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Abstract. We present a full Coq formalisation of the correctness of
some comparison algorithms between binary64 and decimal64 floating-
point numbers.

1 Introduction

Both binary and decimal formats are defined in the IEEE 754-2008 standard.
However, no operation is defined to compare them, and the “naïve” approach
of converting a decimal floating point number to the closest binary one before
comparing it to another binary FP number can lead to inconsistencies. Let us
take for example these two FP numbers:

x := 7205759403792794/256 (in binary64 format) > 1/10

y := 1/10 (in decimal64 format)

If we convert y to the binary64 format, we get x. This means the native approach
would give that x ≤ y, but actually x > y.

The paper [4] by Brisebarre et al. details and proves the correctness of several
algorithms which can compare these numbers in a both efficient and entirely
reliable way. The initial problem being simple, it would be nice if the algorithms
and their correctness proofs were elementary too. This is unfortunately not the
case. In particular, the correctness of some of the algorithms requires some non-
trivial computation that cannot be performed by hand. The contribution of this
paper is to propose a formalisation that carefully checks all the aspects of the
correctness proofs.

We use the Coq proof assistant [9] for our formalisation. The paper is or-
ganised as follows. In a first section we detail the formal setting in which we
have made our formalisation. Then, we present the algorithms and their proof
of correctness.



2 Formal Setting

Coq is a generic system that lets us define new objects and build formal proofs
of their properties. There are two main ways of adding new knowledge into the
system. We can work conservatively defining a new notion in term of already
defined ones or we can work axiomatically by providing the characteristics prop-
erties of the new notion. In our formalisation, the two approaches have been
used. We now illustrate this with some elementary examples.

Positive numbers are represented in Coq in a conservative way by a recur-
sive datastructure positive that mimics binary numbers. It is composed of 3
constructors: xI (a number that starts with a 1), xO (a number that starts with a
0), xH (the number 1). If we take the little endian convention, the binary number
1101 is represented as (xI (xO (xI xH))). Thanks to this recursive datastruc-
ture, it is then possible to equip positive numbers with usual functions. For
example, we give below the definition of the function that computes the suc-
cessor function. It is defined recursively by a discussion on the structure of its
argument a.

Function Psucc a :=

match a with

xI a1 => xO (Psucc a1) | xO a1 => xI a1 | xH => xO xH

end.

Relative numbers are then defined on top of positive numbers using these con-
structor Zero, Zpos for positive numbers and Zneg for negative numbers. Usual
notations can be associated with these numbers, so that (Zneg (xI (xO (xI

xH)))) is printed and parsed back as −13.
Similarly to the definition of the Psucc function, addition (+) is defined for

relative numbers. Having this function as an algorithm inside Coq makes it
possible to compute with relative numbers like in any programming language.
Thus, -13 + 4 evaluates to 9. Furthermore, it is possible to reason about this
function and prove that the distributive property holds.

Lemma add_assoc m n p, m + (n + p) = (m + n) + p.

Having a system where one can mix computation and proofs was mandatory
for the formalisation of the properties we were aiming at. Coming back to this
formalisation, we are using the Flocq library [2] to reason about floating point
numbers. These numbers are parametrised by a radix β. They are defined as a
record that contains two fields.

Record float (beta : radix) := Float { Fnum : Z; Fexp : Z }.

For example, the object {|Fnum := 7205759403792794; Fexp := -56|} is a
floating-point number whose mantissa is 7205759403792794 and exponent is −56.

In our formalisation, we prove the correctness of the comparison algorithms
with respect to the comparison over real numbers. The real numbers are ax-
iomatised in Coq. An abstract type R is defined. A set of properties is assumed
that makes it a complete, totally ordered, Archimedean field. On top of this



basic field, the standard Coq real library and the Coquelicot[1] library build
the usual real analysis. This contains standard notions like series and limits from
which usual functions such as exponential, sine and cosine are defined. Thanks to
these libraries, it is possible to give an interpretation of a floating point number
as a real number.

Definition F2R (f : float beta) := (Fnum f) * beta ^ (Fexp f).

