
HAL Id: hal-01517911
https://hal.archives-ouvertes.fr/hal-01517911

Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed and Adaptive Routing Based on Game
Theory

Baptiste Jonglez, Bruno Gaujal

To cite this version:
Baptiste Jonglez, Bruno Gaujal. Distributed and Adaptive Routing Based on Game Theory. ALGO-
TEL 2017 - 19èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications,
May 2017, Quiberon, France. �hal-01517911�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/84978352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01517911
https://hal.archives-ouvertes.fr

Routage distribué et adaptatif fondé sur la
théorie des jeux

Baptiste Jonglez1 et Bruno Gaujal1

1Univ. Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble France

Dans cet article, nous présentons un algorithme de routage distribué multi-flots permettant de choisir des chemins de
bout en bout dans un réseau. Celui-ci converge vers une configuration dans laquelle aucun flot ne peut améliorer son
délai de bout en bout en changeant de chemin (équilibre de Nash).

Notre algorithme est robuste aux erreurs de mesures, tolère les mesures obsolètes, et ne nécessite pas de synchronisation
d’horloge. Notre preuve de concept est implémentée sous forme d’un contrôleur OpenFlow, et nous l’évaluons sur une
plate-forme d’émulation utilisant Mininet.

1 Introduction
A common challenge in current and future communication networks is to exploit path diversity to increase

performance and reliability. This problem can be modeled as a multi-commodity flow problem [1]. Given a
number of concurrent source-destination flows, the problem is to assign these flows to network paths, while
respecting capacity constraints and optimizing a performance metric. Our goal is to provide a distributed
solution to this problem, that requires neither cooperation between sites nor knowledge of the network
topology and performance parameters.

Adaptive routing algorithms base the routing decisions on dynamic properties of the network (such as real
time link load, end-to-end latency, or packet loss). Despite years of research, adaptive routing techniques
did not see wide adoption. The main reason is the presence of potential instabilities and routing oscillations,
which could make the cure worse than the disease. Indeed, early experiments with delay-based routing in the
ARPANET resulted in severe stability issues under high load, rendering the network close to unusable [2].

Contributions In this work, we present a novel algorithm for adaptive routing in packet-switched net-
works, mapping source-destination flows to paths in the context of atomic non-splittable routing games.
We claim that it provides a viable and stable solution to adapt to traffic conditions, and effectively avoids
congestion. Our algorithm is based on strong theoretical grounds from game theory, while our proof-
of-concept uses Openflow to ease implementation. Our routing algorithm is endowed with the following
desirable properties for efficient implementation:
1) It is fully distributed: only local information is needed, and it requires no explicit coordination between
routers. 2) It is oblivious to the network topology. 3) It is robust to outdated and noisy measurements. 4)
There are no endless oscillations. 5) It does not require clock synchronization between routers, or between
routers and end hosts.
Proofs and additional material are available in a companion research report [3].

2 Distributed Routing over a Network
Let (V,E) be a communication network over a set V of nodes and a set E of bi-directional links, over

which we consider the following multi-commodity flow problem. A set K of flows of packets must be routed
over the network. Each flow k ∈ K is characterized by a source ak, a destination bk and a nominal arrival
rate of packets, λk. Also, each flow is affected a set Pk of possible paths in the network from its source to
its destination, with |Pk| = Pk. A configuration is a choice of one path per flow. Our objective is to find a
configuration that minimizes the end-to-end average delay of each flow.

Baptiste Jonglez et Bruno Gaujal

We design a learning algorithm that allows each flow to discover a path, such that the global configuration
is a Nash equilibrium of the system: no flow can improve its delay by changing its path. The challenge is
to consider a realistic scenario in which no flow has information about the choices of the others or even
knows about their presence. The only information that a flow can get from the network is a measure of the
end-to-end delay of the packets it sends over its current path.

The Optimal Path Selection (OPS) Algorithm 1 is based on a mirror-descent algorithm for general po-
tential games, presented in [4]. For one flow, say k, we call dk(p1, · · · , pk, · · · , pK), the end-to-end average
delay for packets of flow k under the configuration where flow 1 uses path p1 among its possible paths,
flow 2 uses path p2, and so forth. The algorithm is probabilistic and maintains two vectors, both of size Pk
(denoted P).

The probabilistic choice vector q = (q1 . . .qP) gives the probability to choose each path p.
The score vector Y = (Y1 . . .YP) maintains a (negative) score for each path, to be optimized, where Yp

depends on the average delay for packets of flow k on path p.

