

Formal correctness of comparison algorithms between binary64 and decimal64 floating-point numbers

Arthur Blot, Jean-Michel Muller, Laurent Théry

▶ To cite this version:

Arthur Blot, Jean-Michel Muller, Laurent Théry. Formal correctness of comparison algorithms between binary64 and decimal64 floating-point numbers. Numerical Software Verification, Jul 2017, Heidelberg, Germany. hal-01512294

HAL Id: hal-01512294 https://hal.archives-ouvertes.fr/hal-01512294

Submitted on 22 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Formal correctness of comparison algorithms between binary64 and decimal64 floating-point numbers

Arthur Blot¹, Jean-Michel Muller¹, and Laurent Théry²

 ¹ École Normale Supérieure de Lyon, Lyon, France,
 arthur.blot@ens-lyon.org jean-michel.muller@ens-lyon.fr
 ² INRIA Sophia Antipolis - Méditerranée, France, Laurent.Thery@inria.fr

Abstract. We present a full Coq formalisation of the correctness of some comparison algorithms between binary64 and decimal64 floating-point numbers.

1 Introduction

Both binary and decimal formats are defined in the IEEE 754-2008 standard. However, no operation is defined to compare them, and the "naïve" approach of converting a decimal floating point number to the closest binary one before comparing it to another binary FP number can lead to inconsistencies. Let us take for example these two FP numbers:

$x := 7205759403792794/2^{56}$	(in binary64 format) $> 1/10$
y := 1/10	(in decimal64 format)

If we convert y to the binary64 format, we get x. This means the native approach would give that $x \leq y$, but actually x > y.

The paper [4] by Brisebarre et al. details and proves the correctness of several algorithms which can compare these numbers in a both efficient and entirely reliable way. The initial problem being simple, it would be nice if the algorithms and their correctness proofs were elementary too. This is unfortunately not the case. In particular, the correctness of some of the algorithms requires some non-trivial computation that cannot be performed by hand. The contribution of this paper is to propose a formalisation that carefully checks all the aspects of the correctness proofs.

We use the Coq proof assistant [9] for our formalisation. The paper is organised as follows. In a first section we detail the formal setting in which we have made our formalisation. Then, we present the algorithms and their proof of correctness.

2 Formal Setting

CoQ is a generic system that lets us define new objects and build formal proofs of their properties. There are two main ways of adding new knowledge into the system. We can work conservatively defining a new notion in term of already defined ones or we can work axiomatically by providing the characteristics properties of the new notion. In our formalisation, the two approaches have been used. We now illustrate this with some elementary examples.

Positive numbers are represented in CoQ in a conservative way by a recursive datastructure **positive** that mimics binary numbers. It is composed of 3 constructors: xI (a number that starts with a 1), xO (a number that starts with a 0), xH (the number 1). If we take the little endian convention, the binary number 1101 is represented as (xI (xO (xI xH))). Thanks to this recursive datastructure, it is then possible to equip positive numbers with usual functions. For example, we give below the definition of the function that computes the successor function. It is defined recursively by a discussion on the structure of its argument **a**.

```
Function Psucc a :=
  match a with
   xI a1 => x0 (Psucc a1) | x0 a1 => xI a1 | xH => x0 xH
  end.
```

Relative numbers are then defined on top of positive numbers using these constructor Zero, Zpos for positive numbers and Zneg for negative numbers. Usual notations can be associated with these numbers, so that (Zneg (xI (xO (xIxH)))) is printed and parsed back as -13.

Similarly to the definition of the Psucc function, addition (+) is defined for relative numbers. Having this function as an algorithm inside CoQ makes it possible to compute with relative numbers like in any programming language. Thus, -13 + 4 evaluates to 9. Furthermore, it is possible to reason about this function and prove that the distributive property holds.

Lemma add_assoc m n p, m + (n + p) = (m + n) + p.

Having a system where one can mix computation and proofs was mandatory for the formalisation of the properties we were aiming at. Coming back to this formalisation, we are using the FLOCQ library [2] to reason about floating point numbers. These numbers are parametrised by a radix β . They are defined as a record that contains two fields.

```
Record float (beta : radix) := Float { Fnum : Z; Fexp : Z }.
```

For example, the object {|Fnum := 7205759403792794; Fexp := -56|} is a floating-point number whose mantissa is 7205759403792794 and exponent is -56.

In our formalisation, we prove the correctness of the comparison algorithms with respect to the comparison over real numbers. The real numbers are axiomatised in CoQ. An abstract type R is defined. A set of properties is assumed that makes it a complete, totally ordered, Archimedean field. On top of this

basic field, the standard COQ real library and the COQUELICOT[1] library build the usual real analysis. This contains standard notions like series and limits from which usual functions such as exponential, sine and cosine are defined. Thanks to these libraries, it is possible to give an interpretation of a floating point number as a real number.

```
Definition F2R (f : float beta) := (Fnum f) * beta ^ (Fexp f).
```

The floating point number f represents the real numbers $m * \beta^e$ where m is the mantissa, e the exponent and β the base. Now the problem is simple, we want to build an algorithm comp that takes two floating point numbers f1 and f2 in base 2 and in base 10 respectively and returns their comparison. We use the standard CoQ type comparison for the returned type of the comparison function comp. This type contains three elements Lt, Eq, Gt that represent the three possible values of a comparison. Our goal is then to prove that, under some conditions Cond that we will explain later, the following theorem holds

This lemma relates the result of an evalutaion of the algorithm comp with a relation between two real numbers. When proving an algorithm eq that performs an equality test, the returned type is simply a boolean so the correctness theorem looks like

```
Lemma eq_correct (f1 : float 2) (f2 : float 10) :
Cond \rightarrow eq f1 f2 = true \leftrightarrow F2R f1 = F2R f2.
```

Note that as real numbers are axiomatised in COQ, we can not directly compute with them. Fortunately, there exist some tools that address this issue. One tool that we are using in this formalisation is the **interval** tactic [8]. It tries to automatically solve goals that contain real expressions by computing an approximation using standard techniques of interval arithmetic. For example, the following error bound of an approximation of the exponential function between 0 and 1 can be proved automatically.

```
Lemma bound_exp_taylor2 x :
 0 \le x \le 1 \rightarrow \text{Rabs} ((1 + x + x \hat{2} / 2) - \exp x) \le 22 / 100.
```

Another technique to approximate reals numbers are continued fractions. We are using them in our formalisation. Following closely the material that is presented by Khinchin [7], we have developed a library to compute and reason about continued fractions inside Coq. The main basic result that is needed here is that continued fractions represent the best rational approximations one can get. The formal statement is the following.

```
Lemma halton_min (n : nat) (p q : Z) (r : R) : 
 0 < q < q[r]_n.+1 \rightarrow t[r]_n \le Rabs (q * r - p).
```

Approximating a real number r by continued fractions can be seen as an iterative process. At rank n, we get an approximation, called convergent, $s_n = p_n/q_n$. One way of quantifying the quality of an approximation p/q is by the value, |qr - p|. Applied to s_n , this gives $\theta_n = |q_n r - p_n|$, written $t[r]_n$ in our formalisation. The previous lemma halton_min simply states that the convergent at rank n is the best approximation for all the rational numbers p/q with q less than q_{n+1} .

3 Formalisation

We want to compare a binary floating-point number x_2 and a decimal floatingpoint number x_{10} . This is reflected in our formalisation by introducing two variables of type float.

Variable x2 : float 2. Variable x10 : float 10.

Furthermore, x_2 belongs to the binary64 format and x_{10} to the decimal64 format. This means that we have:

$$x_2 = M_2 \cdot 2^{e_2 - 52}$$
$$x_{10} = M_{10} \cdot 10^{e_{10} - 15}$$

where:

$$-1022 \le e_2 \le +1023 \quad |M_2| \le 2^{53} - 1$$

$$-383 \le e_{10} \le +384 \quad |M_{10}| \le 10^{16} - 1$$

Without loss of generality, we can also suppose that $x_2 > 0$ and $x_{10} > 0$. If they are of opposite sign, the comparison is trivial and if they are both negative, taking the opposite of both numbers brings us back to the case we consider.

