
Durham E-Theses

Reasoning about Goal-Plan Trees in Autonomous

Agents: Development of Petri net and Constraint-Based

Approaches with Resulting Performance Comparisons

SHAW, PATRICIA,H

How to cite:

SHAW, PATRICIA,H (2010) Reasoning about Goal-Plan Trees in Autonomous Agents: Development of

Petri net and Constraint-Based Approaches with Resulting Performance Comparisons, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/125/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/125/
 http://etheses.dur.ac.uk/125/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Reasoning about Goal-Plan Trees in

Autonomous Agents:

Development of Petri net and Constraint-Based Approaches

with Resulting Performance Comparisons

A thesis submitted to the University of Durham

in partial fulfilment for the degree of

Doctor of Philosophy

2010

By

Patricia H. Shaw

School of Engineering and Computing Sciences

Abstract

Multi-agent systems and autonomous agents are becoming increasingly important

in current computing technology. In many applications, the agents are often asked

to achieve multiple goals individually or within teams where the distribution of

these goals may be negotiated among the agents. It is expected that agents should

be capable of working towards achieving all its currently adopted goals concur-

rently. However, in doing so, the goals can interact both constructively and de-

structively with each other, so a rational agent must be able to reason about these

interactions and any other constraints that may be imposed on them, such as the

limited availability of resources that could affect their ability to achieve all adopted

goals when pursuing them concurrently. Currently, agent development languages

require the developer to manually identify and handle these circumstances.

In this thesis, we develop two approaches for reasoning about the interactions

between the goals of an individual agent. The first of these employs Petri nets to

represent and reason about the goals, while the second uses constraint satisfaction

techniques to find efficient ways of achieving the goals. Three types of reasoning

are incorporated into these models: reasoning about consumable resources where

the availability of the resources is limited; the constructive interaction of goals

whereby a single plan can be used to achieve multiple goals; and the interleaving

of steps for achieving different goals that could cause one or more goals to fail.

Experimental evaluation of the two approaches under various different circum-

stances highlights the benefits of the reasoning developed here whilst also identify-

ing areas where one approach provides better results than the other. This can then

be applied to suggest the underlying technique used to implement the reasoning

that the agent may want to employ based on the goals it has been assigned.

ii

Declaration

No part of the material presented in this thesis has pre-

viously been submitted by the author in support of an

application for another degree or qualification of this or

any other university or other institute of learning. All

the work presented here is the sole work of the author

and no one else.

This research has been documented, in part, within the

following publications:

• Shaw, P. and Bordini, R. 2007. Towards alterna-

tive approaches to reasoning about goals. In Proc.

5th Int. Workshop on Declarative Agent Languages

and Technologies. Springer.

• Shaw, P., Farwer, B. and Bordini, R. H. 2008. The-

oretical and experimental results on the goal-plan

tree problem. In Proc. 7th Int. Conf. on Au-

tonomous Agents and Multiagent Systems.

iii

Contents

Abstract ii

Declaration iii

Acknowledgements xv

1 Introduction 1

2 Background 8

2.1 Introduction to Agents . 8

2.2 Reasoning about Goals . 13

2.2.1 Reasoning about Resources 15

2.2.2 Reasoning about Positive Interaction 18

2.2.3 Reasoning about Negative Interference 19

2.3 Alternative Approaches to Decision Making 23

2.3.1 Petri nets . 24

2.3.2 Planning . 25

2.3.3 Constraint Satisfaction Problem (CSP) 29

2.4 Testing Performance . 32

3 Reasoning about Goals 35

3.1 Goal-Plan Tree . 35

3.2 Consumable Resources . 36

3.3 Positive Interaction . 40

3.4 Negative Interference . 44

3.5 Goal-Plan Tree Automated Generation 46

iv

4 Petri net Model 49

4.1 Petri nets . 49

4.2 Modelling a Goal-Plan Tree Problem 53

4.3 Modelling Consumable Resource Reasoning 58

4.4 Modelling Positive Interaction Reasoning 64

4.5 Modelling Negative Interference Reasoning 66

4.6 Petri net Automated Generation . 68

5 Constraint-Based Model 75

5.1 Constraint Satisfaction Problem . 75

5.1.1 Constraint Logic Programming 77

5.1.2 GNU Prolog . 78

5.1.3 GNU Prolog Notation . 81

5.2 Modelling the Goal-Plan Tree . 87

5.3 Modelling Consumable Resource Reasoning 96

5.4 Modelling Positive Interaction Reasoning 100

5.5 Modelling Negative Interference Reasoning 103

5.6 Constraint Automated Generation 105

6 Evaluation 107

6.1 Experimental set-up . 107

6.2 Deep Goal-Plan Trees . 115

6.2.1 Consumable Resources . 116

6.2.2 Positive Interaction . 126

6.2.3 Negative Interference . 132

6.2.4 Combined Reasoning . 140

6.2.5 Deep Goal-Plan Tree Conclusions 145

6.3 Broad Goal-Plan Trees . 146

6.3.1 Consumable Resources . 147

6.3.2 Positive Interaction . 151

6.3.3 Negative Interference . 154

6.3.4 Combined Reasoning . 156

6.3.5 Broad Goal-Plan Tree Conclusions 159

v

6.4 General Goal-Plan Tree . 160

6.4.1 Varying the Combined Reasoning Types 161

6.4.2 General Goal-Plan Tree Conclusions 171

6.5 Summary of Comparison of Tree Structures and Reasoning Models . 171

6.5.1 Reasoning about Consumable Resources 172

6.5.2 Reasoning about Positive Interaction 173

6.5.3 Reasoning about Negative Interference 174

6.5.4 Combined Reasoning . 174

6.5.5 Conclusion . 175

7 Conclusions and Future Work 178

vi

List of Tables

6.1 Settings considered in experiments for reasoning about resources . . 112

6.2 Settings considered in experiments for reasoning about positive in-

teraction . 113

6.3 Settings considered in experiments for reasoning about negative in-

terference . 113

6.4 Settings considered in experiments for combined reasoning 114

6.5 Plan requirements for the three sizes of deep tree used 116

6.6 Load timings for setting: Medium sized deep tree, low resource

availability, high goal interaction, varying number of goals and rea-

soning about resources . 121

6.7 Memory usage for setting: Medium sized deep tree, low resource

availability, high goal interaction, varying number of goals and rea-

soning about resources . 122

6.8 Load timings for setting: Medium sized deep tree, high goal inter-

action, 20 goals, varying resource availability and reasoning about

resources . 125

6.9 Memory usage for setting: Medium sized deep tree, high goal inter-

action, 20 goals, varying resource availability and reasoning about

resources . 126

6.10 Load timings for setting: Deep tree, high level positive interaction,

high goal interaction, 20 goals, varying tree size and reasoning about

positive interaction . 128

6.11 Memory usage for setting: Deep tree, high level positive interaction,

high goal interaction, 20 goals, varying tree size and reasoning about

positive interaction . 129

vii

6.12 Load timings for setting: Medium sized deep tree, high goal interac-

tion, 20 goals, varying positive interaction level and reasoning about

positive interaction . 131

6.13 Memory usage for setting: Medium sized deep tree, high goal in-

teraction, 20 goals, varying positive interaction level and reasoning

about positive interaction . 132

6.14 Load timings for setting: Deep tree, long duration negative interfer-

ence, high goal interaction, 20 goals, varying tree size and reasoning

about negative interference . 135

6.15 Memory usage for setting: Deep tree, long duration negative in-

terference, high goal interaction, 20 goals, varying tree size and

reasoning about negative interference 136

6.16 Load timings for setting: Medium sized deep tree, high goal inter-

action, 20 goals, varying negative interference level and reasoning

about negative interference . 138

6.17 Memory usage for setting: Medium sized deep tree, high goal inter-

action, 20 goals, varying negative interference level and reasoning

about negative interference . 138

6.18 Load timings for setting: Medium sized deep tree, long duration

negative interference, 20 goals, varying goal interaction and reason-

ing about negative interference . 140

6.19 Memory usage for setting: Medium sized deep tree, long duration

negative interference, 20 goals, varying goal interaction and reason-

ing about negative interference . 141

6.20 Load timings for setting: Medium sized deep tree, low resource

availability, high level positive interaction, long duration negative

interference, high goal interaction, 20 goals, varying reasoning com-

bination . 144

6.21 Load timings for comparison results of medium sized deep tree,

individual reasoning types . 144

viii

6.22 Memory usage for setting: Medium sized deep tree, low resource

availability, high level positive interaction, long duration negative

interference, high goal interaction, 20 goals, varying reasoning com-

bination . 145

6.23 Memory usage for comparison results of medium sized deep tree,

individual reasoning types . 145

6.24 Plan requirements for the three sizes of broad tree used 147

6.25 Load timings for setting: Broad tree, low resource availability, high

goal interaction, 20 goals, varying tree size and reasoning about

resources . 151

6.26 Memory usage for setting: Broad tree, low resource availability, high

goal interaction, 20 goals, varying tree size and reasoning about

resources . 151

6.27 Load timings for setting: Medium sized broad tree, high level posi-

tive interaction, high goal interaction, varying number of goals and

reasoning about positive interaction 153

6.28 Memory usage for setting: Medium sized broad tree, high level pos-

itive interaction, high goal interaction, varying number of goals and

reasoning about positive interaction 154

6.29 Load timings for setting: Medium size broad tree, long duration

negative interference, high goal interaction, varying the number of

goals and reasoning about negative interference 156

6.30 Memory usage for setting: Medium size broad tree, long duration

negative interference, high goal interaction, varying the number of

goals and reasoning about negative interference 156

6.31 Load timings for setting: Medium sized broad tree, low resource

availability, high level positive interaction, long negative interfer-

ence, high goal interaction, 20 goals, varying reasoning combination 158

6.32 Load timings for comparison results of medium sized broad tree,

individual reasoning types . 159

6.33 Memory usage for setting: Medium sized broad tree, low resource

availability, high level positive interaction, long negative interfer-

ence, high goal interaction, 20 goals, varying reasoning combination 159

ix

6.34 Memory usage for comparison results of medium sized broad tree,

individual reasoning types . 160

6.35 Plan requirements for the general tree, only large size is used 161

6.36 Load timings for comparison results of large sized general tree, in-

dividual reasoning types . 164

6.37 Memory usage for comparison results of large sized general tree,

individual reasoning types . 164

6.38 Load timings for setting: Large sized general tree, low resource

availability, high level positive interaction, long duration negative

interference, high goal interaction, 20 goals, varying reasoning com-

binations . 166

6.39 Memory usage for setting: Large sized general tree, low resource

availability, high level positive interaction, long duration negative

interference, high goal interaction, 20 goals, varying reasoning com-

binations . 166

6.40 Load timings for setting: Large sized general tree, high level positive

interaction, long duration negative interference, high goal interac-

tion, 20 goals, varying resource availability and reasoning about all

types . 168

6.41 Memory usage for setting: Large sized general tree, high level posi-

tive interaction, long duration negative interference, high goal inter-

action, 20 goals, varying resource availability and reasoning about

all types . 168

6.42 Load timings for setting: Large sized general tree, high resource

availability, high level positive interaction, long duration negative

interference, high goal interaction, varying number of goals and rea-

soning about all types . 170

6.43 Memory usage for setting: Large sized general tree, high resource

availability, high level positive interaction, long duration negative

interference, high goal interaction, varying number of goals and rea-

soning about all types . 171

x

List of Figures

2.1 Goal-plan tree for a Mars rover as used by Thangarajah et al. The

goals and subgoals are represented by rectangles while the plans are

represented by ovals . 15

4.1 Example of a simple Petri net . 50

4.2 Petri Net example of inscribing transitions with operations and con-

ditions . 52

4.3 Petri net example of reference net synchronisation 54

4.4 Petri Net Representation of the Mars Rover goal-plan tree shown

in figure 2.1 . 55

4.5 Petri net representation of the two branch structures used in a goal-

plan tree . 56

4.6 Petri nets for the two main resource types 59

4.7 Selecting the best plan based on required resources 61

4.8 Manager module for checking the resource summary information

prior to adopting a new goal . 62

4.9 Variables net resource summary module 63

4.10 Positive module1 . 65

4.11 Negative modules1 . 67

4.12 A sample of a Manager Petri net model 72

4.13 A sample of the Variables Petri net model 74

5.1 Outline map of counties used in map colouring example 76

5.2 Search tree for map colouring problem 80

5.3 Removal of surplus sub-trees where there is a choice of plans 90

xi

6.1 Deep goal-plan tree showing the levels used for small, medium and

large goals . 117

6.2 The different legends for the result graphs of the Petri net and

constraint models . 118

6.3 Results for setting: Medium sized deep tree, low resource availabil-

ity, high goal interaction, varying number of goals and reasoning

about resources . 119

6.4 Results for setting: Medium sized deep tree, high goal interaction,

20 goals, varying resource availability and reasoning about resources 123

6.5 Results for setting: Deep tree, high level positive interaction, high

goal interaction, 20 goals, varying tree size and reasoning about

positive interaction . 127

6.6 Results for setting: Medium sized deep tree, high goal interaction,

20 goals, varying positive interaction level and reasoning about pos-

itive interaction . 130

6.7 Results for setting: Deep tree, long duration negative interference,

high goal interaction, 20 goals, varying tree size and reasoning about

negative interference . 133

6.8 Results for setting: Medium sized deep tree, high goal interaction,

20 goals, varying negative interference level and reasoning about

negative interference . 137

6.9 Results for setting: Medium sized deep tree, long duration negative

interference, 20 goals, varying goal interaction and reasoning about

negative interference . 139

6.10 Results for setting: Medium sized deep tree, low resource availabil-

ity, high level positive interaction, long duration negative interfer-

ence, high goal interaction, 20 goals, varying reasoning combinations 141

6.11 Comparison results for medium sized deep tree, individual reasoning

types . 142

6.12 Goal-plan tree for the broad tree, showing the breadths used for

small, medium and large trees . 148

6.13 Results for setting: Broad tree, low resource availability, high goal

interaction, 20 goals, varying tree size and reasoning about resources 149

xii

6.14 Results for setting: Medium sized broad tree, high level positive

interaction, high goal interaction, varying number of goals and rea-

soning about positive interaction 152

6.15 Results for setting: Medium size broad tree, long duration negative

interference, high goal interaction, varying the number of goals and

reasoning about negative interference 155

6.16 Results for setting: Medium sized broad tree, low resource availabil-

ity, high level positive interaction, long negative interference, high

goal interaction, 20 goals, varying reasoning combination 157

6.17 Comparison results for medium sized broad tree, individual reason-

ing types . 158

6.18 Goal-plan tree for the general tree used, showing the large tree struc-

ture . 162

6.19 Comparison results for large sized general tree, individual reasoning

types . 163

6.20 Results for setting: Large sized general tree, low resource availabil-

ity, high level positive interaction, long duration negative interfer-

ence, high goal interaction, 20 goals, varying reasoning combinations 165

6.21 Results for setting: Large sized general tree, high level positive in-

teraction, long duration negative interference, high goal interaction,

20 goals, varying resource availability and reasoning about all types 167

6.22 Results for setting: Large sized general tree, high resource availabil-

ity, high level positive interaction, long duration negative interfer-

ence, high goal interaction, varying number of goals and reasoning

about all types . 169

6.23 Legend for graphs comparing performance over the three different

tree structures . 172

6.24 Comparison results for reasoning about resources across the three

tree structures . 173

6.25 Comparison results for reasoning about positive interaction across

the three tree structures . 173

6.26 Comparison results for reasoning about negative interference across

the three tree structures . 174

xiii

6.27 Comparison results for combined reasoning across the three tree

structures . 175

xiv

Acknowledgements

I would firstly like to thank my supervisor, Dr. Rafael Bordini, who inspired me as

an undergraduate student to pursue research in the field of agents and to whom I

owe a debt of gratitude for all his guidance and the encouragement he has provided

throughout course of this research.

Also from the agents research group, I would like to thank Dr. Berndt Farwer

for all his help with Petri nets and his encouragement. Thanks also go to all my

other colleagues, for their moral support and encouragement to keep persevering

despite the problems encountered along the way. I would also like to thank all the

people who have inspired me to undertake research and work towards this PhD.

My thanks also go to all the people I have met at conferences and provided the

opportunity to discuss my ideas, especially John Thangarajah for the discussions

we have had regarding my ideas for potential alternative approaches to improve

the reasoning of agents.

I would like to thank all my friends for their inspirational and morale-boosting

talks to keep me going and for all the help and support they have provided along

the way. In particular, I would like to send special thanks to Elly for all the advice

she has given me, to Tally for helping me to find a needle in a haystack, and Chris

for keeping me in touch with life outside academia.

A very special thank you goes to my parents for their love and support through-

out, with anything from proof reading to supplying the chocolate to keep me going.

I am very grateful for all the guidance and encouragement they have provided over

the years to get me to this point. In addition, I would like to thank my wonderful

dog, Lucy, for all the long walks she has taken me on to think over the research

and without whom I may have gone insane over the last few years.

Finally, many thanks go Professor Malcolm Munro for offering me the DTA

xv

funding from the Engineering and Physical Sciences Research Council (EPSRC)

giving me the opportunity to undertake this research, along with Professor Dave

Robertson and Dr. Magnus Bordewich for their insights and suggestions for con-

tinuing with this research. Thanks also go to Dr. Nick Holliman for giving me

access to the array of computers that allowed me to complete all my experiments

in just one month, compared to the 6 months it would have otherwise taken.

xvi

Chapter 1

Introduction

Agent technology is a growing area of research and an increasingly popular method-

ology for implementing systems in industry as well as academia [Alshamsi et al.,

2009, Mora et al., 2008, Ceccaroni and Robertson, 2000]. Agents are used by

space agencies to aid in the control of deep space probes [Muscettola et al., 1998,

Truszkowski et al., 2006], as well as in many applications closer to home [Tsai

et al., 2009, Jakob et al., 2008, Paruchuri et al., 2006]. They are becoming increas-

ingly used as personal assistants [Varakantham et al., 2005] for anything from

trading to finding information leading to controlling autonomous robots for trans-

port or surgery [Palmer, 2009], along with helping the coordination of disaster

response teams [Tambe et al., 2005, Schurr et al., 2005, Nourbakhsh et al., 2005,

The RoboCup Federation, 2009a].

Agents are defined as being situated in an environment, autonomous, reactive,

proactive, flexible and social. In order for agents to be able to satisfy this definition

they need to reason about the environment they are situated in and how to devise a

method of achieving their objectives through acting on the environment to change

it. When defining agents, the developers provide a wide selection of plans from

which the agent can select the most suitable depending on the situation. This leads

to the main advantage of intelligent agents being able to operate autonomously

and achieve their goals in highly dynamic environments.

A popular architecture used by developers for defining agents is based on a

philosophy of human intentions using Beliefs, Desires and Intentions (BDI) [Rao

1

CHAPTER 1. INTRODUCTION 2

and Georgeff, 1995, Wooldridge and Jennings, 1995]. The agent has a set of beliefs

about the environment, its goals and about any other agents with whom it may be

interacting with. Their desires represent the states within the environment they

would like to achieve, or the goals they would like to achieve. However it is often

not possible to achieve all of these so the agent chooses a subset to commit to.

This subset forms the intentions which the agent is committed to achieving.

