
HAL Id: hal-01511322
https://hal.archives-ouvertes.fr/hal-01511322

Submitted on 20 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational Analysis of Network ODE Systems in
Metric Spaces: An Approach

Susmit Bagchi

To cite this version:
Susmit Bagchi. Computational Analysis of Network ODE Systems in Metric Spaces: An Approach.
Journal of Computer Science, Science Publications, 2017, 13 (1), pp.1-10. �10.3844/jcssp.2017.1.10�.
�hal-01511322�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/84983159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01511322
https://hal.archives-ouvertes.fr


 

 

              © 2017 Susmit Bagchi. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 

license. 

Journal of Computer Science 

 

 

 

Original Research Paper 

Computational Analysis of Network ODE Systems in Metric 

Spaces: An Approach 
 

Susmit Bagchi 
 

Department of Aerospace and Software Engineering (Informatics), 

Gyeongsang National University, Jinju, Republic of Korea 
 
Article history 

Received: 02-01-2017  

Revised: 24-02-2017 

Accepted: 28-02-2017 

 
Email: profsbagchi@gmail.com 

Abstract: Traditionally, the concepts of graph theory are applied to design 

stationary computer networks and, to analyze dynamics of social networks. 

However, the majority of non-stationary network models are formulated by 

using Ordinary Differential Equations (ODE) with varying orders having 

homogeneous or non-homogeneous forms. However, the analysis of 

continuous solution spaces of ODE and understanding of the interplay of 

spaces in complex systems are difficult to formulate. This paper proposes 

an analytical model and an algorithm to analyze as well as determine 

characteristics of solution spaces of system of ODE. The analytical model 

employs structural elements of metric spaces. The algorithmic output and 

analysis illustrate that, the proposed model successfully determines the 

dynamics of solution intervals as well as structural interactions. 
 

Keywords: Networks, Ordinary Differential Equations, Metric Spaces, 

Predicate 
 

Introduction 

The applications of graph theoretic models as well as 

structures of networking are pervasive in nature 

encompassing computer networks, social networks and 

biochemical networks. Traditionally, the modeling and 

analysis of stationary networked systems consider graph 

algorithmic approaches. However, every network 

systems are not stationary in nature. The networked 

systems can be broadly classified into two domains 

namely, stationary class and non-stationary class. The 

wireless networks of computers and social network 

systems are prime examples of non-stationary and highly 

dynamic networked systems (Tipper and Sundareshan, 

1990). The data traffic in computer networks 

resemblances the characteristics of periodic processes 

with oscillation (Medykovsky et al., 2013). It is 

observed that, the dynamics of network flows exhibit the 

existence of stochastic elements and can be modeled as 

discrete event dynamical systems (Obaidat et al., 2015). 

In general, the modeling and analysis of complex 

network dynamics follow two broad approaches. In one 

approach, the network dynamics is considered to be 

nonstationary in nature. In other approaches, the concept 

of randomized Boolean functional network is employed 

(Ridden and MacArthur, 2012). In biochemical systems, 

the Boolean networks are derived through various 

transformations (Stotzel et al., 2015). The wireless 

networks are highly non-stationary in nature having 

lower stability as compared to wired networks. The 

analysis of dynamics of wireless networks requires the 

applications of Markov models (Bylina et al., 2012). 

However, in majority of cases the models of complex 

networks are formulated by employing Ordinary 

Differential Equations (ODE) having constant or varying 

coefficients as well as homogeneity. For example, the 

dynamics of computer networks are modeled by 

employing first order ODE (Medykovsky et al., 2013). 

The models of complex networks assume continuous 

time varying dynamics, which are often equipped with 

smooth functions. The applications of ODE imply that 

dynamics of complex networks are derived in continuous 

solution spaces. On the other hand, the stochastic 

discrete event based network modeling with quantized 

states indicates that, non-stationary dynamics of complex 

networks can be formulated in discrete domains having 

deterministic solution intervals. 

Motivation 

The modeling and analysis of complex networks are 

formulated by using first order ODE in linear or non-

linear forms having varying coefficients. The 

homogeneity of ODE intended for modeling complex 

networks is dependent on the characteristics of networks. 

