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Abstract: In this paper the problem of simultaneous state and parameter estimation is studied
for a class of uncertain nonlinear systems. A discontinuous adaptive sliding-mode observer is
proposed based on a discontinuous nonlinear parameter estimation algorithm. It is shown that
such an algorithm provides a rate of convergence faster than exponential. Then, the proposed
discontinuous parameter estimation algorithm is included in the structure of a sliding-mode
state observer providing an ultimate bound for the full estimation error. Some simulation results
illustrate the feasibility of the proposed adaptive sliding-mode observer.
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1. INTRODUCTION

The adaptive control design has received a great deal of
attention in control theory during the last decades. Due
to this attention, this area has grown to turn into one of
the widest in terms of algorithms, techniques for design,
analytical tools, and so on (see, for instance Ioannou and
Sun (1996) and Astolfi et al. (2008)). One important
problem in the adaptive control area is the design of
adaptive observers, i.e. the design of observers estimating
simultaneously the whole state and the parameters of the
system by some on-line adaptation law Besançon (2007).

In this context, there exist a lot of literature related to
the adaptive observers design for linear systems (see, for
instance Sastry and Bodson (1989), Lüders and Narendra
(1973), Carroll and Lindorff (1973), and Narendra and
Annaswamy (2005)). Most of these results are based on
appropriated change of state coordinates to some canonical
form in order to provide a state estimation together
with persistence of excitation conditions to ensure the
parameter estimation.
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For nonlinear systems, one of the first results was proposed
by Bastin and Gevers (1988) extending some linear results.
In the same vein, some results based on output injection
transformations are given for nonlinear systems that are
equivalent to linear observable systems in the Brunovsky
observer form (see, for example Marino and Tomei (1992)
and Marino and Tomei (1995)). More recently, in Besançon
(2000) a unifying adaptive observer form is proposed for
nonlinear systems providing asymptotic state estimation
as well as parameter estimation under some passivity-like
conditions. For multiple-input multiple-output (MIMO)
linear time-varying systems, an adaptive observer is pro-
posed by Zhang (2002) and it is also valid for affine state
nonlinear systems. In Xu and Zhang (2004), a more general
design of adaptive observers is proposed for a class of
single-output uniformly observable nonlinear systems. For
the case of uniformly observable multiple-input multiple-
output nonlinear systems, in Farza et al. (2009) an adap-
tive observer is proposed to exponentially estimate the
state and the unknown parameters under a persistent exci-
tation condition. The structure of this observer gives some
flexibility to obtain high-gain-like observers and adaptive
sliding-mode-like observers. In Stamnes et al. (2011), a
redesign of adaptive observers is proposed for nonlinear
systems based on adaptive laws that use delayed measure-
ments. These delayed observers improve the performance
of the parameter estimation but increase the computa-



tional load. However, all the works previously mentioned
do not consider external disturbances.

Some robust adaptive observers have been proposed in
the literature. For instance, in Liu (2009) a robust adap-
tive observer is provided for nonlinear systems with dis-
turbances and unmodeled dynamics based on adaptive
nonlinear damping. Nevertheless, such an observer is just
able to estimate the state. Some other solutions have been
proposed in the sliding-mode area due to the insensitivity
that these algorithms present for certain class of external
disturbances Shtessel et al. (2014). In the context of fault
detection, in Yan and Edwards (2008) an adaptive sliding-
mode observer is provided for a class of nonlinear systems
with unknown parameters and faults. Using the inherent
features of the sliding-mode observers, a fault reconstruc-
tion is given under relative degree of the output with
respect to the fault equal to one. Finally, it is worth saying
that most of the mentioned adaptive observers propose
linear parameter estimation algorithms.

This paper contributes with an adaptive sliding-mode ob-
server based on a nonlinear parameter estimation algo-
rithm for uncertain nonlinear systems. The proposed adap-
tive sliding-mode observer is a modified version of that one
proposed in Efimov et al. (2016). Such a modification lies
in the inclusion of a discontinuous nonlinear parameter
estimation algorithm that provides a rate of convergence
faster than exponential (Rı́os et al., 2017). Then, the
proposed parameter estimation algorithm is included in
the structure of a sliding-mode state observer providing
an ultimate bound for the state and parameter estimation
error. Some simulation results illustrate the feasibility of
the proposed adaptive sliding-mode observer.