Many applications require the agents to achieve multiple goals and often in

parallel, therefore it is in the commitment to achieving certain goals, followed

by the autonomous selection of plans used to achieve the goals that can cause

the agent considerable difficulties. When committing to goals the agent needs to

consider whether the goals are compatible, such that all committed goals can be

achieved concurrently. Once goals have been committed to then the selection of

plans to achieve the goals and the order in which the selected plans are executed

can also have an impact on the achievability of other goals. The main aim of this

thesis is to investigate approaches for reasoning about goals that can be practically

incorporated into agents. This is to improve the efficiency and effectiveness of the

agents, specifically their ability to reason about which goals they can safely commit

to achieving and how to safely go about achieving the goals they have committed

to.

Within agents, goals can be split into a variety of different categories. Two

categories that are commonly used for describing goals are “Achievement goals”

and “Maintenance goals”. As the names suggest, the achievement goals aim at

achieving a desired state within the environment, while the maintenance goals are

concerned with preserving a state in the environment. The driver of a vehicle

could be given the achievement goal of safely transporting the passengers to their

desired location, while having the maintenance goal of maintaining the speed at

the safe and legal limit for the road they are on.

Limited resource availability Many application areas are constrained by the

availability of resources in some form or another. This could be simply disk storage

space, memory and processor availability for computations, or it could refer to

more physical resources such as the fuel used to power a vehicle or the money to

purchase products. Some of these can be considered as reusable resources, such

CHAPTER 1. INTRODUCTION 3

as memory and processors that become available again when the computation has

finished, while others can be considered to be consumable such as the petrol in a

vehicle. Once the fuel has been used, it cannot be reclaimed, so more needs to be

purchased.

These same resource restrictions affect agents, so an intelligent agent needs

to take them into consideration when reasoning about the goals to which it can

commit and the plans it uses to achieve them. If the goals the agent is considering

committing to require some resources that will be consumed and the availability

of these resources is limited then the agent may not be able to achieve all the

goals. It would therefore be irrational for an agent to commit to achieving them,

as attempting to achieve them concurrently could cause all the goals to fail when

the resources run out. For example, if an agent has 100 units of energy and one

goal requiring 80 units of energy and a second goal requiring 60 units, it would not

be feasible for the agent to achieve both goals. If the agent attempted to pursue

both goals in parallel, the most likely outcome is that the agent will run out of

energy before either of the goals has been achieved.

As the agent has a range of possible plans that can be used to achieve a

given goal, it is also possible that each of these plans will have different resource

requirements. If the agent commits to achieving the goal requiring at least 60 units

and is asked to achieve another goal requiring at least 40 units, then provided

the agent is careful, it should be able to achieve both goals. However, if that

agent wastes resources by selecting plans with higher resource requirements than

necessary then one or both goals could still fail when the resources run out.

Positive goal interaction Within an individual agent it is possible for some

of its goals to have common properties or to produce some similar effects. For

example, if an agent is given the two separate goals of buying a shirt and a tie

from a shop, where the shop is the same, it makes sense for a rational agent to

make just one trip to the shop and purchase both items at the same time [Horty

and Pollack, 2004]. Another example of an application involving a single agent

is that of a Mars rover agent [Washington et al., 1999]. A simplified version of

the rover will be given a variety of goals involving taking a selection of samples at

different locations and transmitting the results back to Earth via a base station at

CHAPTER 1. INTRODUCTION 4

the landing site. While the batteries are rechargeable, the energy can be considered

consumable between charging cycles.

In the Mars rover example, if the agent is given the goals of taking rock and

soil samples at the same location, they can either move to the location, take the

first sample, return to the base station to transmit the results, go back to the

same location to take the second sample and finally return to base station again

to transmit the second results, or the agent can take both samples at the same

time, and transmit the results together.

Typically each of the goals will require the execution of multiple plans in order

to achieve it and while the first approach for the Mars rover achieves the two goals

sequentially, the second approach is able to interleave the plans in such a way as

to be beneficial to both goals being pursued concurrently. It should also be clear

that through the positive interleaving of plan executions, resources can also be

saved, such as the energy required for a second trip not being needed. This can

allow an agent to achieve more goals despite the limited availability of resources.

Negative goal interaction While it is possible to interleave the plans of two

or more goals in such a way as to benefit each of the goals concerned, it is equally

possible for poor interleaving of plans to have the opposite effect. This can result

in effects that had been achieved by one plan, that were needed by a later plan,

being undone by the plans of another goal. Under extreme circumstances, this

could cause one or more goals to fail. An example of this negative interleaving is

where a Mars rover has two goals, each taking a soil sample at a different location.

The rover will have a selection of plans for moving to the two locations and taking

the soil samples. If the agent executes the movement plan for the first goal taking

it to location A then executes the movement plan for the second goal before the

soil sample plan for the first goal, this will either cause the first goal to fail, or

require it to waste resources returning to the first location again to get the first

sample. In the worse case, an irrational agent could be caught going back and forth

between the two locations until it ran out of energy, never taking either sample.

Clearly this needs to be avoided, and the agent given the ability to reason about

when there is a risk of this occurring in order to avoid it.

CHAPTER 1. INTRODUCTION 5

Summary of contributions This thesis considers the problems related to rea-

soning about achievement goals within a single agent when taking into account the

limited availability of resources, along with the potential for positive and negative

interactions between goals when attempting to achieve them concurrently. Two

new approaches have been defined here for modelling this reasoning, these being,

i. A Petri net based model (see chapter 4) and ii. Constraint satisfaction based

model (see chapter 5).

This research follows on from the work of Thangarajah et al. [2002, 2003a,b],

Thangarajah and Padgham [2004], Thangarajah [2004] where mechanisms for per-

forming the three types of reasoning discussed above were developed. They define

a Goal-Plan tree structure for representing the goals and the plans that can be

used to achieve them. These plans may themselves contain subgoals with further

plans to achieve them forming a tree structure.

The reasoning approach developed by them generates large amounts of sum-

marised information for identifying where interactions are likely to occur between

the goals, be they positive or negative interactions, along with details of the re-

sources required by each of the goals. This summary information consists of sep-

arate lists of potentially and definitely interacting plans for positive and negative

interactions along with lists of resources that will definitely be required and some

that may be required. Their approach is discussed in more detail in chapter 3

with a comparison performed between the approaches developed here and their

approach presented in chapter 7.

While the approach by Thangarajah et al. is based on the use of summary

information, the approaches developed here look at where it is possible to reduce or

even remove entirely the dependence on this summary information, without losing

any of the improvements in efficiency and effectiveness that they have provided

where possible. An experimental analysis of the outcomes of the new approaches

developed here is presented in chapter 6. This evaluation considers three abstract

scenarios based on different goal-plan tree structures, analysing the benefits of

each of the types of reasoning performed both independently and in conjunction

with the other types, while identifying situations where each of the two different

approaches maybe better suited over the other.

CHAPTER 1. INTRODUCTION 6

Models As stated earlier, two different models are used in this thesis to represent

the reasoning about goals within an individual agent. These models use Petri nets

and constraint satisfaction techniques to describe and reason about the problem.

Petri nets are mathematical models, with an intuitive diagrammatic represen-

tation, used for describing and studying concurrent systems [Peterson, 1981]. They

can represent diagrammatically the flow of control through systems, along with

the movements of resources that can be consumed. This representation of the flow

of control provides a natural mapping from the goal-plan trees used to describe

the problem, onto the Petri nets.

Constraint satisfaction techniques attempt to find a solution to a problem over a

domain of variables that have some constraints linking the variables and restricting

the possible assignment of values to variables in suitable solutions. While very

different in style to the Petri nets, these also provide a natural mapping of the

constraints applied by the three types of reasoning over the adoption of goals and

the selection of plans for achieving the adopted goals.

The results show the benefits of the reasoning compared to the absence of any

reasoning, and particularly in a broad goal-plan tree structure show the constraint-

based model provides better results when reasoning about resources, while the

Petri net model gives greater reductions in the number of plans used when consid-

ering positive interactions. By combining the different types of reasoning together,

even greater savings and improvements in performance can be gained as shown in

chapter 6.

Outline of thesis The rest of this thesis is organised as follows:

In chapter 2, a survey of the related literature is given, detailing the concepts

of agents and their goals; the types of reasoning about goals and background on

the approaches used for modelling the reasoning in this thesis.

In chapter 3, the problem of reasoning about goals is explained in more detail.

This covers the issues related to resources and the types of interactions between

goals, identifying the similarities and differences between existing work and the

work presented in this thesis, before chapters 4 and 5 describe the two approaches

developed for modelling the problem and the reasoning incorporated into them.

Chapter 4 develops the first of these models using Petri nets to represent the

CHAPTER 1. INTRODUCTION 7

goal-plan trees. Each of the types of reasoning is then modelled as a series of

modules that can be incorporated into the goal-plan tree and mapped onto a Petri

net.

Similarly, in chapter 5, a constraint satisfaction based description is given for

describing a goal-plan tree, with each of the types of reasoning formalised into

predicates that can be applied as a set of constraints to the goal-plan tree model

used in this approach.

In chapter 6, these two approaches are quantitatively compared to each other

under a wide range of conditions within three different goal-plan tree structures

to analyse their performance, and an attempt is made to identify any situations

where one approach may be better suited over the other.

Finally, chapter 7 presents the conclusions drawn from this thesis, including a

qualitative comparison of the approaches developed here to the approach developed

by Thangarajah et al. A discussion is also given regarding possible areas for

expansion and future research aiming to continue on from this thesis.

Chapter 2

Background

2.1 Introduction to Agents

Agent research has been formed from three main contributing research areas.

These are Artificial Intelligence (AI), Object Oriented (OO) programming and

Human Computer Interaction (HCI) design, with the major contribution coming

from AI research, particularly the research in AI-Planning [Jennings et al., 1998].

In addition to this, Distributed Computing (DC) has also provided an important

basis for multi-agent systems distributed over a network.

When referring to agents, we more specifically mean software agents. A com-

monly used definition of an agent is that given by Wooldridge and Jennings [1995]

defining an agent to be situated within an environment and autonomous. The

environment can be the real world, or it may be the Internet, or simulated within

a computer system, but the agent will be able to receive sensory input from the

environment and its actions will endeavour to affect the environment in a partic-

ular way to help achieve its goals. These environments tend to be more complex

than the sort of environment most software could be considered to be situated in.

They are often more dynamic and unpredictable, and the agent may not have a

complete view of its surroundings, for example in a disaster rescue scenario [Schurr

et al., 2005]. Often the dynamic and unpredictable aspects are brought about by

the presence of multiple agents within the environment, for example robot foot-

ball [Akin, 2005], but there could be other factors within the environment such as

8

CHAPTER 2. BACKGROUND 9

weather that is not controlled by any agents and is simply part of the dynamic

nature of the environment. These changes within the environment mean that

an agent cannot always assume that its actions will be successful or that effects

brought about by their actions will remain unchanged, leading to the need for

agents to constantly be aware of their environment and able to respond to changes

as they occur.

Autonomy means the agent should be able to act without the direct interven-

tion of humans or other agents, and that it should have control over its own actions

and internal state. This property also helps to start distinguishing agents from

simply being objects as used in Object Oriented (OO) programming. Part of the

autonomy requires the agent to be flexible. This is reflected by three further prop-

erties, these being reactive, pro-active, and social. The reactive property means

that the agent should respond in a timely fashion to changes in the environment

that it perceives. The pro-active property indicating that the agent should exhibit

opportunistic and goal-directed behaviour, taking the initiative where appropriate

as well as not giving up on a goal at the first failure, making the goals persistent

while it is still feasible to achieve them. Finally the social behaviour expresses that

the agent should be able to interact with others where necessary to aid in problem

solving or achievement of goals when operating in an environment with more than

one agent in it.

Standard semantics based on speech acts [Searle, 1969], have been defined to

allow different agents to communicate using the same language, allowing more

than the simple passing of parameters used in objects. This provides a series of

performatives to ‘inform’, ‘request’ and ‘agree’ to queries and goals communicated

between agents [FIPA, 1999]. By combining these performatives together, a very

expressive language can be defined allowing the agents to communicate in detail.

On receiving a message, the agent can choose how to respond to that message,

for example if an agent is asked to open a door, they may or may not choose to

do so, whereas an object sent the same message would automatically execute the

‘open door’ method that had been called to achieve the goal. In the real world,

these other agents can be humans that the agent is interacting with. Together,

these three properties describing flexibility encourage the agent to be more robust

to change within its environment. The pro-active behaviour in particular helps to

CHAPTER 2. BACKGROUND 10

further distinguish agents from objects as objects are more reactive when told to

do something or when responding directly to an input, rather than pre-empting

and making use of changes within their environment to speed up the achievement

of their goals. Agents and agent oriented programming are sometimes considered

to be the next step on from OO programming in the evolutionary cycle [Odell,

2002, Baldoni et al., 2006, Bordini et al., 2005a].

In [Tessier et al., 2001], they add to this definition requiring that the agent

also possesses at least a partial representation of its world. Agents that wish to

be considered as intelligent should also be rational agents [Thangarajah et al.,

2002]. This means they should not perform any actions that negatively effect their

ability to achieve their goals, whether as part of a team or individually. In order to

ensure that an agent performs rationally, it needs to reason about factors such as

the limited availability of any resources that are used; the actions it performs and

how they interact with the effects on the environment generated by other goals;

and finally, the interactions within teams and how the actions of other agents affect

each others ability to achieve their given goals, including how teams could reason

together to become more successful at achieving their given goals.

A commonly used agent architecture is the Belief Desire Intention (BDI) archi-

tecture, which is an example of a logic-based architecture. The different types of

architectures include logic-based architectures, reactive architectures and layered

architectures [Weiss, 1999], however this thesis focuses on agents developed using

the BDI architecture. The BDI model is inspired by and based on a model devel-

oped by philosophers, specifically Bratman [1990], to describe human behaviour,

in particular the role of intentions in practical reasoning and is a useful abstraction

tool for describing complex systems [Bordini et al., 2007, chapter 2]. BDI agents

contain a set of beliefs in their internal state, which represents their knowledge

about their environment and other agents within the system. For example, the

BDI agent may believe that it is raining or that agent j is capable of a particular

job. The beliefs of an agent are updated from its perceptions of its environment

and any interactions it has with other agents. The percepts received by the agent

allow them to learn about the environment in which they are situated by receiving

sensory inputs from the environment or through the outcomes of sensory actions

such as touching something. The agent may not be able to perceive the whole

CHAPTER 2. BACKGROUND 11

environment at any one time, so the agent needs to record what it has learnt as

beliefs about the environment. These percepts then form the basis of the agent’s

belief base on which an agent can start to make decisions about actions to per-

form, whilst keeping in mind that the environment could possibly change whilst

the agent is making its decisions, thereby falsifying the beliefs on which the deci-

sion is based. As a result, the agent needs to take into consideration the rate of

change within the environment when making decisions and where necessary avoid

spending longer than necessary on its deliberation.

The desires or goals represent what the agent would like to achieve, while the

intentions represent a set of plans and actions the agent has committed to perform

[Georgeff et al., 1999]. It is possible that some of the desires may conflict, so

a rational agent should only commit to achieving the goals that it can actually

achieve. The agent uses a plan library containing generic plans in order to aid its

planning and achieve the goals to which it has committed. The plans are partially

instantiated when the agent is initialised, with pre-conditions restricting when it

is appropriate to use it. The agent is then able to make a choice of which plans it

can use in order to achieve its goals. The agent leaves the actual commitment to

specific plans as late as possible to allow it to consider any updates to its beliefs

and any last-minute changes within the environment as they occur.

In [Georgeff and Lansky, 1986], they present the Procedural Reasoning System

(PRS), one of the first implementations of an agent-oriented system based on the

BDI architecture. The system provides a library of plans instead of attempting to

generate plans. This means that the agent is able to be more reactive to the changes

and identify sequences of plans, rather than planning the individual actions.

A plan consists of a sequence of actions, possibly including further subgoals

that will also need to be achieved in order for the plan to be successfully achieved.

Actions are often considered to be atomic and often instantaneous, although du-

ration can be applied to them, with partial effects resulting, such as only making

it part way to a desired destination. They are performed by the agents actuators

and represent the agent’s attempt to make changes to the environment, for ex-

ample the agent changing location, or attempting to move an object within the

environment.

CHAPTER 2. BACKGROUND 12

An example programming language for implementing BDI agents is AgentS-

peak [Rao, 1996, Bordini et al., 2002] that is used with Jason, a Java-based plat-

form for developing multi-agent systems and used as an interpreter for AgentS-

peak [Bordini et al., 2007]. Together they provide a formally defined method of

producing plan libraries for agents to draw from, and formally defined seman-

tics for communication. Jason is an interpreter for AgentSpeak that provides

a Java based definition for environments giving agents perceptions to interact

with the environment, along with a facility to distribute multi-agent systems over

a network [Bordini et al., 2005b]. Other languages based on the BDI architec-

ture model include PRS [Georgeff and Lansky, 1986], dMARS [D’Inverno et al.,

2004], 2APL [Dastani, 2008], JAM [Huber, 1999] and JACK [Busetta et al., 1999]

amongst others [Bordini et al., 2005a, 2009].

While most agent research is done by simulating small test problems, there

are already many typical applications where agents are being used. Some of these

applications for agents are as follows:

• Distributed sensor net where agents represent the sensors and coordinate

with neighbours to track targets moving through the net. In [Nair et al.,

2005], the sensors are laid out in a grid and to ensure a target is monitored

and its location accurately recorded there needs to be at least three sensors

monitoring it around the square that the target currently occupies. In this

example, sensors can only detect objects in one direction; however they can

also rotate to view in other directions.

• Personal assistants interacting with humans and each other within an or-

ganisation to aid meeting organisation and time management [Scerri et al.,

2002].

• Air traffic control where agents represent the aircrafts, planning flight paths

in accordance with a set of constraints such as minimum distance allowed

between two aircrafts and minimum fuel consumption on route to destina-

tion. Where two agents have flight plans that come too close to each other

the agents must resolve the conflict [Jennings et al., 1998].

• Transportation system with a car sharing application representing the people

CHAPTER 2. BACKGROUND 13

who are able to offer transport to various locations and the people who would

like the transport [Jennings et al., 1998].

• NASA’s deep space probes where autonomy is a requirement for the ability

to recover from failure in a highly unpredictable environment [Muscettola

et al., 1998, Truszkowski et al., 2006].

2.2 Reasoning about Goals

There are multiple types of conflicts that rational agents need to be aware of;

these can be internal to the individual agent, or external between two or more

agents [Hannebauer, 2001]. While conflicts can occur in social interactions, when

attempting to delegate or collaborate over a set of given tasks [Castelfranchi and

Falcone, 2001], the main focus of this thesis is to look at conflicts between goals

within an individual agent.

Tessier et al. [2001] classifies conflicts into two key categories: Physical and

Knowledge. The physical conflicts are factors such as resources or space, while the

knowledge conflicts refer to differences in opinions or points of view between the

agents. It is the former category of conflict that is the main interest in this thesis.

In [Fisher and Ghidini, 2009] they examine the concept of resource and space

bounded agents, however the bounding is based on the depth of nested beliefs

held by the agent and the length of time spent reasoning about which action to

perform next, while the reasoning in this thesis focuses on the limited availability

of resources consumed by the actions and the interactions between different goals

the agent has.