The solution spaces of such models are continuous and 
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may have large intervals. In case of complex systems 

modeled with system of ODE, the continuous solution 

spaces may have complex structures spreading over 

large intervals. The determination of characteristics and 

interplay of system of ODE becomes difficult if the 

continuous solution spaces are non-linear in nature 

having close interactions. The analysis of solution 

spaces of system of ODE can be facilitated by the 

applications of structures of metric spaces. The pair-

wise comparison of decomposed solution spaces helps 

in determining the characteristics of solution intervals 

and understanding of structural interplays. In line with 

the approach of employing metric spaces, the 

algorithmic analysis may be conducted on sampled data 

sets from solution spaces to compute and represent 

solution intervals. This paper proposes the 

computational analysis of solution spaces of system of 

ODE by following concepts of metric spaces. The main 

contributions of this paper are as follows: 

 

• Formulating a model for analyzing solution spaces 

of system of ODE in metric spaces 

• Designing an algorithm for sampled data analysis to 

determine solution intervals and interactions 

• Determining a set of axioms to transform continuous 

spaces into discrete forms for computational 

analysis 

 

Rest of the paper is organized as follows. The second 

section describes related work in the field. Third section 

presents the proposed analytical model. Next, fourth 

section presents the algorithm and the computational 

evaluations. Lastly, fifth section concludes the paper. 

Related Work 

The applications of network and associated graph 

models are pervasive in nature encompassing computer 

networks, social networks and biochemical networks. 

The dynamics and control of computer networks are 

considered to be non-stationary in nature. In general, the 

computer network systems are modeled by employing 

concepts of queuing theory. However, the Ordinary 

Differential Equations (ODE) based model of computer 

networks is formulated considering non-stationary 

conditions (Tipper and Sundareshan, 1990). The model 

considers combinations of queuing theory and, non-

linear ODE. Researchers have proposed that, the 

dynamics of computer networks can be modeled by 

employing first order ODE and Ateb-functions 

(Medykovsky et al., 2013). The computer network flow 

analysis and modeling follow the characteristics of 

discrete event based dynamical systems. In general, the 

discrete event based modeling and formalisms (DEVS) 

are used to represent discrete dynamical systems 

(Obaidat et al., 2015). However, the computer network 

analysis often requires incorporation of stochastic 

parameters. Thus, the stochastic DEVS formalisms are 

employed to model and analyze computer networks, 

which utilize the Quantized State Systems (QSS) 

(Obaidat et al., 2015). The QSS-based network analysis 

requires approximated ODE in order to represent the 

networked systems. 
The applications of ODE are found in network 

modeling and analysis in biological systems (Minerva et al., 

2015). The ODE based network analysis is used to 

predict and suppress network-inflation of cells. The 

random Boolean network based analysis is employed to 

understand gene regulation and activation (Ridden and 

MacArthur, 2012). In this network, the size of the 

network is very large and, each node is connected to a 

set of randomly selected nodes with assigned Boolean 

functions. The analysis of network dynamics of random 

and large-scale Boolean network also requires the 

applications of ODE (Ridden and MacArthur, 2012). 

The transient and steady-state conditions in complex 

networks can be analyzed by formulating ODE  

(Soliman and Heiner, 2010). In modeling large-scale 

network systems with randomness, the transformation of 

such network into Boolean networks is required. 

Researchers have proposed to analyze ODE based 

networked system analysis deriving from Euler-like 

transformations (Stotzel et al., 2015). The appearances 

of transients in wireless networks are observable 

phenomena. The transient analysis of wireless sensor 

networks requires probabilistic models. The modeling 

and analysis of transient probabilities in wireless sensor 

networks is formulated by employing first order ODE 

(Bylina et al., 2012). The ODE-based model of network 

transient probabilities follows matrix-vector form. 

The generation of solutions of system of ODE with 

reduced errors requires large computing capacities and 

often employs neural network techniques (Meade Jr. and 

Fernandez, 1994; Lagaris et al., 1998). In general high-

performance distributed computing systems are 

employed to execute ODE solvers (Burrage and Pohl, 

1994). The decomposed solvers execute on distributed 

nodes connected by network and the decomposed 

modules communicate over network. Researchers have 

proposed solvers of higher order ODE by using radial 

basis functions (Mai-Duy, 2005). The major challenge in 

different types of solvers is to determine the interplay of 

solutions of set of ODE. In general, such analysis is 

performed graphically after the execution of the solvers. 