The outline of this work is as follows. The problem
statement is presented in the Section 2. The proposed
adaptive sliding-mode observer is given in Section 3. The
simulation results are illustrated by Section 4. Finally,
some concluding remarks are discussed in Section 5.

Notation: Let ‖q‖ denote the Euclidean norm of a vector
q ∈ R

n; 1, n a sequence of integers 1, ..., n; and In an
identity matrix of dimension n×n. The induced norm for
a matrix Q ∈ R

m×n is given as ‖Q‖ :=
√

λmax(QTQ) =
σmax(Q), where λmax (respectively, λmin) is the maxi-
mum (respectively, the minimum) eigenvalue, and σmax

is the largest singular value. For a Lebesgue measurable
function u : R≥0 → R

m define the norm ‖u‖ (t0,t1) :=
ess supt∈(t0,t1) ‖u(t)‖, then ‖u‖∞ := ‖u‖ (0,+∞) and the set

of functions u with the property ‖u‖∞ < +∞ is denoted
as L∞. A continuous function α : R≥0 → R≥0 belongs
to class K if it is strictly increasing and α(0) = 0; it
belongs to class K∞ if it is also unbounded. A continuous
function β : R≥0 × R≥0 → R≥0 belongs to class KL if for
each fixed s, β(r, s) ∈ K with respect to r, and for each
fixed r, β(r, s) is decreasing to zero with respect to s. The
notation ∇V (x)f(x) denote the directional derivative of a
continuously differentiable function V with respect to the
vector field f evaluated at any point x.

2. PROBLEM STATEMENT

Consider a class of uncertain nonlinear systems that can
be written, essentially after a change of coordinates, as

follows

ẋ = Ax+ φ(y, u) +G(t, y, u)θ +Dw, (1)

y = Cx, (2)

where x ∈ R
n is the state vector, y ∈ R

p is the measurable
output vector, u ∈ R

m is the control input vector, θ ∈ R
q is

a vector of unknown constant parameters, and w ∈ R
l is a

vector of external disturbances. The matrices A, C and D
are known, they have corresponding dimensions, and the
pair (A,C) is detectable. The functions φ : Rp×R

m → R
n

and G : R≥0 ×R
p ×R

m → R
n×q are also known and they

ensure uniqueness and existence of solutions for system (1)
for all admissible disturbances.

The aim of this paper is to provide estimations of the
state and parameter vectors, i.e. x and θ, respectively; only
using the information of the output y and attenuating as
much as possible the effects of the external disturbances
w.

The following assumptions are introduced for the system
(1)-(2).

Assumption 1. The trajectories of the system, the con-
trol input, and the external disturbances belong to L∞,
i.e. ‖x‖∞ < +∞, ‖u‖∞ < +∞, and ‖w‖∞ < +∞,
respectively; and ‖G(t, y(t), u(t))‖ < +∞ for all t ≥ 0.

2.1 Preliminaries

Consider the following nonlinear system

ẋ = f(x,w), (3)

where x ∈ R
n is the state, w ∈ R

l is the external
disturbances, and f : Rn × R

l → R
n is a locally Lipschitz

function. For an initial condition x0 ∈ R
n and an external

disturbance w ∈ L∞, denote the solution by x(t, x0, w) for
any t ≥ 0 for which the solution exists.

The following stability properties for system (3) are
introduced (for more details see Jiang et al. (1996),
Dashkovskiy et al. (2011) and Bernuau et al. (2013)).

Definition 1. The system (3) is said to be Input-to-State
practically Stable (ISpS) if for any w ∈ L∞ and any
x0 ∈ R

n there exist some functions β ∈ KL, γ ∈ K and a
constant κ ∈ R≥0 such that

∥

∥x(t, x0, w)
∥

∥ ≤ β(
∥

∥x0
∥

∥, t) + γ(‖w‖∞) + κ, ∀t ≥ 0.

The system (3) is said to be Input-to-State Stable (ISS) if
κ = 0.

These properties also have a Lyapunov function character-
ization.

