
HAL Id: hal-01522459
https://hal.archives-ouvertes.fr/hal-01522459

Submitted on 15 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tuning EASY-Backfilling Queues
Jérôme Lelong, Valentin Reis, Denis Trystram

To cite this version:
Jérôme Lelong, Valentin Reis, Denis Trystram. Tuning EASY-Backfilling Queues. 21st Workshop
on Job Scheduling Strategies for Parallel Processing, May 2017, Orlando, United States. pp.43-61,
�10.1007/978-3-319-77398-8_3�. �hal-01522459�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/84975037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01522459
https://hal.archives-ouvertes.fr


Tuning EASY-Backfilling Queues.

Jérôme Lelong, Valentin Reis, and Denis Trystram

Univ. Grenoble Alpes, CNRS, Inria, LIG, LJK, France
firstname.lastname@imag.fr

Abstract. EASY-Backfilling is a popular scheduling heuristic for allo-
cating jobs in large scale High Performance Computing platforms. While
its aggressive reservation mechanism is fast and prevents job starvation,
it does not try to optimize any scheduling objective per se. We consider in
this work the problem of tuning EASY using queue reordering policies.
More precisely, we propose to tune the reordering using a simulation-
based methodology. For a given system, we choose the policy in order
to minimize the average waiting time. This methodology departs from
the First-Come, First-Serve rule and introduces a risk on the maximum
values of the waiting time, which we control using a queue thresholding
mechanism. This new approach is evaluated through a comprehensive
experimental campaign on five production logs. In particular, we show
that the behavior of the systems under study is stable enough to learn
a heuristic that generalizes in a train/test fashion. Indeed, the average
waiting time can be reduced consistently (between 11% to 42% for the
logs used) compared to EASY, with almost no increase in maximum wait-
ing times. This work departs from previous learning-based approaches
and shows that scheduling heuristics for HPC can be learned directly in
a policy space.

1 Introduction

The main challenge of the High Performance Computing community (HPC) is
to build extreme scale platforms that can be efficiently exploited. The number of
processors on such platforms will drastically increase and more processing capa-
bilities will obviously lead to more data produced [10]. Moreover, new computing
systems are expected to run more flexible workloads. Seldom supported by the
existing managing resource systems, the future schedulers should take advantage
of this flexibility to optimize the performance of the system. The extreme scale
generates a huge amount of data at run-time. Collecting relevant information is
a prerequisite for determining efficient allocations.

The resources of such platforms are usually subject to competition by many
users submitting their jobs. Parallel job scheduling is a crucial problem to ad-
dress for a better use of the resources. Efficient scheduling of parallel jobs is
a challenging task which promises great improvements in various directions, in-
cluding improved machine utilization, energy efficiency, throughput and response
time. The scheduling problems are not only computationally hard, but in prac-
tice they are also plagued with uncertainty as many parameters of the problem



are unknown while taking decisions. As a consequence, the actual production
platforms currently rely on very basic heuristics based on queues of submitted
jobs ordered in various ways. The most used heuristic is the well-known EASY-
backfilling policy [24, 20]. While EASY is simple, fast to execute and prevents
starvation, it does not fare especially well with respect to cumulative cost met-
rics such as the average waiting time of the jobs. Therefore, many HPC code
developers and system administrators intend to tune this heuristic by reorder-
ing either the primary queue or the backfilling queue. Since such reordering of
job queues may introduce starvation in the scheduling, this results in a dilemma
between the average and maximal costs. In order to solve this dilemma, we intro-
duce a thresholding mechanism that can effectively manage the risk of reaching
too large objective values. This issue is further complicated by the dependency
of the relative scheduling performances on system characteristics and workload
profiles. We propose in this work to use simulations in order to choose queue
reordering policies. Finally, we study the empirical generalization and stability
of this methodology and open the door for further learning-based approaches.

The rest of the paper is organized as follows: Section 2 reviews existing re-
source management approaches from the literature. Section 3 describes the con-
text and states the problem. Section 4 describes an experimental setup that is
essential to the discussion. Section 5 introduce our approach, illustrating the
discussion with results from the KTH-SP2 trace. Section 6 describes the thresh-
olding mechanism used. Section 7 validates this approach using a comprehensive
experimental campaign on 5 logs from the Parallel Workload Archive [14].

2 Related Works

This section presents current solutions to the scheduling problem and the current
direction taken by the field.

2.1 Scheduling heuristics in HPC platforms

While parallel job scheduling is a well studied theoretical problem [19], the prac-
tical ramifications, varying hypotheses, and inherent uncertainty of the problem
in HPC have driven practitioners and researchers alike to use and study simple
heuristics. The two most popular heuristics for HPC platforms are EASY [24]
and Conservative [21] Backfilling.

While Conservative Backfilling offers many advantages [25], it has a signifi-
cant computational overhead, perhaps explaining why most of the machines of
the top500 ranking [3] still use at the time of this publication a variant of EASY
Backfilling.