The conflicts can arise within a single agent when it has taken on two or more

goals that are not entirely compatible and the agent is attempting to achieve

them both concurrently [Hannebauer, 2001]. They may be caused if there is a

limited amount of consumable resources available [Thangarajah et al., 2002, Raja

and Lesser, 2004a] such that there is insufficient resources available to achieve all

the goals, or it may be due to the effects the actions involved in achieving the

goals have on the environment between two concurrent goals [Thangarajah et al.,

2003a,b].

CHAPTER 2. BACKGROUND 14

In [Winikoff et al., 2002] formal definitions for modelling declarative goals are

given, considering the goal as two parts; a declarative description of the state

sought and a procedural set of plans for achieving the desired state. They require

the goals for rational agent to be persistent, unachieved, possible, consistent and

known. This means the agent should know about all the goals it has and must

continue to attempt to achieve a given goal while it is unachieved and still pos-

sible to achieve. The final condition they define for the rational agent is that of

consistency, stating that the agent should not attempt to pursue conflicting goals

simultaneously. In order for this condition to be met however, either the agent

programmer needs to be careful to ensure the agent is only given consistent goals,

and never accepts any other goals from other agents that may conflict or, as is

more suited to the agent paradigm, the agent needs to be given the ability to

reason about its own goals and whether it is safe to attempt to achieve new goals

in parallel. To this end, in their approach to reasoning about goals, they start by

defining a formal semantics and the operations using the semantics for defining

interactions between goals. Using these it is then possible to perform reasoning on

goals separately from plans, so you can reason if a goal has become impossible and

should be dropped, or if a goal has been achieved before the plans have finished ex-

ecuting. This has provided the basis on which the same researchers have proposed

a particular set of approaches for such reasoning on goals under different conflicts

and interactions [Thangarajah et al., 2002, 2003a,b]. In the first of these three

papers they describe a formal method for reasoning under the limited availability

of consumable and reusable resources, while in the other two papers they reason

about the effects of actions and how they interfere with other actions for achieving

multiple concurrent goals. This interference between effects caused can either be

negative or positive depending on whether the action hinders or aids other goals

in their completion. Each of these types of reasoning are discussed in more detail

in the following sections.

In each of the three papers by Thangarajah et al. a goal-plan tree (see figure

2.1) is used to represent the structure of the various plans and subgoals related to

each goal. In order for a plan to be completed within the tree, all of its subgoals

must first be completed, however to achieve a goal or subgoal only one of its pos-

sible alternative plans needs to be achieved. At each node on the tree, “summary

CHAPTER 2. BACKGROUND 15

SG3: TransmitResults

P2: MoveToPlan(A)

SG1: MoveToLoc(A) SG2: PerformSoilAnalysisAt(A)

P3: AnalyseSoilPlan(A) P5: TransmitResultsPlan2P4: TransmitResultsPlan1

SG4: TransmitData

P6: TransmitDataPlan

SG6: TransmitData

P8: TransmitDataPlan

SG5: MoveCloseToLander

P7: MoveClosePlan

P1: SoilExpPlan

G1: PerformeSoilExpAt(A)

Figure 2.1: Goal-plan tree for a Mars rover as used by Thangarajah et al. The
goals and subgoals are represented by rectangles while the plans are represented
by ovals

information” is used to represent the various constraints under consideration. The

reasoning done is solely internal to the individual agent. The goal-plan tree shown

in 2.1 represents a single top-level goal given to a Mars rover to extract a soil

sample from a given location and transmit the results back to Earth via the base

station at the landing site as used by Thangarajah et al.

2.2.1 Reasoning about Resources

When referring to resources, Thangarajah et al. [2002] are referring to both reusable

and consumable resources; for example a communication channel is a reusable re-

source while energy or time is consumed so they cannot be reused. Summaries of

the requirements for these are passed up the tree towards the goal, deriving what

resources are necessary in order to achieve the goals, and also what resources may

potentially be used. A necessary resource is defined as one that will always be

used regardless of the selection of plans when there is a choice between multiple

plans, while a potential resource is one that is only used by some of the plans

that can be selected, so it may not be needed, in certain circumstances. They

introduce a notation, based on set theory, allowing the derivation of summaries

CHAPTER 2. BACKGROUND 16

for the resource requirements of each (sub)goal and plan. These can then be used

to reason about where conflict may occur so that it can be avoided by choosing

suitable alternative plans or appropriately ordering plan execution. An algorithm

is also given to compute how safe it is to add on a new goal to the existing set

of goals. It does this by checking each type of resource used, looking to see if

adding the new goal would cause any conflict in any of them. If it would introduce

conflict, a check is also performed to see if it can be scheduled to avoid the conflict

where the resources involved are reusable. The initial formation of the goal-plan

tree and summary information for the agent is produced at compile time, and the

highlighted conflicts are then monitored at runtime in an attempt to avoid conflict.

Empirical results from experiments done using this reasoning are given in

[Thangarajah and Padgham, 2004]. They consider goal-plan trees of depth 2 and

depth 5, varying the amount of parallelism between multiple goals, and the amount

of competition for the resources either by reducing the availability or increasing the

number of goals vying for the same resource. The reasoning is implemented as an

extension to the JACK agent development system [Busetta et al., 1999] and called

X-JACK. The performance of X-JACK is compared against the performance of

JACK (i.e., without any of the additional reasoning), and shows an improvement

in performance regarding the number of goals successfully achieved, with only a

half second time increase in the computation cost.

In comparison, Raja and Lesser [2004a] also consider a single agent’s limited

resources when deliberating and performing actions in a multi-agent environment,

where coordination and negotiation with the other agents is required. This work

is based on their earlier work [Lesser et al., 2000], where they define the BIG

agent architecture for use on the World Wide Web to gather information while

being constrained by limited resources, trading time for greater quality of results,

where the longer the time taken, the greater the quality of the results returned.

In their later work, they attempt to address the problem of limited resources

by applying meta-level control and making use of reinforcement learning over a

Markov Decision Process (MDP) to improve the performance of the agents over

time.

An MDP is a mathematical framework for modelling decision-making in sit-

uations where outcomes are only partly controlled by the decision maker, with

CHAPTER 2. BACKGROUND 17

the remainder of the outcome being random. Markov Decision Processes (MDPs)

consist of an initial state, a transition model between the states and a reward

function related to the current state. A solution or policy specifies what the agent

should do for any state it reaches, with the expected utility of the policy being

generated by the expected rewards from the event history. An optimal policy is

one which yields the highest expected utility [Russell and Norvig, 2003]. Simari

and Parsons [2006] considers the relationship between MDPs and the BDI archi-

tecture, mapping intentions to and from the BDI architecture onto policies in an

MDP.

The approach developed by Raja and Lesser starts with a random selection of

actions, from which the agents build up a set of episodes with the MDP abstract-

ing the current state and attempting to estimate the probabilities of transitions

arriving at state s′ from s by taking action a. As the agent further explores its

state space, the efficiency of the model increases until in the final steps of the

exploration an optimal policy is expected. Each of the agents are willing to reveal

information to the other agents in the multi-agent system in order to allow them

all to perform better as a whole, bringing the policies of each of the agents into

convergence. This leads to an increasingly large number of parameters that need

to be learnt as the number of agents in the system increases, so they focused on

the interactions between two agents in their experiments.

Another approach using the preferences of an agent to define an MDP in order

to reason about resource allocation between self-interested agents in a multiagent

system is that proposed by Dolgov and Durfee [2006]. Their approach directly

links the amount of the resources to the policy, cutting out the need for utility

values to be estimated, so while they also show the problem to be NP-complete,

the experimental results show their approach gives large gains in computational

efficiency compared to that required by a combinatorial resource-allocation ap-

proach. Alternative approaches to attempting to resolve the resource allocation

have involved the use of Answer-Set Programming (ASP) [Leite et al., 2009] in an

attempt to solve the different Multiagent Resource Allocation (MARA) problems.

These problems however are outside the scope of this thesis as we focus on rea-

soning about the consumable resources available to an autonomous agent working

on its own in an environment.

CHAPTER 2. BACKGROUND 18

2.2.2 Reasoning about Positive Interaction

Reasoning about the effects of actions needs to consider both positive and negative

impacts in relation to other goals, and causal links that may exist between plans

within a single goal. A causal link is formed where the effects of one plan are

the preconditions of another, linking the two plans together. Negative interference

breaks these links by changing the effects in some way between the execution of

the two linked plans.

While most papers focus on the negative impacts of goals interacting with one

another, some also consider the positive implications of this interaction as well. As

the goals of BDI agents are modelled on human goals, examples of this reasoning

can be found in philosophy literature, such as [Björnberg, 2009] where S-relations

and C-relations are defined as Supporting or Conflicting relations between two

or more goals. The supporting relations indicate where one goal facilitates the

achievement of the other, or they facilitate the achievement of each other. Where

a supporting goal is achieved, this increases the probability that the goal itself will

be achieved. The author notes that when the allocation of resources is being con-

sidered, the S- and C-relations can be used to more effectively distribute resources

between goals to avoid wasting the resources on goals that will be unachievable

due to conflict.

Weiss [1999, section 3.5] discusses “plan merging”, but this is actually referring

to checking whether two plans from different agents can be executed simultaneously

or whether they will interfere with each other. If they interfere, the reasoning

checks to see if the conflicting plans can be scheduled to avoid the interference and

if not then the plans are said to be incompatible with a knock on effect on each

agent.

The positive interaction between goals has also been considered within agents

that have multiple goals [Thangarajah et al., 2003b, Horty and Pollack, 2004]. In

the work by Thangarajah et al., when reasoning about the effects caused by plans,

they consider the negative and positive interactions separately. In [Thangarajah

et al., 2003b], they are just concerned with exploiting any positive interaction

between goals. This is where two or more plans cause the same effect, so rather

than executing both, it may be possible to merge the two plans, thereby improving

CHAPTER 2. BACKGROUND 19

the performance of the agent. To represent this form of reasoning, they once

again use the goal-plan tree with summary information showing the definite and

potential effects of the plans and goals, with a particular method used to derive the

summaries. They then describe how an agent can decide if it is feasible to merge

the plans, and how to avoid waiting too long if one of the two plans for merging

is reached considerably sooner than the other. It is also possible that the second

plan will never be reached where the merger was only a “potential” merge, so the

agent needs to be able to reason about whether it is worth waiting or not to avoid

wasting too much time waiting for something that will never happen. Results

from their experiments using this reasoning are presented in [Thangarajah, 2004].

These results show the expected reduction in the number of plans used compared

to the same experiments being run without any reasoning. The time taken with

the reasoning was actually reduced slightly due to the reduction in the number of

plans being used.

Horty and Pollack also consider the merging of plans where positive interaction

occurs [Horty and Pollack, 2004]. In their work, an agent evaluates the various

options it has between its goals within the context of its existing plans. They use

estimates for the costs of plans, and where there is some commonality between its

existing plans and another plan, then the plans will be evaluated for merging. If

the estimated cost of the merged plans is less than the sum of the two separate

estimated costs then the plans will be merged. The example they give to illustrate

this is an “important” plan of going to a shopping centre to buy a shirt, while also

having a less important goal to buy a tie separately. Both plans involve getting

money and travelling to a shopping centre, so if the overall cost of buying the tie

at the same time as the shirt is less than that of buying the tie separately then

the plans will be merged, even though the goal of having a tie is not as important.

In this way, they look for the least expensive cost for the execution of the plans

involved to achieve the goals.

2.2.3 Reasoning about Negative Interference

In reference to the philosophical literature on negative interaction discussed by Björnberg

[2009], the interference from the C-relations that they consider is often “hard”

CHAPTER 2. BACKGROUND 20

conflicts that completely prevent another goal from being achieved. This is often

associated with a lack of a consumable resource such as money, but they also in-

clude the effects of actions from goals such as the goal to be intoxicated twenty-four

hours a day and the goal to become a skilful violinist. Clearly these goals conflict

with each other in such a way that one cannot be achieved alongside the other. Not

all conflicts are so hard, there are “softer” conflicts that allow two conflicting goals

to be taken on at the same time. Many humans and organisations will knowingly

take on conflicting goals, out of which some of the conflicts will resolve themselves

effectively over time, while others will come into conflict. Attempting to avoid

adopting any conflicting goals will ultimately result in a system where very few

or even no goals are ever adopted so very little is achieved as all actions could

potentially conflict with something else. As a result, we need to find a method of

handling the conflicts between the goals wherever possible.

Within agents, approaches to reasoning about negative interactions between

goals include [Bonura et al., 2009], which describes a development suite for BDI

agent systems called PRACTIONIST, standing for PRACTIcal reasONIng sySTem

that attempts to guarantee the consistency of intentions within a system based on

the properties of goals preventing strongly inconsistent goals from being adopted

at the same time, or adopting goals that cannot be achieved due to conditions

currently true in the environment.

A similar approach is given by both [Pokahr et al., 2005] and [Tinnemeier

et al., 2008]. In these types of approaches, developers performs deliberation at a

goal level, deliberately abstracting away from the plans, to constrain the maximum

number of parallel goals or to identify negative relationships between two goals.

These relationships are defined by the developer and linked to goal templates,

where each template is a goal of which multiple goal instances may be created.

For example, when defining a room cleaning agent, the developer would add an

“inhibits” relationships between a goal type for maintaining battery level to all the

other goal types. This would then prevent the agent from attempting to achieve

instances of the maintain battery goal at the same time as any other goals at run

time. When the agent is deliberating about plan selection, these relationships help

to speed up the deliberation cycle by reducing the number of goals and plans that

need to be considered.

CHAPTER 2. BACKGROUND 21

Meneguzzi and Luck [2007] follows on from the definitions of meta-level reason-

ing about goals described in [Raja and Lesser, 2004b] and applies this reasoning to

consider goals before committing to them based on motivations. They do this by

abstracting away from specific details about the plans or goals to produce a more

generic approach to reasoning which they claim enables a more flexible specifica-

tion of meta-level reasoning than that offered by more static strategies focusing on

specific properties of the agents reasoning such as the negative or positive interac-

tions and that require detailed knowledge of the underlying architecture such as

those developed by Raja and Lesser [2004b], Pokahr et al. [2005] and Thangarajah

et al. [2003a,b].

In the paper by Thangarajah et al. on reasoning about the interactions of

effects, generated by the plans that are executed by the agents, they consider how

to detect and avoid negative interference between goals [Thangarajah et al., 2003a].

By using additional types of summaries, similar to those developed in [Clement and

Durfee, 1999b], such as summaries for definite or potential pre-conditions and in-

conditions along with post-conditions (i.e., effects), they monitor the causal links

between effects produced by one plan which are used as pre-conditions of another

to ensure these are not interfered with. The pre-conditions are conditions that need

to be true before the plan can start, while the in-conditions are a subset of the pre-

conditions that need to remain true for the whole duration of the plans execution.

The post-conditions or effects are the expected outcomes of executing a plan. The

definitions of definite and potential effects are of the same form as the necessary or

possible resources used in relation to the reasoning about resources. The reasoning

is done by using the summary information in a goal-plan tree, monitoring guarded

sets of dependency links or causal relations. To derive the lists of interacting plans,

a formal notation based on set notation is defined, to allow the agent to produce

the summary information to reason about conflicting actions between its current

goals and any new goals the agent may consider adopting.

When conflicts occur, scheduling can generally be used to protect these causal

links until they are no longer required. Also in [Thangarajah et al., 2003a], the au-

thor determines a sequence of steps for the agent to schedule and avoid interference,

including checks to perform before accepting a new goal. Empirical results from

CHAPTER 2. BACKGROUND 22

experiments using the reasoning described in this paper are given in [Thangara-

jah, 2004] comparing the performance of an agent with and without the reasoning,

varying the same factors as they did for testing the reasoning about resources.

The results show an improvement in the number of goals successfully achieved,

and only slight increase in time taken to perform the additional reasoning.

While the papers by Thangarajah et al. have reported on experimental results

for reasoning separately about each of these types of interactions between plans

and goals as well as resource usage, there are no results given showing all three

forms of reasoning working in conjunction. All results are given for the individual

types to demonstrate the sole effects from the individual reasoning and the small

amount of added computational costs associated with it, the maximum amount of

computation time that was added on in any of the experiments being half a second.

The lack of combined results suggests there may be the possibility of there being

interference between the different forms of reasoning presented in their approach.

This could be a dilemma caused between the different reasoning approaches, for

example if one reasoning suggests that performing a particular plan will cause

conflict while another reasoning suggests that the only other alternative will also

cause conflict the agent may be unable to decide between the two without some

additional overriding reasoning.

The results were also limited in the depth of trees tested. In the real world it

is possible the plans and hence the goals would be slightly more complex leading

to trees of greater sizes. However, as the tree grows the amount of summary

information required to perform the reasoning will grow exponentially [Clement

and Durfee, 2000a]. This will have a significant impact on the performance of the

agent when attempting to reason about larger problems.

Prior to the time that the work by Thangarajah et al. was published, the

Distributed Intelligent Agents Group, led by Edmund Durfee at the University

of Michigan, produced some similar research for modelling and reasoning about

effects, extending their work to cover Multi-agent Systems [Clement and Durfee,

1999a,b, 2000b]. In their work, they were interested in reasoning about conflicts

to coordinate the actions of agents that use a system of Hierarchical Task Network

(HTN) planners to coordinate their reasoning while the work by Thangarajah

was based around BDI agents. In Clement and Durfee [1999b], they present the

CHAPTER 2. BACKGROUND 23

summary information for pre-, in- and post- conditions of plans, which is adopted

by Thangarajah et al. and used in the goal-plan trees to reason about resources

and effects. The work by Clement and Durfee is discussed in more detail in section

2.3.2.

2.3 Alternative Approaches to Decision Making

In [Thangarajah et al., 2002, 2003a,b] they have used a goal-plan tree with lists

of summary information that are passed up the tree of plans and goals to aid the

reasoning. It is based on the idea used at the University of Michigan, to form a

hierarchy in the agents, through which the summary information is then trans-

mitted to aid their planning and searching for an optimal solution to coordination

and reasoning [Clement and Durfee, 1999a,b, 2000b]. While formal definitions

have been produced to describe the types of reasoning under consideration, there

are various other methods that could be used for modelling this type of problem,

which can lead to agents using alternative approaches to reasoning about goals;

the aim of the thesis is to experimentally develop two of these alternative methods,

comparing their performance under varying conditions. It is predicted that each

of the approaches may be better suited to certain structures of goal-plan trees over

the others.

Possible alternative approaches include Petri nets [Bonnet-Torrès and Tessier,

2005], planning [Russell and Norvig, 2003, chap. 11] and CSPs [Hannebauer, 2001],

amongst others, however we just consider these three here. Petri nets have pre-

viously been used to represent agents [Duvigneau et al., 2003, Bonnet-Torrès and

Tessier, 2005] and reasoning can be incorporated into the Petri net representations

of the agents, while planning can search for the best sequence of actions for solving

a problem and can be implemented using CSPs. The CSPs which can standardise

the problem as a series of constraints, allow existing CSP search techniques to be

used to find a solution, satisfying the given set of constraints.