In our formalisation, as $x_2 > 0$, we shift the exponent is such a way that we have $2^{52} \leq M_2$. This corresponds to our M2_bound assumption.

```
Definition M2 := Fnum x2.
Hypothesis M2_bound : 2 ^{52} \le M2 \le 2 ^{53} - 1.
Definition e2 := Fexp x2 + 52.
Hypothesis e2_bound : -1074 \le e2 \le 1023.
```

Similarly for x_{10} but without any shifting, we get

```
Definition M10 := Fnum x10.
Hypothesis M10_bound : 1 \le M10 \le 10 \ 16 - 1.
Definition e10 := Fexp x10 + 15.
Hypothesis e10_bound : -383 \le e10 \le 384.
```

The four hypothesis M2_bound, e2_bound,M10_bound and e10_bound are implicitely conditions of all the theorems we present in the following.

Let us start deriving new facts from these definitions. First, M_{10} can also be "normalised". If we consider $\nu = 53 - |\log_2(M_{10})|$, we have that:

$$0 \le \nu \le 53$$

$$2^{53} \le 2^{\nu} M_{10} \le 2^{54} - 1$$

These correspond to the theorems <code>v_bound</code> and <code>norm2_bound</code> of our formalisation.

Now, we express x_2 and x_{10} with the largest common power of 2 possible. For this, we define $m = M_2$, $n = M_{10}2^v$, $h = \nu + e_2 - e_{10} - 37$ and $g = e_{10} - 15$. This gives us the following equalities (theorems x2_eq and x10_eq respectively).

$$x_2 = m \cdot 2^h \cdot 2^{g-\nu} \qquad \qquad x_{10} = n \cdot 5^g \cdot 2^{g-\nu}$$

The initial problem of comparing x_2 and x_{10} reduces to comparing $m \cdot 2^h$ with $n \cdot 5^g$. We also get bounds over m, h, n and g.

$$2^{52} \le m \le 2^{53} - 1$$

$$2^{53} \le n \le 2^{54} - 1$$

$$-398 \le g \le 369$$

$$-787 \le h \le 716$$

These are easily proven in COQ and correspond to the theorems m_bound, n_bound, g_bound and h_bound.

4 Handling "simple" cases

The first step of the algorithm consists in checking if the result can be determined by looking at the exponents g and h only. In order to compare 5^g and 2^h , a function φ is introduced. Its definition is the following.

$$\varphi(h) = \lfloor h \cdot \log_5 2 \rfloor$$

It is relatively easy to check that one can determine the result of the comparison between x_2 and x_{10} if g and $\varphi(h)$ differ. Formally, this means that the following two properties hold:

If
$$g < \varphi(h)$$
 then $x_2 > x_{10}$
If $g > \varphi(h)$ then $x_2 < x_{10}$

They correspond to the theorems <code>easycomp_lt</code> and <code>easycomp_gt</code> in our formalisation.

In order to get an algorithm, one still needs to provide a way to compute $\varphi(h)$. One way to do this is to use the integer value $\lfloor 2^k \cdot \log_5 2 \rfloor$ for a sufficient large value of k. In our case, k = 19 is enough, the following property holds.

$$\varphi(h) = \left| h \cdot \left[2^{19} \cdot \log_5 2 \right] \cdot 2^{-19} \right| \qquad \text{for } |h| \le 1831$$

This corresponds to the theorem prop2_1. Unfortunately, such a theorem is outside the reach of the interval tactic which does not handle the floor and to the nearest functions automatically.

In order to overcome this problem, we use the characteristic properties of the rounding functions (x is a real number, y an integer)

For example, in order to prove that $\lceil 2^{19} \cdot \log_5 2 \rfloor = 225799$, we reduce the problem to showing that $|2^{19} \cdot \log_5 2 - 225799| < 1/2$ which is solved automatically by the **interval** tactic. The proof of the **prop2_1** theorem is done in a similar way. We first generate the 3663 subgoals that represents all the possible values for h. For each of the subgoal, we guess what the value z for $\lfloor h \cdot \log_5 2 \rfloor$ is. We then need to prove that $\varphi(h) = z$ and $\lfloor h \cdot 225799 \cdot 2^{-19} \rfloor = z$. For both of these goals, we use the characteristic property of the floor function. Showing that $z \leq h \cdot \log_5 2 < z + 1$ and $z \leq h \cdot 225799 \cdot 2^{-19} < z + 1$ is done automatically by the **interval** tactic. This brute-force method is not the most elegant approach but it works. It takes Coq 40 minutes to check the theorem **prop2_1**.

Once all the properties of the function φ are proved, it is easy to write down an actual algorithm for the simple cases

```
Definition easycomp : comparison :=
let h := v + e2 - e10 - 37 in
let g := e10 - 15 in
let phih := (225799 * h) / (2 ^ 19) in
if g < phih then Gt
else if g > phih then Lt
else Eq.
```

and derive its associated theorem of correctness

Note that we are using the ideal integer arithmetic of COQ in a more realistic programming language we would have to deal with bounded arithmetic. Nevertheless, we can run our algorithm on the example given in the introduction and get the expected result.

Our correctness theorem tells us that all we can conclude is that $g = \varphi(h)$.

5 Exact testing

The algorithm in the previous section covers the cases where g differs from $\varphi(h)$. In this section, we assume that $g = \varphi(h)$.

5.1 Finding the needed precision

We define:

$$f(h) = 5^{\varphi(h)} \cdot 2^{-h} = 2^{\lfloor h \log_5 2 \rfloor \cdot \log_2 5 - h}$$

which verifies:

$$f(h) \cdot n > m \Rightarrow x_{10} > x_2$$

$$f(h) \cdot n < m \Rightarrow x_{10} < x_2$$

$$f(h) \cdot n = m \Rightarrow x_{10} = x_2$$

Now, the idea is to get a precise enough approximation of $f(h) \cdot n$ in order to retrieve the exact comparison. Our goal is therefore to find a lower bound η over the smallest non-zero value of the error |m/n - f(h)| in the range where

$$2^{52} \le m \le 2^{53} - 1$$

$$2^{53} \le n \le 2^{54} - 1$$

$$-787 \le h \le 716$$

We can also add an extra constraint that directly comes from the definition of n.

If
$$10^{16} \le n$$
 then $\operatorname{even}(n)$

A good candidate for this lower-bound, as proposed in [4], is $\eta = 2^{-113.7}$. In order to formally check that this lower-bound holds, we split in four the interval of h. For $0 \le h \le 53$, it is easily to prove that the lower bound is greater than 2^{-107} . This corresponds to the theorem d_h_easy1 . Similarly, the lower bound is greater than 2^{-108} for $-53 \le h \le 0$ (d_h_easy2). For the two remaining intervals $54 \le h \le 716$ and $-787 \le h \le -54$, we make use of our library for continued fractions. The key idea is that in order to find the lower bound for a given h it is not necessary to enumerate all the rationals m/n but only the convergents $s_n = p_n/q_n$ that approximate f(h) and whose denominator are bounded by $2^{53}-1$. The property that justifies this computation is the following:

If
$$q_n \le n < q_{n+1}$$
 and $|f(h) - m/n| < 1/2n^2$ Then $m/n = p_n/q_n$

This is the conv_2q2 theorem of our library that directly follows the proof given in [7]. In our case, as $\eta = 2^{-113.7}$ and $2^{53} \leq n \leq 2^{54} - 1$, we are sure that $\eta < 1/2n^2$, so our theorem applies.

For the first interval $54 \leq h \leq 716$, the lower bound ϵ_p/ϵ_q is reached for h = 612, m = 3521275406171921 and n = 8870461176410409 with

 $[\]begin{aligned} \epsilon_p &= 95837236471514977157488559853369253873503974784033193441759367158\\ 879170025294997936467046601695051723045003185390596549988774013061\\ 69390840117819918935869930600601291 \end{aligned}$

$\begin{aligned} \epsilon_q = 15076604622712586378413085535543158310234113291354064071380852407\\ 218620654696227859485444413405009205300052717281615404952311527789\\ 630428217161580997965373300467263261324839949270053015170403319309\\ 9264 \end{aligned}$

This corresponds to the theorem **pos_correct** of our formalisation. It is proved by a double enumeration. First, we enumerate all the *h* from 54 to 716, and for each of them, we enumerate all the convergents of f(h) whose denominator is smaller than $2^{53} - 1$ and check that the error is bigger that ϵ_p/ϵ_q . The entire proof takes 80 seconds to be checked by Coq.

