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Abstract—In this paper we investigate the general prob-

lem of controlling a scientific workflow service in terms

of data management. We focus on the data management

problem for the RedisDG scientific workflow engine.

RedisDG is based on the Publish/Subscribe paradigm

for the interaction between the different components

of the system, hence new issues appear for scheduling.

Indeed, the Publish/Subscribe paradigm utilization in-

troduces different challenging problems, among them

the design of effective solutions for managing data, on

the fly, when tasks are published. Our contributions

are twofold. First we add new functionalities to the

RedisDG workflow engine with scheduling decisions re-

lated to the allocation of data intensive jobs to compute

units and according to an efficient management of data

and second we introduce a large set of experiments to

validate our approaches. We analyze our results and we

also sketch perspectives and insights. Experiments are

conducted on the Grid’5000 testbed and the paper is

a step forward to implement a ’Workflow engine as a

Service’ (WaaS).

Index Terms—Large scale cloud applications including

Internet/Web computing, Volunteer computing, Data

management, Scientific workflow, Scheduling, Experi-

mental evaluation on large scale systems.

1. Introduction

In this paper, the problem of controlling the propaga-
tion of data is directly linked to the problem of finding
a ’good’ allocation of tasks of the workflow and also to
resource utilization. We consider the problem as a balance
between multiple objectives. To exemplify our work we can
imagine a user, connected to a cloud. Then he pays for
N computing units according to his budget, downloads
his workflow description and executable codes, then he
launches his application. The cloud system deploys the
infrastructure, activates the N computing units, executes
the workflow. Basically, the cloud user needs to be sure that
two objectives are fulfilled: (1) all the reserved computing
units are used and (2) the execution time of the workflow is
as low as possible. For this purpose, we propose in partic-

ular to optimize the data placement during the execution
of the workflow.

The architectural context of the RedisDG system that
we are designing is very important to understand because it
underlines the specific difficulties of the allocation problem
and strategies we are designing. RedisDG is based on
the Publish/Subscribe paradigm which is an asynchronous
mode for communicating between entities [1], [4]. This com-
munication mode is multipoint, anonymous and implicit
which increases the scalability by eliminating many sorts of
explicit dependencies between participating entities. Elim-
inating dependencies reduces the coordination needs and
consequently the synchronizations between entities. One
challenge of this system is to ’see’ the scheduling/allocation
mechanisms as interactions between software components
and not as a separate component with no relationship with
its environment. Nodes may join or leave the workflow
system at any time to mimic a dynamic system or a volun-
teer based system. The Publish/Subscribe model helps in
realizing this vision. We mention this property for the sake
of completeness of the potential of our RedisDG system
[2], [3]. However we do not explore this possibility in this
paper and we stay in a confined environment such as with
a data center or a grid in a conventional sense.

Google Cloud Pub/Sub1 for instance offers asyn-
chronous messaging that allows for secure and highly avail-
able communication between independently written appli-
cations. Google Cloud Pub/Sub helps developers to quickly
integrate systems hosted on the Google Cloud Platform
and externally. For example, a large queue of tasks can
be efficiently distributed among multiple workers, such as
Google Compute Engine instances or an order processing
application can place an order on a topic, from which it
can be processed by one or more workers. Another example
corresponds to a residential sensor streaming data (through
a channel) to back-end servers hosted in the cloud.

The readers should be aware that the design of schedul-
ing decisions according to the Publish/Subscribe paradigm
is innovative and non conventional. In comparison to clas-
sical workflow scheduling approaches, we deal with online
scheduling with unavailability constraints. However, we
have a special unavailability characterized by the fact that
after a publish message, the more we wait, the more we

1. https://cloud.google.com/pubsub/overview



have candidate workers for the execution of our tasks. How-
ever, the more we wait, the more we delay the execution of
the workflow. In addition, the readers also need to assume
that, in using the Publish/Subscribe paradigm:

• we have specific problems, for instance those related
to the management of Publish/Subscribe events
that lead to fairness problems (the nodes with the
lowest latency have more chances to be selected).
We do not show any experimental proof of this
phenomenon because of space limit which is part of
another paper. Here we control the number of jobs
done by any worker. This is one of the performance
metric. Another one is the total execution time as
explained later in the main tabular for experimental
results.