Definition 2. A smooth function V : Rn → R≥0 is said
to be an ISpS Lyapunov function for system (3) if for
all x ∈ R

n and any w ∈ L∞ there exist some functions
ψ1, ψ2, ψ3 ∈ K∞, χ ∈ K, and a constant κ ∈ R≥0 such
that

ψ1(‖x‖) ≤ V ≤ ψ2(‖x‖),
‖x‖ ≥ χ(‖w‖∞) + κ⇒ ∇V (x)f(x,w) ≤ −ψ3(‖x‖).

The function V is said to be an ISS Lyapunov function
for system (3) if κ = 0.

Theorem 1. (Dashkovskiy et al., 2011). The system (3)
is ISpS (ISS) if and only if it admits an ISpS (ISS)
Lyapunov function.



Let us consider the following interconnected nonlinear
system

ẋ1 = f1(x1, x2, w), (4)

ẋ2 = f2(x1, x2, w), (5)

where xi ∈ R
ni , w ∈ R

l , and fi : R
n1 × R

n2 × R
l → R

ni

ensures existence of the system solutions at least locally,
for i = 1, 2. Suppose that there exist ISpS Lyapunov
functions V1 and V2, for (4) and (5), respectively; such
that, for all xi ∈ R

ni and any w ∈ L∞ there exist
some functions ψi1, ψi2, ψi3 ∈ K∞, γi, χi ∈ K and some
constants κi ∈ R≥0 with i = 1, 2, the following holds

ψi1(
∥

∥xi
∥

∥) ≤ Vi(xi) ≤ ψi2(
∥

∥xi
∥

∥), i = 1, 2, (6)

V1(x1) ≥ max[χ1(V2(x2)), γ1(‖w‖) + κ1]

⇒ ∇V1(x1)f1(x1, x2, w) ≤ −ψ13(V1), (7)

V2(x2) ≥ max[χ2(V1(x1)), γ2(‖w‖) + κ2]

s⇒ ∇V2(x2)f2(x1, x2, w) ≤ −ψ23(V2). (8)

Then, the following nonlinear small-gain result is intro-
duced for the interconnected system (4)-(5) in terms of
ISpS Lyapunov functions.

Theorem 2. (Jiang et al., 1996). Suppose that the inter-
connected system (4)-(5) has ISpS Lyapunov functions V1
and V2 satisfying the condition (6)-(8). If there exists some
constant κ0 ∈ R≥0 such that

χ1 ◦ χ2(r) < r, ∀r > κ0, (9)

then the interconnected system (4)-(5) is ISpS. The system
(4)-(5) is ISS if κ0 = κ1 = κ2 = 0. Moreover, with no
external disturbances, i.e. w = 0, the system (4)-(5) is
globally asymptotically stable.

3. ADAPTIVE SLIDING-MODE OBSERVER

Let us introduce the following adaptive observer

Ω̇ = ALΩ+G(t, y, u), (10)

˙̂
θ = ΓΩTCT ⌈y − Cx̂⌋α, (11)

˙̂x = Ax̂+ φ(y, u) +G(t, y, u)θ̂ + L(y − Cx̂)

+ kDsign[F (y − Cx̂)] + Ω
˙̂
θ, (12)

where Ω ∈ R
n×q represents an auxiliary variable, θ̂ ∈ R

q is
the estimation of θ while x̂ ∈ R

n is the estimation of x. The
function ⌈·⌋α := |·|αsign(·), with |·| and sign(·) understood
in the component-wise sense, the function sign[q] := q/ ‖q‖
for any vector q ∈ R

m, the design Hurwitz matrix AL :=
A − LC, with L ∈ R

n×p and 0 < ΓT = Γ ∈ R
q×q , while

F ∈ R
l×p, k, α,∈ R≥0 are designed later.

The adaptive sliding-mode observer (10)-(12) represents
a modified version of the one proposed in Efimov et al.
(2016). Such a modification lies in the nonlinear parameter
estimation algorithm (11). It is worth mentioning that
in Efimov et al. (2016) just the case when α = 1 was
studied, i.e. the linear case. In this paper, it will be shown
that the nonlinear algorithm (11) may improve the rate
of convergence and the accuracy of the given estimation.
However, from another side, the nonlinearity in (11) also
complicates the proof drastically with respect to Efimov
et al. (2016).