Algorithm 1: Optimal Path Selection (OPS) Algorithm for flow k.

1 Initialize: n← 0; q← (1
P , . . . ,

1
P) ; Y← (0,0, . . . ,0);

2 repeat
3 When local timer ticks for the nth time;
4 Select a new path p w.r.t. probabilities q;
5 Send packets on path p and measure their delay D;

6 Update score of path p: Yp←
(

Yp− γn(D+ τYp)/qp

)
∨βn;

7 foreach path s ∈ Pk do
8 update probability: qs← exp(Ys)

∑` exp(Y`)
;

9 until end of time;

The OPS algorithm uses 3 parameters: τ > 0 is a discounting factor over past scores. The bounding
sequence βn (in the algorithm, ∨ denotes the maximum operator) is such that βn→−∞ and |βn|6C1n+C2
for some constants C1 and C2. The decreasing sequence of discretization steps γn is in L2 (∑n γ2

n converges),
but not in L1 (∑n γn diverges). Typically, γn = 1/nα with 1/2 < α 6 1 works.

Theorem 1 (Convergence to equilibrium).
If delay measurements have no bias and all flows have the same rate†, for all ε > 0, there exists τ > 0 such
that under discounting factor τ, Algorithm 1 converges for all flows to an ε-optimal configuration, in the
following sense:
For each flow k, the probability vector q converges almost surely to a near degenerate probability: qp
becomes smaller than ε for all p ∈ Pk except for one path, say p∗k , for which it grows larger than 1− ε.
Furthermore, under configuration (p∗1, . . . , p∗K), no flow can unilaterally reduce its delay: for all k and
∀p ∈ Pk, dk(p∗1, . . . , p, . . . , p∗K)> dk(p∗1, . . . , p∗k , . . . , p∗K).

The proof of convergence is given in [3] and also shows the additional properties of OPS described in the
introduction. However two questions remain.

Price of Anarchy In general, a Nash equilibrium (NE) does not provide any guarantee on its global
performance. In the worst case, the performance of a Nash equilibrium can be arbitrarily far from an
optimal configuration. However, the price of anarchy (ratio between the performance of a Nash equilibrium
versus the optimal configuration) is bounded when delays are smooth [6], and is known to converge to one
for large networks or in heavy traffic [7].

† This assumption is needed for the underlying game to have a potential [5]. This is an essential ingredient to prove convergence.
When flows do not have the same arrival rate, one can still use the OPS algorithm. It can be shown (not reported here) that if OPS
converges, it finds a Nash equilibrium. An alternative is to split flows into subflows, all with the same rate. In that case the subflows
from the same flow may end up using different paths from source to destination.

Routage distribué et adaptatif fondé sur la théorie des jeux

Speed of convergence The speed of convergence of similar algorithms is of order 1/n [8] in a centralized
context (with a single flow) and with strictly convex objective functions. Neither condition is true here. Up
to our knowledge, no theoretical result exists today to bound the speed of convergence for our algorithm,
and we evaluated it experimentally in the following section.

3 Implementation and Experimentations
The OPS algorithm is completely distributed: it requires only local measures, local choices, and no

coordination is needed between routers. In practice, however, a router cannot select full paths from source
to destination. Therefore, we implement OPS as an SDN controller running on gateways, that can only
select among several next-hop routers. Core routers simply use their regular routing protocols.

As for the measurement of delays, we use ACK packets to measure the one-way delay experienced by
each flow, and eliminate clock offset between hosts by keeping track of the minimum measured delay.
Finally, clock ticks (line 3 in Algo 1) are replaced by packet arrivals: the SDN controller “ticks” every T
packets for each flow, and computes the empirical mean of the last S packets among those T , as a non-biased
estimate of the average delay.

We evaluate our OPS algorithm in the network displayed in Figure 1, using Mininet [9] on Linux.

Host 1

Host 2

Host 3

Host 4

Flow 3

Flow 3

Flow 2

Flow 1

Flow 2

Flow 4

Flow1

Flow 5

Flow 4

Flow 5
Gateway G1

Gateway G4

Gateway G3

Gateway G2

Router R

Figure 1: Network used in the following ex-
periments. Thin lines represent links with ca-
pacity of 4 Mbit/s, while thick lines repre-
sent links with a capacity of 8 Mbit/s. All
links have a transmission delay equal to 5 ms.
Dashed lines between hosts and their gate-
way are links with unrestricted capacity. Five
flows using the network are represented. Each
flow consists in UDP packets with a constant
throughput λ, with λ varying from 2000 to
3900 Kbit/s in the experiments. The load is
ρ = λ