However, the data sets generated by solvers are very 

large and are often in the range of GB. Thus, data 

analysis becomes an error prone and complex task. An 

analytical model is required to predict and analyze 

characteristics of solutions and their interplay in solution 

spaces. The modeling and predicting information 
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diffusion in social network is an interesting research 

topic. The information diffusion model in networked 

systems is formulated using ODE and is employed to 

understand the dynamics of network structures as well as 

sizes. In general, the ODE-based epidemiological model 

is used to analyze information diffusion in large 

networks (Hethcote, 2000; Yang and Leskovec, 2010). 

The analysis of information diffusion in social networks 

is conducted by using logistic equation in the form of 

first order ODE (Davoudi and Chatterjee, 2016). In 

another approach, the epidemic model based 

information diffusion in network is formulated 

considering heterogeneous network environments   

(Stai et al., 2015). Furthermore, the explicit network 

diffusion model is employed to study malware attacks 

in wireless networks (Khouzani et al., 2012). 

Analytical Model 

The formulation of analytical model requires 

transformation of continuous solution spaces of a system 

of ODE into the discrete domain. In that direction, first a 

set of basic concepts is presented. Next, the detailed 

analytical framework is presented in axiomatic 

representations. 

Basic Definitions 

In this section, the construction of analytical solution 

spaces and its transformation into discrete domain is 

formulated by considering a set of ODE in general form. 

Let ψ ={[a,b]: a,b∈ℜ} be a set of intervals. The set of n-

th order differential equations in general form is given by 

a system of ODE in matrix representation as: 

 

1)(,1

,)]([].....][)([

1

1

=≤<

=−

i

T

i

Tnn

ij

xaNi

xryyDyDxa
 (1) 

 

The differential equations may have constant or 

varying coefficients as well as can be homogeneous or 

non-homogeneous in nature. If the analytical solutions of 

differential equations of Equation 1 are yI = [hi (x, ri 

(x))]
T
 where I is unit column matrix, then there exist 

corresponding predicates Pi(x, y)∈{0,1} signifying the 

analytical solutions in discrete domain represented as: 

 

( ) ( )( ), 1 , 0i i iP x y y h x r x  = ⇒ − =     (2) 

 

The predicate indicates that, the evaluation to 

Boolean true value follows the solutions of differential 

equations in analytical form. Let, the solution interval of 

Pi(x,y) be Xi ∈ψ. The mapping within the solution spaces 

of differential equations is given by, f:ψ →(Y⊂ℜ) such 

that, ∀y∈Y: y = f (x∈ℜ). The set of solutions of 

differential equations in solution spaces are computed by 

corresponding binary relations having conditions as 

given below: 

 

( ) ( ){ }, : ,i i i iR X Y R x y P x y ⊂ × ⇒ =   (3) 

 

The formal model considers that the relations are 

anti-symmetric and non-transitive in nature. 

Transformation and Analysis 

Suppose, (A,d) be a metric space where, 

1

N

k
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The boundary evaluation conditions of respective 

metric spaces are governed by following axioms: 
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 (5) 

 

According to the axioms, the distance metric can be 

reduced to zero if and only if the corresponding solution 

spaces have identical solutions. There must be an 

interval of such identical solutions and, the solution 

spaces outside of such interval may not be comparable. 

Furthermore, the interplay between solution spaces of a 

system of ODE may generate three cases. 

Case I: Solution Spaces are Pair-Wise Disjoint 

In this case, the solution spaces of system of ODE are 

considered to be pair-wise disjoint in nature. The 

identification of such solution spaces can be formulated 

by following axiom: 

 

( ) ( ) ( ), : , ,i k i kR R x y A P x y P x yφ   ∩ = ⇒ ¬ ∃ ∈ ∧     (6) 

 

This dynamics of solution spaces indicate that, there 

exist no common general as well as particular solutions 

of the differential equations in solution spaces in 

analytical forms. Hence, the set of distance metric in 

metric spaces can be computed as: 
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( ) ( ){ }, : . 0d i k i kS P P d R R d  = × >   (7) 

 

The maximum and minimum separations between 

solution spaces of two differential equations are 

computed as, max(Sd[Pi, Pk]) and, min(Sd[Pi, Pk]) 

respectively. Furthermore, if in a system max(Sd[Pi, 

Pk]) = min(Sd[Pi, Pk]), then the corresponding solution 

spaces are equidistant everywhere for the respective 

ODE pair. 