• we can investigate solutions to the allocation prob-
lem, based on the Publish/Subscribe, which are un-
usual as explained before. The solutions are general
in the sense that we are controlling the problems
inside the RedisDG system making possible the
utilization of any Publish/Subscribe layer and not
only Redis2. But, it is important to notice that we
focus on optimized data placement. We also do not
formalize the problem (with complexity results etc)
but we do prefer to give practical insights to solve
it effectively.

The contributions, as explained in the paper, are
twofold: a) solving the allocation problem under the Pub-
lish/Subscribe paradigm throughout effective data-aware
heuristics b) do large set of experiments (and hidden im-
plementation stuff) to demonstrate the potential of our
approaches. In conclusion, we investigate the general prob-
lem of allocating resources but in the context of a different
paradigm than the ones we traditionally find in the litera-
ture. This opens new directions that are motivated in the
paper.

The organization of the paper is as follows. In section
2 we introduce our context and we recall some notions
about the RedisDG system that we turn into a workflow
engine. Section 3 is related to our data-aware approaches
and we introduce our heuristics. Section 4 deals with the
experiments with the RedisDG system and we analyze the
results. Section 5 presents the related works. Section 6
concludes the paper and draw perspectives.

2. Context of the work

In this section, we recall the coordination algorithm
of RedisDG system which is the core of our paper. The
goal and the difficulties are to define a middleware able
to support workflows that is light enough to be integrated
easily into a cloud and using current Web technologies (in
our case the Publish/Subscribe paradigm).

In Figure 1, we depict the steps of an application
execution. In RedisDG, a task may have five states: Wait-
ingTasks, TasksToDo, TasksInProgress, TasksToCheck and
FinishedTasks. These states are managed by five actors: a

2. Technically speaking we use http://redis.io Pub/Sub capabilities
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Figure 1. Interactions between components of the RedisDG system

broker, a coordinator, a worker, a monitor and a checker.
Taken separately, the behavior of each component in the
system may appear simple, but we are rather interested
in the coordination of these components, which makes the
problem more difficult to solve. The key idea is to al-
low the connection of dedicated components (coordinator,
checker. . . ) in a general coordination mechanism in order
to avoid building a monolithic system. The behavior of our
system as shown in Figure 1 is as follows:

1) Tasks batches submission. Each batch is a series-
parallel graph of tasks to execute.

2) The Broker retrieves tasks and publishes them on
the channel called WaitingTasks.

3) The Coordinator is listening on the channel Wait-
ingTasks.

4) The Coordinator begins publishing independent
tasks on the channel TasksToDo.

5) Workers announce their volunteering on the chan-
nel VolunteerWorkers.

6) The coordinator is aware of worker volunteering by
listening the VolunteerWorkers channel.

7) The coordinator selects Workers according to sev-
eral criteria (e.g. SLA).

8) The Workers, listening beforehand on the channel
TasksToDo start executing the published tasks.
The event ’execution in progress’ is published on
the channel TasksInProgress.

9) During the execution, each task is under the super-
vision of the Monitor whose role is to ensure the
correct execution by checking if the node is alive.
Otherwise the Monitor publishes again, tasks that
do not arrive at the end of their execution.

10) Once the execution is completed, the Worker pub-
lishes the task on channel TasksToCheck by indi-
cating information about task execution (e.g. time
execution, CPU consumption, etc.).

11) The Checker verifies the result returned and pub-
lishes the corresponding task on the channel Fin-
ishedTasks.



12) The Coordinator checks dependencies between
completed tasks and those waiting, and restarts
the process in step (4).

13) Once the application is completed (no more tasks),
the Coordinator publishes a message on the chan-
nel Emergency to notify all the components by the
end of the process.

Summarizing, it is important to understand all the
interactions in this protocol because we will explain later
on some pitfalls leading to observational behaviors on real
infrastructures. These unexpected behaviors, not visible in
the modeling steps, are related to the scheduling policies
that we introduce now.

