-6m
from the master fault, minor offset shear tensile faults 1-4m from the master fault and
intense brecciation within a 1m wide zone from the master fault (i.e. the fault core).

Differences in fault style are noted between basalt and volcaniclastic horizons (e.g. next
page). Faults and fractures typically exploit the existing cooling joints, hence are
commonly vertical, whereas faults through volcaniclastic sediments, with no pre-existing
structure, are more typically oriented (i.e. to within predicted Andersonian inclination
ranges).
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NW

Where observed, N-S and NW-SE faults in the area are cut by E-W trending faults. E-W trending faults are strike-slip,
and record a N-S extension and E-W compression. This cross-cutting relationship is observed Vagseiði (top, this page),
where a NW-SE trending fault appears to be offset by some 20m or so across the bay, with a dextral sense.

Numerous examples of clastic materials entrained along faults are observed in this area. However, the most notable
of these occurrences are observed along a single fault to the north of the bay (see map), where poorly to unlithified
clastic materials are observed within lenses along a NW-SE trending fault (next page). The clastic materials in these
faults clearly cut and therefore post-date mineralisation of the original fault. Furthermore, where observed, drag
fabrics within the clastic material displays the opposite motion sense to the kinematics of the host fault, most likely
indicating minor inversion of the structure.
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Viðareiði, N. Viðoy: Event 2b
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Viðareiði is located in the north of Viðoy, set within the upper third of the Malinstindur
Formation. Structures in the area are dominantly E-W to NE-SW trending strike-slip faults
and appear to record various phases of deformation. The low lying area in which Viðareiði
sits corresponds to two large (dam-scale) faults forming an E-W trending graben. The
majority of structures detailed here are in this graben, and the two particular areas of
interest identified are the west and east coasts (see maps above).

Both coastal sections are host to numerous ENE-WSW to ESE-WNW trending strike slip
faults that record a N-S extension and E-W compression. Where observed, vein sets link
to form meshes supporting this N-S extension (left). The strike-slip faults are closely
associated with minor offset low-angle normal faults and thrust faults, which in at
intersections cut and are cut by the more vertically oriented faults, as well as linking in
some instances (above).
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Viðareiði, N. Viðoy: Event 2c

N

ENE

E-W trending structures are cut by more NE-SW to NNE-SSW trending faults (above right). These structures appear to dominate in an
area on the west coast, to the north of the pier section (above left, see map). Faults in this orientation display only minor offsets, in
the order of centimetres generally, however, strain is distributed across a zone in excess of 100m, and therefore may record a significant
phase of deformation. Commonly offset sense is dextral, however in some instances, conjugate pairs are observed (above right).
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Viðareiði, N. Viðoy: Event 3
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The pier section at Viðareiði is host to an overlapping succession of compound lavas, and lava tubes of the Malinstindur Formation, separated by numerous irregular saucer-shaped clastic horizons
0.3-0.6m thick. The lava units typically preserve a well developed lower crust, core, and upper crust. The lower crust is characterised by pipe amygdales that start a few centimetres from the base of
the unit and are often curved in the palaeoflow direction. The core is generally a massive zone with more globular-shaped amygdales, and irregular joints ranging in orientation, from sub-horizontal
to sub-vertical. In the upper crust, amygdales are spherical to globular, and the groundmass often exhibits a progressive reddening towards the top. Both the lower and upper crusts commonly exhibit
classic rope-structures on the bounding surfaces that are characteristic of pahoehoe-type lavas.

The clastic horizons are typically sub-horizontal, but in some instances more steeply inclined (45-75°) ramp sections are observed. Mineralised Event 2 strike-slip faults are developed within the basalt
units and are either cross-cut by, or sometimes filled with clastic material. The ramp sections are also discordant, cross-cutting solid-state lava unit features.. Ramps of this nature occur in three-
dimensions, and overall give the clastic horizons a saucer-shaped geometry, akin to that of saucer-shaped intrusions. However, the sedimentary units preserve clear sedimentary structures on mm-
to cm-scales, including planar and cross-laminations, bar structures and scour structures. These features are completely undeformed and show that the clastics were not emplaced by forceful injection,
but rather were laid down as fluvial- to debris-flow-type deposits. Planar laminations at the top of the horizons appear to ‘drape’ the topography of the lava unit above, and are equivalent to gravitational
settling laminae, implying that there was free space between the lava flows that became filled through time, followed by settling of the units above ‘indenting’ the sediment fills. In order to gravitationally
deposit those materials, we infer that the free space must therefore have been larger than the thickness of the exposed remnants. Further evidence for a filling through time is provided by the clast-
provenance. In some instances, fragments of the lava unit above have clearly fallen down into and become buried by the clastics below; the fragile lithofacies above such fragments are undisturbed
and must therefore have been deposited afterwards. Collectively, the cross-cutting relationships with the lava flows and features observed within the clastic horizons indicate that there was an open
cave network in the subsurface, which post-dates all other faulting in the area.
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