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Abstract Acceleration of estimation for a class of nonlinear systems in the output canonical form
is considered in this work. The acceleration is achieved by a supervisory algorithm design that
switches among different values of observer gain. The presence of bounded matched disturbances,
Lipschitz uncertainties and measurement noises is taken into account. The proposed switched-
gain observer guarantees global uniform time of convergence of the estimation error to the
origin in the noise-free case. In the presence of noise our commutation strategy pursuits the
goals of overshoot reducing for the initial phase, acceleration of convergence and improvement of
asymptotic precision of estimation. Efficacy of the proposed switching-gain observer is illustrated
by numerical comparison with a sliding mode and linear high-gain observers.
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1. INTRODUCTION

State estimation for linear and nonlinear systems is one of
the central problems in the control systems theory. There
are many methods proposed for linear systems and plenty
nonlinear solutions Crassidis and Junkins (2012); Khalil
(1996); Luenberger (1979); Sontag (1998); Utkin (1992),
which are differing by the requirements imposed on the
plant model and by the guaranteed performance (asymp-
totic precision, initial overshooting, rate and domain of
convergence, and robustness with respect to external dis-
turbances, measurement noises and small delays, etc.) of
the estimation error dynamics.

There are different kinds of convergence rates. For
example, if a system is homogeneous with a nega-
tive/zero/positive degree and asymptotically stable, then
actually it has a finite-time/exponential/asymptotic rate
of convergence (in the case of positive degree the time
of convergence to a sphere is uniformly bounded by a
constant for any initial conditions, if the system is also
locally finite-time converging, then it is called fixed-time
stable) Moulay and Perruquetti (2008); Cruz-Zavala et al.
(2011); Polyakov (2012); Lopez-Ramirez et al. (2016); Ŕıos
and Teel (2016).

Convergence rate and asymptotic estimation errors are the
main optimization criteria for state observers in applica-
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tions. The present work studies the problem of adjusting
the convergence rate for a class of observers designed for
nonlinear systems in the output canonical form. It is a well-
known fact that augmenting the observer gains it is possi-
ble to accelerate the speed of convergence of the estimates
to the evaluated values, however, this also leads to the
robustness degradation with respect to the measurement
noises and peaking phenomenon (initial huge overshoot-
ing) Luenberger (1979). In the present work a switching
algorithm between different values of the observer gain is
designed, which is aimed on resolving these issues. Noise
dependence optimization of the asymptotic precision via a
single switch of the observer gains has been proposed in El-
beheiry and Elmaraghy (2003); Ahrens and Khalil (2009).
Continuous-time gain adaptation has been investigated in
many works, see Andrieu et al. (2009); Boizot et al. (2010);
Sanfelice and Praly (2011) for interesting examples. For
the problem of state feedback stabilization there are also
supervisory algorithms aiming on acceleration of conver-
gence: in Ananyevskii (2003) for a scalar linear system with
bounded perturbation a switching rule, which increases the
scalar gain of linear feedback, has been proposed making
the closed-loop system finite-time stable, an extension to
planar mechanical systems is given in Ananyevskii (2001).
In Dvir and Levant (2015a,b) for sliding mode control
systems Utkin (1992); Fridman (2011); Moreno and Osorio
(2012); Poznyak et al. (2004) it has been proposed an
algorithm of on-line switching between parameters, which
ensures a desired accelerated rate of convergence for the
closed-loop system. An algorithm of parameter switching
for finite-time and fixed-time convergence to the origin (or



a ball) is developed in Efimov et al. (2016a) for homoge-
neous systems with different degrees. The present work is
based on ideas of gain commutation presented in Ahrens
and Khalil (2009) and Efimov et al. (2016a).

The outline of this paper is as follows. Notation and
preliminary results are introduced in sections 2 and 3. The
precise problem statement and some auxiliary results are
given in Section 4. The proposed supervisory algorithm of
switching among different sets of values of the observer
gain ensuring a required acceleration is presented in Sec-
tion 5. The proposed supervisory algorithm is illustrated
and compared by computer experiments with a sliding-
mode differentiator in Section 6. Concluding remarks and
discussion appear in Section 7.