The floating point number f represents the real numbers m ∗ βe where m is the
mantissa, e the exponent and β the base. Now the problem is simple, we want to
build an algorithm comp that takes two floating point numbers f1 and f2 in base
2 and in base 10 respectively and returns their comparison. We use the standard
Coq type comparison for the returned type of the comparison function comp.
This type contains three elements Lt, Eq, Gt that represent the three possible
values of a comparison. Our goal is then to prove that, under some conditions
Cond that we will explain later, the following theorem holds

Lemma comp_correct (f1 : float 2) (f2 : float 10) :

Cond → comp f1 f2 = Lt ↔ F2R f1 < F2R f2

∧ comp f1 f2 = Eq ↔ F2R f1 = F2R f2

∧ comp f1 f2 = Gt ↔ F2R f1 > F2R f2.

This lemma relates the result of an evalutaion of the algorithm comp with a
relation between two real numbers. When proving an algorithm eq that performs
an equality test, the returned type is simply a boolean so the correctness theorem
looks like

Lemma eq_correct (f1 : float 2) (f2 : float 10) :

Cond → eq f1 f2 = true ↔ F2R f1 = F2R f2.

Note that as real numbers are axiomatised in Coq, we can not directly com-
pute with them. Fortunately, there exist some tools that address this issue. One
tool that we are using in this formalisation is the interval tactic [8]. It tries
to automatically solve goals that contain real expressions by computing an ap-
proximation using standard techniques of interval arithmetic. For example, the
following error bound of an approximation of the exponential function between
0 and 1 can be proved automatically.

Lemma bound_exp_taylor2 x :

0 ≤ x ≤ 1 → Rabs ((1 + x + x ^ 2 / 2) - exp x) ≤ 22 / 100.

Another technique to approximate reals numbers are continued fractions.
We are using them in our formalisation. Following closely the material that is
presented by Khinchin [7], we have developed a library to compute and reason
about continued fractions inside Coq. The main basic result that is needed here
is that continued fractions represent the best rational approximations one can
get. The formal statement is the following.

Lemma halton_min (n : nat) (p q : Z) (r : R) :

0 < q < q[r]_n.+1 → t[r]_n ≤ Rabs (q * r - p).



Approximating a real number r by continued fractions can be seen as an iterative
process. At rank n, we get an approximation, called convergent, sn = pn/qn. One
way of quantifying the quality of an approximation p/q is by the value, |qr− p|.
Applied to sn, this gives θn = |qnr − pn|, written t[r]_n in our formalisation.
The previous lemma halton_min simply states that the convergent at rank n is
the best approximation for all the rational numbers p/q with q less than qn+1.

3 Formalisation

We want to compare a binary floating-point number x2 and a decimal floating-
point number x10. This is reflected in our formalisation by introducing two vari-
ables of type float.

Variable x2 : float 2.

Variable x10 : float 10.

Furthermore, x2 belongs to the binary64 format and x10 to the decimal64 format.
This means that we have:

x2 =M2 · 2
e2−52

x10 =M10 · 10
e10−15

where:

−1022 ≤e2 ≤ +1023 |M2| ≤ 253 − 1

−383 ≤e10 ≤ +384 |M10| ≤ 1016 − 1

Without loss of generality, we can also suppose that x2 > 0 and x10 > 0. If
they are of opposite sign, the comparison is trivial and if they are both negative,
taking the opposite of both numbers brings us back to the case we consider.

In our formalisation, as x2 > 0, we shift the exponent is such a way that we
have 252 ≤M2. This corresponds to our M2_bound assumption.

Definition M2 := Fnum x2.

Hypothesis M2_bound : 2 ^ 52 ≤ M2 ≤ 2 ^ 53 - 1.

Definition e2 := Fexp x2 + 52.

Hypothesis e2_bound : -1074 ≤ e2 ≤ 1023.

Similarly for x10 but without any shifting, we get

Definition M10 := Fnum x10.

Hypothesis M10_bound : 1 ≤ M10 ≤ 10 ^ 16 - 1.

Definition e10 := Fexp x10 + 15.

Hypothesis e10_bound : -383 ≤ e10 ≤ 384.

The four hypothesis M2_bound, e2_bound,M10_bound and e10_bound are im-
plicitely conditions of all the theorems we present in the following.



Let us start deriving new facts from these definitions. First, M10 can also be
“normalised”. If we consider ν = 53− ⌊log2(M10)⌋, we have that:

0 ≤ ν ≤ 53

253 ≤ 2νM10 ≤ 254 − 1

These correspond to the theorems v_bound and norm2_bound of our formalisa-
tion.