CHAPTER 2. BACKGROUND 24

2.3.1 Petri nets

Petri nets are mathematical models that can be displayed graphically for describing

and studying concurrent systems [Peterson, 1981]. They consist of places and

transitions that are connected by arcs, with tokens that are passed from place

to place through transitions. Transitions can only ‘fire’ when there are sufficient

tokens in each of the input places, acting as pre-conditions for the transition. The

tokens are then removed from the input places, and one is placed in each of the

output places. Arcs can have weights associated with them, the default weight

being one. Greater weights on arcs either require the place to have at least that

many tokens for the transition to fire, or the transition gives the place that number

of tokens as its output (see chapter 4 for more details).

While Petri nets have not been used for this type of reasoning in agents, they

have been used for related work in agents such as [Bonnet-Torrès and Tessier,

2005], which uses Petri nets to decompose team plans into plans for individual

agents. They do, however, have the advantage of being mathematically formal-

ized and have a wide range of applications [Murata, 1989, Peterson, 1981, Bakam

et al., 2001, Kristensen et al., 1998, Leifer and Milner, 2004, Conway et al., 2002].

Petri nets are also used to represent the plans used by robots [Ziparo and Iocchi,

2006, Ziparo et al., 2008], for participation in RoboCup football [The RoboCup

Federation, 2009b].

In [Murata, 1989], a formal definition of Petri nets is given, along with a set

of constructs that can be used to model various types of functionality into a Petri

net. For each of these, liveness, safety and reachability properties can be proved

to ensure the correctness of the system they represent. The paper finishes by

analysing algebraic or high-level Petri nets where the tokens are variables in for-

mulas, and the weights on the arcs state the variables needed for the input and

output of transitions. These can also be considered as a form of coloured Petri

nets. Formal proofs have been given on the complexity of reachability on Petri

nets in [Ramachandran and Kamath, 2004], showing that reachability is decidable

and NP-complete.

Coloured Petri nets, are an extension to standard Petri nets where the tokens

have a colour or data value associated with them and arcs have matching colours

CHAPTER 2. BACKGROUND 25

or data values associated with the weights on the arcs. In [Cost et al., 1999,

2000], coloured Petri nets are used to model conversations to provide a structure

for conversations between agents, while in [Bakam et al., 2001], they are used

as a formal method of analysing multi-agent hunting management systems. This

extension of Petri nets is also used in [Bai et al., 2004] and [Weyns and Holvoet,

2002] to model multi-agent interactions and applications, such as Packet World.

Another extension to Petri nets is object oriented in style and called Reference

nets or Object nets [Köhler and Rölke, 2004], where nets can be embedded within

other nets. Reference nets are a development of Recursive Petri net (RPN)s that

are used in [Seghrouchni and Haddad, 1996]. In that paper they use RPNs to

model distributed planning and show how it can handle both positive and negative

interactions between agents. This work does not use BDI agent’s, instead using

a definition of the agents plans, actions and methods that are also given in the

paper. It does this by using the tokens in the places as pre and post-conditions

for the actions which are represented by transitions in the Petri net. Planning

algorithms are then used to resolve any negative or positive interactions before

they can occur, to allow the actions to either be merged or be sequenced to avoid

one action hindering the execution of another. Further, unlike in BDI agents, this

approach does not represent goals as separate entities to the plans, rather the

goals are simply the post-conditions of the plans. This means that if the goal, by

some potentially unexpected change in the environment, is achieved earlier than

expected then the plans still have to be executed as the completion of the goal will

not have been realised.

The reference nets extension is used in [Duvigneau et al., 2003] to model a

multi-agent system, showing how reference nets can be effectively used for message

passing as a communication mechanism.

2.3.2 Planning

Planning systems search for a sequence of steps to achieve a predefined goal state.

However, in the highly dynamic environments that agents are used for, static

plans will typically perform very badly. Dynamic planning offers greater flexibility,

adjusting the plans each time the environment changes; however, in a dynamic

CHAPTER 2. BACKGROUND 26

domain, the size of the search space increases rapidly, making searching intractable.

Classical planning also relies on the environment being fully observable, which

often is not the case in the real world [Russell and Norvig, 2003, chap.11].

In planning, each action has lists of pre-conditions and effects, leading to se-

quences of actions that have to be performed in order to achieve a goal. This allows

plans to search either forwards or backwards to find a consistent plan, for example

starting from the goal and finding actions that will satisfy the pre-conditions of

the goal leading back to the current state, or starting from the current state and

searching for actions whose pre-conditions are already satisfied. Often a combina-

tion of these will be used so the backwards and forwards searching meets in the

middle. However, backwards searching becomes difficult if the final state cannot

be explicitly defined. A consistent plan is one without any conflict in it such as

those that were covered in section 2.2.3 on negative interactions between goals.

Conflicts can occur when actions undo the desired effects produced by other ac-

tions, or interrupts causal links between two actions. A consistent plan produced

by a planner will be a sequence of actions without conflicts and also requires that

there are no cycles in the constraints that would cause infinite loops or deadlock

if an agent attempted to execute them.

Planning agents can operate in one of two ways, either by producing a complete

plan resolving any conflict between actions before it starts to execute any actions,

or it can execute a given plan irrespective of any unresolved conflicts and simply

re-plan when the plan fails. Heuristics can be derived in relation to the structure

of the problem to aid the searching of suitable plans, and partial planning can be

done where the goal can effectively be split up into subgoals. Job shop scheduling

is a category of time related planning problems, with a lot of research focusing

on improving the efficiency and solving ability of algorithms for real world plan-

ning [Sutton and Barto, 1998, chap. 9 & 11][Kumar and Rajotia, 2006, Teo et al.,

2005].

Early work in the use of planning in multi-agent systems was done by Georgeff

[1983] where he used planning to synthesise multi-agent plans from single agent

plans. This was done by identifying where communication needed to be inserted

in order for the different agents to synchronise their actions and avoid conflicts.

Industrial applications of planners have covered many areas including waste

CHAPTER 2. BACKGROUND 27

water treatment plants where a reactive planner WaRP was developed to be ca-

pable of actively adapting to changes in its environment through the use of incre-

mental planning. This allowed them to keep the planning time to a minimum so

that if changes did occur the system could react quickly to them [Ceccaroni and

Robertson, 2000].

While in planning they sometimes talk about subgoals and their plans [Chen

et al., 2006] these are produced by the planner attempting to “divide and conquer”

the problem it is solving. By partitioning the problem into smaller sub-problems

that are similar to the main problem, it is possible to reuse the same planner

and heuristics to resolve the smaller problem then pass this up to the next level.

This is a similar idea to that used in another major branch of planning, which

uses hierarchical decomposition to form Hierarchical Task Network Planning [Erol

et al., 1994]. In this approach, the initial view of the problem is very abstract, for

example the initial plan may simply be to build a house. Each action can then be

decomposed into further plans with associated subgoals, forming a decomposition

hierarchy until the primitive actions are reached at the bottom [Russell and Norvig,

2003, chap. 12].

This form of planning is used by Clement and Durfee [1999a] and Clement et al.

[2002] to model reasoning about conflicts between agents. They cut computation

costs by reasoning about plans at higher levels of abstraction; however this also

restricts the flexibility of the planning. They use the concept of summary infor-

mation as defined in [Clement and Durfee, 1999b] to identify when conflicts may

occur between two or more agents. Included in the summary information are de-

tails regarding the pre and post-conditions standard to planning, but also included

are in-conditions defining constraints that must also be true while the plan is being

executed. The algorithm for the reasoning and evaluation of its performance is

then detailed in [Clement and Durfee, 2000b], looking at both the computational

complexity of the algorithm and at experimental results comparing CPU time used

by their new algorithm with summary information to a similar existing algorithm,

Fewest Alternative First, without the use of the summary information. The results

show the original algorithm sharply increasing in duration over the first 5 prob-

lems before running out of memory and so being unable to complete any further

problems, while the new algorithm slowly increased its duration as the number of

CHAPTER 2. BACKGROUND 28

problems to solve increased. The experiments stop when the new algorithm also

runs out of memory.

The results show the benefits of performing the reasoning at higher levels of

abstraction with the summary information allowing reasoning to determine where

plans can be merged, or where conflict may occur that needs to be avoided by

ordering (i.e., scheduling) the plans accordingly. However, if solutions cannot be

found at high levels of abstraction then the computational cost of maintaining the

summary information increases with the number of branches at the different levels

of abstraction, growing exponentially, as in the case of the goal-plan tree used by

Thangarajah et al.

In [Sardina et al., 2006], they look at how Hierarchical Task Network (HTN)

planning can be integrated into BDI agents. By controlling how much planning

is done and what information is used, reusing as much as possible from the BDI

program, they give the BDI agent the ability look ahead in a static environment

before committing to any plans. In [Walczak et al., 2007] they also consider how

planning can be introduced into BDI architectures, including how to handle plan

failures as the planner could potentially produce an infinite number of plans for the

BDI agent to try in an attempt to achieve its goal. Here the BDI reasoning needs

to consider four possibilities: firstly the planner cannot find any solution at the

current time, in which case the agent may wait for other external changes to take

place before asking for another plan; secondly, the planner may only be able to offer

a partial solution which could lead to a dead end or open more possibilities; thirdly

the planner has run out of the time allotted to try and find a solution; or finally

the plans returned may fail if the domain description is too vague and necessary

details required to identify failure are missing from the planner’s knowledge.

In [de Silva et al., 2009] they incorporate classical planning into a BDI agent

architecture, whilst still maintaining the procedural domain knowledge used by the

agents, thereby endeavouring to increase the level of the agents autonomy. This

is achieved with a combination of pre-specified plans and the ability to produce

abstract plans that can be executed using the agents domain knowledge when no

applicable plans are available. The planning process starts with a high level of

abstraction for general plans before working down to more specialised plans.

CHAPTER 2. BACKGROUND 29

2.3.3 Constraint Satisfaction Problem (CSP)

A CSP consist of a set of variables each with a domain of possible values, and a

set of constraints on the variables restricting the possible value assignments. As

in planning, a consistent assignment is one where no constraints are violated, and

a solution to a Constraint Satisfaction Problem (CSP) is a complete assignment

where each variable is mentioned [Russell and Norvig, 2003, chapter 5]. Many

search algorithms have been developed to take advantage of the structure of CSPs

and the common structure allows general purpose heuristics and algorithms to be

used on a wide range of problems. A couple of common problems solved using

CSPs include the 8-Queens problem and graph-colouring.

Constraint Satisfaction Problem and Distributed Constraint Satisfaction Prob-

lem are often used for planning and scheduling or time-tabling, and already have

many refined algorithms with proofs of sound and completeness with quality guar-

antees for the results when the search space makes it infeasible to perform a com-

plete check of all possible solutions. When this is the case, attempting to optimise

the value of solutions can be more useful than spending a long time searching for

the best solution if they are timely and offer guarantees on the level of optimality.

This is offered by Constraint Optimization Problems (COP) and Distributed Con-

straint Optimization Problem (DCOP) and used by Mailler and Lesser [2004a],

Maheswaran et al. [2004], Pearce et al. [2006], amongst others.

Constraint Optimization Problem (COP) is a variation on CSP when producing

a complete solution is intractable. This approach allows a solution to be found

without requiring the best solution to be found [Mailler and Lesser, 2004a]. The

level of optimality is a trade off between the amount of time available to compute

the solution, and the need for a complete optimal solution. A COP consists of a

set of n variables, with a domain of finite values for each variable, and a set of

cost functions between the values in the domains. The aim is to find a solution

where the global cost is minimized. The Distributed Constraint Optimization

Problem (DCOP) is the distributed version of this, attempting to find the optimal

solution where the variables are spread out among the agents. A soft COP is used

in [Thangarajah et al., 2007] to model the whole reasoning process of the agent,

rather than that of potential goal effects.

CHAPTER 2. BACKGROUND 30

Weigel and Faltings [1999] discuss existing approaches to reducing the compu-

tational complexity of solving CSPs through structuring techniques such as Tree

Clustering or Hinge decomposition to break the problem down into smaller prob-

lems that are easier to solve, before going on to introduce their own hierarchical

structuring technique making use of interchangeability and partial solutions. They

have also produced algorithms to structure the problems, with examples of where

they have used the new approach and some experimental results suggesting the

algorithm is effective in reducing the amount of computation required to find so-

lutions.

The job shop scheduling problem, from planning, has also been considered

by other approaches including CSPs as is shown in [Cheng and Smith, 1995],

showing that CSPs can be used as a major approach to solving scheduling problems

[Galipienso and Sanch́ıs, 2001].

CSPs can also be used for solving agent-related problems, such as in the work

by Norman et al. [2003] where CSPs are used to model the decision making process

of agents in a services bidding system, when deciding how much of their service to

offer and if they need any additional resources from others, while in [Hannebauer,

2001] they use CSPs to model the internal conflicts within an agent. In that paper

they define an architecture for solving the internal conflicts that can also operate

in a distributed environment, before using Distributed CSPs to model and reason

about external conflicts. The main type of conflict they consider in [Hannebauer,

2001] is the conflict that occurs between two competing goals. These can either be

goals within a single agent in the case of internal conflict, or the separate goals of

two different agents, externally competing against and in conflict with each other.

The main focus of their work is to look at the relationships between internal and

external general conflicts and provide an approach through which they can both

be solved.

While CSPs have improved the ability to solve many problems they still have

some drawbacks relating to complexity and scalability. Alternatives that have

arisen from these problems include searching for near optimal solutions rather than

exact solutions, or further partitioning the problem and distributing it between

multiple automated agents. These approaches also tend to offer more realistic

possibilities for use in real-world problems. However, in distributed systems, there

CHAPTER 2. BACKGROUND 31

is an extra overhead of communication and coordination that needs to be managed

if any benefits are still to be gained from the distribution. A formalisation of

Distributed CSPs (DCSPs) is given by Hannebauer [2000]. The paper details an

algorithm for partitioning the problem through dynamic reconfigurations so there

is a smaller amount of external communication in order to reduce the costs of

coordination between the agents.

In [Yokoo and Hirayama, 2000], an overview of various algorithms for solv-

ing DCSPs is given, including algorithms such as Distributed Breakout, Asyn-

chronous Weak-Search, and Asynchronous Back Tracking, all as extensions to

non-distributed CSP algorithms. It also states that DCSPs are well suited to

handling problems of resource allocation between agents, when the resources or

tasks are viewed as variables and the possible resource assignments are viewed as

values. In the paper, results are given for the various algorithms comparing the

number of cycles each took on average to find solutions for various input sizes.

The asynchronous backtracking algorithm, which is very static in its distribution

of the problem takes considerably more cycles than the other algorithms, and is

also unable to solve the larger problems, while the asynchronous weak-search algo-

rithm uses the least cycles for the different problem sizes with sparse interactions

between agents. However, in the ‘critical’ problems with lots of interactions, the

asynchronous weak-search performs badly, requiring seven times as many cycles

as the Distributed breakout algorithm.

In [Mailler and Lesser, 2004b], an initial description of a new algorithm, Asyn-

chronous Partial Overlay (APO) is given using an alternative approach to solving

Distributed Constraint Satisfaction Problem (DCSP) by applying cooperative me-

diation rather than asynchronous backtracking, which is commonly used in other

approaches. This approach is then expanded on in a later paper [Mailler and

Lesser, 2006]. In this approach, whenever an agent detects any conflict it forms a

mediation session with its direct neighbours. Both papers give the algorithms used

to initialize the mediation, perform local resolution and for conducting mediation

sessions, with the second paper then giving more detailed examples based on a

3-colour problem and proving the sound and completeness of the algorithm. The

algorithm is then compared against the Asynchronous Weak Commitment proto-

col for solving the distributed 3-colouring DCSP. The performance is measured

CHAPTER 2. BACKGROUND 32

based on the number of cycles and messages required to solve the problem, with n

variables and m binary constraints. By just looking at the cycles, at low density

the two algorithms seem to performed equally, while at higher density the APO al-

gorithm required slightly less cycles, however when you also consider the message

count the Asynchronous Weak Commitment (AWC) was very message intensive,

particularly on the larger values of n, while APO was significantly more conserva-

tive in communication. The third experiment they performed to compare the two

algorithms shows the time taken to solve the problems. This shows a considerable

difference between the two algorithms, with the APO taking less than 10 seconds

to complete the largest problem, while the AWC required 92350 seconds.

Benisch and Sadeh [2005] compare experimentally the tradeoffs between the

two main approaches to solving DCSPs, namely Asynchronous Backtracking and

Cooperative Mediation. The results use a standardised measure of comparison

based on the number of non-concurrent constraint checks (NCCC)and also the

number of messages passed. Along with the original algorithms that are being

compared, there are also variations on these based on different configurations of

the algorithms. The Asynchronous Back Tracking (ABT) algorithms are shown to

send considerably more messages than the APO algorithms in higher density prob-

lems, while the APO-Branch and Bound (BB) algorithm has considerably higher

NCCCs in the higher density problems.

Out of the three possible approaches discussed here, the approaches that are

actually developed in this thesis are the application of Petri nets (see chapter 4)

and Constraint Satisfaction Problems (see chapter 5), to give two contrasting ap-

proaches for evaluation of the reasoning about goals.

2.4 Testing Performance

Once the two approaches for reasoning about goals have been developed, we then

need some method of analysing their performance. In this section we look at

existing frameworks for analysing the performance of individual agents, to see

what methods and results are available from the evaluation of related approaches

with which to compare the results given in chapter 6.

CHAPTER 2. BACKGROUND 33

The model of a Mars rover gives a real-world testbed that can be used to assess

the performance of an agent working on its own, and reasoning about goals. This

testbed has been used in related work [Thangarajah et al., 2002, 2003a,b, Clement

et al., 2001, Estlin et al., 1999, Matthies et al., 1995, Raja and Lesser, 2004a, Shaw

and Bordini, 2008, Shaw et al., 2008] providing a common measure for comparisons

between results. The rover can be given two main types of goals, both of which are

performed in several locations, these being collecting soil samples and collecting

rock samples. The results have to be transmitted back to Earth via a base station,

and of course all actions will use different amounts of energy. There may also be

a limited amount of storage space for the samples collected that have to be taken

back to the base station. All these various factors can be combined together to

cause conflicts that need to be carefully controlled and reasoned about in order to

avoid them.

The different approaches to the three types of reasoning discussed above each

give different sets of performance tests that can be used for comparison. The

work by Thangarajah et al. gives results for the individual types of reasoning,

which show an increase in the number of achieved goals and measure of additional

computational costs. In [Raja and Lesser, 2004a], they only focus on reasoning

about resources, and measure the utility gained from the reasoning. Clement

and Durfee [2000b] present results using the summary information they described

in earlier papers. The results cover the reasoning about resources and effects

and measures the performance based on the CPU time taken to find an optimal

solution. Approaches using CSPs (see section 2.3.3) tend to measure performance

based on the number of cycles required to find solutions, while the DCSPs also

take into consideration the number of messages passed between agents. As no

one else has used CSPs for the reasoning that is performed here, performing this

evaluation would not be very meaningful. In addition, this analysis could only be

performed on one of the developed approaches, without a related measure from

the Petri net approach to compare it against.

