
HAL Id: hal-01515047
https://hal.archives-ouvertes.fr/hal-01515047

Submitted on 27 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TWINS: Server Access Coordination in the I/O
Forwarding Layer

Jean Luca Bez, Francieli Zanon Boito, Lucas Schnorr, Philippe Navaux,
Jean-François Méhaut

To cite this version:
Jean Luca Bez, Francieli Zanon Boito, Lucas Schnorr, Philippe Navaux, Jean-François Méhaut.
TWINS: Server Access Coordination in the I/O Forwarding Layer. 25th Euromicro International
Conference on Parallel, Distributed and Networked-based Processing, Igor Kotenko, Mar 2017, St.
Petersburg, Russia. �hal-01515047�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/84980314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01515047
https://hal.archives-ouvertes.fr


TWINS: Server Access Coordination
in the I/O Forwarding Layer

Jean Luca Bez1, Francieli Zanon Boito2, Lucas M. Schnorr1, Philippe O. A. Navaux1, Jean-François Méhaut3
1Institute of Informatics – Federal University of Rio Grande do Sul

Porto Alegre, Brazil – Email: {jean.bez, schnorr, navaux}@inf.ufrgs.br
2Department of Informatics and Statistics – Federal University of Santa Catarina

Florianópolis, Brazil – Email: francieli.boito@posgrad.ufsc.br
3Université de Grenoble Alpes – INRIA & CEA – LIG Laboratory

Grenoble, France – Email: jean-francois.mehaut@imag.fr

Abstract—This paper presents a study of I/O scheduling tech-
niques applied to the I/O forwarding layer. In high-performance
computing environments, applications rely on parallel file systems
(PFS) to obtain good I/O performance even when handling
large amounts of data. To alleviate the concurrency caused by
thousands of nodes accessing a significantly smaller number
of PFS servers, intermediate I/O nodes are typically applied
between processing nodes and the file system. Each intermediate
node forwards requests from multiple clients to the system, a
setup which gives this component the opportunity to perform
optimizations like I/O scheduling.

We evaluate scheduling techniques that improve spatiality and
request size of the access patterns. We show they are only
partially effective because the access pattern is not the main
factor for read performance in the I/O forwarding layer. A new
scheduling algorithm, TWINS, is presented to coordinate the
access of intermediate I/O nodes to the data servers. Our proposal
decreases concurrency at the data servers, a factor previously
proven to negatively affect performance. The proposed algorithm
is able to improve read performance from shared files by up to
28% over other scheduling algorithms and by up to 50% over
not forwarding I/O.

Keywords—High Performance Computing; Parallel File Sys-
tems; I/O Forwarding; I/O Scheduling; Access coordination;

I. INTRODUCTION

Scientific applications – such as climate and seismic simu-
lations – feed the High-Performance Computing (HPC) field
with performance requirements to provide understanding of
complex phenomena. These performance requirements justify
the appearance of ever increasing large scale parallel plat-
forms. For instance, the Aurora supercomputer [1], expected
for the next few years, will have over 50,000 processing nodes
to achieve 180 petaflops. Such large scale platforms typically
include a shared storage infrastructure over a dedicated set
of nodes with a parallel file system (PFS) deployment. If all
processing nodes were to concurrently access the shared file
system servers, contention would compromise performance.

The I/O forwarding technique aims at reducing the number
of clients concurrently accessing the file system servers by
placing some special nodes (called I/O nodes) that receive
the processing nodes requests and forward them to the file
system [2]. In this schema, the number of I/O nodes is
typically larger than the number of file system servers, and

smaller than the number of processing nodes. Furthermore, in
this scenario, processing nodes may be powered with only
a very simplified local I/O stack to avoid its interference
on performance [3]. Besides performance improvements, the
concept of I/O forwarding has the advantage of creating an
additional layer between applications and file system. This
layer can work to keep compatibility between both sides and
apply optimizations such as request reordering, aggregation
and compression.

The I/O scheduling optimization technique has already been
successfully applied to the forwarding layer [4], [5]. However,
previous scheduling algorithms work to adjust the access
patterns generated to the file system. In this work, we evaluate
the forwarding layer performance and demonstrate that these
techniques are only partially effective because the access
pattern is not the main factor that influences the performance
of requests through I/O nodes.

We propose a new scheduling algorithm for the I/O nodes
which works to decrease contention in the access to the parallel
file system data servers. Our algorithm uses time windows and
coordinates accesses from intermediate nodes so that at each
time window they focus on one of the servers. As far as we
know, this is the first work to propose a scheduling technique
such as this to the forwarding layer.

Based on an extensive set of experiments, we detect I/O
performance improvements with our algorithm over state-of-
the-art algorithms. Moreover, our solution provides gains for
1D strided access patterns which are comparable to the use of
collective I/O operations, while being completely transparent
to applications and I/O library independent.