Now, we express x2 and x10 with the largest common power of 2 possible.
For this, we define m =M2, n =M102

v, h = ν + e2 − e10 − 37 and g = e10 − 15.
This gives us the following equalities (theorems x2_eq and x10_eq respectively).

x2 = m · 2h · 2g−ν x10 = n · 5g · 2g−ν

The initial problem of comparing x2 and x10 reduces to comparing m · 2h with
n · 5g. We also get bounds over m, h, n and g.

252 ≤ m ≤ 253 − 1

253 ≤ n ≤ 254 − 1

−398 ≤ g ≤ 369

−787 ≤ h ≤ 716

These are easily proven in Coq and correspond to the theorems m_bound, n_bound,
g_bound and h_bound.

4 Handling “simple” cases

The first step of the algorithm consists in checking if the result can be determined
by looking at the exponents g and h only. In order to compare 5g and 2h, a
function ϕ is introduced. Its definition is the following.

ϕ(h) = ⌊h · log5 2⌋

It is relatively easy to check that one can determine the result of the comparison
between x2 and x10 if g and ϕ(h) differ. Formally, this means that the following
two properties hold:

If g < ϕ(h) then x2 > x10

If g > ϕ(h) then x2 < x10

They correspond to the theorems easycomp_lt and easycomp_gt in our formal-
isation.

In order to get an algorithm, one still needs to provide a way to compute
ϕ(h). One way to do this is to use the integer value ⌈2k · log5 2⌋ for a sufficient
large value of k. In our case, k = 19 is enough, the following property holds.

ϕ(h) =
⌊

h · ⌈219 · log5 2⌋ · 2
−19

⌋

for |h| ≤ 1831



This corresponds to the theorem prop2_1. Unfortunately, such a theorem is
outside the reach of the interval tactic which does not handle the floor and to
the nearest functions automatically.

In order to overcome this problem, we use the characteristic properties of the
rounding functions (x is a real number, y an integer)

⌊x⌋ = y iff y ≤ x < y + 1

⌈x⌋ = y if |x− y| < 1/2

For example, in order to prove that ⌈219 ·log5 2⌋ = 225799, we reduce the problem
to showing that |219 · log5 2 − 225799| < 1/2 which is solved automatically by
the interval tactic. The proof of the prop2_1 theorem is done in a similar
way. We first generate the 3663 subgoals that represents all the possible values
for h. For each of the subgoal, we guess what the value z for ⌊h · log5 2⌋ is. We
then need to prove that ϕ(h) = z and

⌊

h · 225799 · 2−19
⌋

= z. For both of these
goals, we use the characteristic property of the floor function. Showing that
z ≤ h · log5 2 < z + 1 and z ≤ h · 225799 · 2−19 < z + 1 is done automatically by
the interval tactic. This brute-force method is not the most elegant approach
but it works. It takes Coq 40 minutes to check the theorem prop2_1.

Once all the properties of the function ϕ are proved, it is easy to write down
an actual algorithm for the simple cases

Definition easycomp : comparison :=

let h := v + e2 - e10 - 37 in

let g := e10 - 15 in

let phih := (225799 * h) / (2 ^ 19) in

if g < phih then Gt

else if g > phih then Lt

else Eq.

and derive its associated theorem of correctness

Theorem easycomp_correct:

(easycomp = Lt → F2R x2 < F2R x10) ∧
(easycomp = Gt → F2R x2 > F2R x10) ∧
(easycomp = Eq ↔ g = phi h).

Note that we are using the ideal integer arithmetic of Coq in a more realistic
programming language we would have to deal with bounded arithmetic. Never-
theless, we can run our algorithm on the example given in the introduction and
get the expected result.

Compute easycomp {| Fnum := 7205759403792794; Fexp := -56 |}

{| Fnum := 1; Fexp := -1 |}.

= Eq

: comparison

Our correctness theorem tells us that all we can conclude is that g = ϕ(h).



5 Exact testing

The algorithm in the previous section covers the cases where g differs from ϕ(h).
In this section, we assume that g = ϕ(h).