2.2 EASY

There is a large body of work seeking to improve EASY. Indeed, while the heuris-
tic is used by various resource and job management softwares (most notably
SLURM [2]), this is rarely done without fine tunings by system administrators.

2



Several works explore how to tune EASY by reordering waiting and/or back-
filling queues [29], sometimes even in a randomized manner [23], as well as some
implementations [17]. However, as successful as they may be, these works do not
address the dependency [5] of scheduling metrics on the workload. Indeed these
studies most often report post-hoc performance since they compare algorithms
after the workload is known.

The dynP scheduler [27] proposes a systematic method to tuning these queues,
although it requires simulated scheduling runs at decision time and therefore
costs much more than the natural execution of EASY.

2.3 Data-aware resource management

There is a recent focus on leveraging the high amount of data available in large
scale computing systems in order to improve their behavior. Some works use col-
laborative filtering to colocate tasks in clouds by estimating application interfer-
ence [30]. Others are closer to the application level and use binary classification
to distinguish benign memory faults from application errors in order to execute
recovery algorithms (see [31] for instance).

Several works use this method in the context of HPC, in particular [29, 16],
hoping that better job runtime estimations should improve the scheduling [9].
Some algorithms estimate runtime distributions model and choose jobs using
probabilistic integration procedures [22].

However, these works do not address the duality between the cumulative and
maximal scheduling costs, as mentionned in [16].

While these previous works intend to estimate uncertain parameters, we con-
sider in this paper a more pragmatic approach, which is to directly learn a good
scheduling policy from a given policy space.

3 Problem Setting

This section describes the generic platform model used in this paper. It recalls
the EASY heuristic and defines two scheduling cost metrics to be minimized.
Finally, it motivates and introduces the problem statement of this paper.

3.1 System Description

The problem addressed in this paper is the one faced by Resource and Job
Management Systems (RJMS) such as SLURM [2], PBS [1] and OAR [7] and
more recently by Flux [4].

The crucial part of these softwares is the scheduling algorithm that deter-
mines where and when the submitted jobs are executed. The process is as follows:
jobs are submitted by end-users and queued until the scheduler selects one of
them for running. Each job has a provided bound on the execution time and
some resource requirements (number and type of processing units). Then, the

3



RJMS drives the search for the resources required to execute this job. Finally,
the tasks of the job are assigned to the chosen nodes.

In the classical case, these softwares need to execute a set of concurrent par-
allel jobs with rigid (known and fixed) resource requirements on a HPC platform
represented by a pool of m identical resources. This is an on-line problem since
the jobs are submitted over time and their characteristics are only known when
they are released. Below is the description and the notations of the characteriscs
of job j:

– Submission date rj (also called release date)
– Resource requirement qj (number of processors)
– Actual running time pj (sometimes called processing time)
– Requested running time p̃j (sometimes called walltime), which is an upper

bound of pj .

The resource requirement qj of job j is known when the job is submitted at
time rj , while the requested running time p̃j is given by the user as an estimate.
Its actual value pj is only known a posteriori when the job really completes.
Moreover, the users have incentive to over-estimate the actual values, since jobs
may be “killed” if they surpass the provided value.

3.2 EASY Backfilling

The selection of the job to run is performed according to a scheduling policy
that establishes the order in which the jobs are executed. EASY-Backfilling is
the most widely used policy due to its simple and robust implementation and
known benefits such as high system utilization [24]. This strategy has no worst
case guarantee beyond the absence of starvation (i.e. every job will be scheduled
at some moment).

The EASY heuristic uses a job queue to perform job starting/reservation
(the primary queue) and job backfilling (the backfilling queue). These queues
can be dissociated and the heuristic can be parametrized via both a primary
policy and a backfilling policy. This is typically done by ordering both queues in
an identical manner using job attributes. In the following, we denote by EASY-
PR-PB the scheduling policy that starts jobs and does the reservation according
to policy PR and backfills according to policy PB . For the sake of completeness,
Algorithm 1 describes the EASY-PR-PB heuristic.

This paper makes use of 7 classical queue reordering policies that are pre-
sented below:

– FCFS: First-Come First-Serve, which is the widely used default policy [24].
– LCFS: Last-Come First-Serve.
– LPF: Longest estimated Processing time p̃j First.
– SPF: Smallest estimated Processing time p̃j First [25].
– LQF: Largest resource requirement qj First.
– SQF: Smallest resource requirement qj First.

4



Algorithm 1 EASY-PR-PB policy

Input: Queue Q of waiting jobs.
Output: None (calls to Start())

Starting jobs in the PR order
1: Sort Q according to PR

2: for job j do
3: Pop j from Q
4: if j can be started given the current system use. then
5: Start(j)
6: else
7: Reserve j at the earliest time possible according to the estimated running

times of the currently running jobs.
Backfill jobs in the PB order

8: L← Q
9: Sort L according to PB

10: for job j′ in L do
11: if j′ can be started without delaying the reservation on j. then
12: Start(j′)
13: end if
14: end for
15: break
16: end if
17: end for

– EXP: Largest Expansion Factor First [25], where the expansion factor is
defined as follows:

waitj + p̃j
p̃j

(1)

where waitj is the waiting time until now of job j.