As this research builds on the work done by Thangarajah [2004], using a sim-

ilar approach for analysing the effectiveness of the reasoning will enable the two

approaches defined here to be compared to the approach developed by Thangara-

jah et al. Besides a Mars rover, their approach makes use of an abstract scenario

CHAPTER 2. BACKGROUND 34

with two different goal structures being used to compare the effectiveness of the

reasoning on different goal depths, these being depth 2 and depth 5, and varying

different parameters for analysis. The parameters include the amount of paral-

lelism between the goals, as well as the levels of interaction and resource avail-

ability. This provides the most suitable form of evaluation when considering the

performance of the approaches developed here.

Chapter 3

Reasoning about Goals

In this chapter, we will discuss the goal-plan tree problem and the models for

which we are developing reasoning in the following two chapters.

3.1 Goal-Plan Tree

The goal-plan tree structure used and the types of reasoning applied are based on

those defined by Thangarajah [2004]. The goal-plan tree consists of a top-level

goal at the root, with one or more plans available to achieve that goal. Each of

these plans may themselves include further subgoals forming the next level in the

tree, followed by additional plans to achieve these subgoals1. The simplest plans

at the leaves of the tree will just contain a sequence of actions and no further

subgoals. An example of a goal-plan tree was shown in figure 2.1, which shows the

goal-plan tree representation of a goal for a Mars Rover to collect a soil sample

from a location then transmit the results back to Earth via the base station. An

agent will most likely have multiple top-level goals to achieve, each with its own

goal-plan tree.

When attempting to achieve a goal, the various branches in the tree can be

thought of as either AND or OR branches. Where a goal or subgoal has a range

of applicable plans, only one of these plans needs to be completed for the goal

1The term subgoals will always be used when referring to subgoals, while top-level goals will
either be referred to as goals or top-level goals

35

CHAPTER 3. REASONING ABOUT GOALS 36

or subgoal to be achieved, as in an OR branch. However, where a plan has one

or more subgoals, then all of these subgoals must be achieved for the plan to be

successful, so these can be considered as an AND branch. This hierarchy gives rise

to the goal-plan tree structure that we can then use to represent goals in order to

reason about them.

While the goals simply have an ID and list of possibly relevant plans, each of

the plans may have a set of preconditions that must be true in order for them to

be applicable at a given time and a set of effects that they are likely to achieve

within the environment. These can be represented as two possibly empty sets,

one for preconditions and one for effects. The plans, or more precisely the actions

within the plans, may consume some resources in order for them to be executed.

For the purposes of this thesis and for the reasoning used here, it is assumed that

the actions are successful at achieving the desired effects, however as this is not

necessarily a realistic assumption for agents to make, in future work this could

be extended to take into consideration plan failures. It is also assumed that the

information regarding the amounts and types of resources required can be accessed

easily, for example a summary kept by the plan along with the lists of preconditions

and effects.

Within an individual agent there may be one or more top-level goals for the

agent to achieve. While it is often straightforward for these to be achieved in

sequence, it may be possible for the agent to achieve better performance by at-

tempting to achieve them in parallel. This can of course lead to problems where

the goals interfere with each other and where resources are limited so reasoning

needs to be applied for the agent to be successful. The three types of reasoning

considered in this thesis are based on: 1. the limited availability of consumable

resources, 2. the potential for positive interactions between goals and 3. the risk

of negative interference between goals, which are discussed in more detail in the

following sections.

3.2 Consumable Resources

There are many things that can be considered as resources and these can be split

into various sub categories such as reusable or consumable resources. An example

CHAPTER 3. REASONING ABOUT GOALS 37

of a reusable resource would be a communication channel, while an example of a

consumable resource would be energy, money or even time. While it is possible

to “recharge” resources such as energy through a solar panel for the Mars Rover

example given above, it is assumed in this thesis that once a consumable resource

has been “consumed” then it is no longer available and will not return at any point

in the future. Future work could extend the reasoning to include maintenance

goals, where a desired state in the environment is maintained for a length of time,

that would take the recharging into consideration. However, the focus for reasoning

about resources is to endeavour to make the best possible use of resources when

there is a limited supply.

In terms of reasoning about resources, this thesis focuses only on consumable

resources as it is expected that introducing reasoning about this form will provide

the greatest improvement in overall performance when measuring performance

based on the number of goals achieved. This is because the use of reusable resources

can be scheduled, taking into account priorities between goals if necessary, however

the use of consumable resources is constrained by the quantity available. Once it

has been used it cannot be reused, so it is important to avoid wasting any by

adopting goals that cannot be achieved with the available resources or by poor

choice of plans. The choice of plans is important when there is more than one plan

available to achieve a goal or subgoal. If one of the plans consumes a large amount

of resources, while the other consumes very little, it will be preferable to select

the plan with the lower resource requirements. In addition, when considering

consumable resources such as fossil fuels, it is becoming increasingly important

that we attempt to make the most effective use of the resources we have available.

For example, if an agent had two goals where one goal required 70 units of

resource and the other 60 units, it would not be rational for the agent to start

both goals if there were only 100 units of resource available. If a third goal was

added that only required 40 units, then it would be feasible and may be preferable

to achieve the two smaller goals, rather than the single larger goal. Equally, if

there were two plans, both capable of achieving the same results, one of which

required 10 resources while the other only required 5, then provided there are no

other restrictions, it would be rational for the agent to select the plan with the

lower resource requirements to conserve resources for use elsewhere.

CHAPTER 3. REASONING ABOUT GOALS 38

The resources involved are consumed by the individual plans, or more precisely,

the actions within the plans. Therefore, when a goal and its plans are defined,

the total resource requirements for that goal are unknown. As not all plans will

be needed due to the plan choices available at subgoals, calculating the total

resource requirements is not as straightforward as simply summing up the resource

requirements for all the plans in the given goal. The result of the different choices

for plans selected at subgoals means that best and worst case resource requirements

can be calculated. The best case is that involving the lowest resource requirements

of all possible choices, with the possibility of considering weightings of different

resource types where necessary, while the worst case is the branch consuming the

greatest amount of resources. If one type of resource is particularly precious, then it

may be preferable to use large amounts of a cheaper or more abundant resource to

preserve the precious one. This could be indicated by applying a heavy weighting

or cost to the precious resource and a very low weighting to the cheaper type.

While in the positive and negative types of reasoning we are able to avoid

the use of summary information used by Thangarajah et al., it is not feasible

to completely avoid this here. The amount of summary information has been

significantly reduced when compared to that used in [Thangarajah et al., 2002],

to either a single number, or simply a list containing the amount of each type of

resource used. The type of summary information used depends on the point at

which the information is being used and is described in more detail in section 4.3

Calculating the resource requirements for a given goal can be achieved by

starting at the leaves of the tree. These resource requirements can be propagated

up to the root, giving a best and worst case resource requirement for each goal.

Depending on whether the branch reached is at a plan or at a subgoal affects how

the requirements are added up. At a plan branch, the requirements from each of

the leaves are simply added together, along with any resource requirements from

the plan itself, to form the new total that can be propagated up, while at a subgoal

branch the lowest requirement is set as the best case and the highest as the worst

case to propagate up. Once at the root, these values can then be applied to the

goal selection to ensure goals are only started where there are sufficient resources

available to complete them. The generated summary information can also be used

for the plan selection when there is a choice between multiple applicable plans for

CHAPTER 3. REASONING ABOUT GOALS 39

achieving a goal or subgoal, opting for the best case wherever possible.

Where there is more than one type of consumable resource involved, the re-

source reasoning can be done in one of two ways: firstly by just summarising the

individual types of resources to produce a list of the requirements for each resource,

or secondly by generating an overall summary value for the different types of re-

sources. In this second case in particular, it may be desirable to apply weightings

to the different types of resources to indicate their respective costs.

When evaluating the performance of this type of reasoning, it is expected that

the largest impact on the amount of resources used will be where there is a large

amount of branching within a tree. This will allow the greatest application of

the best case branch selection within the goal-plan tree. Varying the number of

top-level goals, where each goal has slightly different resource requirements is also

likely to provide a method for stress testing this approach, so will form part of the

focus for the evaluation of this reasoning (see chapter 6).

In the work by Thangarajah et al. [2002] to reason about resources, they use

additional summary information to identify possible conflicts between goals based

on their requirements. The summary information generated includes normalised

lists, containing each type of resource precisely once, detailing how much of each

resource is required by a given goal. The resources considered include both con-

sumable and reusable resources used by goals.

These lists are then split into “necessary” and “possible” lists, the “necessary”

list containing the resources that would definitely be required, with the “possible”

list containing the list of resources that may or may not be used. A set of operations

are defined for combining the different resources in order to identify the necessary

and possibly necessary resource requirements. This is applied in places where

there is branching in the tree with a choice of applicable plans to aid the selection

of plans in an attempt to make the best use of the available resources. One

can start forming these lists from the leaves of the tree, and by passing up the

details towards the root. At each level the operations are applied to combine the

requirements of the plans at the current level with those of the sub-plans, until

the root of the tree is reached and the overall resource requirements for each goal

CHAPTER 3. REASONING ABOUT GOALS 40

are known. During the execution of the reasoning, resource information is used to

identify resource conflicts for example in the use of reusable resources that may

need to be sequenced if there are insufficient resources available for them to execute

in parallel, or goals that cannot safely be started due to insufficient consumable

resources available. The reasoning is also used to decide whether it is safe to

accept a new goal, avoiding new goals that will conflict with existing consumable

resource requirements. If goals are only possibly conflicting based on the possible

requirements of the goals, then bold agents may choose to start the new goal and

simply monitor the goals for signs of actual conflict.

Results from the application of this reasoning can be seen in [Thangarajah and

Padgham, 2004], with a comparison between their results and those presented here

given in chapter 7.

While the approaches developed here are based on some of the ideas presented

by the work of Thangarajah et al., there are some key differences, which are

discussed over the next two chapters where the two approaches are discussed in

more detail.

3.3 Positive Interaction

When two or more goals are being achieved simultaneously by an agent it is possible

that there is some overlap or interaction between the plans and the effects caused

by the plans in each of the two goals. This can be either beneficial to both goals

or detrimental, possibly causing one or both goals to fail.

Positive interaction occurs when two or more plans for different goals achieve

the same effects, possibly also using the same preconditions. By identifying these

plans, it is possible to select just one of them to execute and to drop the subgoals

and sub-plans of the plan(s) not selected. When this interaction occurs high up,

near to the root of the tree, this can have a large impact on the number of plans

required to achieve a set of goals as the sub-tree of the removed plan or plans can

itself potentially contain many plans.

An example of this occurring within the Mars rover example is when multiple

goals have the objective of obtaining samples from the same location and trans-

mitting the results back to the base. If the goals were executed in sequence then

CHAPTER 3. REASONING ABOUT GOALS 41

the rover would move to the location, get the first sample then return to the base

to transmit the results before starting the second goal which involved returning

to the same location to obtain the second sample. By taking both samples at the

same time the rover can save a lot of time and energy and transmit both sets of

results back at the same time.

The interacting plans can be identified firstly by considering the effects of the

different plans. Where two plans achieve the same effect then only one of these

plans should need to be executed for both to be achieved. It may be possible

that the two plans have different preconditions as they are designed to work in

different situations, while still achieving the same results. The preconditions of

the remaining plan still need to be achieved before the plan can execute to achieve

the effects for the interacting goals.

In the evaluation of this type of reasoning, the level within the goal-plan tree

at which the interaction occurs will be an important factor in assessing the perfor-

mance of this reasoning. High-level positive interaction occurs between plans that

are near the root in the tree interact and achieve the same effect, while low-level

positive interaction occurs near the leaves in the trees. It is the high-level positive

interaction that is expected to have the greatest impact on the number of plans

used, as the plans dropped will contain the greatest number of subgoals and plans.

This number of plans saved in the sub-tree that is dropped will also depend on

the degree of branching at the subgoals and plans, with greater savings available

when subgoal branching is low and plan branching is high. This is because all the

subgoals of a plan need to be achieved, while only one of the plans for a subgoal

needs to be achieved for a goal to be successful.

When combining this reasoning with reasoning about resources, the resource

requirements of the different plans can be taken into consideration to select the

plan with the lower resource requirements. It is anticipated that when these two

types of reasoning are combined, the effects will be particularly significant as the

amount of resources consumed will be reduced proportionally to the number of

plans being used. The anticipation is that this will then allow further goals to

be started that would otherwise not have had sufficient resources available to be

safely adopted.

CHAPTER 3. REASONING ABOUT GOALS 42

The positive interaction reasoning performed by Thangarajah et al. is based on

the effect summaries of plans, maintaining lists of “definite effects” and “potential

effects” [Thangarajah et al., 2003b], with similar meanings to those of “necessary”

and “possible” resources described in the previous section. The “definite effects”

are those that will be achieved at some point in every possible path option available

for achieving a given goal, while the “potential effects” refer to those effects which

just appear in at least one, but not all, possible paths through the tree. These are

based on the summary information used by Clement and Durfee [1999a] to reason

about negative interference between goals.

As with the resource reasoning, the summary information, in the approach by

Thangarajah, is generated by propagating information about plan effects up from

the leaves in the tree to the root, recording the plans that bring about each effect.

For a definite effect, this could potentially be a large number of plans if there

is a lot of branching within the tree to choose between. However, if just one of

these plan options for a branch is missing the effect, then the effect drops down

to a potential effect, as there is at least one selection of plans within the tree that

satisfies the top level goal without achieving this effect.

Once these lists of summary information have been generated, they can then be

used to identify plans that can potentially be merged. This takes into consideration

whether a plan will definitely be needed by a goal, or whether it is an option

at a branch, to define further lists of “Definitely Mergeable Plans” (DMP) and

“Possibly Mergeable Plans” (PMP). A “Waiting Goals List” (WGL) is then also

needed to prevent deadlock from occurring, as goals are suspended while plans

are waiting to be merged. This deadlock could occur if two interacting goals are

suspended waiting for each other to reach another merging point. If this happens,

the attempt at merging plans at this point will be dropped and the plans executed

as normal. In order for plans to be listed in the DMP, they must include effects

that will definitely be achieved by all the goals interacting based on these effects.

If the effect is only a potential effect in one of the goals, then they are placed into

the PMP list.

The timings of the merged plans are important for this reasoning. When a

“mergable” plan is reached in the plan schedule, the plan is flagged as ready to

execute and the goal is suspended until its counterparts in other goals are ready.

CHAPTER 3. REASONING ABOUT GOALS 43

However, if this is likely to take a long time, particularly where one of the effects

involved is only a potential effect, then the attempt to merge the plans will be

dropped and both plans will be allowed to execute as they would normally have

done.

When two plans achieving the same effect are finally ready at the same time,

then the agent has to decide how to “merge”, if still possible, the plans. This

is essentially choosing between the two plans to decide which one to execute and

which to drop. In most cases, either plan can be selected, the problems arising if

one or both of the plans achieve additional definite effects which the other plan

does not. As the effect definitely needs to be achieved for the goal to be successful,

despite waiting for the other plan to be ready, it may still be unfeasible to merge

the plans at all if both plans have definite effects that are not achieved by the

other.

After every merge, the lists identifying mergable plans are updated to remove

the plans that were “merged”. An update check is then performed looking for any

additional interactions in the remaining plans related to the effects that caused

the merging.

While the results for the positive interaction reasoning presented in [Thangara-

jah, 2004] show that it is effective, the sizes of the goal-plan trees used were kept

quite low. The large number of lists, and the level of detail stored in each could

potentially grow exponentially as the tree sizes, number of goals and thus number

of effects involved increases, resulting in prohibitively large reasoning overheads.

This is one of the main reasons for looking at developing approaches that avoid

the use of such large quantities of summary information.

In the case of the reasoning performed here in this thesis, the focus is on the

effects being achieved for each goal without synchronising the execution of the

interacting plans between goals. Once an effect has been achieved by a plan, it

does not need to be achieved again by another plan unless the effect is lost, such

as when the Mars rover leaves the location it is currently at to move to another

or back to the base station. Therefore, the timing is not necessarily as important,

provided the achievement of the effect does not negatively interfere with any other

goals and plans that could cause it to cease to exist after the interference, as

discussed in the next section.

CHAPTER 3. REASONING ABOUT GOALS 44

3.4 Negative Interference

Opposite to the positive interaction, the final type of reasoning that is covered

by this thesis is regarding negative interference between three or more plans, of

which at least two will be within the same goal. This occurs when there is a

causal link between two plans for a given goal, where the effects of the first plan

sets up the necessary preconditions for the second. If a third plan, usually from a

different goal, with opposing effects to the first plan, attempts to execute between

the two causally linked plans, this can result in the link being broken and lead

the pair of plans to fail, potentially resulting in the failure of the goal which

they were attempting to achieve and wasting any resources that had already been

consumed by the goal. By avoiding negative interference, it is possible to prevent

the interference from happening and in doing so achieve more goals that would

otherwise have failed as a result of the interference.

For example, using the Mars rover example again, negative interference can

occur when two or more goals require taking samples at different locations. If

after having moved to the first location, a second goal interferes to take the rover

to another location before the sample is taken to satisfy the first goal then the

first goal would fail unless the step of returning to the first location was repeated,

wasting both energy and time. To avoid this, the causal link between the plan

generating the effect and the plan making use of the effect needs to be identified

based on the effects and preconditions of the two plans. Other plans that then try

to change the effects involved before the second plan has been completed need to

wait until it is safe again for them to execute.

There are two ways in which the interfering plans can be safely scheduled. This

is either by executing them before the causal link or after. Which is used will also

depend on whether any plans rely on the effects generated by the interfering plan.

In the worst case, the goals could be required to execute in sequence as no safe

parallel scheduling can be found without some plans interfering with each other.

As with the positive interaction, it is the level, or in this case the distance

between the causally linked plans that is expected to have the greatest impact in

the number of goals achieved without any reasoning, thereby putting the reasoning

under the highest level of strain with high levels of interactions between the goals

CHAPTER 3. REASONING ABOUT GOALS 45

as well. This distance can be thought of as a duration, by which it is meant as the

length of time between the plan setting up the effect and the effect actually being

used closing the link, rather than any execution time taken by the plans themselves.

A deep tree where the duration is likely to be longest, with the greatest distance

between effects achieved near the root of the tree and those effects being used at

the leaves, is therefore the main place where this reasoning is going to be tested.

This will be done by varying the amount of interaction between goals and the

duration for which the effects need to be protected by adjusting the depth in the

tree where the effects are achieved and then used.

This reasoning is again based on that defined by Thangarajah et al. [2003a].

In addition to the preconditions of plans mentioned above, they also include in-

conditions as a subset of preconditions that must be maintained for the whole

duration of the plan executing for the plan not to fail. While the in-conditions are

not explicitly stated in the approaches developed here, both models maintain the

necessary conditions while a plan is executing.

While they consider the causal links between plans within a goal, they also

include some reasoning to ensure the in-conditions are also protected for the whole

duration of the plan executing. In order to do this, they not only need to maintain

the effects summary lists as defined for the positive interaction reasoning, but also

a set of lists for pre- and in-condtions of plans. Only the preconditions brought

about by the effects of other plans need to be protected by this reasoning to prevent

interference between goals.