2. NOTATION

Through the paper the following notation is used:

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real
number.
• | · | denotes the absolute value in R, ‖.‖ denotes the

Euclidean norm on Rn, ‖x‖A = infξ∈A ‖x− ξ‖ is the
distance from a point x ∈ Rn to a set A ⊂ Rn.
• For a (Lebesgue) measurable function d : R+ → Rm

define the norm ||d||[t0,t1) = ess supt∈[t0,t1)‖d(t)‖,
then ||d||∞ = ||d||[0,+∞) and the set of d(t) with the
property ||d||∞ < +∞ we further denote as Lm∞ (the
set of essentially bounded measurable functions from
R+ to Rm); LmD = {d ∈ Lm∞ : ||d||∞ ≤ D} for any
D > 0 (L1

D = LD).
• For a symmetric matrix A ∈ Rn×n denote λmin(A)

and λmax(A) the minimum and the maximum eigen-
values of A, respectively.

3. PRELIMINARIES

Consider the following nonlinear system:

ẋ(t) = f(x(t), d(t)), t ≥ 0, (1)

where x(t) ∈ Rn is the state, d(t) ∈ Rm is the input,
d ∈ Lm∞; f : Rn+m → Rn ensures forward existence of
the system solutions (understood in the Filippov sense
Filippov (1988)) at least locally, f(0, 0) = 0. For an
initial condition x0 ∈ Rn and input d ∈ Lm∞ define
the corresponding solution by X(t, x0, d) for any t ≥ 0
for which the solution exists. A set A ⊂ Rn is called
uniformly forward invariant for (1) if x0 ∈ A implies that
X(t, x0, d) ∈ A for all t ≥ 0 and all d ∈ LmD for given
D > 0.

Following Roxin (1966); Khalil (1996); Lin et al. (1996);
Polyakov (2012), let Ω be an open neighborhood of non-
empty, compact and uniformly forward invariant set A ⊂
Rn of (1) with some D > 0.

Definition 1. At the set A the system (1) for d ∈ LmD is
said to be

(a) uniformly Lyapunov stable if for any x0 ∈ Ω and
d ∈ LmD the solution X(t, x0, d) is defined for all t ≥ 0, and
for any ε > 0 there is δ > 0 such that for any x0 ∈ Ω, if
‖x0‖A ≤ δ then ‖X(t, x0, d)‖A ≤ ε for all t ≥ 0;

(b) uniformly asymptotically stable if it is uniformly
Lyapunov stable and for any κ > 0 and ε > 0 there exists

T (κ, ε) ≥ 0 such that for any x0 ∈ Ω and d ∈ LmD , if
‖x0‖A ≤ κ then ‖X(t, x0, d)‖A ≤ ε for all t ≥ T (κ, ε);

(c) uniformly finite-time stable if it is uniformly Lya-
punov stable and uniformly finite-time converging from Ω,
i.e. for any x0 ∈ Ω and all d ∈ LmD there exists 0 ≤ T <
+∞ such that X(t, x0, d) ∈ A for all t ≥ T . The function
TA(x0) = inf{T ≥ 0 : X(t, x0, d) ∈ A ∀t ≥ T, ∀d ∈ LmD} is
called the uniform settling time of the system (1);

(d) uniformly fixed-time stable if it is uniformly finite-
time stable and supx0∈Ω TA(x0) < +∞.

The set Ω is called a domain of stability/attraction.

If Ω = Rn, then the corresponding properties are
called global uniform Lyapunov/asymptotic/finite-/fixed-
time stability of (1) for d ∈ LmD at A.

4. PROBLEM INTRODUCTION

In this section the system of interest is introduced with
a basic observer, next some their properties used in the
sequel are discussed, and finally the problem statement is
given.