In the following, some properties of the nonlinear parame-
ter estimation algorithm (11) are presented but before let
us introduce the following assumption.

Assumption 2. The term ΩTCT is such that σΩmin
:=

mint≥0(σmin(Ω
T (t)CT )) > 0, for all t ≥ 0.

The previous assumption implies that p ≥ q and it is equiv-
alent to the classic identifiability condition corresponding
to the injectivity of the term ΩTCT , i.e. rank(ΩTCT ) =
q, for each instant of time t Narendra and Annaswamy
(2005). Note also that under Assumption 2 and for a
Hurwitz matrix A − LC, the variable Ω stays bounded
and σΩmax

<∞.

3.1 Nonlinear Parameter Estimation Algorithm

Let us define the errors θ̃ := θ̂ − θ and δ := x − x̂ + Ωθ̃.
Hence, taking into account (10)-(12), the error dynamics
are given by

˙̃
θ = −ΓΩTCT ⌈CΩθ̃ − Cδ⌋α, (13)

δ̇ = ALδ +D(w − ksign[F (y − Cx̂)]). (14)

The following lemma shows that the system (13) is ISS
with respect to the input δ for α = 0.

Lemma 3. Let Assumption 2 be satisfied. Then, the sys-
tem (13), with α = 0 and Γ = ΓT > 0, is ISS with
respect to the input δ. Moreover, its trajectories satisfy the
following bounds:

∥

∥θ̃(t)
∥

∥ ≤

√

2λmax(Γ)

(

2λmin(Γ))
−

1

2

∥

∥θ̃(0)

−
σΩmin

√

2λmin(Γ)

2
t

)

, ∀t ≤ T
θ̃
(θ̃(0)), (15)

∥

∥θ̃(t)
∥

∥ ≤

√

λmax(Γ)

λmin(Γ)
µ
θ̃
, ∀t > T

θ̃
(θ̃(0)), (16)

with

µ
θ̃
:=

‖C‖
σΩmax

‖δ‖
∞

,

T
θ̃
(θ̃(0)) ≤ max



0,

2

(

(2λmin(Γ))
−

1

2

∥

∥θ̃(0)
∥

∥ − (2λmax(Γ))
−

1

2 µ
θ̃

)

σΩmin

√

2λmin(Γ)



 ,

and any θ̃(0) ∈ R
q.

Hence, it is concluded that the solutions of system (13)
are ultimately bounded with its trajectories satisfying the
bounds given by (15) and (16) for α = 0. Moreover, some
important ISS properties with respect to the input δ are
provided for the system (13).

Remark 1. Lemma 3 shows that the solutions of the
system (13) enter into the bound (16) at most in a finite
time T

θ̃
(θ̃(0)).

Now, the following lemma shows that system (14) is ISS

with respect to the inputs θ̃ and w.

Lemma 4. Let Assumption 1 be satisfied. If the following
matrix inequalities

AT
LP + PAL + β−1P + (βr + 2̟)CTC ≤ 0, (17)

PD = CTFT , (18)



are feasible for a matrix 0 < PT = P ∈ R
n×n, matrices

F ∈ R
l×p, L ∈ R

n×p, and constants β, r,̟ > 0, then
the system (14), with k = ‖w‖∞, is ISS with respect to

the inputs θ̃ and w. Moreover, its trajectories satisfy the
following bounds:

∥

∥δ(t)
∥

∥ ≤ e−
ζ1
2
t

√

λmax(P )

λmin(P )
‖δ(0)‖ , ∀t ≤ Tδ(δ(0)), (19)

∥

∥δ(t)
∥

∥ ≤
√

λmax(P )

λmin(P )
µδ, ∀t > Tδ(θ̃(0)), (20)

with

ζ1 :=
(1− ρ)(β−1λmin(P ) +̟

∥

∥C
∥

∥

2
)

λmax(P )
,

µδ :=

√

̟σ2
Ωmax

ραδ

∥

∥θ̃
∥

∥

∞

+
2 ‖F‖ ‖w‖

∞√
ραδ

,

Tδ(δ(0)) ≤ max







0,

2

[

ln (‖δ(0)‖)− ln

(√

λmin(P )
λmax(P )

µδ

)]

ζ1







,

ρ ∈ (0, 1), and any δ(0) ∈ R
n.