The terms “definite” and “potential” are applied to the conditions in the same

was as they were previously used for effects, and now refer to both the effects

and pre-conditions produced and required by plans. So, for example, a definite

condition will definitely be produced by a plan and definitely be required as a

precondition of a later plan. There are now six separate lists for definite and po-

tential effects, in-conditions, and preparatory effects for pre-conditions. To protect

any necessary conditions whilst goals are executing in parallel a “guarded set” is

introduced containing the in-conditions and dependency links that are currently

active. These are protected from other plans and goals, which are forced to wait

until the conditions or links they would interfere with have been removed from the

guarded set.

CHAPTER 3. REASONING ABOUT GOALS 46

While in this previous work by Thangarjah et al. the use of summary in-

formation was applied to perform the various types of reasoning, the approaches

developed in this thesis aim to remove the need for much of this information, just

maintaining a minimal amount required for the reasoning about resources. The

aim is to reduce the overhead of storing potentially exponential lists [Clement and

Durfee, 2000a], which could cause difficulties when reasoning about large numbers

of large-sized trees, especially for the large number of lists that are maintained for

the approach to negative reasoning by Thangarajah et al.

Combined Reasoning In previous work where different types of reasoning have

been considered, they have generally just been analysed on their own to test their

effectiveness on performance without any reasoning. While this is also being done

here, the aim is to also consider the combined effectiveness of the three types of

reasoning together to analyse how the different types of reasoning interact with

each other, both in pairs and with all three types combined together.

Given the amount of summary information stored individually for the positive

and negative types of reasoning in the work by Thangarajah et al., combining these

two reasoning types would be likely to cause large overheads in terms of storage,

processing and monitoring of the array of lists needed by the reasoning.

In [Shaw et al., 2008], a brief summary is given for a proof showing that the

problem of reasoning about the goal-plan trees, using the tree structure and a

“weaker” abstract version of the reasoning types described above, is NP-Complete.

While this means finding an exact solution to instances of the problem could be

very costly in terms of time taken, we later experimentally show that it is feasible

to perform reasoning that is effective in a reasonable length of time.

3.5 Goal-Plan Tree Automated Generation

In order to perform a reasonable set of experiments, using a variety of goal-plan

trees and with multiple different settings, it was necessary to allow for automated

generation and processing of the goal-plan trees, and to produce a standardised

CHAPTER 3. REASONING ABOUT GOALS 47

format that could be provided as an input to the Petri net and constraint-based

models to produce the different instances of each model for a given tree struc-

ture. As a result, the goal-plan tree has been represented in an XML format, the

definition of which is shown below.

The Data Type Definition (DTD) defined for representing the goal-plan tree

in XML format is as follows:

<!ELEMENT goal (plan)+>

<!ELEMENT plan (subgoal*,precondition*,effect*,resource*)>

<!ELEMENT subgoal (plan)+>

<!ELEMENT precondition (#PCDATA)>

<!ELEMENT effect (#PCDATA)>

<!ELEMENT resource (#PCDATA)>

This states that each goal and subgoal element must have at least one plan,

while a plan can contain zero or many subgoals and sets for preconditions, effects

and resources. The preconditions, effects and resources are represented as plain

text; however, these are parsed by the Petri net and constraint models to generate

the necessary representations.

Template representations of the various tree structures to be used in the exper-

iments were defined in XML that could then be used to generate a large number of

top-level goals, inserting variations in effects and resources where necessary. While

at this time the XML template representations of the goal-plan tree are generated

manually, it is planned in future work to be able to export the plan libraries and

top level goals from a selection of agent programming languages to generate the

XML that can then be passed through to the different reasoners. This intermediate

XML level means that the reasoners are not tied to specific languages, so provided

an export function could be defined that generates this predefined XML structure

then any goal-plan based agent language with programmer-defined plans could

potentially make use of the reasoning. It is also possible that agent languages that

generate plans could potentially apply this reasoning with further work to allow

the dynamic addition of plans as well as goals.

In chapter 6, the two reasoning approaches developed are compared, and eval-

uated to consider situations where one approach could potentially provide better

CHAPTER 3. REASONING ABOUT GOALS 48

results over the other. Once these situations affecting performance are identified,

the information could then be used to suggest which reasoner would be more ap-

plicable to a given application based on factors such as tree structure and levels

of interaction amongst others.

To test the performance of the two approaches, three different tree structures,

and variations on the tree sizes of each were used in the experiments. As a result, it

was possible to define XML templates to represent the goal-plan tree structure of

a single goal that could then be replicated the desired number of times to generate

sufficient goals, with variations in preconditions, effects and resource requirements

being applied to each.

Once the XML goal-plan tree representation has been defined for the required

number of goals, this is then parsed using an XML SAX parser, which uses the

data to generate a list of goal-plan tree objects where each goal, subgoal or plan

is represented as a node with a, possibly empty, list of children and variables to

store preconditions, effects and resources, along with an ID for each node. The

automated parsing of the XML representation, and the generation of each of the

reasoning models was achieved using Java 1.5, with the Eclipse 3.4 IDE.

The top-level list of goals is passed on to the models for generating each of the

reasoning models, which traverse the goal-plan trees defined in the list. This is

discussed in more detail in chapters 4 and 5.

Chapter 4

Petri net Model

In this chapter we present the first of the models developed here to represent and

reason about the goal-plan trees as described in chapter 3. An overview of Petri

nets is given in section 4.1 and it is the diagrammatic representations of the flow

of control in Petri nets that provides a natural mapping onto the goal-plan tree

problem as shown in section 4.2. Sections 4.3 to 4.5 describe how the reasoning

can be modelled using Petri nets and how this is incorporated into the Petri net

model for goal-plan trees. Finally section 4.6 describes how the generation of the

Petri nets for this model can be automated.

4.1 Petri nets

Petri nets are mathematical models, with an intuitive diagrammatic representa-

tion, used for describing and studying concurrent systems [Peterson, 1981, Murata,

1989]. They consist of places that are connected by directed arcs to transitions,

with tokens that are passed from place to place through transitions. The arcs can

be inscribed with weightings indicating the number of tokens transferred at a time

along that arc. Transitions can only fire when there are sufficient tokens, indicated

by the weightings, in each of the input places, thereby acting as pre-conditions for

the transition. Tokens are then removed from each input place, and one, or the

number indicated by the weighting on the outward arcs, is placed in each of the

output places. Places are graphically represented as circles, while transitions are

49

CHAPTER 4. PETRI NET MODEL 50

represented as rectangles (see figure 4.1). The tokens are commonly represented

as dots on the places, often showing the initial marking or a step in a simula-

tion. These simulations show the flow of tokens through a net and can be used for

considering reachability of states or target places within a net.

transition

arc

place

Figure 4.1: Example of a simple Petri net

There are many variations on the basic Petri net representation, and many of

these have been applied to a variety of agent systems [Mazouzi et al., 2002, Bonnet-

Torrès and Tessier, 2005]. A common variation is the addition of weights to arcs

as described above, with the default weight being one. Greater weights on arcs

either require the place to have at least that many tokens for the transition to fire,

removing the specified number from the input place, or the transition adds to the

output place that number of tokens as its output. A selection of different arcs are

also introduced in addition to the single directed arcs; these include negated arcs

and bidirectional arcs [Christensen and Hansen, 1993]. Negated arcs should only

be used from places to transitions, indicating that the place should not contain

any tokens in order for the transition to fire. The bidirectional arc between places

and transitions results in the place being both an input and output place for a

given transition.

Another variation is that of coloured Petri nets which are able to hold tokens

of different types, representing for example different data types [Kristensen et al.,

1998]. The inscriptions of weightings on the arcs can then be used to identify the

type of tokens required, as well as the quantity of each to ensure the appropri-

ate tokens are transferred when the transitions fire. The transitions can also be

inscribed with conditions indicating when it can fire, ranging from mathematical

functions to analysis of the contents of the tokens where tokens could contain a

list of values.

Finally, Reference nets allow Petri nets to contain instances of sub-nets that

are passed around in the same way as other tokens in a net. When a reference is

made to another net this is done by a pair of transitions with matching reference

CHAPTER 4. PETRI NET MODEL 51

inscriptions, one in each net, that act to synchronise the two nets. The inscriptions

can contain parameters that allow variables and tokens to be transferred between

the two nets. By synchronisation, it is meant that the transition in the referencing

net acts as an additional trigger for the transition in the referenced net to fire.

Both transitions need all preconditions in the form of tokens in input places in

order for the pair to fire. Once the pair has fired, the two nets then continue to

fire any available transitions in sequence until the next synchronisation point.

Renew is a Petri net editor and simulator that is able to support high-level Petri

nets such as coloured and Reference nets [Kummer et al., 2006], and is the editor

of choice for modelling the Petri net approach to reasoning about the goal-plan

tree problem developed here.

Renew Petri net Notation The basic data types used in Renew as tokens are

integers and strings of text, where multiple tokens in a place can be separated

by semicolons. Ordinary tokens are represented using [] (i.e., empty lists), and

strings of text are differentiated from variable names by enclosing the string in

double quotes. Multiple values can be stored in a token through the use of a

list, which is represented as a series of comma separated values between square

brackets. These lists can themselves contain sub-lists as elements, for example

[["A",5],["B",8],["C",21]].

When moving lists between places and transitions, it is possible to move the

list as a single variable or to open the list to gain access to some or all the elements

in the list. Considering the list given as an example above as the token, an arc

inscribed with a single variable, e.g. v, would generate the assignment of the whole

list to v when moving the token, while an inscription of [a,[b,c],d] would assign

the variables to a=["A",5], b="B", c=8 d=["C",21]. Each of these variables

can then be passed on as separate tokens to the output places, or merged back

into a single list.

Transitions can be inscribed with operations to perform on the variables, or

conditions that must be met by the values assigned to the variables in order for the

transition to fire. Simple operations could include taking two numbers as input

tokens from two places and adding them together with the total being placed in one

or more of the output places. Conditions can also be inscribed on the transitions,

CHAPTER 4. PETRI NET MODEL 52

such as checking the sum is greater than a value. However, in order to ensure the

condition is met, the keyword guard is required before the condition. There are

two main types of expressions that can be used in the inscriptions on transitions,

these are conditions and assignments. An example of this is shown in figure 4.2

where each of the two input places has two integer tokens and the transition has

the inscription to sum two numbers, with a guard condition ensuring the total

is greater than 10. When a simulation of this net is run, the tokens 5 and 7 are

selected from the input places to satisfy the condition.

y

z=x+y;
guard z>10x

1;7

5;2

z

Figure 4.2: Petri Net example of inscribing transitions with operations and condi-
tions

Reference nets, as described above, allow Petri nets that are potentially in

different files to refer to each other and to pass variables between them. In the

Petri net model developed here, three files are used to hold different components

of the model. These are described in more detail in section 4.2.

When creating references to other Petri nets it is possible to generate multi-

ple instances of the same Petri net, each of which is passed around as a token.

These tokens referring to other nets can also be passed between multiple nets

in the same way as any other tokens. To create a new instance of a Petri net

that is in another file the notation used consists of variableName:new filename

or variableName:new filename(parameters) where parameters are being pro-

vided.

Within the file of which an instance is being created, if parameters are being

passed then a transition inscribed with :new(parameters) is required in the Petri

net, and this transition must be able to fire, (i.e. have sufficient input tokens),

when the first net is attempting to create an instance of it.

Once instances of the referenced nets have been created, the referencing of

CHAPTER 4. PETRI NET MODEL 53

them is handled through the use of the token containing the reference to the

other net and the inscription of a transition in the referenced net. For example,

the referencing net would contain the inscription x:sync(v) on a transition while

the referenced net would contain the inscription :sync(v) on a transition. The

effect of this is to fire both transitions in the two nets at the same time, thereby

synchronising them. In order for this to be successful, both transitions need to

have sufficient input tokens to be able to fire. An illustration of this is given

in figure 4.3 where values are passed between the two nets. In this example,

the simulation starts in figure 4.3(a) where the first transition refers to the top

transition in the example.rnw Petri net file shown in figure 4.3(b). This generates

a new token x in figure 4.3(a) containing a reference to an instance of the Petri net

in figure 4.3(b). Multiple different instances of the same Petri net could potentially

be created by repeatedly firing the first pair of transitions if the net in figure 4.3(a)

had sufficient input tokens. Simultaneously, the top transition in figure 4.3(b) fires,

placing a token in its output place. This then enables the next pair of transitions

linking the two Petri nets together. If initialisation parameters needed to be passed

between the two Petri nets, these could be included in the brackets provided the

number of variables in both parameter lists matched, as shown in the second pair

of transitions. In a more complicated example, different numbers of places and

transitions could be fired between the two synchronising transitions. In the second

pair of transitions, each Petri net has a single variable from the parameter list.

When the transitions fire, the values are synchronised between the two nets so

both nets have both values. However, in this example, only the value from the

other Petri net is passed onto the output place, losing the original value that was

removed from the left-hand places when the transitions were fired.

4.2 Modelling a Goal-Plan Tree Problem

We have developed a method to represent an agent’s goals and plans using Petri

nets. Essentially, we are able to represent the same problems as expressed by goal-

plan trees in the work by Thangarajah et al. (see figure 4.4 for an example of a

Petri net representation of the Mars Rover goal-plan tree shown in figure 2.1). In

the method we have devised, goals with their branching plan options the sequences

CHAPTER 4. PETRI NET MODEL 54

5

x:new example()

y

x

xv

x:exchange(v,y)

[]

(a) Referencing net

8

:new()

:exchange(v,y)
y

v

(b) Referenced net: example.rnw

Figure 4.3: Petri net example of reference net synchronisation

of actions forming plans and their subgoals are represented by a sequential series of

places and transitions. A plan consists of a sequence of actions each of which starts

with a place, and has a transition to another place. These transitions represent

each of the atomic actions that occur in sequence within that plan. Goals are

also set up as places with transitions linked to the available plans for each goal or

subgoal. In Figure 4.4, the plans are enclosed in dark boxes, while the goals and

subgoals are in light boxes. The plans and subgoals are nested within each other,

matching the hierarchical tree structure of the goal-plan tree.

The tree structure is defined with places and transitions such that where there

is a plan branching with multiple subgoals then all of these must be achieved.

However, when there is a subgoal with a selection of plans to choose from, just

one of the plans can be selected. This is shown in figures 4.5(a) and 4.5(b). In the

case of the subgoal branch, the top place only ever holds one token. When one of

the transitions for a plan option fires, this token is removed thereby preventing the

other branch from firing, while in the case of the plan branch, the transition from

the plan branch places a token in each of the subgoals allowing all of the branches

to proceed. In this model, provided the preconditions for the plans to achieve

each subgoal have been satisfied, then the subgoals can be executed in any order.

At the bottom of the tree, these branches can then be tied back together using a

CHAPTER 4. PETRI NET MODEL 55

Plan 1

Subgoal 1 Subgoal 2 Subgoal 3

Plan 2 Plan 3 Plan 4 Plan 5

Subgoal 4 Subgoal 5 Subgoal 6

Plan 6 Plan 7 Plan 8

Plan 2

Complete

Plan 3

Complete
Plan 6

Complete

Plan 7

Complete

Plan 8

Complete

Subgoal 2

Complete

Subgoal 4

Complete
Subgoal 5

Complete

Subgoal 6

Complete

Plan 4

Complete

Plan 5

Complete

Subgoal 3

Complete

Plan 1

Complete

Goal Complete

Goal Start

Subgoal 1

Complete

Figure 4.4: Petri Net Representation of the Mars Rover goal-plan tree shown in
figure 2.1

CHAPTER 4. PETRI NET MODEL 56

similar method in order to ensure all the plans and effects of these plans, or the

effects required by the goal, have been achieved. Where there has been a subgoal

branch, there will again be separate transitions for each of the plan branches to tie

them back together. Once the chosen path has been completed, the transition at

the end of that path will fire to deposit a token in a “completed” place to mark the

subgoal as having been achieved. Conversely, for the plan branch, there is just one

transition at the end of all the subgoal branches, requiring each of the branches to

have been completed before the plan itself can be marked as completed as can be

seen in the lower part of figure 4.4.

Subgoal Branch

Plan Plan

(a) Subgoal Branch.

Plan Branch

Subgoal Subgoal

(b) Plan Branch.

Figure 4.5: Petri net representation of the two branch structures used in a goal-
plan tree

A simulation of a top-level goal that has been adopted by an agent starts with

a token being placed in the “Goal Start” place and then follows the paths taken

by the tokens through the different plans to see if the “Goal Complete” place

is reached. If it is, then the goal can be considered to have been successfully

achieved. However if something prevents transitions from firing along the way,

this can be viewed as a plan failing that could ultimately result in the goal failing

to be achieved as well. This failure is most likely to be caused either by negative

interference from other goals, or by running out of resources.

The Petri net model is split across three files. The first of these contains the

CHAPTER 4. PETRI NET MODEL 57

representations of the goals themselves with the reasoning as described in sec-

tions 4.3 to 4.5. The factors from the environment that the agent interacts with

are represented as a set of variables and are stored in the second Petri net file.

The final file is a manager file that oversees the adoption of goals and recording of

the outcomes. Within the goals Petri net, a token providing a link to the environ-

ment variables net is stored in a place named “Variables” with transitions able to

reference this net when required. These variables are represented as places that

store values representing the current state of that attribute within the environ-

ment, for example, a variable identifying the current location of the Mars Rover

could contain an identifier for the current position of the rover.

The goal reasoning that we have incorporated into the Petri nets allows an agent

to handle both positive and negative interactions between multiple goals, as well

as reasoning about the limited availability of consumable resources. While in the

work by Thangarajah et al. and Clement et al. “summary information” was used

in the process of reasoning about goals, it has been possible to avoid this in both

the positive and negative reasoning models used within the Petri net. However,

when reasoning about consumable resources, some summary information is still

required. A comparison of the summary information used is given in section 4.3.

Each of the types of reasoning and the representation of the plans and goals

themselves can be viewed as inter-linked modules, as will be discussed below. This

modularisation of the method used to represent goals and plans as Petri nets

potentially allows an agent to dynamically produce the Petri net representations

of its goals and plans, that could be linked into any existing goals and their plans.

These representations can then be used by the agent to reason on-the-fly about

its ability to adopt a new goal based on its current commitments towards existing

goals. This approach also allows the types of reasoning to be selected so the agent

need not include all types. It also keeps the reasoning types independent so they

do not cause any unexpected interactions with each other.

The Petri nets generated by an agent, as previously stated, can be used to

advise on the adoption of new goals, and also the plan selection for both existing

goals and any new goals that are accepted. The plan selection process aims to avoid

any potential negative interference while making use of plans that can benefit from

positive interactions and the selection of plans with lower resource requirements

CHAPTER 4. PETRI NET MODEL 58

to make the best use of available resources.

4.3 Modelling Consumable Resource Reasoning

As stated above, each of the types of reasoning can be represented as a separate

module that can be “plugged-in” to the basic Petri net representation of a goal-

plan tree at the relevant locations. These locations span both the plans that are

generating effects and also a layer of interaction around the environment variable

being affected.

The interactions between the goals are modelled using a set of variables that

make use of the properties of coloured Petri nets to contain numbers or letters,

used for representing different states of the environment. Each variable repre-

sents a different property whose value can be changed during the lifecycle of the

environments simulation.