3. Our Data-aware approach

In this paper we consider List Scheduling Algorithms.
The method consists in building the list of tasks to be
executed in considering the precedence between tasks but
also a scoring to decide on the allocation. The principle is
as follows. We may consider groups of machines, denoted
by Gj , for modeling the case where the transfer between
machines in that group has no cost. Task Ti will be allo-
cated in the group Gj for which the intersect between the
files resident on machines of Gj and files required by Ti is
maximal.

Note that in the Publish/Subscribe context, this prin-
ciple does not always mean that we need to wait for all
workers. Assume for example that at the beginning, all the
workers are equivalent. Then we can select one of them.
Similarly, if we have a task that has no dependencies, all
workers are equivalent. Finally, if we maintain internally a
state table of files that workers have, we do not need to
wait for a response of everyone to allocate tasks.

We also consider a centralized version for the data
management and a decentralized one. The first one consists
in using a central server where workers put and get their
data. This model was the initial model for RedisDG and it
now serves as a reference model for the performance. The
later one tries to transfer data from machines to machines
without intermediary.

3.1. Motivating example

Let us consider the direct acyclic graph of Figure 2,
where tasks have the same execution time for sake of sim-
plicity. Assume that the overall objective is the minimiza-
tion of the data transfer costs. In this example, we weaken
the problem by considering the criterion of the number of
files to transfer. Table 1 lists the size of required files for
the execution. When we start the execution, the broker
publishes tasks from 1 to 9 on the WaitingTasks channel
and, according to dependencies, they will be published
on the TasksToDo channel by the coordinator. We now
explain the different cases, mainly on physical machines
while introducing our scheduling approaches. The case for
containers is left as an exercise because of the space limit.

Execution on physical machines and minimiza-
tion of the number of files to transfer: this method
consists in examining, each time we have a ready task i.e.

1 2 3

4 5 6 7

8

9

file4 file5 file6 file7

file1 file2 file3

file91

file92

file93

file9

file81,82 file83

Figure 2. The direct acyclic graph of our illustrative example

TABLE 1. Sizes of files in our illustrative example

File file81 file82 file83 file91 file92 file93
Size (MB) 2 3 8 6 3 15

published on the TasksToDo channel, its inputs and to
compare them with the files that exist on workers that
have published their volunteering on the channel Volunteer-
Workers. Then, we need to select the worker that hosts the
greatest number of files for the considering task. Consider
now the execution of our workflow on two workers W1 and
W2.

The first task to be published by the coordinator is T1,
and this task can be executed either on W1 or W2 since
the inputs are already located on these machines. Assume
and according to a FIFO strategy that W1 is answering
first, then W1 executes T1. Symmetrically, assume that
W2 is publishing first its volunteering for T2 and W1 for
T3. Then we will get W2←− T2 and W1←− T3.

Once T1, T2 and T3 executed, T4, T5 and T6 become
available and independent. They will be published on the
TasksToDo channel in the previous order, since they have
been published in the same order by the broker on the
WaitingTasks channel.

For the allocation of task T4, it is obvious that W1 is
the best choice since the single file required by T4 exists in
W1. On the other hand, if W2 is chosen for the execution
of T4, it needs to download first file4 from W1 before the
execution. It is the same for tasks T5 and T6 that will
be executed on W2 and T7 on W1, hence the allocations
W1←− T4,W2←− T5,W2←− T6 and W1←− T7.

Once the execution of T4 and T5 completed, T8 is
published on the TasksToDo channel. Both W1 and W2
contain inputs of T8. Since in our case, minimizing the
number of files to exchange is equivalent to the selection of
the worker with the maximal required files, we proceed as
follows. W1 contains 2 files that come from the execution
of T4 and W2 contains only one file that come from the
execution of T5. Then, we chose W1 for the execution of
T8 and we download file83 from W2, hence, according to



our notations W1←− T8.
The T9 task has 3 predecessors named T6, T7 and T8,

that are respectively executed on W2,W1 and W1. As
for T8, we select W1 for the execution of T9 in order to
minimize the number of file to transfer, hence W1←− T9.
Finally we obtain the allocation given on Table 2.