For the second interval $-787 \le h \le -54$, a similar technique is used. This time the lower bound ϵ'_p/ϵ'_q is reached for h = 275, m = 4988915232824583 and n = 12364820988483254 with

 $\epsilon_p' = 112529423171232400134835569054963071809061903761868569039360251397$

and

$\begin{aligned} \epsilon_q' &= 186045148427403750191543353736499076917034509405654972460757157204 \\ &\quad 3696050968719646334648132324218750 \end{aligned}$

This corresponds to theorem **neg_correct** and takes 100 seconds to be validated by Coq.

The theorem d_h_{min} collects all the previous results and proves the smallest non-zero error is bigger than $\eta = 2^{-113.7}$. We thus know that if the error is less than η , the distance is 0 and we must be in the equality case.

5.2 Direct method

The first way to use the previous result is to precompute f in a table indexed by h. Then, assuming μ approximates $f(h) \cdot n$ with accuracy $\epsilon < \eta/4$, we have the following implications:

If	$\mu > m + \epsilon \cdot 2^{54}$	Then	$x_{10} > x_2$
If	$\mu < m - \epsilon \cdot 2^{54}$	Then	$x_{10} < x_2$
If	$ m-\mu \le \epsilon \cdot 2^{54}$	Then	$x_{10} = x_2$

This corresponds to the theorem direct_method_correct of our formalisation.

Since we have $\eta = 2^{-113.7}$, a 128-bit computed value of f is enough to make the exact comparison. In order to build the algorithm, we first build the table with 1504 entries that contains $\lceil f(h) \cdot 2^{127} \rceil$.

and

```
| -785 => 38772568831832703508158178356901129852
...
| 714 => 75715339914673581502256102241153698026
| 715 => 37857669957336790751128051120576849013
| 716 => 94644174893341976877820127801442122533
| _ => 0
end.
```

Proving that this table is correct (for each entry i, the value represents $\lceil f(h) \cdot 2^{127} \rceil$) is done by brute and takes 40 minutes. The algorithm then just needs to look up in the table and compares with $m * 2^{217}$.

```
Definition direct_method_alg :=
let v := n * (f_tbl h) - m * 2 ^ 127 in
if v < - 2 ^ 57 then Gt
else if v > 2 ^ 57 then Lt
else Eq.
```

As we have $2^{124} \leq f(h) \cdot 2^{127} < 2^{128}$, our epsilon is equal to 2^{-124} . This explains the 57 in the algorithm, 57 = -124 + 127 + 54. The proof of correctness is a direct consequence of these observations.

```
Theorem direct_method_alg_correct :

(direct_method_alg = Lt \leftrightarrow F2R x2 < F2R x10) \land

(direct_method_alg = Eq \leftrightarrow F2R x2 = F2R x10) \land

(direct_method_alg = Gt \leftrightarrow F2R x2 > F2R x10).
```

We have seen in the previous section with the execution of the easycomp algorithm that we have $g = \varphi(h)$ for the example in the introduction. Now, running the direct_method_alg algorithm returns the correct value for the comparison.

The main drawbak of this algorithm is that the table may be too large for some realistic implementation. The next section explains how we can alleviate the problem by using a bipartite table.

5.3 Bipartite table method

In this method, we use:

$$q = \left\lfloor \frac{\varphi(h)}{16} + 1 \right\rfloor \quad r = 16q - \varphi(h)$$

such that $f(h) = 5^{16q} \cdot 5^{-r} \cdot 2^{-h}$. We can easily derive the bounds for q and r from the bound of $\varphi(h)$.

$$-21 \le q \le 20$$
$$1 \le r \le 16$$

In this method, we store 5^{16q} and 5^r after a phase of normalisation. For this, we define the function ψ as follows.

$$\psi(g) = |g \cdot \log_2 5|$$

Similarly to what has been done for $\varphi(h)$, it is easy to compute $\psi(q)$ and $\psi(16q)$ using integer arithmetic:

$$\psi(g) = \left\lfloor \left[2^{12} \cdot \log_2 5 \right] \cdot g \cdot 2^{-12} \right] \qquad \text{for } |g| \le 204$$

$$\psi(16q) = \left\lfloor \left[2^{12} \cdot \log_2 5 \right] \cdot q \cdot 2^{-8} \right\rfloor \qquad \text{for } |q| \le 32$$

These equalities correspond to the theorems prop_2_2 and prop_2_3 in our formalisation. They are proved by brute force in 5 minutes and 40 seconds respectively.

Now, we introduce the two functions θ_1 and θ_1 that are defined as follows.

$$\theta_1(q) = 5^{16q} \cdot 2^{-\psi(16q) + 12^r}$$

$$\theta_2(r) = 5^r \cdot 2^{-\psi(r) + 63}$$

The following bounds are given by the theorems theta1_bound an theta2_bound.

1

$$2^{127} \le \theta_1(q) < 2^{128} - 2^{63} < \theta_2(r) < 2^{64}$$

Furthermore, we have

$$f(h) = \frac{\theta_1(q)}{\theta_2(r)} 2^{-64-\sigma(h)}$$
 with $\sigma(h) = \psi(r) - \psi(16q) + h$

If we define \varDelta as

$$\Delta = \theta_1(q) \cdot n \cdot 2^{-64+8} - \theta_2(r) \cdot m \cdot 2^{8+\sigma(h)}$$

comparing x_2 and x_{10} gives the same result as comparing 0 and Δ (theorem delta_ineq). We also easily get that if $x_2 \neq x_{10}$, then $|\Delta| \geq 2^{124}\eta$. This allows us to derive an approximated version of Δ :

$$\tilde{\Delta} = \left\lfloor \left\lceil \theta_1(q) \right\rceil \cdot n \cdot 2^{8-64} \right\rfloor - \theta_2(r) \cdot m \cdot 2^{8+\sigma(h)}$$

and proves that comparing 0 with $\tilde{\Delta}$ gives the same result as comparing x_2 with x_{10} (theorem delta'_ineq).