This search set is taken to maximize semantic diversity, without passing
judgement on which policy should be the best for a particular objective.

3.3 Scheduling metric

A system administrator may use one or multiple cost metric(s). Our study of
scheduling performance relies on the waiting times of the jobs, which is one of
the more commonly used reference.

Waitj = startj − rj (2)

Like other cost metrics, the waiting time is usually considered in its cumula-
tive version, which means that one seeks to minimize the average waiting time
(AvgWait). In the following, we will also use the maximal version of this cost
metric which we denote by MaxWait, a.k.a the maximal value of the waiting
time of all the jobs from a scheduling run.

5



3.4 Problem Description

There are in the authors’ view two main difficulties when effectively tuning the
EASY heuristic. Each of these two issues are illustrated below by a dedicated
scheduling experiment.

Table 1. AvgWait performance of EASY-EXP-EXP and EASY-SQF-SQF on the orig-
inal CTC-SP2 and SDSC-SP2 traces, in seconds.

CTC-SP2 SDSC-SP2

EASY-EXP-EXP 3074 6765

EASY-SQF-SQF 2090 11234

First, the relative performance of EASY policies is sensitive to the context [5,
25]. Table 1 illustrates this effect by comparing the AvgWait of two different
queue ordering policies on the logs of two different workloads from the Parallel
Workload Archive. The results suggest that there is no ”one size fits all” choice
of primary and backfilling queue policies. In such a situation, tuning EASY must
be done locally for each HPC system. This can be done via simulation, taking
care that the results generalize to the future.

Table 2. AvgWait and MaxWait performance of EASY-SPF-SPF and EASY-FCFS-
FCFS on the original CTC-SP2 trace, in seconds.

EASY-SPF-SPF EASY-FCFS-FCFS

AvgWait 2784 3974

MaxWait 661280 176090

Second, starvation may occur when changing the EASY queue policy away
from FCFS. This issue concerns the method used to measure the objective. Most
systems use a variant of the EASY- FCFS-FCFS policy, where the FCFS policy is
used both for primary and backfilling queues. The main advantage of this choice
is that it controls the starvation risk by greedily minimizing the maximum values
of the job waiting times. Indeed, a job might be indefinitely delayed when not
starting jobs in the FCFS order. This effect was pointed out in some related
works [29, 16] that optimize the average cost by removing the FCFS constraint.
Table 2 illustrates this effect by reporting the AvgWait and MaxWait of the
EASY-SPF-SPF and EASY-FCFS-FCFS strategies on the CTC-SP2 trace.

In this paper, we would like to study the following question: How to lever-
age workload data in order to improve cumulative cost metrics while
controlling their maximum values?

In order to answer this question, we investigate the use of simulation to tune
EASY-PR-PB by reordering its two queues. The first conclusion is that reorder-
ing the primary queue is more beneficial than simply reordering the backfilling
queue. However, this introduces a risk on the maximum values of the objective,
which we control by hybridizing FCFS and the reordering policy via a thresh-
olding mechanism. Finally, we show that the experimental performance of the
thresholded heuristics generalizes well to unseen data.

6



4 Experimental Protocol

This section motivates the statistical approach used to measure performance and
describes the simulation method.

4.1 Statistical approach

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

10000

20000

30000

0 10 20 30 40 50
Week number

A
vg

W
ai

t

Policy
●

●

●

●

●

●

●

exp

fcfs

lcfs

lpf

lqf

spf

sqf

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.5

1.0

1.5

2.0

0 10 20 30 40 50
Week number

n
o

rm
al

iz
ed

 A
vg

W
ai

t

Policy
●

●

●

●

●

●

●

exp

fcfs

lcfs

lpf

lqf

spf

sqf

Fig. 1. AvgWait obtained for the 7 main queue policies with FCFS backfilling for 150
generated weeks on the KTH-SP2 trace. First, in absolute value, and then normalized
with respect to EASY-FCFS-FCFS.

The experimental approach used in this paper is statistical by nature. Fig-
ure 1 shows how the AvgWaits of the 7 primary policies used along with FCFS
backfilling evolves during the first 150 weeks of the ”cleaned”1 KTH-SP2 trace
from the Parallel Workloads Archive. The variability [5, 15] of cost metrics and
their sensitivity to small changes in the workload logs [28] have been thoroughly
studied in the literature. Our approach to measuring performance without re-
porting noise from workload flurries [28] is to aggregate the cost metric on a
large number of generated logs. In this way, we can report the variability along
with the average values. The trace generation approach of this paper follows in
part the methodology of [12]: We design a trace resampler in order to gener-
ate week-long workload logs from an original dataset. The resampling technique
used is simplistic in nature: for each system user, a random week of job submis-
sions from the original trace is used. This approach is combinatorially sufficient
to generate infinitely many logs while preserving the natural dependency of the

1 See the Parallel Workloads Archive [14] for details.

7



workload on the weekly period and the variability in load. On the downside, the
seasonal effect and the dependency between users are lost. Moreover, there is
no user model or other feedback loop in the simulations. In all experiments, the
performance of every policy is evaluated by averaging the cost values over 250
generated weeks.

