
HAL Id: hal-01522253
https://hal.archives-ouvertes.fr/hal-01522253

Submitted on 13 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing environment models in multi-robot teams
Pierrick Koch, Simon Lacroix

To cite this version:
Pierrick Koch, Simon Lacroix. Managing environment models in multi-robot teams. International
Conference on Intelligent Robots and Systems (IROS), Oct 2016, Daejeon, South Korea. pp.5722 -
5728, �10.1109/IROS.2016.7759842�. �hal-01522253�

https://hal.archives-ouvertes.fr/hal-01522253
https://hal.archives-ouvertes.fr


Managing environment models in multi-robot teams

Pierrick Koch1,2 and Simon Lacroix1,3

Abstract— Environment models are the primary matter to
autonomous decisions for mobile robots, and also to cooperation
within teams of robots that operate in the same environment.
The decisions to take within a robot or a robot team relate
to motions, perceptions and communications: various types
of environment models are therefore required to evaluate
and plan these actions. While the literature abounds with
approaches to environment modeling using data perceived by
the robots, very few work tackle the problem of managing
such models within a team of robots. Managing environment
models implies first defining the proper data structures and
associated mechanisms that allow both their efficient update
and use by the decisional processes that require them, and
second ensuring the models consistency as the robots evolve.
This article presents the definition of a framework dedicated
to the managing of environment models within a robot team.
It establishes the principles that govern the framework design,
and illustrates them throughout some examples.

I. INTRODUCTION

Environment models are at the heart for the autonomy
of mobile robots, as they constitute the main information
on which planning processes rely to select and configure
the tasks to fulfill a given mission. Their consistency, in
the sense of their fidelity to the reality of the information
they represent, is therefore of utmost importance, as any
discrepancy or error will eventually lead to wrong decisions.
When it comes to teams of robots operating in the same
environment, sharing environment models is a pre-requisite
to cooperation: whatever the mission to achieve (e.g. explo-
ration, surveillance), the robots must indeed have a common
understanding of the situation at hand to cooperate.

The robotics literature naturally abounds with contribu-
tions on the building of various kinds of environment models
from the data gathered by robots. Similarly, a vast amount
of work has been devoted to robot localization, which is in
particular required to ensure the spatial consistency of the
built models, either in mono or multi-robot contexts. Yet
much fewer contributions can be found on the managing of
environment models, be it within a single robot or within a
team of robots. Managing the environment models consists
mainly in (i) structuring them so as to properly serve the
processes that exploit them, (ii) making sure that the most
precise information is extracted from the available data, in
spite of the dynamics of the environment, the positioning
errors, and the asynchronous information transfer between
robots.

1CNRS, LAAS, 7 av du colonel Roche, F-31400 Toulouse, France;
{pierrick.koch, simon.lacroix} at laas.fr

2Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
3Univ de Toulouse, LAAS, F-31400 Toulouse, France

Landmarks!

Visibilities!

DTM!

Traversability!

Fig. 1: An AAV and an AGV jointly operate in the same
environment. For this purpose, they exploit a series of
environment-related information to plan, coordinate and con-
trol their activities (e.g. environment traversability, visibility,
communication and localization constraints, ...). How to
structure these various environment models, so as to ensure
their consistency within the team? How to enable their
sharing between the robots?

This paper presents AtLaas1, an open-source framework
dedicated to the management of environment models among
mobile robots. The primary considered context is large scale
outdoor environments, of which initial models may or may
not be known, and in which a team of robots of various
kinds jointly achieve long duration missions that mainly
relate to environment perception, e.g. in search and rescue
or environment monitoring missions. The environment is
supposed to be non-networked, in the sense that the robots
can not rely on an ubiquitous, large bandwidth communi-
cation infrastructure that would allow them to benefit from
remote powerful storage and computation servers. Yet the
robots are of course endowed with communication abilities,
that are however constrained by the environment in range
and bandwidth: communication activities have to be actively
controlled by the team, and the framework must also offer
means for this purpose.