3.2 Convergence of the Adaptive Observer

In the following, based on the statements given by Lemmas
3 and 4, it will be shown that the interconnected error
system (13)-(14) is ISS with respect to the external
disturbance w, for α = 0.

Theorem 5. Let Assumptions 1 and 2 be satisfied. If the
matrix inequalities (17)-(18) and

(

‖C‖2
√
β̟λmin(Γ)

σΩmax
λmax(P )λmax(Γ)

√

ρλmin(P )

)

< 1, (21)

are feasible for matrices 0 < PT = P ∈ R
n×n, 0 < ΓT =

Γ ∈ R
q×q, F ∈ R

l×p, L ∈ R
n×p, constants β, r,̟ > 0,

ρ ∈ (0, 1) and p ∈ N the dimension of y, then the
interconnected error system (13)-(14) is ISS with respect
to the input w. Moreover, with no external disturbances,
i.e. w = 0, the system (13)-(14) is globally asymptotically
stable.

The proofs of all these results are omitted due to lack of
space. Note that Theorem 5 implies that the estimation
error e := x− x̂ = δ +Ωθ̃ is also ISS since

‖e(t)‖ ≤ (1 + ||Ω||)
∥

∥

∥

∥

(

θ̃(t)
δ(t)

)∥

∥

∥

∥

, ∀t ≥ 0, (22)

for α = 0.

After the statements given by Lemmas 3 and 4; and
Theorem 5, one can highlight the following points:

(1) For the ideal case, i.e. w = 0 with k = 0, the

estimations θ̂ and x̂ converge to the real values θ
and x, respectively; and the rate of convergence for
θ̃ is faster than exponential for α = 0, which is our
motivation for design of such a nonlinear estimation
scheme.

(2) For the perturbed case, i.e. w 6= 0, one can show by
taking Ve = eTPe that

V̇e ≤ eT
[

AT
LP + PAL

]

e+ 2eTP (ΩΓΩTCT ⌈Ce⌋α

+G(t, y, y)θ̃) + 2eTCTFT (w − ksign[FCe]),

and therefore, if one fixes k = ‖w‖∞, the effect of the
external disturbance w is completely attenuated.

(3) The condition (18) introduces structural restrictions
over the triple (A,D,C); specifically, it must not have
invariant zeros, and the relative degree of the output
y with respect to the input w must be equal to one. In
order to avoid these restrictions some approaches are
proposed in Efimov and Fradkov (2006) and Edwards
et al. (2007).

(4) To find a solution of the matrix inequality (17), one
can rewrite it as follows

AT
LP + PAL + τ1P + τ2C

TC ≤ 0, (23)

where τ1 = β−1 and τ2 = βr+2̟ are new variables.
Then, using Λ-inequality (see, for instance Poznyak
(2008)) and Schur’s complement, it follows that




AT
LP + PAL + τ2C

TC τ1In P
τ1In −Λ−1 0
P 0 −Λ



 ≤ 0, (24)

is equivalent to (23) for any 0 < ΛT = Λ ∈ R
n×n.

Note that, for a fixed Λ, (24) is now a linear matrix
inequality with respect to matrix P , and parameters
τ1 and τ2. Then, the matrix inequality (21) can be
numerically verified with the corresponding values of
the solution of (24) and fixing α and ρ.

(5) The feasibility of (24) is ensured for sufficiently small
τ1 and τ2, due to the fact that the pair (A,C) is
observable.

4. SIMULATION RESULTS

Let us consider the following excited Duffing system

ẋ =

(

0 1
1 −µ

)

x+

(

0
u

)

+

(

0
−y3

)

θ +

(

1
0

)

w,

y = x1,

where u = 0.3 cos(t), w = 0.5 sin(2t), µ = 0.2, θ = 3 and
x(0) = (2, 1)T . For these parameters, the system develops
a chaotic behavior and Assumption 1 is satisfied. Let us
apply the statements given by Theorem 5 for both cases,
i.e. the ideal and the perturbed case.