4.2 Simulation method and testbed

While high quality simulators like SimGrid [8] are available in practice, this pa-
per focuses on backfilling behavior and does not need to use such advanced tools.
This is motivated by the fact that one needs to use a high-performance approach
to simulation in order to perform the high number of scheduling runs necessary
for this study (the total number of week-long simulations in this paper is of the
order of 106). Therefore, experiments are run with a specially written lightweight
backfilling scheduler. Since there is a need for both speed of execution and gener-
ality of application, our scheduler simulator discards all topological information
from the original machines. Using this simulator, a week of EASY backfilling
can be replayed in under a tenth of a second for the KTH-SP2 machine, the
I/O operations (reading and writing a swf file) included. All simulations are
performed on a Dell PowerEdge T630 machine with 2x Intel(R) Xeon(R) CPU
E5-2697 v3 @ 2.60GHz/14 cores (28 cores/node), and 260 GB of RAM. We use
a minimalistic approach to reproducible research [26] and provide a snapshot of
the work that includes a build system that runs the experiments using the zy-
make [6] minimalistic workflow system. The archive includes our simulator and
a nix [11] file that describes the dependencies.

5 Primary and Backfilling queues

This section presents a dedicated experimental campaign that uses the KTH-
SP2 trace in order to illustrate the contradictory effect of average and maximum
cost.

5.1 Maximum and Average Cost

Figure 2 and 3 show a bi-objective view of the post-hoc optimization problem of
choosing a primary and backfilling policy among all 49 possible combinations (7
policies for the primary queue and 7 for the backfilling queue). The two objectives
are the cumulative and maximal costs. In order to obtain a truthful overview of
the variability, we use a sample size of 250 weeks and all values are recentered on
the performance of EASY-FCFS-FCFS for that particular week. Figure 2 and 3
vary in terms of y axis. In Figure 2, the y axis is the maximum MaxWait over
simulated week, i.e. the highest waiting time of any job on all the simulated
weeks. In Figure 3, the y axis is the average MaxWait over the 250 weeks. The
average value reported is the mean average cost over individual weeks, which

8



0e+00

2e+05

4e+05

6e+05

−5000 −2500 0 2500 5000
Average AvgWait cost improvement (FCFS−FCFS averages at 6952 s.)

M
ax

im
u

m
 M

ax
W

ai
t 

co
st

 im
p

ro
ve

m
en

t 
(F

C
F

S
−

F
C

F
S

 m
ax

es
 a

t 
36

94
03

 s
.)

Backfilling
exp

fcfs

lcfs

lpf

lqf

spf

sqf

Primary

●

●

●

●

●

●

●

exp

fcfs

lcfs

lpf

lqf

spf

sqf

Fig. 2. Maximum and average waiting time cost of the 49 heuristics generated by
using the 7 possible policies as primary and backfilling ordering averaged over 250
resampled weeks. All values are relative to the value obtained by the EASY primary
queue policy with EASY backfilling. The maximum MaxWait value reported is the
maximum waiting time of all jobs in the 250 weeks. The average AvgWait value is the
mean of the weekly waiting time averages, and the range indicates the first and last
decile of the samples.

allows for displaying deciles in both directions. Note that Figure 2 is a more
aggressive way of reporting this value. There are two main observations.

First, it seems possible to improve the AvgWait on this machine as far as
to reduce it of 30% in hindsight compared to the EASY-FCFS-FCFS baseline.
However, such AvgWait improvements seem to entail an increase in MaxWait.
Expectedly, the EASY-FCFS-FCFS heuristic has a good MaxWait behavior.

Second, there seems to be regularities in the performance’s behavior: The
main factor certainly come from the primary queue policy, while the importance
of the backfilling policy varies depending on the primary policy. It appears that
some policies such as SQF do not lead to many backfilling decisions, while others
like LQF encourage frequent backfilling. Additionally, there are some backfilling
policies, such as SPF and ExpFact that systematically outperform the others.

5.2 Comparing Backfilling Policies

It is an interesting question to ask whether some backfilling policies are consis-
tently better than others regardless of primary scheduling policies. As Figure 4
shows, the AvgWait performance of all backfilling policies relative to EASY-
FCFS-FCFS presents roughly the same relative performance for each primary

9



0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

−5000 −2500 0 2500 5000
Average AvgWait cost improvement (FCFS−FCFS averages at 6952 s.)

A
ve

ra
g

e 
M

ax
W

ai
t 

co
st

 im
p

ro
ve

m
en

t 
(F

C
F

S
−

F
C

F
S

 a
ve

ra
g

es
 a

t 
11

69
14

 s
.)