Defining such a framework requires to face the usual chal-
lenges with which environment modeling and robot local-
ization algorithms have to cope: incomplete and noisy data,
variety of information sources and quality (including initial
environment models), environment dynamics... These points
are crucial in the design of the modeling and localization
algorithms, and have driven nearly three decades of research

1https://github.com/pierriko/atlaas



in robotics, that mostly relate to uncertain data fusion. But
the maintenance of spatial and temporal consistency of the
models within the team calls for additional concerns, such as
the memorization of the gathered data, e.g. so as to rebuild
a model corrupted by wrongly positioned data when past
localization information are updated. The heterogeneity of
the robots also impacts the management of the models: for
instance some landmarks can be exploited to localize a given
kind of robots and not others that have no mean to perceive
them, or the traversability information are robot-dependent.
Finally, the communication constraints impose a distributed
solution to manage the various models.

Related work: Environment models management is
mostly considered to tackle the dynamics changes, e.g. [1],
[2]. When it comes to multi-robot systems, most contri-
butions on the building of environment models come to
localization, either of the robots themselves or of targets
detected in the environment, for which the distribution of
sources has fostered theoretical analyses that have led to
practical implementations [3]. This is not surprising, as on
the one hand localization is at the core of the building
of environment models, and on the other hand multiple
robots yields new means to ensure localization – e.g. by
defining additional loop-closures in SLAM approaches [4].
Besides localization, environment related information being
at the core of search or exploration missions, numerous
contributions deal with the fusion of such information in a
multi-robot context (e.g. [5], [6]).

Much less contributions can be found on the managing of
environment models. By proposing a “stream-based knowl-
edge processing middleware” DyKnow2 rather focuses on
symbolic information propagation within a system, handling
in particular their time properties. When it comes to environ-
ment models, some contributions exploit “torrent-like” tools
developed for web-based distributed map management [7],
[8], which comes to manage a distributed database over a
cloud infrastructure.

Approach and outline: The proposed framework imple-
ments two basic principles: purposiveness of the environment
models, that are defined and built according to the processes
that exploit them, and economy of means, be they related
to computations, storage and communications. Section II
analyses the relations between environment models and
the various processes that exploit them (mainly decision
and planning, but also localization), which naturally yields
the development of layered purposed environment models.
Section III introduces AtLaas, a framework which structures
and manages the various environment models and gathered
data in a dedicated database, and which provides requests
that expose the environment models to client processes. Two
illustrations of the mechanics encoded within AtLaas are
provided in section IV, and a discussion concludes the paper.

2http://www.ida.liu.se/divisions/aiics/projects/
dyknow.en.shtml

II. ENVIRONMENT MODELS AND DECISIONAL PROCESSES

A. A series of dedicated models

Decisional processes rely on both environment and action
models, actions being environment robot motions, observa-
tions (perception), and communications with other robots or
the remote control/monitoring station.

1) Robot motions: Robot motions are most often planned
at two levels [9]: at the local trajectory level, optimiz-
ing safety (obstacle avoidance) and speed, and satisfying
kinematic and dynamic constraints; and at a more global
itinerary level, where a sequence of waypoints is determined,
satisfying higher level constraints and optimizing higher
level criteria. Local trajectory planning require a precise
geometric model of the environment, possibly complemented
with properties such as the nature of the terrain to traverse,
whereas global itinerary planning reasons on a coarser repre-
sentation that mainly expresses the cost of traversability for
the mapped areas. Such a model is most often a region-
based model, on which a traversability graph is defined.
Additional information may be considered, e.g. the areas the
robot will be able to observe along the itinerary, the possible
communications along the itinerary, etc.

2) Environment observations: Environment observations
pertain either to the mission at hand (e.g. exploring an
environment or searching for a target) or to the robots own
needs, i.e. (i) to ensure a proper localization or (ii) to enhance
the knowledge on the terrain traversability. In both cases, the
notion of visibility is to be considered first: it can be defined
thanks to a 2.5 or 3D geometric model, from which the areas
visible given a vantage point can be computed.