5.1 Finding the needed precision

We define:
f(h) = 5ϕ(h) · 2−h = 2⌊h log

5
2⌋·log

2
5−h

which verifies:

f(h) · n > m⇒ x10 > x2

f(h) · n < m⇒ x10 < x2

f(h) · n = m⇒ x10 = x2

Now, the idea is to get a precise enough approximation of f(h) · n in order to
retrieve the exact comparison. Our goal is therefore to find a lower bound η over
the smallest non-zero value of the error |m/n− f(h)| in the range where

252 ≤ m ≤ 253 − 1

253 ≤ n ≤ 254 − 1

−787 ≤ h ≤ 716

We can also add an extra constraint that directly comes from the definition of
n.

If 1016 ≤ n then even(n)

A good candidate for this lower-bound, as proposed in [4], is η = 2−113.7. In
order to formally check that this lower-bound holds, we split in four the interval
of h. For 0 ≤ h ≤ 53, it is easily to prove that the lower bound is greater than
2−107. This corresponds to the theorem d_h_easy1. Similarly, the lower bound
is greater than 2−108 for −53 ≤ h ≤ 0 (d_h_easy2). For the two remaining
intervals 54 ≤ h ≤ 716 and −787 ≤ h ≤ −54, we make use of our library
for continued fractions. The key idea is that in order to find the lower bound
for a given h it is not necessary to enumerate all the rationals m/n but only
the convergents sn = pn/qn that approximate f(h) and whose denominator are
bounded by 253−1. The property that justifies this computation is the following:

If qn ≤ n < qn+1 and |f(h)−m/n| < 1/2n2 Then m/n = pn/qn

This is the conv_2q2 theorem of our library that directly follows the proof given
in [7]. In our case, as η = 2−113.7 and 253 ≤ n ≤ 254 − 1, we are sure that
η < 1/2n2, so our theorem applies.

For the first interval 54 ≤ h ≤ 716, the lower bound ǫp/ǫq is reached for
h = 612, m = 3521275406171921 and n = 8870461176410409 with

ǫp = 95837236471514977157488559853369253873503974784033193441759367158
879170025294997936467046601695051723045003185390596549988774013061
69390840117819918935869930600601291



and

ǫq = 15076604622712586378413085535543158310234113291354064071380852407
218620654696227859485444413405009205300052717281615404952311527789
630428217161580997965373300467263261324839949270053015170403319309
9264

This corresponds to the theorem pos_correct of our formalisation. It is proved
by a double enumeration. First, we enumerate all the h from 54 to 716, and for
each of them, we enumerate all the convergents of f(h) whose denominator is
smaller than 253 − 1 and check that the error is bigger that ǫp/ǫq. The entire
proof takes 80 seconds to be checked by Coq.

For the second interval −787 ≤ h ≤ −54, a similar technique is used. This
time the lower bound ǫ′p/ǫ

′
q is reached for h = 275, m = 4988915232824583 and

n = 12364820988483254 with

ǫ′p = 112529423171232400134835569054963071809061903761868569039360251397

and

ǫ′q = 186045148427403750191543353736499076917034509405654972460757157204
3696050968719646334648132324218750

This corresponds to theorem neg_correct and takes 100 seconds to be validated
by Coq.

The theorem d_h_min collects all the previous results and proves the smallest
non-zero error is bigger than η = 2−113.7. We thus know that if the error is less
than η, the distance is 0 and we must be in the equality case.

5.2 Direct method

The first way to use the previous result is to precompute f in a table indexed
by h. Then, assuming µ approximates f(h) · n with accuracy ǫ < η/4, we have
the following implications:

If µ > m+ ǫ · 254 Then x10 > x2

If µ < m− ǫ · 254 Then x10 < x2

If |m− µ| ≤ ǫ · 254 Then x10 = x2

This corresponds to the theorem direct_method_correct of our formalisation.
Since we have η = 2−113.7, a 128-bit computed value of f is enough to make

the exact comparison. In order to build the algorithm, we first build the table
with 1504 entries that contains ⌈f(h) · 2127⌉.

Definition f_tbl h : Z :=

match h with

| -787 => 155090275327330814032632713427604519407

| -786 => 77545137663665407016316356713802259704



| -785 => 38772568831832703508158178356901129852

...

...

...

| 714 => 75715339914673581502256102241153698026

| 715 => 37857669957336790751128051120576849013

| 716 => 94644174893341976877820127801442122533

| _ => 0

end.

Proving that this table is correct (for each entry i, the value represents ⌈f(h) ·
2127⌉) is done by brute and takes 40 minutes. The algorithm then just needs to
look up in the table and compares with m ∗ 2217.