Case II: Solution Spaces are Pair-Wise Non-

disjoint 

In this case, the pairs of ODE in a system have the 

solution spaces in pair-wise non-disjoint forms, where all 

solutions are not identical. The axiomatic representation 

of such solution spaces can be given by: 

 

( ) ( ) ( ), : , ,i k i kR R x y A P x y P x yφ   ∩ ≠ ⇒ ∃ ∈ ∧     (8) 

 

Hence, the pairs of ODE have at least one common 

solution in respective solution spaces. Suppose, ∃i: ∃k ≠ 

i: 1< k≤N such that |Ri ∩ Rk|>1 indicating there exist 

multiple common solutions in the respective solution 

spaces. The natures of such common solutions can be 

determined by following three conditions. 

Condition C1: Existence of Multiple Discrete 

Common Solutions 

The two differential equations may contain multiple 

discrete common solutions if following axiom is 

satisfied: 
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 (9) 

 

The axiom illustrates that, the solution spaces do not 

have any continuous intervals of common solutions. 

However, discrete points of converging solutions exist in 

solution spaces. Furthermore, if B = {d(Aik
2
):[Aik = Ri ∩ 

Rk]∧[d(Aik
2
)>0]}, then the extremals of divergences in 

separation in solution spaces is given by: 
 

( ) ( )| sup inf |B B B∂ = −  (10) 

 

Condition C2: Existence of Region of Continuous 

Common Solutions 

It is possible that, the solution spaces of a system 

of ODE have an interval of continuous common 

solutions. The pairs of ODE in a system have a region 

of continuous common solutions if the following 

axiom is satisfied: 
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 (11) 

 

It is important to note that, the common solution 

interval is continuous in nature. The solution spaces 

outside of the interval are disjoint. 

Condition C3: Existence of Multiple Intervals of 

Continuous Common Solutions 

This is an extension of condition C2. The system of 

ODE may have multiple intervals of common solutions 

with continuity if the following axiom is satisfied: 
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 (12) 

 

Thus, the there exists a set of common solutions 

within multiple continuous intervals within the 

solution spaces. The intervals between common 

solution spaces may be disjoint. The solutions of ODE 

outside of these intervals are disjoint in nature 

iff |||| ikki ARR >∪ . The solutions spaces are identical iff 

|||| ikki ARR =∪ . 

Case III: Solution Spaces are in Globally Non-

Disjoint Intervals 

In this case, the axiomatic conditions for obtaining 

globally non-disjoint intervals of common solutions of 

system of ODE in solution spaces are constructed. The 

existence of globally non-disjoint intervals of solutions 

indicates that the system has at least one common 

solution in original solution spaces. The axioms of 

determining such global intervals are given as: 
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The multiplicity of regions of common solutions 

depends on value of m. If m = 1 then there is a unique 
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region of common solution for the given system of ODE. 

Otherwise, m > 1 signifies the existence of multiplicity 

of such regions in original solution spaces. 

Computational Evaluations 

The computational evaluations of the proposed 

analytical model are conducted in order to formulate 

geometric representation of the characteristics of 

solution spaces of a system of ODE. Following the 

general forms of ODE-based models of computer 

networks, a system of ODE is considered to be 

comprised of mixed first order linear and non-linear 

homogeneous as well as non-homogeneous equations as 

presented below: 
 

yxDy

yyDy

eyDy

kyDy

yxDyDy

x

−=

=−

=−

=

=+−

,

,

,

,0)(

2

2

 (14) 

The solution spaces are analyzed in metric spaces by 

executing computational algorithm on sampled data sets 

from the continuous solution spaces. The pseudo-code 

representation of the algorithm is illustrated in Fig. 1. 

The algorithm implements pair-wise comparison of 

solution spaces of system of ODE under transformation 

in metric spaces. Initial values of Boolean flags 

indicating existence of disjoint solution intervals (dint) 

and common intervals (cint) are set to false. The sets of 

disjoint solution intervals (dis) and common solution 

intervals (intv) in solution spaces are marked as empty. 