Localization is an essential process to ensure the spatial
consistency of the built environment representations, the
proper execution of the robot motions, and the achievement
of the missions: planning observations targeted to localiza-
tion often yields a better achievement of the robot tasks and
motions. For the purpose of localization, observations that
perceive already mapped features (landmarks) or areas are
required, and therefore planning such observations exploits
landmark maps or other maps from which localizability
models can be derived: such models are used to express the
expected localization precision as a function of the current
localization precision and the planned observations. A map of
GPS coverage, either pre-existing or built during the mission
execution is also a localizability model.

When it comes to plan observations that augment the
information contained in an environment model (of whatever
type it is), the quantity of information (or its precision)
encoded in the environment model is necessary to assess
the interest of additional observations.

3) Planning communications: planning communications
requires an environment model on which radio propagation
models can be applied, so as to predict the link budget
between two given positions. Radio propagation models are
very complex, and require not only the geometry of the
environment, but also the physical nature of the various
volumes it contains – not to mention atmospheric conditions,



that also play a significant role. Most roboticists consider
a conservative line of sight communication model [10], in
which the link budget is only defined by the distance, which
can be assessed on a 2.5 or 3D geometric model of the
environment. An other solution is to indirectly learn the
communication model by assessing areas in which commu-
nications have proven feasible.

4) Overall mission planning: Besides the three former
classes of actions, planning the actions so as to achieve
the given mission calls for specific data structures that
mostly rely on the environment models: the notion of
idleness of the visited areas is for instance a key element
for patrolling missions [11], as is the quantity (precision)
of the information encoded in the models for exploration
missions. These “meta-information” on the environment,
actually more related to the robots mission than to the
environment itself, are grounded on the environment models.

B. A layered structure

No single environment model can represent the whole
spectra of information required to plan these various pro-
cesses. A series of environment models is required, each one
encoding a particular layer of information with the proper
data structure dedicated to its exploitation by a specific
decisional process. One can view all these environment
models, structured into a set of layered representations, as a
Geographic Information System (figure 2): the main requests
to this system are depicted in section III-B.

Fig. 2: Illustration of the various layers of environment
models that may be required to autonomously operate a
robot.

Geometry is of course at the core of all these models,
that all represent spatial information. The spatial consistency
of the models must be ensured, hence the importance of
localization algorithms. Still, the robot position may not
always be perfectly known, and then the environment model
built from the acquired data are not spatially consistent: one
must provide means to recover this consistency when more
precise localization information become available, such as
after a loop closure in SLAM-based localization, or a GPS
fix after a period of GPS signal outages. The way we tackle
this “re-localization” issue is depicted in section IV-A.

C. Illustration

This section presents an instance of an environment model
made of three distinct layers, that are used on board our
field robots, all equipped with a panoramic Lidar (figure 3).
These three layers are a Digital Terrain Model (DTM), a
coarser traversability map (the “region-map”), and a database
of localized point clouds (the PCDdb). These three layers are
built thanks to the following four modeling and localization
following processes:

Fig. 3: The three robots Minnie, Mana and Momo

1) A Digital Terrain Model (DTM) is a raster repre-
sentation that encodes the terrain geometry as a function
z = f(x, y), estimated over a regular Cartesian grid: it
is a 2.5D height-map where each cell value represents an
elevation. It is a very common data structure to represent the
terrain geometry, that presents a good compromise between
expressiveness, simplicity and compactness.

On board the robots, a precise DTM is incrementally built
in real time by merging point clouds acquired by the Lidars
(PCD), and is used to plan local elementary trajectories,
given a waypoint to reach. Merging is basically done by
averaging the height of points perceived at each cell in the
map (figure 4). Most importantly, the quality of each cell
is memorized, by integrating a sensor noise model and the
current robot pose uncertainty. This DTM can also be used
to assess visibilities and communications between two given
positions.

2) The region-map (RMap) is a coarser traversability map
derived from the DTM, by analyzing the distribution of the
normal vectors defined on patches of DTM cells. This model
is exploited to plan long range itineraries, that defines the
waypoint to be reached by the local trajectory planner. It
also encodes the quantity of information, derived from the
quality of the DTM cells (figure 4).