Backfilling
exp

fcfs

lcfs

lpf

lqf

spf

sqf

Primary

●

●

●

●

●

●

●

exp

fcfs

lcfs

lpf

lqf

spf

sqf

Fig. 3. Maximum and average waiting time cost of the 49 heuristics generated by using
the 7 possible policies as primary and backfilling ordering averaged over 250 resampled
weeks. All values are relative to the value obtained by the EASY primary queue
policy with EASY backfilling. The average MaxWait value reported is the average
of the maximum waiting time over 250 weeks. The average AvgWait value is as in
Figure 2 the mean of the weekly waiting time averages, and the range indicates the
first and last decile of the samples, both in x and y scale.

queue policy. Namely, for this machine the SPF backfilling policy was always
the best from our search space in hindsight. We do not elaborate on this aspect
here. In the next section, we focus on the maximal costs incurred by the tuned
heuristic.

6 Queue threshold

This section introduces control over the maximal costs using a thresholding
mechanism.

6.1 Thresholding and risk

The future costs Waitj of a waiting job j are lower-bounded at any time t by the
value of the waiting time so far, t− rj

2. A simple way to introduce robustness
into the heuristic is therefore to force jobs with unusually high values of t − rj

2 Note that this is also valid for the more refined Average Bounded Slowdown [13]
metric.

10



exp
fcfs

lcfs
lpf

lqf
spf

sqf

−2000 −1000 0 1000
Average AvgWait cost improvement (FCFS−FCFS averages at 6952 s.)

Backfilling
exp

fcfs

lcfs

lpf

lqf

spf

sqf

Fig. 4. Performance improvement over EASY-FCFS-FCFS of the 7 Backfilling policies
conditioned on Primary policy.

ahead of the primary queue. One way to do this is to introduce a threshold
parameter T and push jobs with t − rj > T immediately ahead of the primary
queue after the primary queue sorting step (line 1 of Algorithm 1). If more than
one job is in this situation, these jobs are ordered by submission time rj at the
head of the queue.

Figure 5 illustrates the effect on 7 possible heuristics on the KTH-SP2 sys-
tem with T = 20 hours. The heuristics search space is dimished by fixing the
backfilling policy to SPF (see Subsection 5.2) for pure visual reasons and exhaus-
tive treatment is delayed to Section 7. The threshold is reported as a horizontal
line on the figure. The MaxWait is greatly reduced, while all AvgWait values
are (perhaps expectedly) moved torwards EASY-FCFS-FCFS. This mechanism
seems to be a hopeful candidate for tuning the queue policies while controlling
the waiting time of rogue jobs.

The next section gives a glimpse of the behavior of generalization in this
framework.

7 Experimental Validation

This section presents a systematic study of EASY-PR-PB tuning.

7.1 Generalization protocol

The goal of the experimental campaign is to study how the performance of
different heuristics generalize empirically. That is to say, can EASY Backfilling
be tuned on specific workload data? We follow the most simple protocol for
assessing learnability:

The initial workload is split at temporal midpoint in two parts, the training
and testing logs. Each of these are used to resample weeks. For each HPC log

11



● ●● ●●● ● ● ●● ●●● ●

● ●● ●●● ● ● ●● ●●● ●

● ●● ●●● ●
● ●● ●●● ●

● ●● ●●● ●

1e+05

2e+05

3e+05

5000 6000 7000 8000
Mean AvgWait cost

M
ax

 M
ax

W
ai

t 
co

st

Primary

●

●

●

●

●

●

●

exp

fcfs

lcfs

lpf

lqf

spf

sqf

Fig. 5. Maximum and average waiting time cost of the 7 heuristics generated by using
the 7 possible thresholded primary policies with SPF backfilling averaged over 250
resampled weeks. The threshold T is chosen at a value of 20 hours. All values are relative
to the value obtained by the EASY primary queue policy with EASY backfilling. The
average MaxWait value reported is the maximum waiting time of all jobs in the 250
weeks. The average AvgWait value is as in Figure 2 the mean of the weekly waiting
time averages. Semi-transparent points represent the performance of the un-thresholded
policies.

from the Parallel Workload archive used in the experiment, this process results
in two databases of 250 weeks each. The experimental campaign will consist in
running simulations on the training weeks, selecting the best performing policy
(tuning the heuristic), and evaluating the performance of this policy on the
testing weeks. The search space for EASY-PR-PB will be the set of dimension
49 composed by the choice of 7 policies as Primary reordering policy and 7
policies as Backfilling reordering policy.

This simple approach to measuring performance generalization corresponds
to the situation where a system administrator having retained usage logs from
a HPC center must choose a scheduling policy for the next period.

7.2 Workload logs

Table 3 outlines the five workload logs from the Parallel Workloads Archive [14]
used in the experiments. These logs cover both older and more recent machines
of varying size and length. The logs are subject to pre-filtering. The filtering
step excludes jobs with p̃j < pj and jobs whose ”requested cores” and ”allo-
cated cores” fields exceed the size of the machine.

12



Table 3. Workload logs used in the simulations.