TABLE 2. Allocation for our example with 2 workers

Time/Event W1 W2
t0 T1, T3 T2
Publication of T4, T5, T6 and T7 on TasksToDo
t1 T4, T7 T5, T6
Publication of T8 on TasksToDo
t2 T8
Publication of T9 on TasksToDo
t3 T9

3.2. Presentation of our heuristics

The overall objective is the minimization of the data
transfer costs to decide the tasks placement. Two direc-
tions are under concern with our heuristics that we man-
age with the Publication-Subscription schema making the
originality of the implementation. The first one seeks for
minimizing the total number of files we have to exchange.
The second one seeks for minimizing the total size of files
we have to exchange.

Initially, the RedisDG system was based on a FIFO
(First In, First Out) heuristics: the worker who answered
the first one was selected (modulo the compliance with
certain capacity constraints such as the CPU type, the
RAM or disk availability etc). Now, we can wait more
or less over time to keep the first k > 1 workers. For
instance and depending on the heuristics, the coordinator
maintains a table of the past allocations according to a
criterion based on a metric related to data. The coordinator
pre-computes a set of ’best candidates’ for the next tasks
to execute. It publishes the task and waits for a reply
of one/two/. . . ’best candidates’. Then it decides on the
allocation. This protocol exemplifies the ways to cope with
the Publish/Subscribe in designing data-aware approaches
for the RedisDG system.

In our current work, we do not consider the latency and
the bandwidth between any two pairs of machines but we
have rather observed the following situation with a great
impact on performance. Since the objective is to reuse the
machines with the data in place (which are those having
executed the root tasks), we tend to evict some machines
and to choose almost the ’same machines’. Following this
idea, there is no transfer if we use only one and the same
machine. To counter-balance this phenomenon we decided
to implement a ’round robin’ algorithm (for the root tasks)
in order to maximize the parallelism between tasks, to give
the same chance to machines to fairly contribute, and to
increase the performance.

3.2.1. Heuristics: one worker per node.

A. FIFO Heuristic (FIFO): RedisDG framework
is able to run according to this method: the coordinator

selects the first replying worker, then it changes its
state from SUBMITTED to GIVEN and publishes to all
the workers (to guarantee some liveness property) the
information about the task’s id and the selected worker.

B. Input Number Heuristic (IN): the allocation
that follows this approach distinguishes between 2 types of
tasks.

• Root tasks: they do not require any transfer since
the inputs are already in place in the distribution
that we deploy. In this case we keep the FIFO
heuristic for allocating tasks to workers.

• Non root tasks: we compute a score for each worker.
This score corresponds to the number of inputs
required by the task. The value is computed as
follows:

score(Wj , Ti) = card(ITi
∩DWj)

This equation explains that the scoring associated
to worker Wj for executing task Ti is the cardinality
of the set of input files issued from Ti ( denoted ITi)
that is intersected with the set of files located on the
worker Wj (denoted by DWj). Thus:

score(Wj , Ti) = card(ITi
∩ (

⋃
p∈Pred(i,j)

Op))

where Pred(i, j) be the set of predecessor tasks
executed by the worker Wj , and Op be the list of
the outputs of tasks p. Since Pred(i, j) is finite we
have that:

score(Wj , Ti) = card(
⋃

p∈Pred(i,j)

(ITi
∩Op))

=
∑

p∈Pred(i,j)

card(ITi
∩Op)

C. Input Size heuristic (IS): This heuristic uses the
same reasoning as the previous one but in this case the
score is computed as the sum of the required files sizes.
Formally, the score is

score(Wj , Ti) =
∑

p∈Pred(i,j)

∑
f∈(ITi

∩Op)

Size(f)

The technical difficulty is about the computation of
this value in the context of the Publication-Subscription
paradigm. The tricky part was on reusing the Finished-
Tasks channel (see Figure 1) with a special message related
to the file size, on modifying the format for messages and
tasks. Thus the process is as follows. When a worker has
completed a task, it publishes the sizes of its output files
in the FinishedTasks channel. The coordinator receives
this message as well, and it uses this information for the
allocation of non-root tasks.

D. Fair Root heuristics (FRIN, FRIS): To reduce
the effect of monopolizing the tasks by fewer workers,
accentuated by both previous heuristics, we have imple-
mented two other heuristics: Fair Root Input Number and
and Fair root Input Size. Indeed, since these last tasks gen-
erate inputs for tasks in the next level, their distribution is



conditioning the allocation of the forthcoming tasks. Then,
fair distribution of root tasks guarantee better management
of resources and subsequently better execution time due to
the effect of parallelization.