3) High rate localization is performed thanks to a visual-
inertial SLAM approach [12] that does not memorizes land-
marks over long ranges. However, a second localization
algorithm that relies on scan-matching technique (similar
to [13]) directly exploits memorized PCDs to ensure loop
closures and long range localization.

4) A map-based localization approach matches PCDs with
an initial model described as a DTM (for instance, most
commercial aerial mapping systems generate DTMs along
with orthoimages) to produce absolute localization estimate
(e.g. as in [14]).



Fig. 4: From left to right: DTM (0.1m resolution, colors
encode height), 1m resolution region-map derived from the
DTM, and precision information encoded in the region-map.
The modeled scene is an empty parking lot with sparse trees.

Figure 5 summarizes the relations established by these four
processes between the initial data, the acquired data (PCDs),
the localization information and the three layers of the model.
The client processes that exploit the layers of the model are
also shown.

DTM

RMap

PCD db

3

Motion

PCD
Observation

Localisation

Communication

global

local

input information models client processes

pose

1

2

Initial
model

4

modeling processes

Fig. 5: An environment model composed of three layers
(in green). The 4 numbers relate to the four modeling and
localization processes sketched in the text, and the right
column lists generic client processes.

III. MANAGING AND EXPOSING ENVIRONMENT MODELS

To embed the various environment models and expose
information to the client processes, the framework AtLaas
structures these information in a dedicated database, so as
to allow their dynamic management and the satisfaction of
a series of external requests.

A. Spatial structuring: Pile of tiles

As it is done in most geographic information systems,
all the data are indexed using a Cartesian structure of tiles.
This classic way to hash spatial data provides numerous
advantages to store and access the information. The tile
structure is geo-referenced once and for all: it is their
information content which is updated as information are
gathered by the robot, or as “re-localization” events occur.

Each tile indexes the series of semantic layers required
by the considered robot system. In our illustrative case
presented section II-C, these are the DTM, the RMap and
the acquired PCDs. Apart from the information encoded in
these layers, the tiles exhibit some meta-information for each

layer, that is required for their management and use. These
meta information are:

• For each PCD, the best position estimate at which it has
been acquired (associated with its covariance matrix),
and the date of acquisition.

• For the DTM, the timestamp of its last update, the cov-
erage (percentage of area modeled), and the associated
“precision”, which is heuristically derived from inner
DTM information (inverse of the averaged variances of
the height estimate in each DTM cell)

• Similarly, for the RMap, the timestamp of its last
update, its coverage and precision.

To each tile are also associated meta-information derived
from the embedded layers: number of PCDs, precision of
the raster model and last update timestamp.

In order to handle arbitrary large maps, the tile structure is
also used to manage the on-bard memory. A set of contiguous
3×3 tiles is kept in memory, the central tile being the one in
which the robot is located. When the robot moves and enters
one of the neighboring tiles, we dump the non-contiguous
tiles to a file and load existing tiles if any. This is dampened
by a hysteresis like mechanism (figure 6)

Fig. 6: Current map of 3 × 3 tiles. The tiles are delimited
in red, and the green square and white limits represent the
boundary around the current tile that enforce a hysteresis
during tile shift: the robot is considered to exit the central
tile only when it exits the green one square

The tile size is defined by the maximum sensor range, so
that only the embedded layers of information associated to
tiles in the current memory need to be updated when new
data is acquired. Given the precision and resolution of the
on-board Lidars, we set the tile size to 30m – and the depth
measures farther than 30m are simply discarded from the
PCDs. Tiles are referenced using the Universal Transverse
Mercator (UTM) coordinate system, to be consistent with
GPS position estimates and existing maps.

B. Model interfaces

Generally speaking, planning requires to “convolve” the
environment model with the models of the actions to select,
so as to assess their outcome and drive the search algorithms.
But the action models may vary from one robot to the other:
following a clear separation of concerns principle, the various
environment models encoded in AtLaas are abstracted within
a library that act as a server for the decisional processes.