While in sections 4.4 and 4.5 it will be shown that it is possible to avoid the use

of summary information when reasoning about positive and negative interactions

using a Petri net approach to the goal-plan tree problem, this is not possible when

reasoning about resources. However, we show here how we have minimised the

use of summary information compared to the levels used in [Thangarajah et al.,

2002]. We only use a compact form of summary information where it is absolutely

required and this allows us to gain a significant improvement on the resource usage

when compared to no reasoning being employed.

Summary information is used in two ways. Firstly, a summary of all the re-

source requirements is produced and used to decide if a goal can be safely taken

on, based on existing resource availability, and secondly, where a goal or subgoal

has a choice of plans, summary information just for the subtrees is provided so as

to select a preferred plan (i.e. the one with the lowest resource requirements).

As stated in the previous chapter, there are two main groups of resources

that could be considered when reasoning about resources. These are reusable

resources and consumable resources. An instance of a reusable resource can only

be used by one plan at a given time, but when that plan has finished executing,

the resource is available again for another plan to use it. A typical example of such

a type of resource is a communication channel. On the other hand, consumable

CHAPTER 4. PETRI NET MODEL 59

resources can only be used once, and then no longer exist, for example units of

energy or time. Reusable resources can be represented as shown in Figure 4.6(a).

In this Petri net, a single token representing the resource is passed between two

states representing its availability. However, the reasoning presented in this thesis

refers solely to reasoning about consumable resources. Figure 4.6(b) shows the

basic representation of consumable resources within a Petri net. The central place

contains a numeric token indicating the initial quantity of the resource available.

Two transitions are then provided for referring to the resource: firstly checking

how much is available without consuming any and secondly consuming some of

the resource. A control check function, guard (q-x)>=0, is provided to ensure

that the “consume” transition is only able to fire (i.e., return “true”) if there is at

least a quantity x of that resource currently available. When some of the resource

has been consumed, the quantity remaining is updated. The ‘‘E’’ is used as

an identifier for the resource, allowing multiple different consumable resources to

be represented. The check transition uses a bidirectional arc to access the token

containing the resource availability and return it without altering it.

:release():use()

[]
Resource
available

Resource
in use

(a) Reusable resource

energy

qq-x

guard (q-x)>=0;
:consume("E",x)

q

100

:check("E",x);
guard q>=x

(b) Consumable resource

Figure 4.6: Petri nets for the two main resource types

As stated above, the variables are stored in a separate net which is passed

around as a token to be used by all the goals. In the goals net, this is stored in the

place named “Variables” with transitions able to reference this net when required.

In figure 4.6, the transitions from the variables net with the inscriptions :check()

CHAPTER 4. PETRI NET MODEL 60

and :consume("E",x) can be synchronously fired by transitions in the other nets

for checking and consuming resources.

When multiple different consumable resources are used, there can be two types

of summary information, depending on the level of detail required. The first

provides the detail based on the different resources, while the second gives a single

sum for all resources.

The summary information can either be pre-processed (i.e. done off-line) as

used here, or potentially produced dynamically by generating Petri nets on-the-fly.

Either way, the information produced is the same, and the summary information

produced gives the best case and worst case resource requirements. These are the

minimum and maximum resource requirements when taking into account goals or

subgoals that have a choice of plans with different summary resource requirements.

The summary information is generated using the tree structure, summing up

the requirements starting at the leaves. Where there is a choice of plans, the

summaries for those plans are stored with the subgoal to aid the selection between

the plans. Renew allows the inclusion of some Java code, so java.Math min and

max functions from the Java API can be used to identify the best and worst cases.

Here, the summaries for the different resources are accumulated together when

calculating the summary information so that only a single number is stored for

each branch, and the break down is passed on up the tree listing the best case

(bc) and worst case (wc) depending on which branch is chosen. The best case is of

course the branch with the lowest resource requirements, while the worst case is

the branch with the highest. If some resources are required to be conserved more

than others, weights could be added here to indicate an additional cost of using a

particular resource, thus favouring the alternatives.

Two forms of the summary information generated are used within the reason-

ing. The first of these lists how much of each resource will be required in the best

case, while the second is a single number totalling the requirements for each of

the types of resource. The first of these is used when considering if a goal can be

safely adopted, reserving the resources required by the goal. Once the resources

are reserved, the reasoning is then concerned with ensuring the best plan options

are selected. This can be done through just using a single number representing the

total requirements for a branch or alternatively a number indicating which branch

CHAPTER 4. PETRI NET MODEL 61

should be selected.

While our approach to the resource summaries here is similar to that of the

“necessary” and “possible” summary information used by Thangarajah et al.

in [Thangarajah et al., 2002], there are some differences in the actual informa-

tion given. For example, if there were two plans A and B where A used 10 units of

resource r1 and B used 5 units of r1 plus 8 units of r2 then the necessary resources

listed would be 5 units of r1 as regardless of which plan is used, these resources

will always be needed. However, in the approach developed here, the best case

summary information would list 10 units of r1, presuming there is no weighting

applied, as the sum of the units of resource required by B is greater than that

required by A.

Subgoal

Summary

Plan a Plan b Plan c

[bc,wcX][bc,wcX][bc,wcX]

[bc,wc] [bc,wc][bc,wc]

Figure 4.7: Selecting the best plan based on required resources

Figure 4.7 shows how this summary information is added into the goal Petri

net to select a branch at a subgoal. When the subgoal is reached, a comparison is

performed between the summary of the resource requirements for each of the plan

options to the information it has for the best case requirements of the branches.

Provided there are no other constraints over the plan selection, it will fire the

transition to start the plan with the best case resource requirements.

After all goals have their summary information, the summary information at

the root of the tree can then be used by the agent to decide whether it is safe to start

acting towards achieving the goal in relation to the amount or resources it currently

has available, and any other goals which the agent may be already committed to

achieving. Figure 4.8 shows the Petri-net module used by the agent to check

the summary information before starting a goal. This summary information is

CHAPTER 4. PETRI NET MODEL 62

maintained as a normalised list stating the resource requirements for each type of

resource, even if that resource is not required by a given goal.

g g g

g:newGoalSummary([["A",a],["B",b],["C",c]...])

r:checkTotalSummary([["A",aq],["B",bq],["C",cq],...])

aq=a+ap; bq=b+bp; cq=c+cp;...

g:complete([["A",a],["B",b],["C",c],...])

aq=ap-a; bq=bp-b; cq=cp-c; ...

[["A",0],["B",0],["C",0],..]

g:start()

[["A",ap],["B",bp],

["C",cp],...]

[["A",ap],["B",bp],

["C",cp],...]

[["A",aq],["B",bq],

["C",cq],...]

[["A",aq],["B",bq],

["C",cq],...]

Agent Summary

g

Figure 4.8: Manager module for checking the resource summary information prior
to adopting a new goal

The Manager keeps a sum of the summary information for the goals that the

agent is committed to achieving, stored in the “Agent Summary” place, so before

starting a course of action to achieve a new goal, it checks that there are sufficient

resources for the sum of existing goals and the summary from the new goal. If

there is, then the goal is adopted and started. When a goal has been achieved, its

summary information is removed from the summary for currently executing goals.

This is to indicate the total summary information for the goals currently adopted,

and does not change as they consume resources whereas the amount of available

resources does decrease. As a result, it is possible for the total requirements

to be greater than that available at a given point because some resources have

already been consumed by the goals that have been started. By removing the

summary information of goals that have been completed this can occasionally

allow goals that were prevented from starting due to apparent insufficient resource

availability to start. While it would be possible to dynamically update the resource

requirements of the goals as they are executed, this would introduce additional

computational overheads at runtime.

CHAPTER 4. PETRI NET MODEL 63

An alternative approach to this may be to record the starting availability of the

resources in the Manager net and only compare the summary information to this

value. However, if at some future point a maintenance goal was added increasing

the amount of available resources in the Variables net, the value in the Manager net

would not be automatically updated. This would result in goals being prevented

from starting despite there being the resources available for them to safely start.

In order for the total summary information to be checked, additional transitions

and places need to be added into the Variables net surrounding all of the different

resources. These extensions are shown in the coloured boxes in figure 4.9, having

an overseeing transition linked into each of the resources.

50 50 50

guard (y-x)>=0;

:consume("R1",x)

guard (y-x)>=0;

:consume("R4",x)

guard (y-x)>=0;

:consume("R5",x)

50 R4 50

a b dc e

guard (y-x)>=0;

:consume("R2",x)

guard (y-x)>=0;

:consume("R3",x)

y-xy y-x y-xy y-xy y-xyy

R5R3R2R1

:checkSummary([["R1",aq],["R2",bq],["R3",cq],["R4",dq],["R5",eq]]);

 guard a>=aq; guard b>=bq; guard c>=cq; guard d>=dq; guard e>=eq

Resource summary module

Figure 4.9: Variables net resource summary module

It should be noted here that while this thesis does not extend to reasoning

about renewable resources, it is feasible to represent renewable resources in the

Petri nets using the construct shown in figure 4.6(a) to allow for the inclusion

of reasoning about renewable resources. It is also worth noting here that while

maintenance goals designed to restore resources as they are consumed, for example

recharging a battery, have not been simulated here, the flexibility in the Petri net

model means that should any be added the reasoning about resources is sufficiently

robust to handle the regeneration of the consumable resources. This is because

the summary information could contain negative numbers indicating the resources

that are being produced.

CHAPTER 4. PETRI NET MODEL 64

4.4 Modelling Positive Interaction Reasoning

While negative interaction occurs when two goals are setting different values to the

same variable (see section 3.4), the positive interaction is modelled by two or more

goals assigning the same value to the same variable, as discussed in section 3.3.

In essence, this is two or more goals attempting to produce the same effect in the

environment, such as a Mars rover going to the same specific location to perform

some tests. If the Mars rover is already at the location, it does not need to execute

a second plan for a second goal to reach the same location. As a result, the

reasoning here needs to check whether the desired effect has already been achieved

before allowing the plan to start. If the effect has been achieved then the plan is

stopped from executing, so reducing the number of plans executed. Any plans in

the sub-tree of this plan are also dropped, potentially having a significant reduction

on the number of plans used if one of the plans has a large number of subgoals

and plans. As a result, this can speed up the completion and reduce the costs of

achieving the goals, particularly if there is a limited amount of resources available.

In the Petri nets, this positive interaction reasoning is handled by a pre-check

module (Figure 4.10) that first checks whether another plan is about to, or has

already, achieved the desired effect of the plan and if not it then fires a transition

to indicate that it will be executing a plan to achieve the effect so similar plans

for other parallel goals do not need to be executed.

The variables for representing the effects used in the positive reasoning, shown

in the top left of figure 4.10 have transitions to set the value and check what it is

currently assigned to. The place labelled var P1 stores the actual value, while the

two connected transitions allow other nets to read and alter the current value. The

prefix of P is used to indicate variables associated with the positive interactions.

For the positive reasoning, most of the newly added transitions and places appear

in the goals net with the plans that are producing the effects, as shown in the

shaded box in the top right of figure 4.10. Before a plan that is going to attempt

to achieve an effect starts it checks to see if this effect has been achieved yet. If

it has, then the plan is prevented from firing by preventing a token being added

1While these are different to those presented in [Shaw and Bordini, 2008] and [Shaw et al.,
2008] they still achieve the same results. Changes were made due to restrictions on the arc types
recognised in the imported type discussed in section 4.6. This restriction has since been removed.

CHAPTER 4. PETRI NET MODEL 65

0

x

x

x:set("P1",x)

:check("P1",x)

y

var P1

:goalCheck("P1",x)

x

y

y+1

y
Goal

Complete

["X",x];
["Y",y];
["Z",z];

[A,a]
Effects

List

v:goalCheck(A,a) guard y=NumEffects

Goal Complete Check

Variables Net

v:check("P1",y);
guard y!=5

v:check("P1",y);
guard y!=5;
v:set("P1",5)

Subgoal

Plan

Action

Positive Precheck

Plans Reasoning

Figure 4.10: Positive module1

to a necessary input place for the transition starting the goal. If the effect has

not yet been achieved, then the plan is allowed to proceed, checking once again

before setting the value that it has not been achieved by another plan running in

parallel. If necessary, it would be possible to reserve this effect preventing parallel

plans from even starting.

In the positive interaction, as plans are not necessarily completed due to the

effects being achieved elsewhere the result is that the approach of checking to

see if a goal is achieved based on plans being completed no longer works. An

alternative approach of measuring goal completion based on the effects of each goal

being achieved is therefore used to see if the goal has been successfully completed.

While the tying together of subgoals and plans is still included, an alternative goal-

completion check is provided using the effects that should be achieved by the goal.

The goal completion is still only counted once, even if all the plans and all the

desired effects are achieved. For this to be achieved, an additional “goalCheck”

CHAPTER 4. PETRI NET MODEL 66

transition is added to the variable in the variables net (see figure 4.10), linked

to a place storing all the effects that have been achieved in that variable. The

additional sub-net shown at the bottom of the figure is added to each of the goals,

with the list of all effects achieved by that goal. Each of these can then be checked

off and when all have been achieved the goal can be considered to be completed.

These modules for the positive interaction are automatically included into any

plans that are attempting to achieve effects, without performing any reasoning

during the generation phase to see if they can potentially interact. This is to

ensure that all the reasoning is done by the Petri net itself.

4.5 Modelling Negative Interference Reasoning

As described in section 3.4, negative interference occurs when two or more goals are

referring to the same variable and attempting to change this property in different

ways before one of the goals has finished using the variable. As a result, negative

interference reasoning has to prevent other goals interfering with any variables

that are currently in use, until they are no longer required. Within the Petri net

model, this is accomplished by adding in “protection” modules around places where

negative interference could potentially occur in order to prevent this interference.

When an agent executes a plan that produces an effect in the environment,

and that effect will be required by a later plan, the effect is immediately marked

as protected until it is no longer required. This is done by the protect module

(Figure 4.11) that adds a set of transitions and places to the variables Petri net,

and a call from the plan to the new triggering transitions so that when the relevant

effect takes place, a transition in the variables Petri net is fired to protect it, then

when it is no longer needed another transition in the variables net is fired to

release the protected effect. If another plan attempts to change something that is

currently protected, then it will be stopped and forced to wait until the effects are

no longer protected (i.e., until the release transition fires).

Figure 4.11 shows the two areas that are affected by the addition of the negative

reasoning. At the top is the representation of the variable, shown by the place var

N1 that starts with the null value of 0 assigned to it. The N is used in the examples

to indicate variables affected by negative interactions. The transitions directly

CHAPTER 4. PETRI NET MODEL 67

var N1

0

x

[]

[]

:check("N1",x)

x

[]

:set("N1",x)

:unprotect("N1")

:take("N1",x)

:protect("N1")

0

x

y

Plan

Action
v:set("N1",5)

v:protect("N1")

v:check("N1",5)
v:unprotect("N1")

v:take("N1",x)

Variables

vv

Variables Net

Protect Module

Protected

Goals Net

(a) Negative interference reasoning modules for Variables net

var N1

0

x

[]

[]

:check("N1",x)

x

[]

:set("N1",x)

:unprotect("N1")

:take("N1",x)

:protect("N1")

0

x

y

Plan

Action
v:set("N1",5)

v:protect("N1")

v:check("N1",5)
v:unprotect("N1")

v:take("N1",x)

Variables

vv

Variables Net

Protect Module

Protected

Goals Net

(b) Negative interference reasoning modules for Goals net

Figure 4.11: Negative modules1

CHAPTER 4. PETRI NET MODEL 68

surrounding this place allow the variable to be assigned a new value; reset the

variable to 0 when the value is removed; and to check the value without changing

it to see what it currently contains. The places and transitions contained in the

shaded box mark the added components for defining the negative interaction,

with a “protected” place containing a token indicating whether the variable can

be altered or not. When a token is present in this place, the variable can be altered,

however when the protect transition is fired, this token is removed blocking further

changes being made to the variable. When the plan has finished with the variable,

the take and unprotect transitions are fired to restore a token to the protected

place, as can be seen from the plan samples in the lower half of the diagram.

As with the positive interaction reasoning, when generating the Petri nets the

relevant protect modules are automatically added to all variables and any plans

that are reading or writing variables. No prior reasoning of where the interference

will actually occur is performed, nor is any summary information stored about the

locations of possible interference.

4.6 Petri net Automated Generation

To automate the production of Petri nets, the Petri Net Markup Language (PNML)

was used [Billington et al., 2003]. This is an XML-based interchange format pro-

vided for Petri nets that defines the places, transitions and common arcs used in

many Petri net editors. This format can then be imported into a Petri net editor or

exported to move Petri nets between different editors without loss of data. While

the Renew data format itself is XML based, using the PNML format allowed a

certain level of abstraction as it is not required that properties such as colour,

size and position of the places and transitions are defined, giving a much more

streamlined definition of the Petri net.

However, as a result of using the PNML format, the running of the Petri nets

has an extra stage before you can get started. Firstly, the PNML files must be

imported into a Petri net editor such as Renew [Theorectical Foundations Group,

2006], after which they must be saved with pre-specified names to allow the nets

in the different files to interact with one another.

When generating the instances of the Petri net model, it is possible to select

CHAPTER 4. PETRI NET MODEL 69

the types of reasoning included, so each type can be considered separately or to-

gether. The effects used to cause the negative or positive interactions and the

resources that are consumed are only included when the types of reasoning are

being considered. For example, the resources being consumed are only included

when considering reasoning about consumable resources. It is possible to include

the different types of interaction and resource consumption without including the

reasoning to produce a base case for comparing the effectiveness of the reasoning

against. In this case, during a simulation, the Petri net randomly selects which

plans to use with only the tree structure restricting the order of selection. Where

there are branches, no reasoning is performed to select which is more appropri-

ate, or stopping plans from interfering with each other and there is no reasoning

stopping goals from being started, even when there are not sufficient resources

available for the goal to be successfully achieved. This means it is possible to

compare the effects of the reasoning against an essentially random equivalent of a

Petri net model of the goal-plan tree to consider the costs and benefits associated

with the reasoning.

Each instance of the Petri net model is split into three files. There is one file

consisting of the goals and plans, another maintaining the variables, and the final

managing the starting and monitoring of the goals. When generating the Petri

nets in PNML format, the first part to be produced is the Goals file.

Various different approaches were considered for producing the goals. In the

experiments performed, each of the top-level goals is assumed to have the same tree

structure. However, in real-world applications it is more likely that the goals will

each have different tree structures. Due to the assumption, it would be possible to

produce a Petri net with a single goal-plan tree represented within it, then create

the necessary number of instances of that Petri net for each experiment. The

variations in the properties of each goal, such as which variables they were affecting,

the values they were assigning to them, and the resources they were consuming

could then be passed as parameters to each instance of the net. Unfortunately, this

approach leads to a very long and unmanageable list of parameters that need to

be passed to each goal, then within the goal they need to be passed to the correct

plans. Further drawbacks to this approach include ensuring that all goals defined

do indeed have the same structure, and the requirement to still process each of

CHAPTER 4. PETRI NET MODEL 70

the goals to generate the list of parameters. If it is known that all goals use the

same structure then each goal-plan tree only needs to be traversed to extract the

parameters list. However, if a static structure is not assumed, this could cause a

large amount of additional pre-processing costs in checking that all the goals do

indeed have the same tree structure.