Name Year # CPUs # Jobs Duration

KTH-SP2 1996 100 28k 11 Months

CTC-SP2 1996 338 77k 11 Months

SDSC-SP2 2000 128 59k 24 Months

SDSC-BLUE 2003 1,152 243k 32 Months

CEA-Curie 2012 80,640 312k 3 Months

7.3 Empirical generalization results

0

40000

80000

120000

−3000

−2000

−1000

0

M
axW

ait
M

eanW
ait

0 50000 100000 150000
T

N
o

rm
al

iz
ed

 c
o

st

Trace type

test

train

Average and maximal waiting time as function of queue threshold for the l_cea_cu trace.

0e+00

5e+04

1e+05

−3000

−2000

−1000

0

M
axW

ait
M

eanW
ait

0 50000 100000 150000
T

N
o

rm
al

iz
ed

 c
o

st

Trace type

test

train

Average and maximal waiting time as function of queue threshold for the l_ctc_sp trace.

Fig. 6. AvgWait and MaxWait generalization of thresholded policies as affected by
the queue threshold. The Value reported as ”train” is that of the least costly heuristic
among the 49 possible policy parametrizations averaged on the training logs. The Value
reported as ”test” is the averaged cost of the same heuristic on the testing logs. This
figure is continued as Figure 7.

Figure 7 summarizes the behavior of the empirical generalization and risk of
the waiting time with respect to the value of the threshold T . There is a fortunate
effect in that the values from the lower parts of the graphs (the AvgWait cost)
seem to decrease faster than values from the upper part (the MaxWait cost),
which increases linearly with T .

13



0

25000

50000

75000

−5000

−4000

−3000

−2000

−1000

0

1000

M
axW

ait
M

eanW
ait

0 50000 100000 150000
T

N
o

rm
al

iz
ed

 c
o

st

Trace type

test

train

Average and maximal waiting time as function of queue threshold for the l_kth_sp trace.

0

20000

40000

60000

−2000

−1500

−1000

−500

0

M
axW

ait
M

eanW
ait

0 50000 100000 150000
T

N
o

rm
al

iz
ed

 c
o

st

Trace type

test

train

Average and maximal waiting time as function of queue threshold for the l_sdsc_b trace.

0

25000

50000

−7500

−5000

−2500

0

M
axW

ait
M

eanW
ait

0 50000 100000 150000
T

N
o

rm
al

iz
ed

 c
o

st

Trace type

test

train

Average and maximal waiting time as function of queue threshold for the l_sdsc_s trace.

Fig. 7. Follow-up from Figure 7.

By using an aggressive appproach (no threshold), the AvgWait can be re-
duced until 80% to 65% compared to the EASY-FCFS-FCFS baseline. However,
in that case the values of the MaxWait can jump as high as 250% that of the
baseline.

By using a conservative approach (thresholding at 20 hours), the AvgWait
can be reduced until 90% to 70% in expectation, while keeping the MaxWait
increase under 175% of the baseline in all cases.

Figure 8 shows how the AvgWait of the 49 combination of queue and back-
filling policies evolve from the training to the testing logs when we use this
conservative threshold of 20 hours, with a higher sample size that was not per-

14



mitted by the previous experiment. This confirms the previous values and gives
visual insight into the stability of the performance. Finally, we state the fact
that while simplicity of exposure forces us to only deal with the waiting time,
the results presented in this work are also valid for the more refined Average
Bounded Slowdown [13].

7.4 Generalization with T=20h

The final step is to study how the performance thresholded queue policies gener-
alizes. Figure 8 shows how the performance of all various queue and backfilling
policies evolve from training to testing logs when the threshold is set to an ex-
ample value of 20 hours. While the values change from training to testing logs,
the relative order of policies seems to be roughly conserved. This leaves hope for
generalization. Moreover, it is possible from this figure to measure the improve-
ment resulting from our methodology. We obtain AvgWait average diminutions
of 21%, 11%, 36%, 42% and 29% respectively for the SDSC-BLUE, SDSC-SP2,
CTC-SP2, CEA-CURIE, and KTH-SP2 machines. The approach does keep the
average MaxWait in a reasonable range, and in fact the average testing AvgWait
of the learned policy only surpasses that of EASY-FCFS-FCFS on the CEA-
Curie trace, with a minor increase, the learned strategy’s average MaxWait is of
88747 compared to a value of 86680 for the baseline.

8 Conclusion

This work leverages the fact that the performance of scheduling heuristics de-
pends on the workload profile of the system. More precisely, we investigated
the use of simulation to tune the EASY-Backfilling heuristic by reordering its
two queues. The first conclusion is that reordering the primary queue is more
beneficial than simply reordering the backfilling queue. However, this introduces
a risk on the maximum values of the objective, which we control by hybridiz-
ing FCFS and the reordering policy via a thresholding mechanism. Finally, we
showed that the experimental performance of the thresholded heuristics general-
izes well. Therefore, this framework allows a system administrator to tune EASY
using a simulator. Moreover, the attitude torwards risk in maximum values can
be adapted via the threshold value. With a low threshold value, the increase
in maximal cost is small but the learned policy does not take too much risk.
It is possible to gain more by increasing the threshold, but this comes with an
increase in the maximal cost. Two questions concerning the learning of EASY
policies arise from this work.