Definition direct_method_alg :=

let v := n * (f_tbl h) - m * 2 ^ 127 in

if v < - 2 ^ 57 then Gt

else if v > 2 ^ 57 then Lt

else Eq.

As we have 2124 ≤ f(h) · 2127 < 2128, our epsilon is equal to 2−124. This explains
the 57 in the algorithm, 57 = −124 + 127 + 54. The proof of correctness is a
direct consequence of these observations.

Theorem direct_method_alg_correct :

(direct_method_alg = Lt ↔ F2R x2 < F2R x10) ∧
(direct_method_alg = Eq ↔ F2R x2 = F2R x10) ∧
(direct_method_alg = Gt ↔ F2R x2 > F2R x10).

We have seen in the previous section with the execution of the easycomp algo-
rithm that we have g = ϕ(h) for the example in the introduction. Now, running
the direct_method_alg algorithm returns the correct value for the comparison.

Compute ineq_alg {| Fnum := 7205759403792794; Fexp := -56 |}

{| Fnum := 1; Fexp := -1 |}.

= Gt

: comparison

The main drawbak of this algorithm is that the table may be too large for some
realistic implementation. The next section explains how we can alleviate the
problem by using a bipartite table.

5.3 Bipartite table method

In this method, we use:

q =

⌊

ϕ(h)

16
+ 1

⌋

r = 16q − ϕ(h)



such that f(h) = 516q · 5−r · 2−h. We can easily derive the bounds for q and r
from the bound of ϕ(h).

−21 ≤ q ≤ 20

1 ≤ r ≤ 16

In this method, we store 516q and 5r after a phase of normalisation. For this, we
define the function ψ as follows.

ψ(g) = ⌊g · log2 5⌋

Similarly to what has been done for ϕ(h), it is easy to compute ψ(q) and ψ(16q)
using integer arithmetic:

ψ(g) =
⌊

⌈212 · log2 5⌋ · g · 2
−12

⌋

for |g| ≤ 204

ψ(16q) =
⌊

⌈212 · log2 5⌋ · q · 2
−8

⌋

for |q| ≤ 32

These equalities correspond to the theorems prop_2_2 and prop_2_3 in our
formalisation. They are proved by brute force in 5 minutes and 40 seconds re-
spectively.

Now, we introduce the two functions θ1 and θ1 that are defined as follows.

θ1(q) = 516q · 2−ψ(16q)+127

θ2(r) = 5r · 2−ψ(r)+63

The following bounds are given by the theorems theta1_bound an theta2_bound.

2127 ≤ θ1(q) < 2128 − 1

263 < θ2(r) < 264

Furthermore, we have

f(h) =
θ1(q)

θ2(r)
2−64−σ(h) with σ(h) = ψ(r) − ψ(16q) + h

If we define ∆ as

∆ = θ1(q) · n · 2−64+8 − θ2(r) ·m · 28+σ(h)

comparing x2 and x10 gives the same result as comparing 0 and ∆ (theorem
delta_ineq). We also easily get that if x2 6= x10, then |∆| ≥ 2124η. This allows
us to derive an approximated version of ∆:

∆̃ =
⌊

⌈θ1(q)⌉ · n · 28−64
⌋

− θ2(r) ·m · 28+σ(h)

and proves that comparing 0 with ∆̃ gives the same result as comparing x2 with
x10 (theorem delta’_ineq).

In order to build the algorithm, we first need to create the two tables for
⌈θ1(q)⌉ and θ2(r). Our tables are given in Figure 1. The first one contains integers
that fit in 128 bits and the second one in 64 bits. The algorithm first computes
q and r, then reads the values of ⌈θ1(q)⌉ and θ2(r), and then checks the sign of
the computed ∆̃.