E. Fair Distribution heuristic (FD): This heuristic
generalizes the previous one to all the levels of the tasks
graph so that it is no more reserved for the root tasks only
and gives us an other point of comparison to justify the
use of the Data-Aware-Scheduling approach.

3.2.2. Heuristics: many workers per machine based
on equivalence class.

We apply all the previous heuristics for the case of
Docker containers. The different scores are computed
by tacking account of the localization of each container.
We compute a single score per machine. In this case, we
consider that all the containers belong to an equivalence
class. Consequently, we can apply the Fair Distribution
case to balance the work among all the containers.

4. Experiments

4.1. Montage Workflow

The MONTAGE3 project has been created by NASA/I-
PAC Infrared Science Archive as an open-source toolbox
to generate personalized mosaic of the sky from images in
the Flexible Image Transport System (FITS) format. The
MONTAGE application has been represented as a workflow
that can be executed on the Teragrid 4 infrastructure for
instance. On Figure 3, we show a sample of a MONTAGE
workflow (only 20 nodes) that has been generated from the
workflow generator [5]. What is important to notice is the
shape of the workflow and the corresponding independent
part that could be executed in parallel. In Table 3, we
show an instance of MONTAGE application, that we have
executed with RedisDG. This example will be use in an
intensive way in the paper. It exhibits a workflow with
1446 tasks and 3722 dependency links between tasks. The
execution of this quite large instance requires 9423 input
files (including the intermediary files) and it generates 2889
files (including the intermediary files).

TABLE 3. An instance of MONTAGE workflow with 1446
nodes

Level Task Number of tasks
1 mProject 301
2 mDiffFit 838
3 mConcatFit 1
4 mBgModel 1
5 mBackground 301
6 mImgtbl 1
7 mAdd 1
8 mShrink 1
9 mJPEG 1

3. http://montage.ipac.caltech.edu/index.html
4. http://www.teragrid.org/

Figure 3. An instance (20 nodes) of MONTAGE workflow

4.2. Experimental plan and performance met-
rics

We use the Grid5000 testbed as the experimental plat-
form and across different clusters inside Grid5000. We de-
ployed a Grid5000 image containing the RedisDG workflow
engine and all the compiled versions of the MONTAGE
workflow. The input files of the MONTAGE workflow are
also included inside this image. We use a moderate number
of machines, leading to an execution time of one instance
of the MONTAGE workflow below 10 minutes. In the re-
minder of the paper we give only representative examples of
our experiments. The execution times are given as a mean
value plus the standard deviation. We are experimenting
either with bare machines or with Docker containers. In
this last case and technically speaking we have reserved a
Docker volume where any containers on the same machine
can store and upload their input and output files. Initially,
this volumes contain the files of the root tasks which is
part of the Linux image that we deploy on each machine.
The other files are generated on the fly by the application.
The different performance metrics that we consider are as
follows. The Input transfer time (Input) is the total time
for transferring the inputs for all the tasks. The Processing
time (Processing) is the total computing time for all the
tasks. The Output transfer time (Output) is the total time
for transferring the output files for all the tasks. The Total
execution time (Total) is the sum of the 3 previous times.
The Execution time of the workflow (Execution) is the
difference in time between the beginning of the execution
(date of the first publication by the broker) and the end
of the workflow (at the moment of the publication of a
message on the emergency channel). The Distribution of
tasks (Distribution) is the number of tasks executed by
each worker (physical machines or Docker containers).