Each function provided by the library has an argument that
is the action model of the considered robot, and output the
outcome of the evaluated action.

Environment
model

(Region map)

Robot
model

(robot size)

Traversability
graph

“c
on

vo
lu

tio
n”

∗

∗

ab
st

ra
ct

io
n

Fig. 7: Illustration of the model abstraction process, applied
here to motion actions: by convolving an environment-
centric (robot independent) region-map with two different
robot motions models, two different accessibility graphs are
produced.

Function Action Arguments Returned Algorithm(s)
value

isAccessible motion rm, p, cmax { p′ } Dijkstra
navigate motion rm, p1, p2 (path, c) A*, D*
canSee perception rp, p { (p, φ) } ray tracing

test comlink com. rc, p1, p2 α ray tracing

TABLE I: The main functions provided by the Gladys library.
raction denotes the action model of a robot, p a position, c
a motion cost, and φ the quality of an information.

Table I presents the main interface between the layers
encoded in AtLaas and the action evaluation algorithms
exploited by the client planning processes. Motion planning
requests are solved using either Dijkstra, A*, or D* shortest
path-finding algorithms, exploiting a navigation graph, which
is built upon the RMap as shown in figure 7, using cost from
the RMap and the robot motion model rm. For the perception
tasks, the visibilities are assessed using Bresenham’s line
algorithm in the DTM, taking into account the robot’s
perception model rp, which encodes the sensor field of
view and quality. Finally requests regarding communications
return a binary value depending on the visibility between
two positions, and a maximum distance encoded in the
communication model rm. An open-source implementation
(“Gladys”) of these functions is available on-line 3.

IV. EXPLOITING ATLAAS

We present here two simple scenarios that exhibit the
interest of the model structuring of AtLaas: dealing with
a re-localization event, and cooperation between robots for
autonomous navigation.

3https://github.com/pierriko/gladys

A. Handling re-localization

In case of position drift, the dense continuous environment
models built during navigation (DTM and RMap) loose
their spatial consistency. And after a re-localization event
occurred, e.g. after a loop-closure or a GPS fix, the acquired
data corrupt even more the models. The simplest way to
recover the spatial consistency is to rebuild from scratch
the environment models, using the newly estimated positions
(note that the problem does not occur with landmark maps
built by feature-based SLAM approaches: recovering the
spatial consistency of the landmark maps is seamlessly
achieved by the update of their position). To our knowledge,
the sole contribution in the literature to maintain the spatial
consistency of dense continuous models is [15], in which the
dense model is defined by the concatenation of triangular
patch models anchored to landmarks managed by a SLAM
approach.

Figure 8a shows the DTM layer of a series of tiles built
after a loop trajectory. The robot has strongly drifted, due
to the use of wheel odometry only, which badly estimates
rotations. A scan-matched ICP-based localization technique
allows to close the loop, and a graph optimization re-
estimates the best positions for the series of acquired PCDs
[13]: figure 8b shows the DTM that is rebuilt after this re-
localization. Note that the re-localization also impacted the
overall tile structure, as some PCDs have been associated to
new tiles. An average PCD produced by the Velodyne Lidar
contains 300K points, and takes only 20ms to be fused in
the DTM – the time to regenerate DTM is therefore bearable
(deriving RMap from the DTM is even faster, and linearly
depends on the processed surface).

(a) before re-localization (b) after re-localization

Fig. 8: DTM encoded in the tile structure before and after
re-localization, for a loop trajectory. Red lines represent
the trajectory, the blue grid represent the tiles, and circles
diameters represent the number of PCDs associated to each
tile. Note that re-localization induced changes in the affection
of PCDs to the tile, and also that the resulting DTM is
spatially consistent – see e.g. the trees along the top-left
bottom-right diagonal, that were duplicated in the DTM
before the loop-closure and trajectory optimization has been
enforced.