The rest of the paper is organized as follows. Section II
presents related work, comparing our approach against the
state of the art. Section III discusses the I/O forwarding
framework used in this work. Then, in Section IV we propose
our new scheduling algorithm and discuss its implementation
and requirements. The experimental methodology is presented
in Section V. Section VI evaluates the performance of our
new scheduling algorithm for the forwarding layer compared
against existing solutions. Section VII concludes the paper and
discuss future directions.



II. RELATED WORK

Large scale HPC platforms are typically used by multiple
concurrent applications sharing a parallel file system infras-
tructure. For this reason, applications may observe perfor-
mance degradation, a phenomenon known as interference [6],
[7], [8], [9]. To alleviate its effects, a popular choice is the
use of I/O scheduling [10], [11], [12], [13], [14], [15]. These
techniques, applied at some layer of the I/O stack, decide
where and when requests must be served.

Song et al. [11] proposed a scheduling algorithm for PFS
servers. A window-wide coordination concept was employed
to make all data servers focus on serving requests from one
application at a time. Our proposal to make intermediate I/O
nodes dedicate time windows to different data servers was in-
spired by the work of Song et al. Nonetheless, there are at least
three differences between their proposal and ours. First, they
target the PFS servers while we change the intermediate I/O
nodes behavior. Second, their algorithm coordinates accesses
to different applications, while we coordinate server accesses.
And third, their algorithm uses the application unique identifier
to decide the order of requests inside each time window.
Requests from multiple applications may be eventually served
in the same window. Differently, we completely dedicate each
window to a single server.

Section II-A presents existing techniques to improve the for-
warding layer. Section II-B discusses approaches to decrease
concurrency at the parallel file system data servers.

A. I/O Forwarding

Considerable research has been focused on improving the
I/O forwarding layer performance. Some of them studied the
I/O subsystem of an IBM Blue Gene/P supercomputer. In
this architecture, the data staging mechanism initially applied
multiple threads per I/O node, without any coordination among
them. Vishwanath et al. [4] identified some contention-related
bottlenecks associated with this design. They improved per-
formance by allowing asynchronous operations in the I/O
nodes and by including a simple FIFO scheduler to coordinate
accesses from multiple threads. This scheduler alone provided
improvements of up to 38%. They also optimized data move-
ment between layers through a topology-aware approach [16].
Isaila et al. [17] proposed a two-level prefetching scheme for
this architecture.

Similarly to what was done by Vishwanath et al., Ohta et al.
[5] improved performance of the IOFSL framework by using
I/O scheduling. They implemented two algorithms: a simple
FIFO and a quantum-based algorithm called Handle-Based
Round-Robin (HBRR). The latter is based on an algorithm
successfully applied to parallel file systems data servers [15],
[18], [19], that aims at reordering and aggregating requests to
improve the generated access pattern.

In this paper, we compare our new scheduling algorithm
against FIFO and HBRR. The former provides the simplest
coordination, while the latter is a more complex solution
to improve the access pattern. They compose our baseline
because they represent the state of the art in I/O scheduling

for the forwarding layer. Nevertheless, as it is shown in
Section VI-A, improving the access pattern is only partially
effective to improve performance in this layer.

B. Concurrency at the parallel file system’s data servers

Chen et al. [20] proposed a new collective I/O approach
which uses the physical data layout information to make
each aggregator access as few data servers as possible. A
similar approach was presented by Wang et al. [21]. Their
technique breaks collective I/O calls into multiple iterations
to fit the buffer size. These partitions are optimized so each
server is accessed by only one aggregator at each iteration.
These initiatives obtain performance by decreasing the number
of clients concurrently accessing each server. This approach
potentially decreases network contention. Additionally, Yildiz
et al. [9] have shown that concurrency at the data servers is
one of the key factors for interference.

For these reasons, we propose an I/O scheduling algorithm
that seeks to focus an I/O node’s accesses to a single data
server within each time window. As far as we know, ours is
the first work to apply this strategy to the forwarding layer.
This design choice has the advantage of making it completely
transparent to applications, I/O libraries, and file systems.

III. THE I/O FORWARDING SCALABILITY LAYER

In this paper, we study I/O scheduling techniques at the
I/O forwarding layer. Therefore an I/O forwarding framework
was necessary to implement and validate our ideas. We have
chosen to use the open source IOFSL framework [22] so we
could build on previous contributions and effectively compare
our new solution with the state of the art.

IOFSL uses the stateless ZOIDFS protocol, the API from
the ZOID forwarding infrastructure [23], and the Buffered
Message Interface (BMI) network abstraction layer [24] to
provide request forwarding over multiple file systems and
networks. The IOFSL software stack consists of two main
components: a ZOIDFS client library running on the compute

...
Server 1 Server 2 Server N

FIFO Scheduler

HBRR Scheduler

Time Order Queue

Per Handle Queues

I/O Schedulers

Request Aggregator

Dispatch Queue

Request Dispatcher

Parallel File System

Fig. 1: Flow of requests through the IOFSL I/O node daemon.
Requests come from the processing nodes (left) and leave for
the file system (bottom right).



nodes and an I/O forwarding daemon running on the inter-
mediate I/O nodes. The client library transparently forwards
requests from the compute node to the corresponding I/O node.