Definition theta1_tbl q : Z :=
match q with
| -21 => 302910693998692996157485768413290076966

| -20 => 336298426882534191759128470626028036789
| -19 => 186683128335104582129005107785662008085

| -18 => 207259907386686073192955235040171322419
| -17 => 230104721262376436189351064420995165904

| -16 => 255467559620444135892015707268715336457
| -15 => 283625966735416996535885333662014114405
| -14 => 314888078651228693933689466069052580905

| -13 => 174797997549285651882438866782683340398
| -12 => 194064761537588616893622436057812819408

| -11 => 215455166527421378856590945602770070141
| -10 => 239203286653190548679094257880939433815
| -9 => 265568996408383549344794103276234313665

| -8 => 294840814439182918143871451639708507103
| -7 => 327339060789614187001318969682759915222

| -6 => 181709681073901722637330951972001133589
| -5 => 201738271725539733566868685312735302683

| -4 => 223974474217780421055744228056844427813
| -3 => 248661618204893321077691124073410420051
| -2 => 276069853871622551497390234491081018099

| -1 => 306499108173177771671669405430061836724
| 0 => 170141183460469231731687303715884105728

| 1 => 188894659314785808547840000000000000000
| 2 => 209715200000000000000000000000000000000
| 3 => 232830643653869628906250000000000000000

| 4 => 258493941422821148397315216271863391740
| 5 => 286985925493722536125179818657774823687

| 6 => 318618382226490455405776079553542361119
| 7 => 176868732008334225927912486150152183217

| 8 => 196363738611909062123830878199451025720
| 9 => 218007543808417316859394750271862213031
| 10 => 242036994678082392051126914580396990474

| 11 => 268715044302683550071638623558009085183
| 12 => 298333629248008269731638612618517353496

| 13 => 331216864211123806751178713779234900611
| 14 => 183862294395666818064937594201088633456
| 15 => 204128152598478183127259193653345185578

| 16 => 226627774989027955951103258828533066424
| 17 => 251607373812388019852618613412845800985

| 18 => 279340299571981831419774226402503504146
| 19 => 310130032290502989833240994779765547114

| 20 => 172156751238329846960951049916624692801
| _ => 0
end.

Definition theta2_tbl r : Z :=
match r with
| 1 => 11529215046068469760

| 2 => 14411518807585587200
| 3 => 18014398509481984000

| 4 => 11258999068426240000
| 5 => 14073748835532800000

| 6 => 17592186044416000000
| 7 => 10995116277760000000
| 8 => 13743895347200000000

| 9 => 17179869184000000000
| 10 => 10737418240000000000

| 11 => 13421772800000000000
| 12 => 16777216000000000000
| 13 => 10485760000000000000

| 14 => 13107200000000000000
| 15 => 16384000000000000000

| 16 => 10240000000000000000
| _ => 0

end.

Fig. 1. Tables for ⌈θ1(q)⌉ and θ2(r)

Definition ineq_alg : comparison :=

let q := g / 16 + 1 in

let r := 16 * q - g in

let psir := (9511 * r) / 2 ^ 12 in

let psiq := (9511 * q) / 2 ^ 8 in

let s := psir - psiq + h in

let a := ((theta1_tbl q) * (n * 2 ^ 8)) / (2 ^ 64) in

let b := (theta2_tbl r) * (m * 2 ^ (8 + s)) in

let D := a - b in (0 =?= D)



The value 9511 corresponds to ⌈212 · log2 5⌋ and =?= to the comparison function
for integer. Its associated correctness theorem is the following.

Theorem ineq_alg_correct :

(ineq_alg = Lt ↔ F2R x2 < F2R x10) ∧
(ineq_alg = Eq ↔ F2R x2 = F2R x10) ∧
(ineq_alg = Gt ↔ F2R x2 > F2R x10).

Running the ineq_alg algorithm gives the same value as the one using the direct
method.

Compute ineq_alg {| Fnum := 7205759403792794; Fexp := -56 |}

{| Fnum := 1; Fexp := -1 |}.

= Gt

: comparison

6 Equality case

If we only want to test the equality between x2 and x10, an even simpler algo-
rithm can be used. We already know that x2 = x10 is equivalent to m·2h = n·5g.
As 2 and 5 are relatively prime, only two situations can occur :

– either 5g | m and 2h | n with 0 ≤ g ≤ 22 and 0 ≤ h ≤ 53;
– or 2−h | m and 5−g | n with −22 ≤ g ≤ 0 and −51 ≤ h ≤ 0.

The algorithm is a direct encoding of this property. It checks that 5g ·(n2−h) = m
if we are in the first case or that 5−g · (m2h) = n if we are in the second case.