B. Distributing environment models among robots

The tiles structure allow to manage and share environment
models in an easy and efficient way. Here we illustrate how
it can be used in a simple multi-robot scenario, in which one
robot (R3) starts to navigate without any knowledge in an
environment in which robots R1 and R2 have already started
to evolve (e.g. to patrol an area – see figure 9). When robot
R3 is tasked to reach a goal in such a situation, the best
strategy is that it retrieves the available information on the
environment to plan an itinerary.

To avoid heavy requests we propose to simply share data
on a distributed client-server model. Each robot serves all
its data via an HTTP server, and when needed can check on
other servers whether they do contain data of interest or not,
by simply parsing the tiles meta-data, encoded in XML files.

R1

R2

R1

R2

R3

Fig. 9: A cooperative patrolling mission in a parking lot. R1
and R2 have already mapped parts of the parking when R3
starts its mission, knowing nothing about the environment.
R3 is tasked to reach a waypoint in the middle of the parking
(blue arrow).

The sequence diagram in figure 10 present a time-line
of the requests and responses exchanged between the three
robots. R3 first assesses the information it requires to reach
its goal: a call to the “navigate” function on its empty RMap
structure allows to identify the traversed tiles (the result of
the A* algorithm is trivially a straight path) process will
check whether there is data for running the A*, or if not,
only compute the path with Bresenham line algorithm. We
can then trivially deduce the required tiles from the resulting
path.

R3 then gathers the meta-data on these tiles from the
reachable robots (here R1 and R2), and assesses to which
robot it will ask each tile, considering the tiles with the
highest coverage are the better (the precision meta-data
could have been considered to weigh the coverage). A
second communication exchange is then launched, this time
to effectively transmit the data contained in the tiles (the
RMaps).

Once R3 knows which tiles it needs to reach its goal,
it gathers all tiles meta-data from all reachable robots, the
request can safely time-out, in which case, we just skip the
server and try the next one. Figure 11 shows the itinerary

Fig. 11: The itinerary planned by R3 on the the basis of
the RMaps collected from R1 and R2, result of a call to the
“navigate” function (A*).

R3 could eventually compute. Note the RMap shown in
this figure spans 4800m2 and weights only 2KB: not a big
bandwidth is required for such exchanges.

This solution is completely decentralized, it does not rely
on a particular server, and connections a just assessed by
testing HTTP GET requests – in case of timeout, the robot is
considered out of reach. The current implementation requires
each robot to have a list of URIs pointing to other servers
data. But this list could be dynamic using service discovery,
e.g. with Zeroconf.

V. DISCUSSION

We have proposed a simple yet efficient approach to
structure spatial related information acquired and produced
on-board a robot. Besides exhibiting a simple API to expose
the spatial information to client processes, the structure
allows to maintain the spatial consistency of models after
re-localization events, and can be used to build multi-
robot cooperation schemes. Sharing the information on the
environment is indeed a pre-requisite to cooperation, and
can easily be achieved thanks to the proposed structure and
through simple communication mechanisms. The proposed
structuring is generic enough to handle additional layers of
information, be they represented through a raster or a vector
data structure.

Besides various improvements (e.g. managing tiles at dif-
ferent scales, as in [16], to allow more efficient data transfer),
the main additional functionality to develop is to handle
environment dynamics. This can be achieved by detecting
and tracking dynamic elements at the lowest level of data
processing, and defining an additional layer that encodes
dynamic information in the tile structure.

The proposed framework embeds the various spatial en-
vironment modeling functions, and handles the evolution
of the positioning errors and the asynchronous information



Robot #3 Robot #2 Robot #1

Compute path

Compute best

Merge region

Get tiles

Get meta-data

Path

Best

Region-map

Robot #2 Robot #1

Region-map Region-map

Meta-data Meta-data

Tiles Tiles

Robot #3

Fig. 10: Requests sequence diagram for the scenario of figure 9.The left part is the trace of the communications (requests),
the right part illustrates the actual data flow between the robots.

transfers between robots. All these processes need to be
actively triggered and controlled: further work is required
to define a specific supervision scheme.