In the I/O nodes, multiple threads are created to process the
clients’ requests. The request scheduler component coordinates
these threads’ accesses. It offers two options of scheduling
algorithms - FIFO and HBRR - to fill a dispatch queue and
thus decide the order requests must be processed. As discussed
in Section II-A, FIFO is a simple time order algorithm,
and HBRR is a handle-based round robin. HBRR employs
multiple queues, one per handle, where contiguous requests are
aggregated whenever possible. From each queue, a maximum
number of requests (defined by the quantum parameter) may
be served before moving to the next queue [5].

The flow of requests through the IOFSL I/O node daemon
is illustrated by Fig. 1. After going through one of the
scheduling algorithms, requests are stored in the dispatch
queue. From the dispatch queue, requests to the same file and
of the same type (read or write) are aggregated before being
forwarded to the PFS. Although all clients data and metadata
operations go through the IOFSL nodes, only data reads and
writes go through the request scheduler component and are
affected by scheduling algorithms. Section VI-A will discuss
the performance obtained by IOFSL with these algorithms.

IV. TWINS: DECREASING CONCURRENCY AT THE PFS
DATA SERVERS

The previous section described the scheduling infrastructure
for the I/O forwarding layer, composed of two scheduling
algorithms - FIFO or HBRR - and an aggregator at the
dispatch queue. This model focuses on changing the access
pattern to improve performance. However, as it is shown in
Section VI-A, these schedulers are only partially effective
because they do not take into consideration resource contention
and data placement on the parallel file system servers. In this
section, we present a new scheduling algorithm for the I/O
forwarding layer called Server Time WINdows (TWINS). The
main idea behind TWINS is coordinating intermediate I/O
nodes’ accesses to the file system so that, at any given moment:

I. an I/O node is focusing its accesses to only one of the
parallel file system data servers;

II. the different I/O nodes are focusing on different servers.

TWINS pseudo-code is presented in Algorithm 1. It keeps
multiple request queues, one per data server. During the
execution, TWINS iterates the different queues following a
round robin scheme, respecting a time window that must be
dedicated to each server. If server i is the current server being
accessed but there are no requests to this server, the scheduler
will wait until requests to server i arrive or the time window
ends, even if there are queued requests to other servers.

The rest of this section discusses TWINS characteristics and
implementation. Section VI-B presents performance improve-
ments provided by our new algorithm.

Algorithm 1 Server Time WINdows

Require: Q[i] is the updated list of requests to server i
1: i← 0
2: while true do
3: resetT imer()
4: while elapsedT ime() < windowSize do
5: if length(Q[i]) > 0 then
6: processRequest(Q[i])
7: else
8: timeout← windowSize− elapsedT ime()
9: timedWaitForRequests(Q[i], timeout)

10: end if
11: end while
12: i← nextServer(i)
13: end while

A. Implementation with AGIOS

We integrated the AGIOS scheduling library [15] in IOFSL
as a scheduling option (just like FIFO and HBRR). AGIOS
can be used by I/O services to manage incoming requests at
file level and provides a simple API to the development of
new scheduling algorithms. We implemented TWINS through
this simple API. It would have been possible to implement the
algorithm inside the IOFSL source code. However, doing so
with AGIOS makes our solution more generic, as it can be used
by other I/O services, or by other I/O forwarding frameworks.

The new organization of the I/O node daemon is illustrated
in Fig. 2. Using TWINS, requests are added to the per-server
queues upon arrival at IOFSL. When the algorithm decides to
process a request, a callback function written inside IOFSL
simply adds it to the dispatch queue. This ensures requests
will be processed in the order dictated by the scheduler.

Differently from FIFO, that uses a single queue, and HBRR,
that uses two queues per file handle, TWINS applies one queue
per data server. Considering the number of files is typically
far superior to the number of servers, the overhead induced
by TWINS regarding the management of multiple queues is
expected to be lower than what is caused by HBRR.

Request Aggregator

Dispatch Queue

Request DispatcherTWINS Scheduler

PFS Data Server N Queue

...

PFS Data Server 1 Queue

PFS Data Server 2 Queue

...

Parallel File SystemI/O Schedulers

Server 1 Server 2 Server N

Fig. 2: Flow of requests through the IOFSL I/O node daemon
with the new TWINS scheduling option.



B. Finding out to which server a request is

In addition to typically available information about requests
- file handle, offset, type, and size - our algorithm requires a
server identifier. We have modified IOFSL to collect the file
distribution information from the PFS when opening or creat-
ing a file. Since this information is easily available to clients
in most file systems such as PVFS2 [25] and Lustre [26], our
solution can still be considered file system generic.