In order to build the algorithm, we first need to create the two tables for $\lceil \theta_1(q) \rceil$ and $\theta_2(r)$. Our tables are given in Figure 1. The first one contains integers that fit in 128 bits and the second one in 64 bits. The algorithm first computes q and r, then reads the values of $\lceil \theta_1(q) \rceil$ and $\theta_2(r)$, and then checks the sign of the computed $\tilde{\Delta}$.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$ \begin{vmatrix} -21 \\ -22 \\ -3029106399862996157485768413290076966 \\ -20 \\ -336298426882534191759128470626028036789 \\ -19 \\ -316683123935104582129005107785662008085 \\ -18 \\ -207259907386688073192955235040171322419 \\ -17 \\ -230104721262376436189351064420995165904 \\ -18 \\ -2255467559520441153892015707268715336457 \\ -5 \\ -23625966735416996535885333662014114405 \\ -14 \\ -3 \\ -3 \\ -28525966735416996535885333662014114405 \\ -7 \\ -3 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	Definition theta1_tbl q : Z :=	Definition theta2_tbl r : Z :=
$ \begin{vmatrix} -20 \\ + 336298426882534191759128470626028036789 \\ -19 \\ + 19 \\ + 1686312833510452129005107758662008085 \\ 3 \\ + 1125899068426240000 \\ -17 \\ + 220104721262376436189351064420995165904 \\ + 12558907084262240000 \\ -16 \\ + 25546755960734113996535885333662014114405 \\ + 2314880736512286933368946609052580905 \\ + 3 \\ + 334880736512286933368946609052580905 \\ + 3 \\ + 334880736512286933368946609052580905 \\ + 3 \\ + 33438534720000000 \\ + 12 \\ + 3 \\ + 31488073651228693336894660952580905 \\ + 3 \\ + 3343853472000000000 \\ + 12 \\ + 2 \\ + 3448807651228693336894660952580905 \\ + 3 \\ + 32486516527421378856590945672683340398 \\ + 0 \\ + 177386918400000000 \\ + 10 \\ + 2 \\ + 234503665319054867909425780839343315 \\ + 10 \\ + 2 \\ + 234503665319054867909425780839343315 \\ + 12 \\ + 2 \\$		
$ \begin{bmatrix} -19 \\ -19 \\ -19 \\ -17 \\ -201047212623763613835104582129005107785662008085 \\ -18 \\ -20259907386686073192955235040171322419 \\ 4 \\ +211258999068426240000 \\ -16 \\ -201042126237631833510442099516504 \\ -5 \\ -21407374835532800000 \\ -16 \\ -2258467559620444135892015707268715336457 \\ -5 \\ -21407374835532800000 \\ -15 \\ -238259667354169965388533662041411440 \\ -7 \\ -2 199064761537588616893622436057812819408 \\ -7 \\ -3 104887651028093326894608955258005 \\ -10 \\ -2 29920326653190548673094257880339338315 \\ -10 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$		• • • • • • • • • • • • • • • • • • • •
$ \begin{bmatrix}18 \\207259907386680073192955235040171322419 \\77 \\20104721262376436183951064420995165904 \\77 \\20104721262376436183951064420995165904 \\78 \\2556475569204411589201507268715336467 \\275921600441600000 \\15 \\28862596673541699653588533662014114405 \\2 \\2097152000000 \\14 \\2 \\20971520266531905482438667286334038 \\2 \\20173274182400000000 \\11 \\2 \\20255689964083854934479410327623431366 \\11 \\2 \\202565689964083854934479410327623431366 \\11 \\2 \\20256589964083854934479410327623431366 \\11 \\2 \\20256589964083854934479410327623431366 \\11 \\2 \\20256589964083854934479410327623431366 \\11 \\2 \\2 \\20256589964083854934479410327623431366 \\12 \\2 \\20256589964083854934479410327623431366 \\13 \\2 \\202565899640838547840013186968275991522 \\2 \\2 \\2087152000000000000000000000000 \\4 \\2 \\2 \\20871520000000000000000000000000 \\4 \\2 \\2 \\2087142177864120557442280568444278 \\2 \\2 \\20871421778421055744228677 \\2 \\$	• • • • • • • • • • • • • • • • • • • •	•
$ \left \begin{array}{c} -17 \Rightarrow 230104721262376436189351064420995165904 \\ 1-16 \Rightarrow 255467559620444135892015707268715336457 \\ 1-6 \Rightarrow 2856467559620444135892015707268715336457 \\ 1-7 \Rightarrow 1099511627776000000 \\ 1-14 \Rightarrow 314888078651228693933689466069052580905 \\ 1-12 \Rightarrow 194064761537588168168936224360578128194808 \\ 1-2 \Rightarrow 19406476153758816816893622436057812819408 \\ 1-2 \Rightarrow 19406476153758816816893622436057812819408 \\ 1-2 \Rightarrow 19406476153758816816893622436057812819408 \\ 1-2 \Rightarrow 19406476153758816816893622436057812819408 \\ 1-2 \Rightarrow 2255658964083354934479410327623431365 \\ 1-2 \Rightarrow 225568964083354934479410327623431367263431365 \\ 1-2 \Rightarrow 22486616107390172263733095172061133819 \\ 1-2 \Rightarrow 22486618107390172263733095197200113389 \\ 1-4 \Rightarrow 22397447421778042105574422805684427813 \\ -3 \Rightarrow 2486618107390172263733095197200113389 \\ 1-4 \Rightarrow 22397447421778042105574422805684427813 \\ -3 \Rightarrow 2248661810739017226373309519200113389 \\ 1-2 \Rightarrow 276069853871622551497390234491081018099 \\ -1 \Rightarrow 30649910817317771671669405430061836724 \\ 0 \Rightarrow 170141183460469231731687303715884105728 \\ 1 \Rightarrow 18894659314735805457840000000000000000 \\ 2 \Rightarrow 2097152000000000000000000000000000000 \\ 2 \Rightarrow 22697152000000000000000000000000000000000000$	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •
$ \begin{vmatrix} -16 \\ => 255467559620444135892015707268715336457 \\ -15 \\ => 223625966735416996535885333662014114405 \\ +7 \\ => 1099511627776000000 \\ -13 \\ => 17479799754928565188243866792683340398 \\ +9 \\ => 17179869184000000000 \\ -11 \\ => 2194064761537588616893622436057812819408 \\ +10 \\ => 1073741824000000000 \\ -11 \\ => 239203286653190548679094257880939433815 \\ +12 \\ => 24556899640833549344794103276234313665 \\ +13 \\ => 239203286653190548679094257880939433815 \\ +12 \\ => 26556899640833549344794103276234313665 \\ +13 \\ => 294840814439182918143871451639708507103 \\ +14 \\ => 1310720000000000000 \\ -7 \\ => 22556899640833549344794103276234313665 \\ +13 \\ => 10485760000000000000 \\ -7 \\ => 2207182717255397335668686851273502683 \\ +16 \\ => 1024000000000000000 \\ +6 \\ -2 \\ => 276069853871622551497390234491081018099 \\ -1 \\ -3 \\ => 24866161204893321077691124073410420051 \\ +2 \\ => 276069853871622551497390234491081018099 \\ +1 \\ -3 \\ => 24866161204893321077691124073410420051 \\ +2 \\ => 2097152000000000000000000000000000 \\ +2 \\ => 209715200000000000000000000000000 \\ +2 \\ => 2284306436538696289062500000000000000 \\ +2 \\ => 228430643653869628906250000000000000 \\ +2 \\ => 28698592543722536125179818657774823687 \\ +6 \\ => 31861838222649045540577607955542361119 \\ +7 \\ => 17686873000334225927912486150152183217 \\ +8 \\ => 19636373861190062123830878199451025720 \\ +9 \\ => 21800754380841731685934750271862213031 \\ +10 \\ => 2402059467808239205112691458035690474 \\ +11 \\ => 2687165437861190062123830878199451025720 \\ +9 \\ => 21800754380841731685934750271862213031 \\ +10 \\ => 24833629248008269731638612618517353496 \\ +13 \\ => 29833629248008269731638612618517353496 \\ +13 \\ => 29833629248008269731638612618517353496 \\ +13 \\ => 20412815259847818312725913935345185578 \\ +16 \\ => 204128152598478183127259139553451392571 \\ +25667774988027955951103258282533066424 \\ +7 \\ => 2566777498907955951103258282833066424 \\ +7 \\ => 2566777498907955951103258282833066424 \\ +7 \\ => 2566777498907955951103258282833066424 \\ +7 \\ => 25677749890795595103258282833066424 \\ +7 \\ +2 \\ +2 \\ +2 \\ +2 \\ +$	<pre> -18 => 207259907386686073192955235040171322419</pre>	4 => 11258999068426240000