4.3. Results and analysis

4.3.1. Homogeneous physical machines. In this sce-
nario we use the Griffon cluster in Nancy: 1 machine for the
master (coordinator and broker daemons) and 4 machines
as workers. We reported in Table 4 the results for each
heuristics and corresponding to mean values. We also re-
ported the standard deviation. Since we have experimented
in an homogeneous context the standard deviation for the
Processing time is reported as zero. The result for a central-
ized data management and a FIFO scheduling is presented
in line #01. Then line #02 is for a decentralized data
management and a FIFO scheduling. At least we introduce
the results for the Input Number Strategy (IN), for the
Input Size strategy (IS), for the Fair Root Input Number
strategy (FRIN), for the Fair Root Input Size strategy
(FRIS) and for the Fair Distribution strategy (FD). Since
the management for input and output files and the process-
ing time do not greatly vary from one run to another, the
determining performance factor is the distribution of tasks
within workers. Indeed, we noticed a case where a worker
has executed alone 36.4% of the tasks, that is equivalent
to 30% of the total execution time. However, when tasks
are distributed in a more ’fair’ manner the execution time
is better. Consequently we obtained a better resource uti-
lization. From a data management point of view, reducing
the data transfer can improve the total execution time of
the workflow, especially for the MONTAGE application. As
shown on Table 4, the processing time counts for 50% of
the total execution time, while the other 50% corresponds
to data transfers. On average, the decentralized data man-
agement has reduced by 16% the duration of execution
compared with the centralized case, by 21.4% the total
time of execution of tasks, by increasing the input transfer
time of 10% (overhead for the search of predecessors and
workers) and by reducing by 82% the output transfer time,
which justifies our scheduling heuristics according to our
new data management strategies. We note that the results
given by the first family of heuristics (IN and IS on lines
#03 and #04) are very close: this is explained by the homo-
geneity of the sizes of the files involved in the MONTAGE
workflow, which are about 5MB. The ideal situation is
probably in combining the two dimensions when scheduling
other workflows. Regarding the experimental results on
Table 4, the Input Number heuristic and the Input Size
heuristic have reduced, on average and compared with the
decentralized data management with FIFO scheduling (see
line #02), by a factor of 10.7% (respectively 9.6%) the
execution time and by a factor of 11.4% (respectively 13%)
the total execution time. If we compare the new results
with those of the original version of RedisDG (see line
#01), we note, for the Input Number heuristics (Input Size
heuristic respectively), a decrease in execution time by 25%
(respectively by 24%) and a decrease in the total duration
of task execution by 30% (respectively by 30%). These
experimental results justify our data-aware approaches.
Although the experimental results of the second family of
heuristics (FRIN and FRIS on lines #05 and #06) coupling
fairness and data transfer optimization, are better than
those of the first series in terms of execution times (385s

against 408s and 394s against 413s, on average). Indeed
this particular case of homogeneous machines does not
demonstrate the best value of our approaches. In fact, in
the case of heterogeneous machines (not seen in this paper),
the most efficient machines tend to monopolize the compu-
tation while the remaining workers have almost nothing to
do. The better management of resources has led to lower
execution time even in the case of homogeneous machines.
From the execution time point of view, we went from 385s
for the Fair Input Number heuristic to 454s for the Fair
Distribution heuristic, with a loss of 21% of the execution
time. Furthermore, by extending the fair scheduling to all
tasks (line #07), we lost 31% of the transfer time of inputs,
always comparing to the same heuristic. Moreover, the
results of the Fair Distribution heuristic are very close to
those of FIFO.

4.3.2. Docker. We present in this subsection and on
Table 4 the results of the execution of the MONTAGE
application on 5 machines in the Griffon cluster of the
Nancy site: 1 master machine and 4 machines each con-
taining 3 workers (Docker containers). On line #08 we
noticed a decrease of 13% of the execution time comparing
to the case of using physical machines but an increase of
25% for the total execution time. This increase is mainly
due to the emphasis of the effect of data management
centralization: 12 workers send and receive data instead
of 4 in the case of the physical machines. The results on
line #09 have been improved over the centralized data
management case on line #08, but also compared to the
performance with physical machines in the same context
of decentralized data management (lines #02-#07): the
execution time decreased by 17% and the total execution
time of the workflow decreased by 10.4%. The executions
with Docker as shown on lines #10, #11, #12, #13 and
#14 not only confirmed, once again, our previous findings.
They also underline the importance of an efficient resource
management, both by distributing roots tasks equally on
machines and in maximizing the effect of the parallelization
through the use of several containers per node.