First, the stability of other EASY heuristic classes remains unknown. The
”simple” class of composed of 7 primary policies and 7 backfilling policies (cardi-
nality 49) can generalize using thresholding. It is natural to ask whether it could
be possible to learn using a larger set heuristics, such as parametrized queue
policies or mixtures of reordering criterias. One could for instance consider the
class of mixed policies that choose a job based on a linear combination of the 7

15



−600

−300

0

300

Train Test
EASY−FCFS−FCFS value:

Train Avg: 1768.1
Test Avg: 2399.0

Test Max:129789.000000
Learned Max:
80612.000000

Avg Decrease : −25.21%

A
ve

ra
g

e 
A

vg
W

ai
t 

im
p

ro
ve

m
en

t

l_sdsc_b

−1000

0

Train Test
EASY−FCFS−FCFS value:

Train Avg: 4242.5
Test Avg: 13592.3

Test Max:142532.000000
Learned Max:
61694.000000

Avg Decrease : −12.73%

A
ve

ra
g

e 
A

vg
W

ai
t 

im
p

ro
ve

m
en

t

l_sdsc_s

−800

−400

0

Train Test
EASY−FCFS−FCFS value:

Train Avg: 2349.8
Test Avg: 2676.2

Test Max:96178.000000
Learned Max:
92365.000000

Avg Decrease : −37.62%

A
ve

ra
g

e 
A

vg
W

ai
t 

im
p

ro
ve

m
en

t

l_ctc_sp

−500

0

Train Test
EASY−FCFS−FCFS value:

Train Avg: 1707.7
Test Avg: 1106.1

Test Max:141804.000000
Learned Max:
102942.000000

Avg Decrease : −46.89%

A
ve

ra
g

e 
A

vg
W

ai
t 

im
p

ro
ve

m
en

t

l_cea_cu

−1000

−500

0

500

Train Test
EASY−FCFS−FCFS value:

Train Avg: 6952.5
Test Avg: 4409.0

Test Max:204919.000000
Learned Max:
186764.000000

Avg Decrease : −31.36%

A
ve

ra
g

e 
A

vg
W

ai
t 

im
p

ro
ve

m
en

t

exp

fcfs

lcfs

lpf

lqf

spf

sqf

Primary
exp

fcfs

lcfs

lpf

lqf

spf

sqf

l_kth_sp

Fig. 8. AvgWait generalization of thresholded policies obtained by using a threshold
value of 20 hours. Note that each plot has a different vertical y axis. The reported
AvgWait and MaxWait values are averaged over 250 resampled weeks from the training
or testing original logs, and we report the difference with the cost of EASY-FCFS-
FCFS. The average of the baseline EASY-FCFS-FCFS is reported under the figure,
along with the average MaxWait obtained by the best training policy on the testing
logs (the ”learned” policy).

criteria. A more ambitious endeavor is to ask whether it is possible to learn a
contextual job ranking model [18] that performs well.

16



9 Acknowledgements

Authors are listed in alphabetical order. We warmly thank Eric Gaussier and
Frederic Wagner for discussions as well as Pierre Neyron and Bruno Breznik
for their invaluable help with experiments. We gracefully thank the contribu-
tors of the Parallel Workloads Archive, Victor Hazlewood (SDSC SP2), Travis
Earheart and Nancy Wilkins-Diehr (SDSC Blue), Lars Malinowsky (KTH SP2),
Dan Dwyer and Steve Hotovy (CTC SP2), Joseph Emeras (CEA Curie), and
of course Dror Feitelson. This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program In-
vestissement d’avenir. Experiments presented in this paper were carried out us-
ing the Digitalis platform3 of the Grid’5000 testbed. Grid’5000 is supported by
a scientific interest group hosted by Inria and including CNRS, RENATER and
several Universities as well as other organizations4.

References

1. PBS Pro 13.0 administrator’s guide. http://www.pbsworks.com/pdfs/

PBSAdminGuide13.0.pdf

2. SLURM online documentation. http://slurm.schedmd.com/sched_config.html
3. TOP500 online ranking. https://www.top500.org/
4. Ahn, D.H., Garlick, J., Grondona, M., Lipari, D., Springmeyer, B., Schulz, M.:

Flux: A next-generation resource management framework for large hpc centers.
In: 2014 43rd International Conference on Parallel Processing Workshops. pp. 9–
17 (Sept 2014)

5. Aida, K.: Effect of job size characteristics on job scheduling performance. In:
Proceedings of the Workshop on Job Scheduling Strategies for Parallel Process-
ing. pp. 1–17. IPDPS ’00/JSSPP ’00, Springer-Verlag, London, UK, UK (2000),
http://dl.acm.org/citation.cfm?id=646381.689680