$ \begin{bmatrix} -15 \\ => 28362596673541699653588533362014114405 \\ -14 \\ => 314888078651228639333689466069052580905 \\ 8 \\ => 174797997549285651882438866782683340398 \\ 9 \\ => 17179869184000000000 \\ -11 \\ => 2194064761537588616839242346057812819408 \\ 10 \\ => 10737418240000000000 \\ 11 \\ => 2154551665274213785665399450770071014 \\ 11 \\ => 21321772800000000000 \\ 0 \\ => 2255689964083354934479410327623431365 \\ 12 \\ => 163772160000000000 \\ 12 \\ => 294840814439182918143871451639708507103 \\ 14 \\ => 131072000000000000 \\ -6 \\ => 20173827172553973356686868531273502683 \\ -4 \\ => 22397447217780421055744228056844427813 \\ -3 \\ => 27606985387162251497390234491081018099 \\ -1 \\ => 306499108173117771671669405430061836724 \\ 0 \\ => 170141183460469231731687303715884105728 \\ 1 \\ => 28698592549372253612517981865774823687 \\ 6 \\ => 23830643653869628906250000000000000 \\ 4 \\ => 258493941422821648439731521627186231301740 \\ 5 \\ => 286985925493722536125179818657774823687 \\ 6 \\ => 318618382226490455405776079553542361119 \\ 7 \\ => 27606985387162259791248615015213031 \\ 10 \\ => 2420369467806239205112691458039690474 \\ 11 \\ => 268715044302683550071638612618517353496 \\ 13 \\ => 2863738611909062123830878199451025720 \\ 9 \\ => 21800754380841731685934750271862213031 \\ 10 \\ => 2420369467806239205112691458039690474 \\ 11 \\ => 268715044302683550071638612618517353496 \\ 13 \\ => 29833629467806239205112691458033690478 \\ 14 \\ => 133216864211123806751178713779234900611 \\ 4 \\ => 331216864211123806751178713779234900611 \\ 4 \\ => 33121686421112380675117871377923490611 \\ 4 \\ => 33121686421112380675117871377923490611 \\ 4 \\ => 2566777498907955951103258828533046424 \\ 7 \\ => 2666777498907955951103258828533046424 \\ 7 \\ => 266677738123829846909510499162240505304146 \\ 9 \\ => 3101303229050298833240994779765547114 \\ 20 \\ => 17215675123829846960951049916224692801 \\ => 0$	<pre> -17 => 230104721262376436189351064420995165904</pre>	5 => 14073748835532800000
$ \begin{vmatrix} -14 \\ => 314888078651228693933689466069052580905 \\ 8 \\ => 17779861840000000 \\ -12 \\ => 1940647615375861689362234057812814948 \\ 10 \\ => 10 \\ => 177796618375861689362234057812814948 \\ 10 \\ => 10 \\ => 107771620000000000 \\ -10 \\ => 239203286653190548679094257809393433815 \\ 11 \\ => 13421772800000000000 \\ -10 \\ => 239203286653190548679094257809393433815 \\ 12 \\ => 16777216000000000000 \\ -8 \\ => 29440814439182918143871451639708507103 \\ 14 \\ => 131072000000000000 \\ -6 \\ => 18170968107390172263733095197200113359 \\ 16 \\ => 10240000000000000 \\ -6 \\ => 2397447421778042105744228056844427813 \\ -3 \\ => 24866161820489332107769112407341042005 \\ -1 \\ => 24866161820489332107769112407341042005 \\ -2 \\ => 248661593147858054744000000000000000 \\ 2 \\ => 2097152000000000000000000000000000 \\ 4 \\ => 228306436538696229025200000000000000 \\ 4 \\ => 22830643653869622902512021 \\ 5 \\ => 16868732008334225927912466150152183217 \\ 8 \\ => 19636373661190062123830878199451025720 \\ 9 \\ => 2180075438084173168593475821025720 \\ 9 \\ => 21800754380841731685934758200085183 \\ 12 \\ => 208333229248008269751136312612183217 \\ 8 \\ => 1963373661190062123830878199451025720 \\ 9 \\ => 2180075438084173168593475251682213031 \\ 10 \\ => 24203699467808239205112691458039690474 \\ 11 \\ => 286373861190062123830878199451025720 \\ 9 \\ => 2180075438084173168593475271682213031 \\ 10 \\ => 24203699467808239205112691458039690474 \\ 11 \\ => 28333262948008269731638612618517353496 \\ 13 \\ => 331216864211123806751178713779234900611 \\ 4 \\ => 2333121686421112380675117871377923490611 \\ 4 \\ => 22667773812388008561831274259193653345185578 \\ 16 \\ => 204128152598478183127259193653345185578 \\ 16 \\ => 204128152598478183127259193653345185578 \\ 16 \\ => 204128152598478183127259193653345185578 \\ 16 \\ => 204128152598478183127259193653345185578 \\ 16 \\ => 204128152598478183127259193653345185578 \\ 16 \\ => 204128152598478183127259193653345185578 \\ 16 \\ => 204128152598478183127259193653345185578 \\ 16 \\ => 204128152598478183127$	<pre>-16 => 255467559620444135892015707268715336457</pre>	6 => 17592186044416000000
$ \begin{vmatrix} -13 \\ -13 \\ -13 \\ -13 \\ -13 \\ -12 \\ -19 \\ -14 \\ -12 \\ -19 \\ -14 \\ -12 \\ -15 \\ -$	<pre>-15 => 283625966735416996535885333662014114405</pre>	7 => 10995116277760000000
$ \begin{bmatrix} -12 \\ -12 \\ -12 \\ -12 \\ -11 \\ -21 \\ -11 \\ -21 \\ -11 \\ -21 \\ -$	<pre> -14 => 314888078651228693933689466069052580905</pre>	8 => 1374389534720000000
$ \begin{vmatrix} -11 = > 215455166527421373856590945602770070141 \\ -10 => 239203286653190548679094257880939433815 \\ -9 => 265568996408383549344794103276234313665 \\ -9 => 255668996408383549344794103276234313665 \\ -13 => 294840814439182918143871451639708507103 \\ -7 => 327339060789614187001318969682759915222 \\ -7 => 327339060789614187001318969682759915222 \\ -6 => 181709681073901722637330551872001133689 \\ -5 => 20173827172553733565686868512735302683 \\ -4 => 223974474217780421055744228056844427813 \\ -3 => 248661618204893321077691124073410420051 \\ -2 => 276069853871622551497390234491081018099 \\ -1 => 30649910817317771671669405430061836724 \\ 0 => 170141183460469231731687303715884105728 \\ 1 => 188894593147858085478400000000000000 \\ 2 => 20971520000000000000000000000000 \\ 2 => 2097152000000000000000000000000000 \\ 4 => 258493941422821148397315216271863391740 \\ 5 => 28698592549372256125179818657774823687 \\ 6 => 318618382226490455405776079553542361119 \\ 7 => 176868732008334225927912486150152183217 \\ 8 => 196363738611909062123830878199451025720 \\ 9 => 218007543808417316859394750271862213031 \\ 10 => 24203699467806232925111691458036990474 \\ 11 => 26871504430268355007163862355809085183 \\ 12 => 29833629248008269731638612618517353496 \\ 13 => 33121686421112380675117871377923490611 \\ 14 => 18386229439566618064937594210188633456 \\ 15 => 2041281525847813127259193653345185578 \\ 16 => 22662777489027955951103258828533066424 \\ 17 => 256107373812388019852618613412845800985 \\ 18 => 279340299571981831419774226402503504146 \\ 19 => 310130032290502989833240994779765547114 \\ 20 => 7215675128329846960951049916624692801 \\ _{-} => 0 \\ $	<pre> -13 => 174797997549285651882438866782683340398</pre>	9 => 1717986918400000000