4.3.3. Synthesis. All the experiments confirmed that the
decentralized approaches are better than the centralized
approaches and this result was expected because we bypass
an intermediary server. We have also demonstrated that
the graph structure, in particular the number of root tasks
(referenced as level 1 in tabular 3) coupled with a fair
distribution of tasks, impacts the performance metrics. For
instance we introduced the Fair Distribution heuristic to
justify the involvement of the data transfer factor during
the scheduling phase. Indeed, the best results we have
obtained so far are for Fair Root heuristics. We also noticed
an improvement between the FIFO scheduling case and the
fair scheduling case for root tasks. We also confirmed, em-
pirically, that the pair (Fairness, Data) is the best strategy
(see the column Distribution) among those that we have,
in the case of homogeneous physical machines.



TABLE 4. Experimental results. The variance for the Processing time is zero because we use an homogeneous system

Input (s) Processing (s) Output (s) Total (s) Execution (s) Distribution

Physical
Machines

#01 Centralized 374 ± 13% 513 ±0% 386 ±4% 1273 ±5% 544±4% 361.5 ± 20.3%
#02

Decentralized

FIFO 416 ±2% 515 ±0% 70 ±15% 1001 ±2% 457 ±4% 361.5 ± 19.4%
#03 IN 272 ±3% 514 ±0% 101 ±8% 887 ±1% 408 ±1% 361.5 ±19.6%
#04 IS 258 ±2% 514 ±0% 98 ±0% 870 ±1% 413 ±1% 361.5 ±27.8%
#05 FRIN 302 ±1% 516 ±0% 104 ±18% 922 ±2% 385 ±5% 361.5 ± 1.7%
#06 FRIS 297 ±1% 515 ±0% 113 ±2% 925 ±1% 394 ±2% 361.5 ± 4.5%
#07 FD 437 ±1% 516±0% 115 ±4% 1068 ±0% 454 ±1% 361.5 ± 0.1%

Docker
Containers

#08 Centralized 691 ±1% 528 ±0% 484 ±3% 1703 ±1% 441 ±5% 361.5 ± 41.7%
#09

Decentralized

FIFO 483 ±2% 534 ±0% 100 ±9% 1117 ±1% 378 ±3% 361.5 ± 30.3%
#10 IN 249 ±6% 533 ±0% 121 ±10% 903 ±2% 304 ±5% 361.5 ± 71.2%
#11 IS 236 ±1% 530 ±0% 113 ±1% 879 ±0% 317±2% 361.5 ± 75.8%
#12 FRIN 351 ±2% 532 ±0% 117 ±4% 1000 ±1% 293 ±4% 361.5 ± 1.5%
#13 FRIS 375 ±5% 533 ±0% 132 ±12% 1040 ±3% 294 ±5% 361.5 ± 1.8%
#14 FD 484 ±1% 533 ±0% 116 ±4% 1133 ±1% 455 ±2% 361.5 ± 0.1%

5. Related works

Applications in e-Science are becoming increasingly
large-scale and complex. These applications are often in
the form of workflows [5] such as MONTAGE, Blast [6],
CyberShake [7] with a large number of software compo-
nents and modules. Workflow and scheduling policies have
been studied for one decade or two. In the reminder of this
section we consider two categories. First the works that
seek to optimize the execution time and/or QoS constraints
of the workflows running in grid environments, and second
works anchored in the Map-Reduce framework.

5.1. Conventional workflow scheduling policies

In [8] authors reviewed the solutions for allocating
suitable resources to workflow tasks so that the execution
can be completed to satisfy objective functions specified
by users. The context is Grid computing and the authors
first introduced workflow management systems that define,
manage and execute workflows on computing resources.
Our context is more related to volunteer computing and we
want to design, as a whole, the interactions of components,
especially the interactions between the workflow scheduling
and data movement components. Moreover, there are two
types of abstract workflow model, deterministic and non-
deterministic. In a deterministic model, the dependencies
of tasks and I/O data are known in advance, whereas in a
non-deterministic model, they are only known at run time.
In our case the dependencies are known in advance but
nodes publish their volunteering. We may consider them
as active and not passive, making a strong distinction with
other works. The heuristics recalled in [8] are based on the
performance estimation for task execution and I/O data
transmission. In our work, we do not make any assumption
about performance estimation, apriori known. Dependency
mode scheduling algorithms intends to provide a strategy
to order and map workflow tasks on heterogeneous re-
sources based on analyzing the dependencies of the entire
task graph, in order to complete these interdependent tasks
at earliest time. The strategy ranks the priorities of all
tasks in a workflow application at one time. On issue with
this strategy is to set weights on tasks. One idea is to