The distribution information is requested only once per
file. The induced overhead is of 54.3ms on our experimental
environment (average of 124 observations). This time can be
expected to be diluted by longer read and write times.

Using the file distribution information, the starting server
for a request is obtained as a function of its starting offset
and stripe size - also part of the collected information. This is
done when requests arrive, before adding them to the queues.

Considering the described TWINS algorithm, we can notice
that simply following this approach would cause all interme-
diate I/O nodes to focus on the same servers at the same time.
To cause the desired distribution effect, we add an extra server
identifier translation step. This translation is done according
to the I/O node identifier. The Nth I/O node will use the Nth

permutation of the servers list as a translation rule. Therefore,
if the number of intermediate nodes is larger than the number
of servers, more than one node may access the same server at
the same time, but these concurrent accesses are minimized.

For instance, if there are two I/O nodes (N0 and N1) and
two data servers (S0 and S1), N0 will go through the servers in
the order S0, S1, while N1 will use the order S1, S0. Therefore
the translation function in N0 maps S0 to 0 and S1 to 1, while
in N1 it will map S1 to 0 and S0 to 1. This ensures each I/O
node will focus on a different server at each time window.

V. EXPERIMENTAL METHODOLOGY

All experiments in this paper were conducted in clusters
from the Grid’5000 [27] at Nancy. Four nodes from the
Grimoire cluster were used as PVFS2 servers (acting as both
data and metadata servers) and 32 nodes from the Grisou
cluster were used as clients. Four nodes from Grisou were used
as IOFSL servers. Hence, each I/O node runs on a separate
machine, which is not shared with clients or PFS servers.

Each node from Grimoire and Grisou has two 8-core Intel
Xeon E5-2630 v3 and 128GB of RAM. A 558GB hard disk
is used for storage at the servers. Nodes are interconnected
through a 10Gbps Ethernet network, and there is a 10Gbps link
between the clusters. Both clusters were completely reserved
during the experiments to minimize network interference.

PVFS version 2.8.2 was used with its default parameters,
including 64KB stripe size and striping through all four
servers. Data servers were configured to perform I/O opera-
tions directly to their storage devices, bypassing buffer caches.
This was done to avoid a situation where the tests scale would
hide the access pattern impact on performance.

The IOFSL dispatcher uses the PVFS2 client library to
communicate directly with the file system, allowing direct
access to the file system instead of accessing it through the

PVFS2 kernel module. The use of IOFSL is transparent to
applications, as accesses are forwarded through the ZOID API.
An environment variable is set at the processing nodes to
determine to where requests must be redirected. Clients are
equally distributed among the I/O nodes.

The IOFSL daemon was executed with all its default param-
eters. The maximum number of requests that can be aggregated
from the dispatch queue (batch size) was 16. Minimum and
maximum numbers of threads are four and 16, respectively.
For the event handler, IOFSL state machines were used.

The MPI-IO Test benchmark was executed by 128 processes
to generate requests through the MPI-IO library. Each process
generates 1024 read or write requests of 32KB, i.e. 32MB of
data is accessed per process, a total of 4GB per test. Tests
were executed for the file-per-process approach, where each
process contiguously accesses its own independent file, and for
the shared-file one. With a shared file, processes either access
their own contiguous portions inside the shared file, or follow a
1D strided access pattern. These experiments represent access
patterns that are usual among scientific applications.

From each benchmark execution, we take the completion
time of the slowest process. We use the makespan as a
performance metric because it represents the total time to
process a workload from the file system point of view.

Experiments were repeated at least 8 times, and error bars
were calculated using a 99.7% confidence interval. Different
experiments were executed in a random order to avoid bias
imposed by some uncontrolled parameter, or some unexpected
effect caused by a specific experimentation order.

VI. PERFORMANCE EVALUATION

This section presents our performance evaluation. First we
discuss the performance obtained using the IOFSL framework
with the baseline scheduling algorithms. Then, in Section VI-B
we describe results with our new TWINS algorithm.

A. Performance of the baseline scheduling algorithms

IOFSL represents a synchronous I/O forwarding approach,
i.e., the intermediate I/O nodes are an extra hop between
processing nodes and the file system. In this approach, I/O
nodes do not act as burst buffers but instead, the clients’
expectation of persistent storage in the file system is met.

Figures 3 and 4 present results obtained by read and write
tests, respectively, with the three tested access patterns. In
all graphs, the first column (in yellow) shows time obtained
without IOFSL, and the second and third columns (in red)
show time obtained using IOFSL with its base scheduling
algorithms. From these, the first bar represents the FIFO
scheduling algorithm, while the second bar represents HBRR.

We can see that read performance is improved up to 36%
by using IOFSL, despite the extra transmission cost between
clients and the file system. Performance benefits from using
the I/O forwarding layer to all tested read access patterns. On
the other hand, for write requests, performance is decreased for
all situations. This decrease is higher for the file-per-process
scenario than for the shared file ones.