4.1 Basic system and its observer

Consider a nonlinear system in a canonical form:

ẋ(t) =Ax(t) + ϕ(u(t), y(t)) (2)

+b[g(x(t)) + d(t)], t ≥ 0,

y(t) = cTx(t) + v(t),

where x(t) ∈ Rn is the state vector with n > 1, y(t) ∈ R
is the output available for measurements with the noise
v(t) ∈ R, v ∈ LV for some V > 0; u(t) ∈ Rm is control,
u ∈ Lm∞; d(t) ∈ R is the exogenous disturbance, d ∈ LD
for some D > 0; the matrices

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 , b =


0
...
0
1

 , c =


1
0
...
0


are in the canonical form; the function ϕ : Rm+1 → Rn
ensures existence and uniqueness of solutions of the system
(2), the function g : Rn → R is globally Lipschitz, then
there exists γ > 0 such that for all x′, x ∈ Rn:

‖g(x)− g(x′)‖ ≤ γ‖x− x′‖.

Following Khalil (1996); Ahrens and Khalil (2009); Sanfe-
lice and Praly (2011) the simplest observer for (2) takes
the form:

˙̂x(t) =Ax̂(t) + ϕ(u(t), y(t)) + bg(x̂(t)) (3)

+l(y(t)− cT x̂(t)),

where x̂(t) ∈ Rn is the estimate of x(t) and l ∈ Rn is the
observer gain to be designed.

Assumption 1. For given γ > 0, κ > 0, ρd > 0 and ρv > 0
there exist P = PT ∈ Rn×n and w ∈ Rn such that



P > 0,


S̃ P b −w −Pb
bTP −ρ2

d 0 0
−wT 0 −ρ2

v 0
−bTP 0 0 −γ−2

 ≤ 0,

S̃ = ATP + PA− cwT − wcT + In + κP.

In this assumption κ, ρd and ρv are design parameters,
which meaning will be explained later.

Remark 2. For γ = 0, i.e. if there is no uncertainty g(·),
then the above linear matrix inequalities (LMIs) take the
form:

P > 0,

 S̃ P b −w
bTP −ρ2

d 0
−wT 0 −ρ2

v

 ≤ 0,

S̃ = ATP + PA− cwT − wcT + κP.

Lemma 3. Let Assumption 1 be satisfied, then in (2), (3)
with l = P−1w for all t ≥ 0:

‖x(t)− x̂(t)‖ ≤

√
λmax(P )

λmin(P )
e−0.5κt‖x(0)− x̂(0)‖

+

√
1

κλmin(P )
(ρdD + ρvV ).

All proofs are excluded due to space limitations.

4.2 The problem statement

As it has been established in Lemma 3, the observer (3)
ensures a robust estimation of the state of (2) with an
exponential rate of convergence (if LMIs from Assumption
1 are satisfied). The problem further studied in this work:
is it possible to ensure the uniform fixed-time estimation
of (2), with convergence of estimation error to a ball
proportional toD and V , by switching among different sets
of coefficients in the gain l, for d ∈ LD and v ∈ LV with
given D > 0 and V > 0. Such a problem in stabilization
context has been already considered in Ananyevskii (2001,
2003) (finite-time case), in Dvir and Levant (2015a,b) for
the sliding mode feedback, and in Efimov et al. (2016a) the
general case of homogeneous systems has been analyzed.
A high-gain observer similar to (3) with a switched gain
has been proposed in Ahrens and Khalil (2009), but
there the switching has been performed just once in order
to minimize influence of noise on asymptotic behavior.
The problem of multiple commutation of gains, with
accelerating the convergence and making it uniform other
Rn, is considered in the present work.

Following Ahrens and Khalil (2009); Efimov et al. (2016a),
instead of (3) we will consider for all integer i ≥ 0 the
observer:

˙̂x(t) =Ax̂(t) + ϕ(u(t), y(t)) + bg(x̂(t)) (4)

+µiM
−1
i l(y(t)− cTMix̂(t)), t ∈ [ti, ti+1),

where x̂(t) ∈ Rn has meaning as previously, l is as before

comes from Assumption 1; Mi = diag{µ1−k
i }nk=1 and

scalars µi ≥ 1 form a sequence of parameters, which stay
constant on the interval [ti, ti+1) and change their values
at instants ti, i ≥ 0 (t0 = 0). It is required to determine the

instants ti, i ≥ 0 and the discrete-time update law for µi
such that for (4) the estimation error variable e(t) = x(t)−
x̂(t) becomes uniformly fixed-time stable with respect to
the origin.

