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{a)

Figure 5. (a) High amplitude global attractor; {b) homoclinic tangle in Figure 5(a).

arbitrary convenient normalization) and the horizontal axis is the excitation phase 0 < r<
27/ z. The left-hand vertical edge is to be identified with the right-hand edge to produce
the cylinder. There are no attractors at higher velocities than those depicted.

A high velocity initial condition will at first flow gently (because r~1) down the
cylindrical phase space until it arrives in the region tllustrated. Initial conditions entering
on the right-hand side, in the region bounded by W3 on the right and above the saddle
point, will flow into the sink, experiencing transient chaos as they enter, due to the ripples
impressed into WY by the homoclinic tangle. However, orbits that enter the region
bounded by W3 and W will flow towards the tangle and experience severe transient
chaos in the region of the tangle before being ejected and captured by the sink. Also
illustrated in the figure is the way that W* as well as WY is captured by the sink. In the
former case, as implied by the A-lemma, WX accumulates along W" with increasingly
violent oscillations and is drawn into the node along with WY, Similarly, W’ accumulates
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into the periodic point x at velocity greater than v, which is proportional to Area (W’ (x) n
{v > 1,}), is high. As v drops below the stable velocity, the probability of capture by the
sink falls to zero whilst the probability of capture by the low velocity attracting set (which
is finite everywhere) increases to 1. Figure 6(b) depicts the effect of increasing the excitation
amplitude. The phase portrait for 8 = 0-26 shows that W* has become extremely turbulent
as it is drawn into the low velocity attractor which almost completely fills the region
below the saddle point. A similar attractor corresponding to 8 = 0-25 is depicted in Figure
7 and this appears to comprise a complicated one-dimensional Cantor manifold, the
strands of which oscillate in a manner modelled by the function sin (1/x) towards W*
A slight increase in 8 leads to a homoclinic global bifurcation where the low velocity
attractor disappears, its oscillations now occurring in those of the homoclinic tangle as
depicted in Figure 1(a), where the node has become a *‘global™ attractor and the strange
attractor has been replaced by a strange repellor. Thus, the homoclinic bifurcation has
essentially involved a change in stability type of the low velocity attractor.

Figure 7. Low velocity strange attractor.

As amplitudes increase and o decreases to |y|, the saddle point must disappear, leaving
only the stable point. An example of a phase portrait containing the stable point as a
global attractor is shown in Figure 8. This is actually the superposition of many interpolated
orbits. Turbulence seems to be generated in the orbits when they enter the neighbourhood
of the grazing interval. One can visualize the flow as similar to the flow of a fluid against
an obstruction along the grazing line with a stagnation point at the « point, turbulence
being generated at impingement. Care should be exercised with this interpretation,
however, because the flow is not continuous.

3.5.2. o>1 Or low amplitude behaviour

For low amplitudes compared to a given positive clearance, the situation is generically
similar to that depicted in Figure 6(a) in parameter regions where single impact fixed
points can exist. In this case, however, it is the low velocity region below the saddle point
which exhibits the interesting behaviour. This behaviour is dictated by that of the unstable
manifold W". In some cases, W" will wind smoothly down the cylinder asymptoting to
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Figure 10. Orbit oscillations near fixed points of periods 2 and 3.
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Figure 11. (a) Stable fixed point of order 4 afier a flip bifurcation of a stable order 2 fixed paint; (b) stable
fixed point of order 2 with order 2 homoclinic tangle.
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Figure 12. Occurrence of a saddle-node bifurcation in a clearance system as the clearance passes through
the critical value. (a) ¢ =0-15; (b) o =0-182; (¢} 7 =0-185.

portraits considered below are only for systems in parameter ranges allowing periodic
motions. Preloaded systems (¢ =0, A >0) will be split into lightly loaded, o=A/B=
N/F,<1, and highly loaded, o> 1, aithough as mentioned above, it is more exact to
split o ranges into 10, |y|[ and ]|y|, o,[, where the first interval can only contain a single
stable period 1 fixed point whilst the second can contain a conjugate pair of period 1
fixed points. Recall from section 3.1 that o,(n) is a maximum preload below which single
impact subharmonic period n responses can exist and is a bifurcation point where the
sink and saddle point mutually annihilate.

Lighly loaded systems will be discussed only briefly because they closely resemble the
zero preload systems discussed in section 3.4. Most attention will be directed to the highly
loaded systems because their phase portraits serve to illustrate the effect of trying to
eliminate impacting in engineering systems where it can be a problem. Adding a preload
to engineering systems prone to vibro-impacting is a well known remedy. It is applied,
for example, to industrial heat exchangers with loosely supported tubing by adding spring
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Figure 17. (a) Strange attractor observed in a positive clearance system, 5600 points on the orbit of a single
point; (b) strange attractor observed in a preload system, 30 000 points on the orbit of a single point.

in the present study because it was felt that at levels of engineering interest ({ ~0:01)
the system should be structurally stable. However, this remains to be demonstrated.
This concludes the review of the phase portraits; in the next section an attempt is made
at an overall appraisal of vibro-impacting systems and conclusions are drawn regarding
the need for further work and the engineering consequences of the present investigations,

4. DISCUSSION

An exhaustive series of computer generated phase portraits of vibro-impacting dynami-
cal systems have been constructed by using the Poincaré map, which samples the three-
dimensional continuous orbits at the point of impact, producing a two-dimensional
discrete dynamical system. It was not, of course, possible to scan the whole of the
four-dimensional manifold of parameters corresponding to clearance (or preload),
coefficient of restitution, frequency ratio and amplitude, but it is hoped that the systems
considered were representative in the sense that most possible types of behaviour were
observed, i.e., “most” C’-equivalence classes were generated. In any case, passing from
one class of system to another does involve a Jocal or global bifurcation. It was possible
to identify four classes of system in which “typical” phenomena occur. Roughly, these
are (c=0,A=0,0<1),(¢>0,1=0,0>1),(c=0,A>0,0<1)and (¢=0,A >0, c>1).
Passing from low amplitude to high amplitude involves a global homoclinic bifurcation
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