set the weight of each task and edge to be equal to its
estimation execution time and communication time. In our
case we assume that the execution context is fluctuating
(nodes may enter/leave the system at any time) making
the estimates of weights a challenging problem. Another
strategy is duplication based scheduling that uses the idling
time of a resource to duplicate some parent tasks, which are
also being scheduled on other resources. In our case we can
duplicate tasks but for the purpose of result certification
since our context is the volunteering computing. All of
our previous experimental results are accomplished with no
duplication. Meta-heuristics are yet another approach for
solving the workflow scheduling problems. In general, there
are two phases with meta-heuristics approaches and for
each iteration of the process: construction phase and local
search phase. The construction phase generates a feasible
solution. A feasible solution for the workflow scheduling
problem is required to meet the following conditions: a
task must be started after all its predecessors have been
completed; every task appears once and only once in the
schedule. A local search is then applied into the solution
to improve it. In our case we try also to optimize the
execution time but as a consequence of a fair strategy to
use all the resources or candidates. We also do not consider
to be compliant with any deadline which is yet another
objective that leads to a specific family of heuristics. At
last, many studies as those in [8], [9], [10], [11] that may
serve as complimentary readings, validate the strategies
through simulations. In our case our option is to run real
world applications (MONTAGE) which requires a special
effort for designing an experimental plan, to check the
reproducibility of the experiments.

5.2. Map-Reduce oriented works

In [12] authors focused on the MapReduce framework
for processing massive data over computing clouds. The
major factor affecting the performances of map-reduce jobs
is locality constraints for reducing data transfer cost in us-
ing poor network bandwidth. They proposed a scheduling
approach that provides 1) a data pre-placement strategy
for improving locality and concurrency and 2) a schedul-
ing algorithm considering locality and concurrency. They



pointed a need for scheduling workflow services composed
of multiple MapReduce tasks with precedence dependency
in shared cluster environments. In this paper they also
introduced the data cohesion score that we reuse in our
paper.

Authors in [13] noticed a conflict between fairness in
scheduling and data locality (placing tasks on nodes that
contain their input data). They investigated this problem
in designing a fair scheduler for a 600-node Hadoop cluster
at Facebook. To address the conflict between locality and
fairness, they proposed a simple algorithm called delay
scheduling: when the job that should be scheduled next
according to fairness cannot launch a local task, it waits
for a small amount of time, letting other jobs launch tasks
instead. The difference with our work is as follows. First
authors consider multiple jobs and they try to optimize at
this granularity level. We consider only the optimization
of one job. Second they give a priority to local tasks,
otherwise, they skip to another job. If a job has been
skipped long enough, they start allowing it to launch non-
local tasks to avoid starvation.

6. Conclusion

In this paper we investigated the problems of data
management and allocation under the Publish/Subscribe
paradigm in order to implement robust and fast data
transfers for the RedisDG workflow engine. We investigated
a large set of strategies starting from the key ideas of
minimizing either the number of files to transfer or the total
size of files to transfer. Thanks to the DAG abstract format
we inserted some intelligence, for instance for controlling
the execution of the root tasks, then the tasks at any level
in the DAG. We showed experimentally, on the Grid5000
testbed that coupling efficient data management strategies
and efficient allocation strategies provide the best com-
promise for performance. The context of our experiments
includes the use of a single (homogeneous) cluster, Docker
containers or bare machines. In the future we plan to aug-
ment the criteria for the allocation of tasks in tacking into
account parameters related to the network bandwidth but
also in coupling decisions. For instance, we could imagine to
decide the allocation of tasks on a data-aware criteria plus
an energy-aware criteria and/or a fairness-aware criteria
and/or a load-aware criteria. This paper is a step into this
direction but at the moment, in this paper, we consider
only data-aware criteria. The general objective remains to
offer a Workflow engine as a Service for a cloud provider.
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