5. DESIGN OF SWITCHED-GAIN OBSERVER

Let us introduce an auxiliary dynamical system for t ∈
[ti, ti+1):

ż(t) = µi{(A− lcT )z(t)− lv(t) + µ−ni b[g(x(t)) (5)

−g(x(t)−M−1
i z(t)) + d(t)]},

where µi is the same as in (4), and after update of µi to
µi+1 at the instant of time ti+1 we have a state resetting
for z(t):

z(ti+1) = Mi+1M
−1
i z(t−i+1), (6)

where z(t−i+1) denotes the left limit of z(t) as t is approach-
ing ti+1 from the left. As we can conclude, (5), (6) is a
hybrid system, which has to be augmented by rules for
assignment of switching instants ti and for update of µi,
for all i ≥ 0.

Obviously, e(t) = M−1
i z(t) for t ∈ [ti, ti+1) is the corre-

sponding solution of the estimation error dynamics of (4):

ė(t) = (A− µiM−1
i lcTMi)e(t) + b[g(x(t))

−g(x̂(t)) + d(t)]− µiM−1
i lv(t).

Therefore, in order to design the supervisory algorithms
for selection of ti and µi we will consider below the hybrid
system (5), (6).

Lemma 4. Let Assumption 1 be satisfied, then in (5) with
l = P−1w for all t ∈ [ti, ti+1):

‖z(t)‖ ≤ e−0.5κµi(t−ti)

√
λmax(P )

λmin(P )
‖z(ti)‖

+

√
1− e−κµi(t−ti)
κλmin(P )

(ρdµ
−n
i D + ρvV ).

Thus, for the system (5) augmenting value of µi ≥ 1 leads
to increase of the convergence speed and to decrease of
the gain with respect to the disturbance d (the system
becomes uniform in d for limi→+∞ µi = +∞).

Corollary 5. Let Assumption 1 be satisfied, then for all
t ∈ [ti, ti+1):

‖x(t)− x̂(t)‖ ≤ µn−1
i e

−0.5κµi(t−ti)

√
λmax(P )

λmin(P )
‖x(ti)− x̂(ti)‖

+

√
1− e−κµi(t−ti)

κλmin(P )
(ρdµ

−1
i D + µ

n−1
i ρvV ),

|cT [x(t)− x̂(t)]| ≤ e−0.5κµi(t−ti)

√
λmax(P )

λmin(P )
‖x(ti)− x̂(ti)‖

+

√
1− e−κµi(t−ti)

κλmin(P )
(ρdµ

−n
i D + ρvV ).

Thus, for the system (2), (4) augmenting value of µi ≥ 1
leads to increase of the convergence speed and overshoot-
ing, and to decrease of the gain with respect to the distur-
bance d, however, at the price that the gain with respect to



the measurement noise v grows drastically. An important
observation is that the measured part of the estimation
error cT [x(t)−x̂(t)] is free from these shortages (noise gain
and overshooting growth), while inheriting acceleration of
the convergence rate and decrease of the disturbance gain.

5.1 Supervisory algorithm for the noise-free case

First, assume that V = 0, i.e. there is no measurement
noise v(t) in (2). Then, according to Corollary 5, augmen-
tation of µi will lead to uniform in d estimation of the state
of the system (2) by the observer (4). Let us design an
algorithm for commutation of µi guaranteeing the global
fixed-time convergence of the estimation error to the origin
in (2), (4).