$ \begin{vmatrix} -10 \Rightarrow 239203286653190548679094257880939433815 \\ -9 \Rightarrow 265568996408383549344794103276234313665 \\ 13 \Rightarrow 104857600000000000 \\ -8 \Rightarrow 294840814439182918143871451639708507103 \\ 14 \Rightarrow 327339060789614187001318969682759915222 \\ 15 \Rightarrow 16384000000000000000 \\ -6 \Rightarrow 181709681073901722637330951972001133589 \\ -5 \Rightarrow 201738271725539733666868685312735302683 \\ -4 \Rightarrow 223974474217780421055744228056844427813 \\ -3 \Rightarrow 248661618204893321077691124073410420051 \\ -2 \Rightarrow 276069853871622551497390234491081018099 \\ -1 \Rightarrow 306499108173177771671669405430061836724 \\ 0 \Rightarrow 170141183460469231731687303715884105728 \\ 1 \Rightarrow 1888946593147858054784000000000000000 \\ 2 \Rightarrow 2097152000000000000000000000000000000 \\ 2 \Rightarrow 2097152000000000000000000000000000000 \\ 4 \Rightarrow 25849394142282148397315216271863391740 \\ 5 \Rightarrow 286985925493722536125179818657774823687 \\ 6 \Rightarrow 318618382226490455405776079553542361119 \\ 7 \Rightarrow 176868732008334225927912486150152183217 \\ 8 \Rightarrow 196363736611909062123830878199451025720 \\ 9 \Rightarrow 21800754380641731685394750271862213031 \\ 10 \Rightarrow 242036994678082392051126914580396990474 \\ 11 \Rightarrow 2687150403208352057116326123301 \\ 10 \Rightarrow 242036994678082392051126914580396990474 \\ 11 \Rightarrow 28933629248008269731638612618517353496 \\ 13 \Rightarrow 331216864211123806751178713779234900611 \\ 14 \Rightarrow 133862294395666818064937594201088633456 \\ 15 \Rightarrow 204128152598478183127259193653345185578 \\ 16 = 2266777749890279559511032582833364242 \\ 17 \Rightarrow 251607373812380198526186131412845800985 \\ 18 \Rightarrow 279340299571981831419774226402503504146 \\ 19 \Rightarrow 31013003229050298883240994779765547114 \\ 20 \Rightarrow 172156751238329846960951049916624692801 \\ _{-} \Rightarrow 0$	<pre>-12 => 194064761537588616893622436057812819408</pre>	10 => 1073741824000000000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<pre>-11 => 215455166527421378856590945602770070141</pre>	11 => 13421772800000000000
$ \begin{vmatrix} -8 \\ -8 \\ 294840814439182918143871451639708507103 \\ -7 \\ -3 \\ 227339060789614187001318969682759915222 \\ 15 \\ -5 \\ -8 \\ 181709681073901722637330951972001133589 \\ 16 \\ -5 \\ -2 \\ 223974474217780421055744228056844427813 \\ -3 \\ -2 \\ 223974474217780421055744228056844427813 \\ -3 \\ -2 \\ 223974474217780421055744228056844427813 \\ -3 \\ -2 \\ 223974474217780421055744228056844427813 \\ -3 \\ -2 \\ 223974474217780421055744228056844427813 \\ -1 \\ -3 \\ 3064991081731777716791124073410420051 \\ -2 \\ -2 \\ 276069853871622551497390234491081018099 \\ -1 \\ -3 \\ 30649910817317777167169405430061836724 \\ 0 \\ -1 \\ -3 \\ 30649910817317777167169405430061836724 \\ 0 \\ -1 \\ -3 \\ 3064991081731777167169405430000000000000000 \\ 0 \\ 2 \\ -2 \\ 20971520000000000000000000000000000000000 \\ 0 \\ 3 \\ -2 \\ 2283064365386962890625000000000000000 \\ 0 \\ 4 \\ -2 \\ 258493841422821148397315216271863391740 \\ 5 \\ -2 \\ 286985925493722536125179818657774823687 \\ 16 \\ -3 \\ 318618382226490455405776079553542361119 \\ 7 \\ -2 \\ 2403699467808239205112691486139451025720 \\ 9 \\ -2 \\ 2403699467808239205112691458039690474 \\ 11 \\ -2 \\ 298333629248008269731638612618517353496 \\ 13 \\ -3 \\ 31216864211123806751178713779234900611 \\ 14 \\ +3 \\ 1386229439566818064937594201088633456 \\ 15 \\ -2 \\ 204128152598478183127259193653345185578 \\ 16 \\ -2 \\ 279340299571981831419774226402503504146 \\ 19 \\ - \\ 310130032290502989833240994779765547114 \\ 20 \\ - \\ + 0 \\ \end{bmatrix}$	-10 => 239203286653190548679094257880939433815	12 => 167772160000000000000
$ \left \begin{array}{c} -7 \\ => 327339060789614187001318969682759915222 \\ 15 \\ => 1638400000000000000000 \\ 16 \\ => 2017382717255397335668686851273502683 \\ 16 \\ => 223974474217780421055744228056844427813 \\ -3 \\ => 248661618204893321077691124073410420051 \\ -2 \\ => 276069853871622551497390234491081018099 \\ -1 \\ => 30649910817317771671669405430061836724 \\ 0 \\ => 170141183460469231731687303715884105728 \\ 1 \\ => 188946593147858085478400000000000000 \\ 2 \\ => 20971520000000000000000000000000 \\ 4 \\ => 258493941422821148397315216271863391740 \\ 5 \\ => 286985925493722536125179818657774823687 \\ 6 \\ => 318618382226490455405776079553542361119 \\ 7 \\ => 176868732008334225927912486150152183217 \\ 8 \\ => 196363738611909062123830878199451025720 \\ 9 \\ => 218007543808417316859394750271862213031 \\ 10 \\ => 24203699467808239205112691458039690474 \\ 11 \\ => 26871504430268355007163862358090985183 \\ 12 \\ => 298333629248008269731638612618517353496 \\ 13 \\ => 331216864211123806751178713779234900611 \\ 4 \\ => 18386229439566818064937594201088633456 \\ 15 \\ => 20412815259847818312725919365334518578 \\ 16 \\ => 22662777498902795595110325828533066424 \\ 17 \\ => 251607373812388019852618613412845800985 \\ 18 \\ => 279340299571981831419774226402503504146 \\ 19 \\ => 310130032290502989833240994779765547114 \\ 20 \\ => 7215675123832984690051049916624692801 \\ _ \\ => 0 \\ \end{array}$	-9 => 265568996408383549344794103276234313665	13 => 104857600000000000000
$ \left \begin{array}{c} -7 \\ => 327339060789614187001318969682759915222 \\ 15 \\ => 1638400000000000000000 \\ 16 \\ => 2017382717255397335668686851273502683 \\ 16 \\ => 223974474217780421055744228056844427813 \\ -3 \\ => 248661618204893321077691124073410420051 \\ -2 \\ => 276069853871622551497390234491081018099 \\ -1 \\ => 30649910817317771671669405430061836724 \\ 0 \\ => 170141183460469231731687303715884105728 \\ 1 \\ => 188946593147858085478400000000000000 \\ 2 \\ => 20971520000000000000000000000000 \\ 4 \\ => 258493941422821148397315216271863391740 \\ 5 \\ => 286985925493722536125179818657774823687 \\ 6 \\ => 318618382226490455405776079553542361119 \\ 7 \\ => 176868732008334225927912486150152183217 \\ 8 \\ => 196363738611909062123830878199451025720 \\ 9 \\ => 218007543808417316859394750271862213031 \\ 10 \\ => 24203699467808239205112691458039690474 \\ 11 \\ => 26871504430268355007163862358090985183 \\ 12 \\ => 298333629248008269731638612618517353496 \\ 13 \\ => 331216864211123806751178713779234900611 \\ 4 \\ => 18386229439566818064937594201088633456 \\ 15 \\ => 20412815259847818312725919365334518578 \\ 16 \\ => 22662777498902795595110325828533066424 \\ 17 \\ => 251607373812388019852618613412845800985 \\ 18 \\ => 279340299571981831419774226402503504146 \\ 19 \\ => 310130032290502989833240994779765547114 \\ 20 \\ => 7215675123832984690051049916624692801 \\ _ \\ => 0 \\ \end{array}$	-8 => 294840814439182918143871451639708507103	14 => 1310720000000000000000
$ \begin{vmatrix} -6 \Rightarrow 181709681073901722637330951972001133589 \\ -5 \Rightarrow 20173827172553973356686865312735302683 \\ -4 \Rightarrow 223974474217780421055744228056844427813 \\ -3 \Rightarrow 248661618204893321077691124073410420051 \\ -2 \Rightarrow 276069853871622551497390234491081018099 \\ -1 \Rightarrow 306499108173177771671669405430061836724 \\ 0 \Rightarrow 170141183460469231731687303715884105728 \\ 1 \Rightarrow 18889465931478580854784000000000000000 \\ 2 \Rightarrow 2097152000000000000000000000000 \\ 4 \Rightarrow 258493941422821148397315216271863391740 \\ 5 \Rightarrow 286985925493722536125179818657774823687 \\ 6 \Rightarrow 3186183222649045540576079553542361119 \\ 7 \Rightarrow 1768687320083422597912486150152183217 \\ 8 \Rightarrow 196363738611909062123830878199451025720 \\ 9 \Rightarrow 218007543808417316859394750271862213031 \\ 10 \Rightarrow 242036994678082392051126914580396990474 \\ 11 \Rightarrow 26871504430268355007163862355809085183 \\ 12 \Rightarrow 298333629248008269731638612618517353496 \\ 13 \Rightarrow 33121686421113806751178713779234900611 \\ 14 \Rightarrow 25160737381238019852618613412845800985 \\ 18 \Rightarrow 279340299571981831419774226402503504146 \\ 19 \Rightarrow 310130032290502989833240994779765547114 \\ 20 \Rightarrow 172156751238329846960951049916624692801 \\ _ = \Rightarrow 0 $	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