The algorithm compares and sorts the pair-wise solution 

spaces until the data sets are exhausted. Next, the 

predicate function is evaluated on sorted disjoint 

intervals in order to compute the intervals of common 

solution intervals. The predicate function considers 

interval length (w) for comparison to be fixed at 0.3. If 

the common solution intervals exist in the solution 

spaces of system of ODE, then the intervals are 

aggregated and the existence of common solution 

intervals are indicated in the respective flag. 

 

 
 

Fig. 1. Pseudo-code representation of algorithm 

 

 
 

Fig. 2. Continuous solution spaces of system of ODE in 2-D 
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Fig. 3. Continuous solution spaces of ODE system-reduced dimension (LGF) 

 

 
 

Fig. 4. Continuous solution spaces of ODE system-reduced dimension (HGF) 

 

The dynamics of continuous solution spaces of 

system of ODE in 2-D plane are illustrated in Fig. 2. 

It can be observed in Fig. 2 that, the intervals of 

disjoint and non-disjoint solutions are 

indistinguishable due to the mixed growth factors of 

individual solution spaces. 

The dynamics of continuous solution spaces of subset 

of ODE (Subset I) having low growth factors (LGF) are 

illustrated in Fig. 3 in 2-D plane. 

Figure 3 illustrates that, accurate system dynamics 

are more distinguishable as compared to Fig. 2 due to the 

reduction of dimension of the system. Similar effect is 

observable in Fig. 4 illustrating continuous solution 

spaces in 2-D plane of a system having High Growth 

Factor (HGF) in solution dynamics with reduced 

dimension. 

Figure 4 illustrates that, the computed solutions in 

continuous solution spaces are convergent at lower 

values of variables (x) and, tend to diverge if x increases 

monotonically. 

Algorithmic Analysis 

The computational analysis of data sets is conducted 

by the algorithm in order to detect disjoint and non-

disjoint solution intervals of the system under 

consideration. The analysis is performed by algorithm 

using pair-wise solution spaces in three sets (Set I, II and 

III). Set I considers pair-wise system of ODE having 

solution spaces with LGF. Set II considers pair-wise 

system of ODE with moderate growth factor in solution 

spaces. Lastly, Set III considers a pair of ODE with 

HGF. The computed distance metric in solution spaces 

and associated contours of solution intervals for Set I are 

presented in Fig. 5 and 6, respectively. The computed 

distance metric and associated contours of solution 

intervals for Set II are presented in Fig. 7 and 8, 

respectively. The corresponding results for Set III are 

illustrated in Fig. 9 and 10. The computed contours of 

solution intervals in metric spaces have successfully 

identified the disjoint and non-disjoint intervals of 
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solution spaces of the system under consideration. In 

case of Set I, the existence of common solution intervals 

(non-disjoint) is identified, where the interval is larger 

than contours of Set II and Set III. 

 

 
 

Fig. 5. Computed distance metric for Set I 

 

 
 

Fig. 6. Contours of solution intervals for Set I 

 

 
 

Fig. 7. Computed distance metric for Set II 
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Fig. 8. Contours of solution intervals for Set II 

 

 
 

Fig. 9. Computed distance metric for Set III 

 

 
 

Fig. 10. Contours of solution intervals for Set III 
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The contours of distance metric in solution spaces 

for Set II indicate that, there exist multiple discrete 

common solutions and the solution spaces are largely 

disjoint in nature. However, in case of Set III, the 

common solution intervals are concentrated in a 

region and, the solution spaces are disjoint outside of 

the region. Moreover, the region of disjoint solution 

intervals is larger than the common solution interval. 

Conclusion 

The applications of networking structures and 

models are found in computer systems, social 

networking systems and biochemical network systems. 

In majority of cases, the network modeling requires 

employment of ODE. The analysis of characteristics 

of solution spaces of system of ODE having mixed 

forms and orders is difficult in continuous 

multidimensional spaces. The application of metric 

spaces in analysis helps in determining the interplay 

of solution spaces of ODE systems. The algorithmic 

analysis by considering discrete samples from solution 

spaces can effectively uncover the existence of 

common solution intervals, nature of disjoint intervals 

and multiplicity of common solution intervals. The 

applications of metric spaces and corresponding 

algorithmic analysis of solution spaces of system of 

ODE facilitates the determination and understanding 

of interplay of solution spaces in complex systems. 

Ethics 
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