To this end, the following algorithm is proposed in this
work:

ti+1 = ti + Ti, t0 = 0, (7)

Ti = − 2

κµi
ln

(√
λmin(P )

λmax(P )

µ1−n
i

q

)
for all i ≥ 0, where q > 1 is a tuning parameter, and

µi = qαi, (8)

where α > 0 is another tuning parameters. Note that for
(8),

‖Mi+1M
−1
i ‖=

∥∥∥∥∥diag

{
µ1−k
i+1

µ1−k
i

}n
k=1

∥∥∥∥∥
=
∥∥∥diag{qα(1−k)}nk=1

∥∥∥ ≤ 1

and in variable z(t) the state jumps at instants ti are
not stretching, thus all properties are predefined by the
continuous-time dynamics, which, as we already recog-
nized above, is just accelerated by µi.

Let us prove that for the supervisory algorithm (7), (8)
the estimation error of (2), (4) converges in a fixed time
to the origin.

Theorem 6. Let D = 0 and V = 0 for the system (2), and
for the observer (4) the supervisory algorithm be selected
as in (7), (8) with q > 1 and α ∈ (0, 1

n−1 ]. Then the
estimation error dynamics is globally fixed-time stable at
the origin. If d ∈ LD for some D > 0, then the estimation
error is globally fixed-time convergent. In addition, the
time of convergence is less than

T 0 = − 2

κ

qα

qα − 1
ln

(√
λmin(P )

λmax(P )
q
α(1−n)
qα−1 −1

)
.

Thus, in the ideal case (D = V = 0) observer (4) provides
for global fixed-time stability of the estimation error for
the system (2) with Lipschitz uncertainty. If D 6= 0, then
the rate of convergence is preserved in the system, but the
overshoots during transients may have a complex behavior.

Remark 7. As we can conclude from Theorem 6, the
lengths of intervals between switching Ti are monotonously
decreasing with i→ +∞ and approaching zero in a finite
time, then the dynamics exhibits a Zeno behavior, like
in sliding mode control systems Filippov (1988); Edwards
and Spurgeon (1998); Boiko and Fridman (2005); Levant

(2010); Fridman (2011). In practice the switching with
a frequency higher than the sampling frequency of the
system (computer) is not possible, and the number of
switches is always finite (the switching stops when Ti
becomes too small), thus the Zeno behavior in applications
is never presented for (4).

Remark 8. The convergence speed can be increased by
considering

µi+1 = qαµi (9)

with µ0 > 1 instead of (8), where µ0 = 1 always. The
proofs stay almost the same in this case.

5.2 Supervision algorithm for the noisy case

Now let us consider the general case with V 6= 0. From
Corollary 5 we conclude that for any fixed µi ≥ 1 the
estimation error in (2), (4) converges asymptotically to

the ball of radius r(µi) =
√

1
κλmin(P ) (ρdµ

−1
i D+µn−1

i ρvV ).

Since D > 0 and V > 0 are external restrictions, and P ,
κ, ρd, ρv are fixed under Assumption 1, then imposing a
reasonable in practice assumption that

ρdD > (n− 1)ρvV (10)

we can calculate the optimal value µmin of µi, which mini-
mize r(µi) (it is the solution of the equation r′(µmin) = 0,
and since direct computation shows that r′′(µmin) > 0,
then µi = µmin is the minimum of r(µi)):

µmin = n

√
1

n− 1

ρdD

ρvV
.

Under (10) µmin > 1, and (10) can be guaranteed while
solving LMIs for Assumption 1 by a proper selection of ρd
and ρv. The maximal value µmax of µi, which does not lead
to deterioration of the asymptotic estimation precision in
(2), (4), can be found as the solution higher than µmin of
the following equation:

r(µmax) = r(µ0),

such a solution always exists under (10). For example, for
n = 2 and µ0 = 1 we obtain:

µmin =

√
ρdD

ρvV
, µmax =

ρdD

ρvV
.

Therefore, in the noisy case the maximum number of
switching i∗ > 0 can be calculated, and the switching
stops either when µi∗+1 ≥ µmax or when Ti∗+1 ≤ Tmin,
where Tmin > 0 is the time constant related with the max-
imal admissible frequency of commutation in the system.
Hence,

i∗ = floor
(
min{α−1 logq µmax, i

′}
)
,

where the function floor(·) returns the biggest integer not
higher than the argument, and i′ is the solution of the
following equation:

Tmin = − 2

κqi′α
ln

(√
λmin(P )

λmax(P )

qi
′α(1−n)

q

)
.