One could believe the explanation for the good results
observed for read tests is that the gains obtained by aggregating
requests before forwarding them to the file system compen-
sates the overhead imposed by the extra hop. Nonetheless,
this is not the case. Table I presents the average request
size observed at different layers of the I/O stack during the
experiments with the IOFSL base schedulers and shared-file
approach. In the file-per-process scenario, each file is accessed
by a single process one request at a time, so there are no
aggregation opportunities. Single median values are presented
because values were similar between FIFO and HBRR tests.
We can see that the write tests present similar aggregated
request sizes (by IOFSL), but still do not achieve the same
gains as read tests.

TABLE I: Average request size at different I/O stack levels.

Contiguous 1D strided
READ WRITE READ WRITE

Leaving clients 32KB 32KB 32KB 32KB
Leaving I/O nodes 58KB 58KB 58KB 58KB
Arriving at servers 43KB 44KB 50KB 49KB

Therefore, despite requests aggregations usually being
helpful for performance, they are not the main factor
in the observed read performance improvements. Another
evidence in this direction is that the best gains were ob-
served for the file-per-process scenario, where there are no
aggregations. Furthermore, despite making more effort into
generating a better access pattern, the HBRR algorithm does
not outperform FIFO. Results for the two algorithms were
not significantly different in any of the situations.

Table II presents the average offset distance of requests
leaving the I/O nodes during the read shared-file tests. The
offset distance is a spatiality metric calculated by taking the
offset difference between every two consecutive requests. The
higher the distance, the less contiguous an access pattern
is. The contiguous local access pattern presents the highest
average offset distances, i.e., it is actually the least contiguous
global access pattern. This happens because each process
accesses contiguously its own portion of the shared file, but
different processes are accessing requests that are sparse in
the file. During the 1D strided test, requests from different
processes are contiguous to each other. The average offset
distances during tests with FIFO and HBRR are very similar.
Hence, we can notice both algorithms result in very similar
access patterns. This explains why they perform similarly.

TABLE II: Average offset distance observed during read tests.

Contiguous 1D strided
FIFO HBRR FIFO HBRR

1341.00MB 1340.95MB 45.22MB 44.74MB

We have measured the time difference between consecutive
requests. These values were obtained from four new executions

 IOFSL IOFSL + TWINS
93.1

65.4 66.1
56.9 57.1 54.3 52.4 53.5 54.0 54.1

61.7

0

10

20

30

40

50

60

70

80

90

100

NO IOFSL FIFO HBRR 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0

Scheduling algorithms

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

(a) Shared-file with contiguous access

 IOFSL IOFSL + TWINS

84.6

59.1 57.8
49.0 48.5

50.3
44.9 44.4 44.1 42.5

45.8

0

10

20

30

40

50

60

70

80

90

100

NO IOFSL FIFO HBRR 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0

Scheduling algorithms

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

(b) Shared-file with 1D strided access

 IOFSL IOFSL + TWINS

80.4

52.0 51.6 51.6 51.2 53.2 51.7 52.2 51.3 52.0

60.7

0

10

20

30

40

50

60

70

80

90

100

NO IOFSL FIFO HBRR 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0

Scheduling algorithms

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

(c) File-per-process access

Fig. 3: Execution time of read tests without IOFSL, with
IOFSL using FIFO or HBRR, and using the TWINS algorithm
with different time window sizes (ms).

of the 1D strided shared-file test through a single I/O node.
In the intermediate I/O node, we have traced all requests’
arrival time. We have considered only the first 128, i.e. the
first request from each of the 128 processes. Since tests are
synchronous, all requests after the first 128 depend on the
time it took to process the previous ones, so they are not
independent. We have used the median because it is less



 IOFSL IOFSL + TWINS

203.4
238.4 238.6 241.1 248.4 254.8 259.8 258.9 261.3 264.8 265.7

0

50

100

150

200

250

300

350

400

450

NO IOFSL FIFO HBRR 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0

Scheduling algorithms

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

(a) Shared-file with contiguous access

 IOFSL IOFSL + TWINS

203.2
219.6 219.4 218.5 220.4 221.3 223.0 223.3 223.8 225.3 226.5

0

50

100

150

200

250

300

350

400

450

NO IOFSL FIFO HBRR 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0

Scheduling algorithms

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

(b) Shared-file with 1D strided access

 IOFSL IOFSL + TWINS

204.0

404.1 397.7 397.8 405.0 396.5 399.1 397.7 402.3 399.8 401.7

0

50

100

150

200

250

300

350

400

450

NO IOFSL FIFO HBRR 0.125 0.25 0.50 1.0 2.0 4.0 8.0 16.0

Scheduling algorithms

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

(c) File-per-process access

Fig. 4: Execution time of write tests without IOFSL, with
IOFSL using FIFO or HBRR, and using the TWINS algorithm
with different time window sizes (ms).

sensitive to outliers, and timing values inside each test tend
to have high variability. For read requests the median time
difference is 26.09µs, whereas for write requests it is 50.92µs.