Let us fix the matrices L = (2.80, 2.44)T and Γ =
100I2; and the gain k = 1. For this matrix L and the
given G(t, y, u) = (0,−y3)T , it is possible to show that
Assumption 2 is satisfied.

Then, SeDuMi solver among YALMIP in Matlab is used
to find a solution for the LMIs (18), (24), and (21),
respectively. The following feasible solution, with Λ = I2,
is found

P =

(

0.6652 0
0 0.4455

)

, τ1 = 0.0187, τ2 = 3.3096,

F = 0.6652, β = 53.4569, r = 0.0393, ̟ = 0.6048.

The simulations have been done in Matlab with the Euler
discretization method, sample time equal to 0.001, and

initial conditions Ω(0) = (0, 0)T , θ̂(0) = 0 and x̂(0) =
(0, 0)T . The results for the ideal case, i.e. w = 0, with
α = 0.05 (discontinuous nonlinear algorithm) and α = 1.0



(linear algorithm) for the parameter estimation algorithm,
are depicted by Figure 1. One can see that the estimations

θ̂ and x̂, given by the nonlinear algorithm, converge to
the real values θ and x, respectively; faster than the linear
algorithm.
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Fig. 1. The estimations of θ̂ and x̂ - Ideal Case (α = 0.0
and α = 1.0)

The results for the perturbed case, i.e. w = 0.5 sin(2t),
with α = 0.0 (discontinuous nonlinear algorithm) and
α = 1.0 (linear algorithm) for the parameter estimation
algorithm, are depicted by Figure 2. In this case, the

estimations θ̂ and x̂ converge to a neighborhood of the
real values θ and x, respectively. One may see that the
nonlinear algorithm still converges, to a neighborhood of
the real value, faster than the linear algorithm.

5. CONCLUSIONS

In this paper an adaptive sliding-mode observer based on a
nonlinear parameter estimation algorithm is proposed for
uncertain nonlinear systems. The given adaptive sliding-
mode observer is a modified version of that one proposed
by Efimov et al. (2016). Such a modification lies in the in-
clusion of a discontinuous nonlinear parameter estimation
algorithm that provides a rate of convergence faster than
exponential. Then, the proposed parameter estimation
algorithm is included in the structure of a sliding-mode
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Fig. 2. The estimations of θ̂ and x̂ - Perturbed Case
(α = 0.0 and α = 1)

state observer providing an ultimate bound for the state
and parameter estimation error. Some simulation results
illustrate the feasibility of the proposed adaptive sliding-
mode observer.
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Besançon, G. (2007). Nonlinear Observers and Applica-
tion. Springer-Verlang Berlin Heidelberg.

Carroll, R. and Lindorff, D. (1973). An adaptive observer
for single input single output linear systems. IEEE
Transactions on Automatic Control, 18(5), 428–435.



Dashkovskiy, S., Efimov, D., and Sontag, E. (2011). Input
to state estability and allied system properties. Automa-
tion and Remote Control, 72(8), 1579–1614.

Edwards, C., Yan, X.G., and Spurgeon, S. (2007). On the
solvability of the constrained Lyapunov problem. IEEE
Transactions on Automatic Control, 52(10).

Efimov, D., Edwards, C., and Zolghadri, A. (2016). En-
hancement of adaptive observer robustness applying
sliding mode techniques. Automatica, 72, 53–56.

Efimov, D. and Fradkov, A. (2006). Adaptive tunning to
bifurcation for time-varying nonlinear systems. Auto-
matica, 42(3), 417–425.

Farza, M., M’Saad, M., Maatoug, T., and Kamoun, M.
(2009). Adaptive observers for nonlinearly parameter-
ized class of nonlinear systems. Automatica, 45, 2292–
2299.

Ioannou, P.A. and Sun, J. (1996). Robust Adaptive Con-
trol. Prentice Hall, Inc., New Jersey, USA.

Jiang, Z.P., Mareels, I., and Wang, Y. (1996). A Lyapunov
formulation of the nonlinear small-gain theorem for
interconnected ISS systems. Automatica, 32(8), 1211–
1215.

Liu, Y. (2009). Robust adaptive observer for nonlinear
systems with unmodeled dynamic. Automatica, 45,
1891–1895.
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