Remark 9. Note that if the condition µi∗+1 ≥ µmax is
realized (or i ≥ i∗), then after some dwell time the value
of µi can be reset back to µ0 or µmin, since a similar
asymptotic accuracy is guaranteed in this case. This idea
has been proposed in Ahrens and Khalil (2009).



Another possibility to orchestrate the switching law is by
analyzing the value of cT [x(t) − x̂(t)], which is available
for measurements, and which, according to Corollary 5, is
monotonously decreasing for i ≥ 0. It can be used to stop
(7), (8) when acceleration phase is finished, next reset the
value of µi to optimize the asymptotic precision (Remark
9), and finally to activate acceleration again if the signal
has been changed and acceleration phase is needed again.

5.3 Numerical implementation of (4)

The main issue with application of the proposed observer
with the switched gains is that µi is monotonously in-
creasing in accordance with (8), and if the explicit Euler
discretization method is used for implementation of (4),
then such a realization may become unstable for some
sufficiently high values of µi. In order to avoid such a draw-
back, for the case g(·) = 0, the implicit Euler method is
proposed to use in implementation of (4) (see Efimov et al.
(2016b) for a discussion on advantages of the implicit Euler
method other the explicit one for calculation of solutions of
fixed-time stable systems). Let h > 0 be the discretization
step and x̂` = x̂(h`) be the value of estimate of the state
at discrete time instant h`, then in accordance with the
implicit Euler method Butcher (2008) (the substitutions
y(h(`+1)) ' y(h`) and u(h(`+1) ' u(h`) have been used
to ensure the algorithm causality):

x̂`+1 = O−1
µi {x̂`+h[ϕ(y(h`), u(h`))+µiM

−1
i ly(h`)]}, (11)

where Oµi = In − hA + µihM
−1
i lcT , and while 1 +

hµic
TSM−1

i l 6= 0, where S = (In − hA)−1, the inverse
of Oµi can be derived using Sherman–Morrison formula:

O−1
µi = S − SM−1

i lcTS

h−1µ−1
i + cTSM−1

i l
.

Thus, the matrix S can be calculated in advance, and the
inverse of diagonal matrix Mi is not costly. It is well known
fact that the implicit Euler method is converging for any
h Butcher (2008); Efimov et al. (2016b).

6. NUMERICAL COMPARISON

In order to illustrate the advantages of the proposed
switched-gain observer (4), (7), (8) let us consider the
problem of differentiation of a harmonic signal, and com-
pare the obtained solution with (4) for a fixed µi and the
well-known super-twisting differentiator Levant (2005):

ζ̇1(t) = ζ2(t)− 1.5D1.5|ζ1(t)− y(t)|0.5sign(ζ1(t)− y(t)),

ζ̇2(t) = −1.1Dsign(ζ1(t)− y(t)),

y(t) = f(t) + v(t),

where ζ = [ζ1 ζ2]T ∈ R2 is the state of differentiator,
f ∈ R is the useful signal to be differentiated (f = cTx
for a suitably defined state x in (2)), v is the measurement

noise as previously, ζ2 is the estimate of ḟ , and D is the
Lipschitz constant of ḟ . For simulation purposes we will
use:

f(t) = 1 + sin(t) + sin(πt), v(t) = V sin(ωt),

then D = 1 + π2, and take V = 0.1. For (4) in this case

A =

[
0 1
0 0

]
, ϕ(·) = g(·) = 0,

Figure 1. Results of simulation for h = 0.01 and ω = 25

Figure 2. Results of simulation for h = 0.001 and ω = 250

and in order to calculate l the values ρd = ρv = 1
and κ = 1 were selected (γ = 0), then the LMIs from
Assumption 1 (Remark 2) are satisfied for

l = [2.6 2.1]T , P =

[
0.76 −0.48
−0.48 0.6

]
.