$ \left \begin{array}{c} -5 \\ => 201738271725539733566886863512735302683 \\ \left \begin{array}{c} -4 \\ => 223974474217780421055744228056844427813 \\ end. \\ \end{array} \right. \\ \left \begin{array}{c} -3 \\ => 248661618204893321077691124073410420051 \\ \left \begin{array}{c} -2 \\ => 276069853871622551497390234491081018099 \\ \left \begin{array}{c} -1 \\ => 306499108173177771671669405430061836724 \\ 0 \\ 0 \\ => 170141183460469231731687303715884105728 \\ 1 \\ => 18889465931478580854784000000000000000 \\ 0 \\ 2 \\ => 2097152000000000000000000000000000 \\ 0 \\ 3 \\ => 232830643653869628906250000000000000 \\ 0 \\ 4 \\ => 258493941422821148397315216271863391740 \\ 5 \\ => 286985925493722536125179818657774823687 \\ 6 \\ => 318618382226490455405776079553542361119 \\ 7 \\ => 1768687320083422592912486150152183217 \\ 8 \\ => 196363738611909062123830878199451025720 \\ 9 \\ => 218007543808417316859394750271662213031 \\ 10 \\ => 242036994678082392051126914580396990474 \\ 111 \\ => 268715044302683550071638612618517353496 \\ 13 \\ => 331216864211123806751178713779234900611 \\ 14 \\ => 183862294395668818064937594201088633456 \\ 15 \\ => 204128152598478183127259193653345185578 \\ 16 \\ => 226627774980027955951103258828533066424 \\ 17 \\ => 251607373812388019852618613412845800985 \\ 18 \\ => 279340299571981831419774226402503504146 \\ 19 \\ => 310130032290502989833240994779765547114 \\ 20 \\ => 172166751238329846960951049916624692801 \\ \\ \begin{array}{c} \\ \\ \end{array}$	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
<pre>-4 => 223974474217780421055744228056844427813 end. -3 => 248661618204893321077691124073410420051 -2 => 276069853871622551497390234491081018099 -1 => 306499108173177771671669405430061836724 0 => 170141183460469231731687303715884105728 1 => 188894659314785808547840000000000000000 0000000000000000000</pre>		• • • • • • • • • • • • • • • • • • • •
$\begin{array}{llllllllllllllllllllllllllllllllllll$	• • • • • • • • • • • • • • • • • • • •	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	• • • • • • • • • • • • • • • • • • • •	end.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	• • • • • • • • • • • • • • • • • • • •	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	• • • • • • • • • • • • • • • • • • • •	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	• • • • • • • • • • • • • • • • • • • •	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	• • • • • • • • • • • • • • • • • • • •	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	• • • • • • • • • • • • • • • • • • • •	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	•	
<pre>5 => 286985925493722536125179818657774823687 6 => 318618382226490455405776079553542361119 7 => 176868732008334225927912486150152183217 8 => 196363738611909062123830878199451025720 9 => 218007543808417316859394750271862213031 10 => 242036994678082392051126914580396990474 11 => 268715044302683550071638623558009085183 12 => 298333629248008269731638612618517353496 13 => 331216864211123806751178713779234900611 14 => 18386229439566818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 22662777498902795595110325828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 _ => 0</pre>	• • • • • • • • • • • • • • • • • • • •	
<pre>6 => 318618382226490455405776079553542361119 7 => 176868732008334225927912486150152183217 8 => 196363738611909062123830878199451025720 9 => 218007543808417316859394750271862213031 10 => 242036994678082392051126914580396990474 11 => 268715044302683550071638623558009085183 12 => 298333629248008269731638612618517353496 13 => 331216864211123806751178713779234900611 14 => 183862294395666818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 => 0</pre>		
<pre>7 => 176868732008334225927912486150152183217 8 => 196363738611909062123830878199451025720 9 => 218007543808417316859394750271862213031 10 => 242036994678082392051126914580396990474 11 => 268715044302683550071638623558009085183 12 => 298333629248008269731638612618517353496 13 => 331216864211123806751178713779234900611 14 => 183862294395666818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 => 0</pre>	• • • • • • • • • • • • • • • • • • • •	
<pre>8 => 196363738611909062123830878199451025720 9 => 218007543808417316859394750271862213031 10 => 242036994678082392051126914580396990474 11 => 2687150443026835500716386235588099085183 12 => 298333629248008269731638612618517353496 13 => 331216864211123806751178713779234900611 14 => 183862294395666818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 2266277774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 => 0</pre>	• • • • • • • • • • • • • • • • • • • •	
<pre>9 => 218007543808417316859394750271862213031 10 => 242036994678082392051126914580396990474 11 => 268715044302683550071638623558009085183 12 => 298333629248008269731638612618517353496 13 => 331216864211123806751178713779234900611 14 => 183862294395666818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 => 0</pre>	• • • • • • • • • • • • • • • • • • • •	
<pre>10 => 242036994678082392051126914580396990474 11 => 268715044302683550071638623558009085183 12 => 298333629248008269731638612618517353496 13 => 331216864211123806751178713779234900611 14 => 183862294395666818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 31013003229050298983324099479765547114 20 => 172156751238329846960951049916624692801 => 0</pre>	• • • • • • • • • • • • • • • • • • • •	
<pre>11 => 268715044302683550071638623558009085183 12 => 298333629248008269731638612618517353496 13 => 331216864211123806751178713779234900611 14 => 183862294395666818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 => 0</pre>	• • • • • • • • • • • • • • • • • • • •	
<pre>12 => 298333629248008269731638612618517353496 13 => 331216664211123806751178713779234900611 14 => 183862294395666818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 => 0</pre>	• • • • • • • • • • • • • • • • • • • •	
<pre>13 => 331216864211123806751178713779234900611 14 => 183862294395666818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502988833240994779765547114 20 => 172156751238329846960951049916624692801 _ => 0</pre>	• • • • • • • • • • • • • • • • • • • •	
<pre>14 => 183862294395666818064937594201088633456 15 => 204128152598478183127259193653345185578 16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 => 0</pre>	12 => 298333629248008269731638612618517353496	
<pre>15 => 204128152598478183127259193653345185578 16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 => 0</pre>	13 => 331216864211123806751178713779234900611	
<pre>16 => 226627774989027955951103258828533066424 17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 => 0</pre>	14 => 183862294395666818064937594201088633456	
<pre>17 => 251607373812388019852618613412845800985 18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 _ => 0</pre>	15 => 204128152598478183127259193653345185578	
18 => 279340299571981831419774226402503504146 19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 _ => 0	16 => 226627774989027955951103258828533066424	
19 => 310130032290502989833240994779765547114 20 => 172156751238329846960951049916624692801 _ => 0	17 => 251607373812388019852618613412845800985	
20 => 172156751238329846960951049916624692801 _ => 0	18 => 279340299571981831419774226402503504146	
_ => 0	19 => 310130032290502989833240994779765547114	
	20 => 172156751238329846960951049916624692801	
end.	_ => 0	
	end.	