6. Breck, E.: zymake: a computational workflow system for machine learning and
natural language processing. In: Software Engineering, Testing, and Quality As-
surance for Natural Language Processing. pp. 5–13. Association for Computational
Linguistics (2008)

7. Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C., Mounié, G., Neyron,
P., Richard, O.: A batch scheduler with high level components. In: CCGrid 2005.
IEEE International Symposium on Cluster Computing and the Grid, 2005. vol. 2,
pp. 776–783. IEEE (2005)

8. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. Jour-
nal of Parallel and Distributed Computing 74(10), 2899–2917 (Jun 2014), http:
//hal.inria.fr/hal-01017319

9. Chiang, S.H., Arpaci-Dusseau, A., Vernon, M.K.: The Impact of More Accurate
Requested Runtimes on Production Job Scheduling Performance. In: Feitelson,
D.G., Rudolph, L., Schwiegelshohn, U. (eds.) Job Scheduling Strategies for Par-
allel Processing. No. 2537 in Lecture Notes in Computer Science, Springer Berlin
Heidelberg (Jul 2002)

3 http://digitalis.imag.fr
4 https://www.grid5000.fr

17



10. DOE, A.r.: Synergistic challenges in data-intensive science and exascale computing
(2013)

11. Dolstra, E., Visser, E., de Jonge, M.: Imposing a memory management discipline
on software deployment. In: Software Engineering, 2004. ICSE 2004. Proceedings.
26th International Conference on. pp. 583–592. IEEE (2004)

12. Feitelson, D.G.: Resampling with Feedback — A New Paradigm of Using Workload
Data for Performance Evaluation, pp. 3–21. Springer International Publishing,
Cham (2016)

13. Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling.
In: Job Scheduling Strategies for Parallel Processing. pp. 1–24. Springer (1998)

14. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the paral-
lel workloads archive. Journal of Parallel and Distributed Computing 74(10),
2967 – 2982 (2014), http://www.sciencedirect.com/science/article/pii/

S0743731514001154
15. Frachtenberg, E., Feitelson, D.G.: Pitfalls in parallel job scheduling evaluation. In:

Job Scheduling Strategies for Parallel Processing. pp. 257–282. Springer (2005)
16. Gaussier, E., Glesser, D., Reis, V., Trystram, D.: Improving backfilling by using

machine learning to predict running times. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
pp. 641–6410. SC ’15, ACM, New York, NY, USA (2015)

17. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In:
Job Scheduling Strategies for Parallel Processing. Springer (2001)

18. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 133–142. ACM (2002)

19. Leung, J.Y.: Handbook of scheduling: algorithms, models, and performance anal-
ysis. CRC Press (2004)

20. Lifka, D.A.: The anl/ibm sp scheduling system. In: Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing. pp. 295–303. IPPS ’95, Springer-
Verlag, London, UK, UK (1995), http://dl.acm.org/citation.cfm?id=646376.
689366

21. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (Jun 2001), http://dx.doi.org/10.1109/71.932708

22. Nissimov, A., Feitelson, D.G.: Probabilistic Backfilling, pp. 102–115. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008), http://dx.doi.org/10.1007/

978-3-540-78699-3_6
23. Perkovic, D., Keleher, P.J.: Randomization, speculation, and adaptation in batch

schedulers. In: Supercomputing, ACM/IEEE 2000 Conference. pp. 7–7 (Nov 2000)
24. Skovira, J., Chan, W., Zhou, H., Lifka, D.A.: The easy - loadleveler API project. In:

Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing.
pp. 41–47. IPPS ’96, Springer-Verlag, London, UK (1996), http://dl.acm.org/
citation.cfm?id=646377.689506

25. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Characterization of
backfilling strategies for parallel job scheduling. In: Parallel Processing Workshops,
2002. Proceedings. International Conference on. pp. 514–519. IEEE (2002)

26. Stodden, V., Leisch, F., Peng, R.D.: Implementing reproducible research. CRC
Press (2014)

27. Streit, A.: The self-tuning dynP job-scheduler. In: Parallel and Distributed Process-
ing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM
(Apr 2002)

18



28. Tsafrir, D., Feitelson, D.G.: Instability in parallel job scheduling simulation: the
role of workload flurries. In: Proceedings 20th IEEE International Parallel Dis-
tributed Processing Symposium. pp. 10 pp.– (Apr 2006)

29. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using runtime predictions rather
than user estimates. School of Computer Science and Engineering, Hebrew Uni-
versity of Jerusalem, Tech. Rep. TR 5 (2005)

30. Ukidave, Y., Li, X., Kaeli, D.: Mystic: Predictive scheduling for gpu based cloud
servers using machine learning. In: 2016 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). pp. 353–362 (May 2016)

31. Vishnu, A., v. Dam, H., Tallent, N.R., Kerbyson, D.J., Hoisie, A.: Fault modeling
of extreme scale applications using machine learning. In: 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). pp. 222–231 (May 2016)

19