Take q = 2 and α = 1 in (7), (9) with µ0 = 10, and
let us continue switching while Ti ≤ Tmin = 3h and
µi ≤ µmax = 108.69. Following Remark 9, for i ≥ i∗

the value of µi is reset to be µmin = 10.42. The super-
twisting algorithm is implemented using the explicit Euler
method Levant (2005), while for (4) the implicit Euler
method based computation (11) is used. We also compare
the results with the observer (4) with fixed value of µi = 30
(without the supervision algorithm (7), (8)).

For h = 0.01 the state trajectories, as well as f(t) and
f ′(t), are shown in Fig. 1 for ω = 25, the same results
for h = 0.001 and ω = 250 are presented in Fig. 2.
The initial conditions for all observers have been selected
to be zero. As we can conclude from these results, gain
switching reduces peaking phenomenon comparing with
the fixed-gain case, and the obtained differentiator is less
sensitive to the discretization step value h than the super-
twisting algorithm due to application of the implicit Euler
scheme. The switched-gain observer also demonstrates by
construction the fastest rate of convergence for big initial
errors of estimation (it is not shown in simulation due to its
clarity, for the selected values of parameters the uniform
global convergence time estimate T 0 = 9.11).

7. CONCLUSION

The problem of estimation rate acceleration for a class of
nonlinear systems in the output canonical form by switch-
ing among different values of observer gain is addressed
in this work. The presence of bounded matched distur-
bances, Lipschitz uncertainties and measurement noises is
taken into account. The proposed switched-gain observer
ensures global fixed-time stability of the estimation error
at the origin in the noise-free case. In the presence of
noise a modified commutation strategy for the observer



gain is proposed, which ensures peaking avoiding for the
initial phase, convergence acceleration and optimization of
asymptotic precision of estimation. The results are illus-
trated by computer simulation and comparison in planar
case with super-twisting differentiator and observer with
fixed gains.

REFERENCES

Ahrens, J.H. and Khalil, H.K. (2009). High-gain observers
in the presence of measurement noise: A switched-
gain approach. Automatica, 45(4), 936–943. doi:
http://dx.doi.org/10.1016/j.automatica.2008.11.012.

Ananyevskii, I. (2001). Limited control of a rheonomous
mechanical system under uncertainty. Journal of Ap-
plied Mathematics and Mechanics, 65(5), 785–796.

Ananyevskii, I. (2003). Control synthesis for linear systems
by methods of stability theory of motion. Difierential
Equations, 39(1), 1–10.

Andrieu, V., Praly, L., and Astolfi, A. (2009). High
gain observers with updated gain and homogeneous
correction terms. Automatica, 45(2), 422–428. doi:
http://dx.doi.org/10.1016/j.automatica.2008.07.015.

Boiko, I. and Fridman, L. (2005). Analysis of chattering in
continuous sliding-mode controllers. IEEE Transactions
on Automatic Control, 50(9), 1442–1446.

Boizot, J.N., Busvelle, E., and Gauthier, J.P. (2010).
An adaptive high-gain observer for nonlinear systems.
Automatica, 46(9), 1483–1488.

Butcher, J.C. (2008). Numerical Methods for Ordinary
Differential Equations. John Wiley & Sons, New York,
2nd edition.

Crassidis, J.L. and Junkins, J.L. (2012). Optimal Estima-
tion of Dynamic Systems. CRC Press, 2nd edition.

Cruz-Zavala, E., Moreno, J., and Fridman, L. (2011).
Uniform robust exact differentiator. IEEE Transactions
on Automatic Control, 56(11), 2727–2733.

Dvir, Y. and Levant, A. (2015a). Accelerated twisting
algorithm. Automatic Control, IEEE Transactions on,
60(10), 2803–2807. doi:10.1109/TAC.2015.2398880.

Dvir, Y. and Levant, A. (2015b). Sliding mode order and
accuracy in sliding mode adaptation and convergence
acceleration. In X. Yu and M. Önder Efe (eds.), Recent
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