Definition eq_alg : bool :=

if (0 ≤ h) && (h ≤ 53) && (0 ≤ g) &&

(g ≤ 22) && (n mod (2 ^ h) == 0) then

let m’ := 5 ^ g * (n / (2 ^ h)) in m’ == m

else if (h >= -51) && (-22 ≤ g) &&

(g ≤ 0) && (m mod (2 ^ (-h)) = 0) then

let n’ := 5 ^ (- g) * (m / (2 ^ (- h))) in n’ == n

else

false.

Its correctness theorem proves the equivalence between running the algorithm
and testing the two values.

Theorem eq_alg_correct : eq_alg = true ↔ (F2R x2 = F2R x10).

On our favorite example, it returns the expected result.

Compute eq_alg {| Fnum := 7205759403792794; Fexp := -56 |}

{| Fnum := 1; Fexp := -1 |}.

= false

: comparison



7 Conclusion and Future Works

Our formalisation contains four algorithms for comparing a binary64 floating-
point number and a decimal64 floating-point number and their proof of correct-
ness. The code is available at:

https://gitlab.com/artart78/compbindec

It is composed of five files: util.v and rfrac.v for general results (most of
which are about real numbers or continued fractions), frac.v for the result of
the continued fraction problem solution, compformula.v for the computation of
some formulas requiring tabulation of values, and compbindec.v for the main
result. Altogether, this amounts to about 5000 lines of code that Coq checks in
about 1 hour and 40 minutes. We have been using intensively SSReflect [6] for
its set of tactics and syntax, the Flocq [2] library for manipulating floating-point
numbers, and the Interval [8] tactic for the computation over the real numbers.
We had to develop a dedicated library for continued fraction in order to tackle
some aspects of the proof. This library is available in the rfrac.v file.

The main contribution of this work is a carefully check of the algorithms
and the proofs presented in [4]. In particular, we have connected in a formal
way the paper proofs with the computation that is required in order to get the
accuracy at which f(h) · n needs to be computed. During the formalisation,
we have found some minor mistakes in the original paper and we have also
departed at some places from what was presented in the original paper. For
example, the original paper states that −20 ≤ q ≤ 21 instead of −21 ≤ q ≤
20. Fortunately, this mistake has no consequence. More values are tabulated in
the actual implementation (the bounds are slightly relaxed). The original paper
mentions the bound 2−113.67 while our formalisation only makes use of 2−113.7.
The statement of the direct_method_correct omits the scaling factor of f(h)
in the assumption. It makes its proof easier and simplifies its application. Finally,
the statements of the theorems pos_correct and neg_correct do not mention
the extra condition (if h ≥ 680, then ν′ = h+ ϕ(h) − 971 > 0 and 2ν

′

|n) that is
present in the original paper. It does not change the lower-bound and we believe
that this omission makes the statements more readable at the cost of a negligible
extra computing.

The capability of computing expressions over the real numbers thanks to the
interval tactic has been a key ingredient on this work. These computations
are often hidden in the original paper. It is the case for example for the bounds
for θ1 and θ2. The bounds that are obtained without taking into account the
bound on h are actually less strict than the ones specified in the paper. For
example, only θ1 < 2128 could be proved, but it is actually important to get the
2128 − 1 bound in order to know we can embed the value into a 128-bit value.
The 2128 bound was obtained by noticing that 16q log2 5− ⌊16q log2 5⌋ < 1, but
the 2128 − 1 bound requires that it is less than 1 + log2(1 − 1

2128 ) ≃ 1 − 1
2128 .

We successfully manage to formalise all these proofs but clearly life would have
been easier if the tactic interval would accommodate the floor and the ceiling
functions. It could in particular greatly improve our checking time. 40 minutes

https://gitlab.com/artart78/compbindec


out of the hour and 40 minus of our checking time are spent by our brute-force
method in trying to validate the integer equivalent for the function ϕ(h).

There are several ways to extend this work. First, we could formalise the
counting argument that is present in the original paper that quantifies the per-
centage of floating point numbers that are comparable using the first partiall
comparison method (easycomp). It would require to develop the notion of cardi-
nal of sets of floating point numbers in the Coq standard library. Second, what
we have proven are only algorithms, it would be very interesting to try to prove
a realistic software implementation using a tool like Why3 [5]. Finally a sequel
of our reference [4] for this work has been written by the same authors in [3].
The general idea of the algorithm remains the same, but the generalisation of
the result also requires a generalisation of all the intermediate results, and com-
putation may become a lot harder since the numbers can then take up to 128
bits. Formalising it would be a real challenge.
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