Since read requests are smaller than writes (they do not
carry data), they arrive at a faster pace to the I/O nodes (or
to the server if I/O nodes are not present). Hence, the extra
hop between clients and PFS works to “funnel” requests and

decrease concurrency at the servers. For this reason, FIFO
and HBRR, which work to improve the generated access
pattern, are only partially effective in improving read
performance. A more effective strategy would be to work to
further decrease contention in the access to the file system. The
next section presents results obtained with our new scheduling
algorithm, proposed to explore this idea.

B. Performance of the TWINS algorithm

In this section, we evaluate the performance of the new
TWINS algorithm, which works to decrease contention in the
access to the parallel file system data servers. As described in
Section IV, in order to do that, TWINS divides execution in
time windows and focuses each IOFSL node’s accesses to a
different data server during each time window.

The third group of bars from all graphs in Figures 3 and 4
(in blue) present results obtained with our algorithm for differ-
ent time window sizes. TWINS provides read performance
improvements of up to 28% over the baseline scheduling
algorithms and of up to 50% over not using IOFSL. The
best results were obtained for the shared-file 1D strided
access pattern, and gains for the shared-file contiguous
pattern were also observed - up to 20% over the baseline.

The lower improvements obtained for contiguous access
patterns are justified by the requests distribution among the
data servers caused by the access patterns. In the 1D strided
test, processes start their accesses at different servers and this
behavior is kept throughout the execution. Therefore, with this
access pattern the scheduler always has requests for all servers
and thus has the opportunity to perform meaningful coordina-
tion. In the contiguous test, since each process segment has
32MB, which is a multiple of the stripe size × the number of
servers, all processes start their accesses by the same server.
In this case, the opportunities to accesses coordination - i.e.,
the situations where there are queued requests for multiple
servers - appear during the execution as the delays induced
by TWINS causes some processes execution to advance faster
than others. This phenomenon is not guaranteed to happen.

Performance does not benefit from using TWINS in read
tests with the file-per-process scenario and in write tests. Even
for these cases, performance is not decreased significantly
compared to the baseline algorithms as long as a small
window size is used. Therefore, in addition to improving
performance of some situations, our proposal does not
necessarily harm performance in situations where it is not
able to provide improvements.

1) Impact of the time window parameter: TWINS’ behavior
is affected by its time window duration. A window that is
too small does not allow for an effective coordination of
accesses among the data servers because it is not long enough
to allow the execution of multiple requests. Moreover, a fast
time window does not hold requests to other servers for long
enough so requests to the currently accessed data server are
out of the dispatch queue to the file system. If requests for
different servers are in the dispatch queue at the same time,
they could be aggregated before being forwarded to the PFS



and thus the scheduling algorithm work would be undone. On
the other hand, a window that is too large imposes overhead
as there are not enough requests to each data server to fill a
whole window, so the scheduler spends too much time waiting.
Another source of overhead, in this case, would be the delay
imposed to requests, which could not be compensated by the
gains of decreasing concurrency at the data servers.

The best window duration is not the same for all situations
where TWINS improves performance. The best results for
contiguous shared-file read tests were obtained with a one-
second time window, while the best results for 1D strided
shared-file read tests were for a eight-seconds window. There
is a trade-off to be observed between the induced overhead
and how distributed among the servers requests are. Further
analysis is required to determine how the scheduler could
automatically find the best window duration. This will be the
focus of future work.

2) Multi-application scenario: To confirm our algorithm
performance on a multi-application scenario, we have con-
ducted additional experiments using the Ifer benchmark [28].
This benchmark splits the set of processes into groups running
on two different sets of nodes. Each group of processes
executes a series of MPI-IO operations, simulating two appli-
cations accessing the shared file system in contention. We have
modified Ifer to perform read operations to previously created
files. For these experiments, each application has 64 processes
and presents the shared-file 1D strided access pattern.

Fig. 5 presents execution times of the first application
(A) in the multi-application experiments. The lines represent
different options - not using the forwarding layer, using it
with the baseline algorithms and using it with TWINS. The
x-axis represents the time difference between start time for
applications A and B: when dt is 0 both start at the same
time, positive dt means A starts before B, and negative dt
means B starts first.