4000 Kbit/s (ρ = 1 means that a single flow
uses the full capacity of a 4 Mbit/s link).

Flow Equilibrium 1 Equilibrium 2
Flow 1 G1→ G2→ G3 G1→ G2→ G3
Flow 2 G4→ G1 G4→ R→ G1
Flow 3 G4→ R→ G2 G4→ R→ G2
Flow 4 G4→ R→ G3 G4→ G1→ R→ G3
Flow 5 G2→ G3 G2→ G3

As long as ρ < 1, there exists at least one
stable configuration of the network, i.e. a
choice of path for each flow that satisfies ca-
pacity constraints on all links. Additionally,
for 2

3 < ρ < 1, there are only two Nash equi-
libria given in the table.

Since we have four gateways, we run four instances of our Ryu-based Openflow controller, each control-
ling a different gateway. We modified udpmt to generate UDP packets for each flow with a timestamp of
the date of emission (µTP header). The destination host for each flow runs udptarget, suitably modified
to reply back with small UDP packets containing µTP timestamps. This allows the controllers to measure
the one-way delay of each flow.

This setup has been run a large number of times, to reduce variability. Each experiment lasts for 2400
seconds, to allow most executions to converge. To parallelize the execution, we used between 5 and 45
identical machines.

In the experiments, the load varies from 0.75 to 0.975. Figure 2 shows the evolution of Flow 1. Gateway
G1 has three possible next-hop routers: G2, R, or G4. We display the probability, over time, that G1 selects
each of the three next-hop routers. The other flows are also being forwarded concurrently, but this is not
displayed here. G2 gets selected most of the time, after a transient period. This choice is consistent with
both equilibria.

In Figure 3, the convergence time is expressed as the number of iterations of our algorithm necessary so
that all flows use a given route more than 80 % of the time. When the load approaches 1, we expect that

Baptiste Jonglez et Bruno Gaujal

●●●●●●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●0.00

0.25

0.50

0.75

1.00

0 200 400 600 800
Number of iterations

●

●

●

R

G2

G4

Selection probability for each next−hop router

Figure 2: Probability of selecting each
next-hop router over time, for Flow 1
(see Figure 1). Here, the load is equal to
ρ = 0.875, and the parameters are T =
500 packets and S = 5 packets.

the convergence time goes to infinity, because the average delays cannot be reliably estimated for nearly
unstable networks.

● ● ● ●

●

●

●

50

150

250

350

450

550

650

750

850

950

0.7 0.8 0.9 1.0
Load

Convergence time (number of iterations)

Figure 3: Average convergence time of the algo-
rithm as a function of the load, with 95 % confi-
dence intervals, for the network in Figure 1.

References
[1] T. C. Hu, “Multi-commodity network flows,” Operations Research, vol. 11, no. 3, pp. 344–360, 1963.

[2] A. Khanna and J. Zinky, “The revised arpanet routing metric,” ACM SIGCOMM Computer Communi-
cation Review, vol. 19, no. 4, pp. 45–56, 1989.

[3] B. Jonglez and B. Gaujal, “Distributed Adaptive Routing in Communication Networks,” Research Re-
port RR-8959, Inria ; Univ. Grenoble Alpes, Oct. 2016.

[4] P. Coucheney, et al., “Penalty-Regulated Dynamics and Robust Learning Procedures in Games,” Math-
ematics of Operations Research, vol. 40, no. 3, pp. 611–633, 2015.

[5] A. Orda, et al., “Competitive routing in multiuser communication networks,” IEEE/ACM Trans. on
Networking, vol. 1, no. 5, pp. 510–521, 1993.

[6] G. Christodoulou and E. Koutsoupias, “The price of anarchy of finite congestion games.,” in 37th
Annual ACM Symposium on Theory of Computing (STOC), 2005.

[7] R. Colini-Baldeschi, et al., “On the price of anarchy of highly congested nonatomic network games,” in
9th International Symposium of Algorithmic Game Theory (SAGT) (Springer, ed.), no. 9928 in LNCS,
pp. 117–128, 2016.

[8] A. S. Nemirovski and D. B. Yudin, Problem Complexity and Method Efficiency in Optimization. New
York, NY: Wiley, 1983.

[9] B. Lantz, et al., “A network in a laptop: rapid prototyping for software-defined networks,” in Proceed-
ings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, p. 19, ACM, 2010.

	Introduction
	Distributed Routing over a Network
	Implementation and Experimentations