Fig. 1. Tables for $\lceil \theta_1(q) \rceil$ and $\theta_2(r)$

```
Definition ineq_alg : comparison :=
 let q := g / 16 + 1 in
 let r := 16 * q - g in
 let psir := (9511 * r) / 2 ^ 12 in
 let psiq := (9511 * q) / 2 ^ 8 in
 let s := psir - psiq + h in
 let a := ((theta1_tbl q) * (n * 2 ^ 8)) / (2 ^ 64) in
 let b := (theta2_tbl r) * (m * 2 ^ (8 + s)) in
 let D := a - b in (0 = ?= D)
```

The value 9511 corresponds to $\lceil 2^{12} \cdot \log_2 5 \rfloor$ and =?= to the comparison function for integer. Its associated correctness theorem is the following.

```
Theorem ineq_alg_correct :

(ineq_alg = Lt \leftrightarrow F2R x2 < F2R x10) \land

(ineq_alg = Eq \leftrightarrow F2R x2 = F2R x10) \land

(ineq_alg = Gt \leftrightarrow F2R x2 > F2R x10).
```

Running the ineq_alg algorithm gives the same value as the one using the direct method.

6 Equality case

If we only want to test the equality between x_2 and x_{10} , an even simpler algorithm can be used. We already know that $x_2 = x_{10}$ is equivalent to $m \cdot 2^h = n \cdot 5^g$. As 2 and 5 are relatively prime, only two situations can occur :

 $\begin{array}{l} - \text{ either } 5^g \mid m \text{ and } 2^h \mid n \text{ with } 0 \leq g \leq 22 \text{ and } 0 \leq h \leq 53; \\ - \text{ or } 2^{-h} \mid m \text{ and } 5^{-g} \mid n \text{ with } -22 \leq g \leq 0 \text{ and } -51 \leq h \leq 0. \end{array}$

The algorithm is a direct encoding of this property. It checks that $5^g \cdot (n2^{-h}) = m$ if we are in the first case or that $5^{-g} \cdot (m2^h) = n$ if we are in the second case.

```
\begin{array}{l} \mbox{Definition eq_alg : bool :=} \\ \mbox{if } (0 \le h) \ \&\& \ (h \le 53) \ \&\& \ (0 \le g) \ \&\& \\ \ (g \le 22) \ \&\& \ (n \ mod \ (2 \ h) \ == \ 0) \ then \\ \ let \ m' \ := \ 5 \ \ g \ \ast \ (n \ / \ (2 \ h)) \ in \ m' \ == \ m \\ \ else \ if \ (h >= \ -51) \ \&\& \ (-22 \le g) \ \&\& \\ \ \ (g \le 0) \ \&\& \ (m \ mod \ (2 \ (-h)) \ = \ 0) \ then \\ \ let \ n' \ := \ 5 \ \ (-g) \ \ast \ (m \ / \ (2 \ (-h))) \ in \ n' \ == \ n \\ \ else \\ \ false. \end{array}
```

Its correctness theorem proves the equivalence between running the algorithm and testing the two values.

```
Theorem eq_alg_correct : eq_alg = true \leftrightarrow (F2R x2 = F2R x10).
```

On our favorite example, it returns the expected result.

```
Compute eq_alg {| Fnum := 7205759403792794; Fexp := -56 |}
{| Fnum := 1; Fexp := -1 |}.
= false
: comparison
```

7 Conclusion and Future Works

Our formalisation contains four algorithms for comparing a binary64 floatingpoint number and a decimal64 floating-point number and their proof of correctness. The code is available at:

https://gitlab.com/artart78/compbindec

It is composed of five files: util.v and rfrac.v for general results (most of which are about real numbers or continued fractions), frac.v for the result of the continued fraction problem solution, compformula.v for the computation of some formulas requiring tabulation of values, and compbindec.v for the main result. Altogether, this amounts to about 5000 lines of code that COQ checks in about 1 hour and 40 minutes. We have been using intensively SSREFLECT [6] for its set of tactics and syntax, the Flocq [2] library for manipulating floating-point numbers, and the Interval [8] tactic for the computation over the real numbers. We had to develop a dedicated library for continued fraction in order to tackle some aspects of the proof. This library is available in the rfrac.v file.

The main contribution of this work is a carefully check of the algorithms and the proofs presented in [4]. In particular, we have connected in a formal way the paper proofs with the computation that is required in order to get the accuracy at which $f(h) \cdot n$ needs to be computed. During the formalisation, we have found some minor mistakes in the original paper and we have also departed at some places from what was presented in the original paper. For example, the original paper states that $-20 \leq q \leq 21$ instead of $-21 \leq q \leq$ 20. Fortunately, this mistake has no consequence. More values are tabulated in the actual implementation (the bounds are slightly relaxed). The original paper mentions the bound $2^{-113.67}$ while our formalisation only makes use of $2^{-113.7}$. The statement of the direct_method_correct omits the scaling factor of f(h)in the assumption. It makes its proof easier and simplifies its application. Finally, the statements of the theorems pos_correct and neg_correct do not mention the extra condition (if h > 680, then $\nu' = h + \varphi(h) - 971 > 0$ and $2^{\nu'}(n)$ that is present in the original paper. It does not change the lower-bound and we believe that this omission makes the statements more readable at the cost of a negligible extra computing.

The capability of computing expressions over the real numbers thanks to the **interval** tactic has been a key ingredient on this work. These computations are often hidden in the original paper. It is the case for example for the bounds for θ_1 and θ_2 . The bounds that are obtained without taking into account the bound on h are actually less strict than the ones specified in the paper. For example, only $\theta_1 < 2^{128}$ could be proved, but it is actually important to get the $2^{128} - 1$ bound in order to know we can embed the value into a 128-bit value. The 2^{128} bound was obtained by noticing that $16q \log_2 5 - \lfloor 16q \log_2 5 \rfloor < 1$, but the $2^{128} - 1$ bound requires that it is less than $1 + \log_2(1 - \frac{1}{2^{128}}) \simeq 1 - \frac{1}{2^{128}}$. We successfully manage to formalise all these proofs but clearly life would have been easier if the tactic **interval** would accommodate the floor and the ceiling functions. It could in particular greatly improve our checking time. 40 minutes

out of the hour and 40 minus of our checking time are spent by our brute-force method in trying to validate the integer equivalent for the function $\varphi(h)$.

There are several ways to extend this work. First, we could formalise the counting argument that is present in the original paper that quantifies the percentage of floating point numbers that are comparable using the first partiall comparison method (easycomp). It would require to develop the notion of cardinal of sets of floating point numbers in the COQ standard library. Second, what we have proven are only algorithms, it would be very interesting to try to prove a realistic software implementation using a tool like WHY3 [5]. Finally a sequel of our reference [4] for this work has been written by the same authors in [3]. The general idea of the algorithm remains the same, but the generalisation of the result also requires a generalisation of all the intermediate results, and computation may become a lot harder since the numbers can then take up to 128 bits. Formalising it would be a real challenge.

References

- S. Boldo, C. Lelay, and G. Melquiond. Coquelicot: A user-friendly library of real analysis for Coq. *Mathematics in Computer Science*, 9(1):41–62, 2015.
- S. Boldo and G. Melquiond. Flocq: A unified library for proving floating-point algorithms in coq. In E. Antelo, D. Hough, and P. Ienne, editors, 20th IEEE Symposium on Computer Arithmetic, ARITH 2011, Tübingen, Germany, 25-27 July 2011, pages 243-252. IEEE Computer Society, 2011.
- N. Brisebarre, C. Q. Lauter, M. Mezzarobba, and J. Muller. Comparison between binary and decimal floating-point numbers. *IEEE Trans. Computers*, 65(7):2032– 2044, 2016.
- 4. N. Brisebarre, M. Mezzarobba, J. Muller, and C. Q. Lauter. Comparison between binary64 and decimal64 floating-point numbers. In A. Nannarelli, P. Seidel, and P. T. P. Tang, editors, 21st IEEE Symposium on Computer Arithmetic, ARITH 2013, Austin, TX, USA, April 7-10, 2013, pages 145–152. IEEE Computer Society, 2013.
- J.-C. Filliâtre and A. Paskevich. Why3 where programs meet provers. In M. Felleisen and P. Gardner, editors, *ESOP*, volume 7792 of *Lecture Notes in Computer Science*, pages 125–128. Springer, 2013.
- G. Gonthier and A. Mahboubi. A small scale reflection extension for the Coq system. Technical Report RR-6455, INRIA, 2008.
- A. Khinchin and H. Eagle. *Continued Fractions*. Dover books on mathematics. Dover Publications, 1964.
- E. Martin-Dorel and G. Melquiond. Proving Tight Bounds on Univariate Expressions with Elementary Functions in Coq. *Journal of Automated Reasoning*, 57(3):187–217, octobre 2016.
- The Coq Development Team. The Coq Proof Assistant Reference Manual Version V8.6, Dec. 2016. http://coq.inria.fr.