We can see the I/O forwarding layer also improves read
performance for the multi-application scenario - up to 35%
with the baseline algorithms. The interference experienced by
the application is decreased by FIFO and HBRR up to 25%,

49.7
61.3

40.7

30.5 29.2 29.9 29.8

61.6

40.7
30.229.528.628.7

90.9 93.9

78.9

65.0

52.7

43.3 43.1

90.3

77.1

62.6

48.5
44.043.8

0

25

50

75

100

0 10 20 30 40 50 60-10-20-30-40-50-60

dt (seconds)

Ex
ec

ut
io

n 
tim

e 
of

 a
pp

lic
at

io
n 

A 
(s

)

NO IOFSL IOFSL - FIFO IOFSL - HBRR IOFSL - TWINS (8ms)

Fig. 5: Execution time for an application under contention
caused by another concurrent application.

except when applications start with a 10-seconds difference.
The interference factor is calculated as the ratio between the
execution time of the application under contention and the
time of the application executing by itself. TWINS improves
performance up to 16% over FIFO and HBRR, and up
to 45% over not using IOFSL. Interference is further
decreased by using TWINS - up to 12% over the baseline
algorithms and up to 31% over not using I/O nodes.

3) Comparison with collective I/O: The traditional way of
improving performance of 1D strided access patterns with
small requests is to use collective I/O operations. Fig. 6
compares the performance obtained by TWINS for this access
pattern with what is achieved by making the single application
perform collective calls. As a reference, times obtained using
IOFSL with the baseline algorithms are also presented. We
can see TWINS is able to provide as much performance
improvement as the use of collective operations for 1D strided
read access patterns with small requests.

NO IOFSL IOFSL
84.6

40.0

59.1 57.8

42.5

0

15

30

45

60

75

90

Original Collective FIFO HBRR TWINS

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Fig. 6: TWINS vs. collective I/O operations

It is important to notice that TWINS represents a more
transparent and generic solution than MPI-IO collective op-
erations. Because it is applied in the I/O nodes, TWINS
is completely transparent to applications and I/O library
generic. Therefore applications using any method to per-
form I/O operations, such as POSIX, can benefit from this
optimization. To the best of our knowledge, this is the first
work to propose a scheduler to the I/O forwarding layer which
transparently coordinates accesses to alleviate concurrency at
the PFS data servers.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the I/O scheduling technique at
the I/O forwarding layer by evaluating algorithms previously
applied to this layer - FIFO and HBRR. This evaluation has
shown that, despite improving read performance, techniques
that work to adjust the access pattern (requests aggregation
and reordering) are only partially effective.

We have proposed a new scheduling algorithm for the I/O
forwarding layer called TWINS. Our algorithm uses time
windows to coordinate the I/O nodes’ accesses to different
data servers, working to decrease contention in the access to



the servers. To the best of our knowledge, ours is the first
work to apply such a technique in the I/O forwarding layer.

TWINS results have shown performance improvements for
shared-file read access patterns of up to 28% over the FIFO
and HBRR algorithms. Compared to not using I/O forwarding
nodes, the gains were of up to 50%. Improvements were also
shown for a multi-application scenario, accompanied with a
decrease in interference. Even for situations where TWINS
is not able to improve performance, it does not harm it.
Performance obtained by TWINS for the 1D strided read
access pattern was comparable to what can be achieved by
making the application use collective operations. We have
compared our results with collective I/O because this would
be a popular alternative applied to improve performance of
the applications with 1D strided access patterns. Nevertheless,
compared to collective I/O, our proposal is completely trans-
parent to applications and library independent.

Future work will focus on proposing an automatic mecha-
nism to tune the TWINS’ time window duration parameter
based on the observed access pattern. Moreover, we will
use TWINS to provide performance improvements to real
scientific applications.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using the
Grid’5000 experimental testbed, being developed under the INRIA
ALADDIN development action with support from CNRS, RENATER
and several Universities as well as other funding bodies (see https:
//www.grid5000.fr/). This research was accomplished in the context
of the International Joint Laboratory LICIA. Research has received
funding from the EU H2020 Programme and from MCTI/RNP-Brazil
under the HPC4E Project, grant agreement n◦ 689772. This work was
also supported by STIC-AmSud/CAPES scientific cooperation pro-
gram under EnergySFE research project grant 99999.007556/2015-
02. The authors would also like to thank Kamil Iskra, Rob Latham,
and Rob Ross from the Argonne National Laboratory for insights
about the IOFSL framework.

REFERENCES

[1] A. L. C. Facility, “Aurora supercomputer,” http://aurora.alcf.anl.gov/,
accessed: May 2016.

[2] J. Dongarra et al., “The international exascale software project
roadmap,” International Journal of High Performance Computing Ap-
plications, vol. 25, no. 1, p. 3, 2011.

[3] W. Xu et al., “Hybrid hierarchy storage system in MilkyWay-2 super-
computer,” Frontiers of Computer Science, vol. 8, no. 3, pp. 367–377,
2014.

[4] V. Vishwanath et al., “Accelerating I/O forwarding in IBM blue gene/p
systems,” in Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10. IEEE, 2010, pp. 1–10.

[5] K. Ohta et al., “Optimization techniques at the I/O forwarding layer,”
in Cluster Computing, 2010 IEEE International Conference on, ser.
CLUSTER. IEEE, 2010, pp. 312–321.