ACKNOWLEDGMENTS

This work was partially supported by a DGA-MRIS schol-
arship.

REFERENCES

[1] T. Krajnı́k, J. P. Fentanes, J. ao Santos, K. Kusumam, and T. Duckett,
“Fremen: Frequency map enhancement for long-term
mobile robot autonomy in changing environments,” in ICRA Workshop
on Visual Localization in Changing Environments, 2015, in review.
[Online]. Available: http://strands.acin.tuwien.ac.at/publications/2015/
krajnik ICRA15 WVPRCE.pdf

[2] J. Santos, T. Krajnı́k, J. P. Fentanes, and T. Duckett, “Lifelong
exploration of dynamic environments,” in ICRA, 2015, late breaking
poster session. [Online]. Available: http://strands.acin.tuwien.ac.at/
publications/2015/santos ICRA15 LBP.pdf

[3] D. T. Cole, P. Thompson, A. H. Göktogan, and S. Sukkarieh, “System
development and demonstration of a cooperative UAV team for map-
ping and tracking,” International Journal of Field Robotics, vol. 29,
no. 11, pp. 1371–1399, 2010.

[4] T. Vidal-Calleja, C. Berger, J. Solà, and S. Lacroix, “Large scale
multiple robot visual mapping with heterogeneous landmarks in semi-
structured terrain,” Robotics and Autonomous Systems, vol. 59, no. 9,
pp. 654–674, Sept. 2011.

[5] G. A. Hollinger, S. Yerramalli, S. Singh, U. Mitra, and G. S. Sukhatme,
“Distributed Data Fusion for Multirobot Search,” IEEE Transactions
on Robotics, vol. 31, no. 1, pp. 55–66, Feb. 2015.

[6] A. Khan, E. Yanmaz, and B. Rinner, “Information Merging in Multi-
UAV Cooperative Search,” in IEEE International Conference on
Robotics and Automation, 2014.

[7] T. Cieslewski, S. Lynen, M. Dymczyk, S. Magnenat, and R. Siegwart,
“Map API - Scalable Decentralized Map Building for Robots,” in IEEE
International Conference on Robotics and Automation, 2015.

[8] G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, and M. Waibel,
“Cloud-based collaborative 3d mapping in real-time with low-cost
robots,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 2, pp. 423–431, April 2015.

[9] A. Stentz and M. Hebert, “A complete navigation system for goal
acquisition in unknown environments,” Autonomous Robots, vol. 2,
no. 2, Aug. 1995.

[10] L. De Floriani, P. Magillo, and E. Puppo, “Line of sight communi-
cation on terrain models,” Intl. J. Geographic Information Systems,
vol. 8, no. 4, pp. 329–342, 1994.

[11] A. Almeida, G. Ramalho, H. Santana, V. Corruble, and Y. Chevaleyre,
“Recent Advances on Multi-Agent Patrolling,” Advances in Artificial
Intelligence, 2004.

[12] C. Roussillon, A. Gonzalez, J. Solà, , J.-M. Codol, N. Mansard,
S. Lacroix, and M. Devy, “Rt-slam: a generic and real-time slam
architecture,” in International Conference on Vision Systems, Sophia
Antopolis (France), Sept. 2011.

[13] R. Valencia, J. V. Miro, G. Dissanayake, and J. Andrade-Cetto, “Active
pose slam,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012.

[14] B. Desrochers, L. Jaulin, and S. Lacroix, “Set-membership approach to
the kidnapped robot problem,” in IEEE/RSJ International Conference
on Robotics and Automation, Hamburg (Germany), Sept. 2015.

[15] J. Nieto, J. Guivant, and E. Nebot, “DenseSLAM: Simultaneous
localisation and dense mapping,” International Journal of Robotics
Research, vol. 25, no. 8, pp. 711–744, Aug. 2006.

[16] K. P. Joan Mas and N. Juli, “Opengis web map tile service
implementation standard,” Mar. 2010. [Online]. Available: http:
//www.opengeospatial.org/standards/wmts