[6] A. Bhatele and K. Mohror, “There goes the neighborhood: performance
degradation due to nearby jobs,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’13. IEEE, 2013, pp. 41:1–41:12.

[7] A. Shah et al., “Capturing inter-application interference on clusters,”
in Proceedings of the 2013 IEEE International Conference on Cluster
Computing, ser. CLUSTER ’13. IEEE, 2013.

[8] C.-S. Kuo et al., “How file access patterns influence interference among
cluster applications,” in Proceedings of the 2014 IEEE International
Conference on Cluster Computing, ser. CLUSTER ’14. IEEE, 2014,
pp. 185–193.

[9] O. Yildiz et al., “On the Root Causes of Cross-Application I/O Interfer-
ence in HPC Storage Systems,” in The 30th IEEE International Parallel
and Distributed Processing Symposium, ser. IPDPS 2016. IEEE, 2016.

[10] X. Zhang et al., “IOrchestrator: Improving the performance of multi-
node I/O systems via inter-server coordination,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10. IEEE, 2010.

[11] H. Song et al., “Server-side I/O coordination for parallel file systems,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11. IEEE,
2011.

[12] J. Liu et al., “Hierarchical I/O scheduling for collective I/O,” in
Proceedings of the 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, ser. CCGRID ’13. IEEE, 2013,
pp. 211–218.

[13] M. Dorier et al., “CALCioM: Mitigating I/O interference in HPC
systems through cross-application coordination,” in Proceedings of the
2014 IEEE 28th International Parallel and Distributed Processing
Symposium, ser. IPDPS ’14. IEEE, 2014, pp. 155–164.

[14] D. Dai et al., “Two-Choice Randomized Dynamic I/O Scheduler for
Object Storage Systems,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. IEEE, 2014, pp. 635–646.

[15] F. Z. Boito, R. V. Kassick, P. O. A. Navaux, and Y. Denneulin,
“Automatic I/O scheduling algorithm selection for parallel file
systems,” Concurrency and Computation: Practice and Experience,
2015. [Online]. Available: http://dx.doi.org/10.1002/cpe.3606

[16] V. Vishwanath et al., “Topology-aware data movement and staging
for I/O acceleration on Blue Gene/P supercomputing systems,” in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11. IEEE,
2011, pp. 1–11.

[17] F. Isaila et al., “Design and evaluation of multiple-level data staging
for blue gene systems,” IEEE Trans. Parallel and Distrib. Syst., vol. 22,
no. 6, pp. 946–959, 2011.

[18] A. Lebre et al., “I/O scheduling service for multi-application clusters,”
in Cluster Computing, 2006 IEEE International Conference on, ser.
CLUSTER ’06. IEEE, 2006, pp. 1–10.

[19] Y. Qian et al., “A novel network request scheduler for a large scale
storage system,” Computer Science - Research and Development, vol. 23,
no. 3–4, pp. 143–148, 2009.

[20] Y. Chen et al., “LACIO: A new collective I/O strategy for parallel I/O
systems,” in Proceedings of the 2011 IEEE International Parallel &
Distributed Processing Symposium, ser. IPDPS ’11. IEEE, 2011, pp.
794–804.

[21] Z. Wang et al., “Iteration based collective I/O strategy for Parallel
I/O systems,” in Proceedings of the 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, ser. CCGRID ’14.
IEEE, 2014, pp. 287–294.

[22] N. Ali et al., “Scalable I/O forwarding framework for high-performance
computing systems,” in IEEE International Conference on Cluster
Computing and Workshops, 2009, ser. CLUSTER’09. IEEE, 2009,
pp. 1–10.

[23] K. Iskra et al., “ZOID: I/O forwarding infrastructure for petascale
architectures,” in in Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. ACM, 2008, pp.
153–162.

[24] P. Carns et al., “BMI: a network abstraction layer for parallel I/O,” in
19th IEEE International Parallel and Distributed Processing Sympo-
sium, ser. IPDPS ’05, 2005, pp. 8 pp.–.

[25] P. H. Carns et al., “PVFS: A parallel file system for linux clusters,”
in Proceedings of the 4th Annual Linux Showcase and Conference.
USENIX Association, 2000, pp. 317–327.

[26] I. Sun Microsystems, “LUSTRE file system - high-performance
storage architecture and scalable cluster file system,” Tech. Rep.,
2007. [Online]. Available: http://science.energy.gov/∼/media/ascr/ascac/
pdf/reports/Exascale subcommittee report.pdf

[27] R. Bolze et al., “Grid5000: A large scale and highly reconfigurable
experimental grid testbed,” International Journal of High Performance
Computing Applications, vol. 20, no. 4, pp. 481–494, 2006.

[28] O. Yildiz, “IFER: MicroBenchmark for Studying the Cross-
Application I/O Interference,” https://team.inria.fr/kerdata/
ifer-microbenchmark-for-studying-the-cross-application-io-interference/,
accessed: Sep 2016.