The alternative to this approach is to explicitly define each goal within the

Goals Petri net, with all the parameters fixed in place. The trade off here is

that as the number of goals increases, so does the size of the file, however the

management and construction of the different goals is simplified. The second

advantage to this approach is that it allows each of the goals to have a different

structure, which is more likely to be the case in a real world example. However,

for the purposes of evaluation, each of the goals was given the same structure and

it is left to future work to consider the effects of combining a variety of different

tree structures together with the different reasoning models.

A variation on the second approach would be to have separate files for each

of the different goals, or possibly just the different goal structures, but again

this has the drawback of resulting in a large number of files that could cause

file management problems, as well as adding some extra complication to the goal

management with referring to multiple files. An advantage to this approach is

that if in future work a completely new goal was to be added during execution

that is different to all existing goals, this would simply require generating a new

Petri net Goal file and adding a reference to it in the manager net, rather than

attempting to make a large change to the single goal Petri net file of the second

approach while it was in use.

While each approach has its advantages and disadvantages, the selected ap-

proach to be used was the second approach, with all the goals stored in one large

file. In future work, some of these alternatives could be considered to find a way

of reducing the size of the Goal file when large numbers of goals are being created,

whilst also not generating an excessive number of individual files.

The parsing of the goal-plan tree is done in one iteration through each tree,

traversing the trees in a depth first manner, building up the PNML definitions for

each of the places and transitions required to fully represent the tree and selected

reasoning types. Whilst traversing the trees, lists of the different variables and

CHAPTER 4. PETRI NET MODEL 71

resources used are formed in order to produce the Variables Petri net. Best and

worst case resource summary information is also calculated to be added at branch

points and in the Goal Manager net to reason about which branch to select and

whether sufficient resources are available to start a given goal.

The Manager Petri net is the starting point for the simulations. Here the

instance of the Variables Petri net is generated and passed as a token to the

instance of the Goals Petri net. These two nets are referred to with explicit file

names to ensure the Manager is using the correct files. The Manager then controls

the start of each of the goals within the Goals Petri net, taking into consideration

the resource requirements where this is included in the types of reasoning. The

Manager net is also responsible for recording the number of plans used and the

goals achieved. Figure 4.12 shows a sample of the Manager net produced when

all types of reasoning are included. The long list on the right shows the summary

information for the twenty different goals included in this run. The version of the

Petri net without the reasoning included, (i.e. the random equivalent), uses the

same net for the Manager, however instead of the real summary information, all

the resource requirements for each goal are listed as zero. This means that when

the check is performed to see if there are sufficient resources, it will always return

true as it is only ever checking for zero resources rather than the real amount

that is actually required. This check could be removed from the net if necessary

to avoid confusion, however it was decided to keep the manager net consistent

regardless of whether reasoning was included or not. When the resources are not

included, (i.e. for reasoning about only positive or negative interactions), this list

is simply the goal ID numbers without the resource summary information. In this

case, the consumption of the resources is also not included to ensure that all goals

are achievable.

To monitor the performance and collect the results from the simulations of the

Petri net model, various parameters need to be collected and stored. These are

the goals started, goals achieved and plans used. These are stored in the three

large places in figure 4.12.

The two vertical diamonds in the centre are from the manager module for

resource reasoning, controlling which goals are started and recording the total

CHAPTER 4. PETRI NET MODEL 72

[]

v

g:
ne

w
gp

t(v
)

v:
ne

w
va

rs

id

g:
pl

an
Co

m
pl

et
e(

)

id

v

v

id
id

g:
st

ar
t(i

d)

id

g

g

g

v:
ch

ec
kS

um
m

ar
y(

[["
R1

",a
q]

,["
R2

",b
q]

,["
R3

",c
q]

,["
R4

",d
q]

,["
R5

",e
q]

]);
aq

=a
+a

p;
 b

q=
b+

bp
; c

q=
c+

cp
;

dq
=d

+d
p;

 e
q=

e+
ep

[Z
,[[

"R
1"

,a
],[

"R
2"

,b
],[

"R
3"

,c
],

["R
4"

,d
],[

"R
5"

,e
]]]

G
oa

l I
Ds

[Z
,[[

"R
1"

,a
],[

"R
2"

,b
],[

"R
3"

,c
],

["R
4"

,d
],[

"R
5"

,e
]]]

g

[["
R1

",a
q]

,
["R

2"
,b

q]
,

["R
3"

,c
q]

,
["R

4"
,d

q]
,

["R
5"

,e
q]

]

[["
R1

",a
p]

,
["R

2"
,b

p]
,

["R
3"

,c
p]

,
["R

4"
,d

p]
,

["R
5"

,e
p]

]

[["
R1

",a
q]

,
["R

2"
,b

q]
,

["R
3"

,c
q]

,
["R

4"
,d

q]
,

["R
5"

,e
q]

]

[["
R1

",0
],[

"R
2"

,0
],[

"R
3"

,0
],

["R
4"

,0
],[

"R
5"

,0
]]

[["
R1

",a
p]

,
["R

2"
,b

p]
,

["R
3"

,c
p]

,
["R

4"
,d

p]
,

["R
5"

,e
p]

]

g:
co

m
pl

et
e(

[id
,[[

"R
1"

,a
],[

"R
2"

,b
],[

"R
3"

,c
],[

"R
4"

,d
],[

"R
5"

,e
]]]

);
aq

=a
p-

a;
 b

q=
bp

-b
; c

q=
cp

-c
;

dq
=d

p-
d;

 e
q=

ep
-e

Pl
an

s
Co

m
pl

et
ed

G
oa

ls
 S

ta
rte

d

St
ar

tin
g

Po
in

t

G
PT

 P
la

ce

G
oa

ls
Co

m
pl

et
ed

[0
, [

["R
1"

,1
3]

,["
R2

",1
4]

,["
R3

",1
3]

,["
R4

",0
],[

"R
5"

,0
]]]

;
[1

, [
["R

1"
,0

],[
"R

2"
,1

3]
,["

R3
",1

3]
,["

R4
",1

3]
,["

R5
",0

]]]
;

[2
, [

["R
1"

,0
],[

"R
2"

,0
],[

"R
3"

,1
3]

,["
R4

",1
3]

,["
R5

",1
3]

]];
[3

, [
["R

1"
,1

3]
,["

R2
",0

],[
"R

3"
,0

],[
"R

4"
,1

3]
,["

R5
",1

3]
]];

[4
, [

["R
1"

,1
3]

,["
R2

",1
2]

,["
R3

",0
],[

"R
4"

,0
],[

"R
5"

,1
3]

]];
[5

, [
["R

1"
,1

3]
,["

R2
",1

4]
,["

R3
",1

3]
,["

R4
",0

],[
"R

5"
,0

]]]
;

[6
, [

["R
1"

,0
],[

"R
2"

,1
3]

,["
R3

",1
3]

,["
R4

",1
3]

,["
R5

",0
]]]

;
[7

, [
["R

1"
,0

],[
"R

2"
,0

],[
"R

3"
,1

3]
,["

R4
",1

3]
,["

R5
",1

3]
]];

[8
, [

["R
1"

,1
3]

,["
R2

",0
],[

"R
3"

,0
],[

"R
4"

,1
3]

,["
R5

",1
3]

]];
[9

, [
["R

1"
,1

3]
,["

R2
",1

2]
,["

R3
",0

],[
"R

4"
,0

],[
"R

5"
,1

3]
]];

[1
0,

 [[
"R

1"
,1

3]
,["

R2
",1

4]
,["

R3
",1

3]
,["

R4
",0

],[
"R

5"
,0

]]]
;

[1
1,

 [[
"R

1"
,0

],[
"R

2"
,1

3]
,["

R3
",1

3]
,["

R4
",1

3]
,["

R5
",0

]]]
;

[1
2,

 [[
"R

1"
,0

],[
"R

2"
,0

],[
"R

3"
,1

3]
,["

R4
",1

3]
,["

R5
",1

3]
]];

[1
3,

 [[
"R

1"
,1

3]
,["

R2
",0

],[
"R

3"
,0

],[
"R

4"
,1

3]
,["

R5
",1

3]
]];

[1
4,

 [[
"R

1"
,1

3]
,["

R2
",1

2]
,["

R3
",0

],[
"R

4"
,0

],[
"R

5"
,1

3]
]];

[1
5,

 [[
"R

1"
,1

3]
,["

R2
",1

4]
,["

R3
",1

3]
,["

R4
",0

],[
"R

5"
,0

]]]
;

[1
6,

 [[
"R

1"
,0

],[
"R

2"
,1

3]
,["

R3
",1

3]
,["

R4
",1

3]
,["

R5
",0

]]]
;

[1
7,

 [[
"R

1"
,0

],[
"R

2"
,0

],[
"R

3"
,1

3]
,["

R4
",1

3]
,["

R5
",1

3]
]];

[1
8,

 [[
"R

1"
,1

3]
,["

R2
",0

],[
"R

3"
,0

],[
"R

4"
,1

3]
,["

R5
",1

3]
]];

[1
9,

 [[
"R

1"
,1

3]
,["

R2
",1

2]
,["

R3
",0

],[
"R

4"
,0

],[
"R

5"
,1

3]
]]

Figure 4.12: A sample of a Manager Petri net model

CHAPTER 4. PETRI NET MODEL 73

summary information needed for all currently active goals as described in sec-

tion 4.3. The transitions within the Goals net marking the completion of plans

and top-level goals are inscribed with :planComplete and :goalComplete refer-

ences allowing the manager to record when plans have been used and when goals

have been completed. These can either be recorded as counters, or the plans can

be given IDs that can be appended to a list, specifying the order in which each

of the plans for the different goals was used within the simulated execution of the

Petri net.

The final Petri net file to be generated is the Variables net. This makes use

of the list of variables needed by the goals that was produced whilst generating

the main Goals Petri net. Each of these is then included as a sub-net within the

Variables net with transitions that can be used to trigger them from the Goals

net. Figure 4.13 shows a sample of the Variables Petri net produced with all

variables when all types of reasoning are included. In the abstract scenarios,

separate variables, representing different factors in the environment, are used for

the positive and negative interactions, so the variables on the left are used by the

reasoning for positive interaction, and the diamond shaped sub-nets representing

further environment variables are used by the reasoning for negative interaction.

This is to prevent additional unexpected interactions occurring whilst attempting

to evaluate the effectiveness of the reasoning types. However, they could easily

be combined and no adverse effects are expected. Results of the experiments

performed using the Petri net approach are described in chapter 6. These compare

the performance of the Petri net model with and without the reasoning included to

the second approach discussed in the next chapter. The Petri net model without

the reasoning included is used to provide a base case for evaluating the impact of

the reasoning when compared to the performance with an absence of any reasoning.

CHAPTER 4. PETRI NET MODEL 74

v
a

r
 N

1

0

xx

x
:s

e
t(

"P
1

",
x
)

:c
h

e
c
k
("

P
1

",
x
)

0
y

x
v

a
r
 P

1

:s
e

t(
"P

2
",

x
)

0

0

x x
y

:c
h

e
c
k
("

P
2

",
x
)

:g
o

a
lC

h
e

c
k
("

P
2

",
x
)

:g
o

a
lC

h
e

c
k
("

P
1

",
x
)

v
a

r
 P

2

x x

v
a

r
 P

3

0

x

x

x

:c
h

e
c
k
("

P
3

",
x
)

:g
o

a
lC

h
e

c
k
("

P
3

",
x
)

:s
e

t(
"P

3
",

x
)

y

v
a

r
 P

4

xx

0

:c
h

e
c
k
("

P
4

",
x
)

x

:t
a

k
e

("
P

3
",

x
)

:t
a

k
e

("
P

2
",

x
)

:t
a

k
e

("
P

1
",

x
)

:t
a

k
e

("
P

4
",

x
)

x
:s

e
t(

"P
4

",
x
)

:g
o

a
lC

h
e

c
k
("

P
4

",
x
)

0
y

x

xx x

0

x

v
a

r
 P

5

xx

0

:c
h

e
c
k
("

P
5

",
x
)

:t
a

k
e

("
P

5
",

x
)

x
:s

e
t(

"P
5

",
x
)

:g
o

a
lC

h
e

c
k
("

P
5

",
x
)

0
y

x

x

P
r
o

te
c

te
d

0

x

[][]

x

:c
h

e
c
k
("

N
1

",
x
)

x

[]

:s
e

t(
"N

1
",

x
)

:u
n

p
ro

te
c
t(

"N
1

")

x

:t
a

k
e

("
N

1
",

x
)

:p
ro

te
c
t(

"N
1

")

:g
o

a
lC

h
e

c
k
("

N
1

",
x
)

0

x

y

v
a

r
 N

2

P
r
o

te
c

te
d

0

x

[][]

x

:c
h

e
c
k
("

N
2

",
x
)

x

[]

:s
e

t(
"N

2
",

x
)

:u
n

p
ro

te
c
t(

"N
2

")

x

:t
a

k
e

("
N

2
",

x
)

:p
ro

te
c
t(

"N
2

")

:g
o

a
lC

h
e

c
k
("

N
2

",
x
)

0

x

y

v
a

r
 N

3

P
r
o

te
c

te
d

0

x

[][]

x

:c
h

e
c
k
("

N
3

",
x
)

x

[]

:s
e

t(
"N

3
",

x
)

:u
n

p
ro

te
c
t(

"N
3

")

x

:t
a

k
e

("
N

3
",

x
)

:p
ro

te
c
t(

"N
3

")

:g
o

a
lC

h
e

c
k
("

N
3

",
x
)

0

x

y

v
a

r
 N

4

P
r
o

te
c

te
d

0

x

[][]

x

:c
h

e
c
k
("

N
4

",
x
)

x

[]

:s
e

t(
"N

4
",

x
)

:u
n

p
ro

te
c
t(

"N
4

")

x

:t
a

k
e

("
N

4
",

x
)

:p
ro

te
c
t(

"N
4

")

:g
o

a
lC

h
e

c
k
("

N
4

",
x
)

0

x

y

v
a

r
 N

5

P
r
o

te
c

te
d

0

x

[][]

x

:c
h

e
c
k
("

N
5

",
x
)

x

[]

:s
e

t(
"N

5
",

x
)

:u
n

p
ro

te
c
t(

"N
5

")

x

:t
a

k
e

("
N

5
",

x
)

:p
ro

te
c
t(

"N
5

")

:g
o

a
lC

h
e

c
k
("

N
5

",
x
)

0

x

y

5
0

5
0

5
0

g
u

a
rd

 (
y
-x

)>
=

0
;

:c
o

n
s
u

m
e

("
R

1
",

x
)

g
u

a
rd

 (
y
-x

)>
=

0
;

:c
o

n
s
u

m
e

("
R

4
",

x
)

g
u

a
rd

 (
y
-x

)>
=

0
;

:c
o

n
s
u

m
e

("
R

5
",

x
)

5
0

R
4

5
0

a
b

d
c

e

:c
h

e
c
k
S

u
m

m
a

ry
([

["
R

1
",

a
q

],
["

R
2

",
b

q
],

["
R

3
",

c
q

],
["

R
4

",
d

q
],

["
R

5
",

e
q

]]
);

 g
u

a
rd

 a
>

=
a

q
;

g
u

a
rd

 b
>

=
b

q
;

g
u

a
rd

 c
>

=
c
q

;
g

u
a

rd
 d

>
=

d
q

;
g

u
a

rd
 e

>
=

e
q

g
u

a
rd

 (
y
-x

)>
=

0
;

:c
o

n
s
u

m
e

("
R

2
",

x
)

g
u

a
rd

 (
y
-x

)>
=

0
;

:c
o

n
s
u

m
e

("
R

3
",

x
)

y
-x

y
y
-x

y
-x

y
y
-x

y
y
-x

y
y

R
5

R
3

R
2

R
1

Figure 4.13: A sample of the Variables Petri net model

Chapter 5

Constraint-Based Model

The second approach developed here for reasoning about goals applies constraint

satisfaction to find a solution to instances of the goal-plan tree problem. While

the Petri net approach applied in chapter 4 provided a natural representation of

the agents goal-plan tree into which the reasoning could be added, this approach

provides a natural representation of the constraints applied to the agent in the

form of resource constraints and interaction constraints.

In this chapter, a description of constraint satisfaction is given in section 5.1,

along with an overview of GNU Prolog and the built-in predicates that have been

used by this approach. Section 5.2 describes how the goal-plan tree can be repre-

sented as a set of constraints, before sections 5.3 – 5.5 describe how to represent

and incorporate the three types of reasoning as a series of constraints. This chap-

ter is finished with a description of how the automated generation of this model

operates in section 5.6.

5.1 Constraint Satisfaction Problem

Constraint satisfaction attempts to find a solution to a problem consisting of a set

of variables, each with a domain of values that can be assigned to the variables.

The assignments are restricted by a set of constraints linking the variables that

must be satisfied for an assignment to be valid, forming a solution. Each variable

can have its own distinct domain of values, or a common domain can be applied

75

CHAPTER 5. CONSTRAINT-BASED MODEL 76

to all variables. This is defined more formally as follows, a Constraint Satisfaction

Problem (Constraint Satisfaction Problem (CSP)) consists of a set of variables,

each with a non-empty finite domain of values and a set of relations over the

variables defining constraints. This can be represented as a 3-tuple 〈X,D,C〉,
where X represents the set of variables X1, ..., Xn, D is a domain of values and C

is a set of constraints of the form 〈t, R〉 where t is a tuple of variables and R is a

set of tuples of values of the same size. An evaluation of a CSP gives a mapping

of variables onto values from their domains, v : X → D, with a solution being

a complete assignment where every variable is mentioned and all constraints are

satisfied [Russell and Norvig, 2003, Chapter 5]. Different queries can be used when

evaluating a CSP to access different information, for example in a set of constraints

describing family relations a query may just ask who the parents of a given person

are, or you could list everyone who was a parent.

Cumbria

Borders

Northumberland

Durham

Tyne and
Wear

Dumfries
and

Galloway

Lothian

Figure 5.1: Outline map of counties used in map colouring example

A common example to illustrate a CSP is that of map colouring, where the ob-

jective is to colour the map without two touching areas having the same colour. On

a map of the United Kingdom showing the different counties, the variables in the

CSP are the counties, each with the same domain of values, in this case the colours

(e.g. red, green, blue), to choose from. The constraints are pairs of counties that

are connected together, for example based on the outline map shown in figure 5.1,

CHAPTER 5. CONSTRAINT-BASED MODEL 77

the constraints Cumbria 6= Durham∧Cumbria 6= Northumberland ∧ Cumbria 6=
Borders ∧Durham 6= Northumberland∧Northumberland 6= Borders ∧Borders 6=
Lothian can be defined, stating that they cannot be assigned the same colour. An

evaluation of this CSP will find multiple possible solutions, for example {Cumbria

= red, Durham = green, Northumberland = blue, Borders = green, Lothian =

red}.

5.1.1 Constraint Logic Programming

Constraint Logic Programming (CLP) combines the constraint satisfaction ap-

proach with that of a logic programming language to provide a powerful and so-

phisticated reasoning and solving engine, an example of this being Prolog. Prolog

on its own can be viewed as a simplified constraint satisfaction language, where

the constraints are just equalities between terms that are checked by the matching

of terms. By adding in additional types of constraints, Prolog can be extended to

a CLP language. These additional types of constraints include arithmetic equality

and inequality constraints, along with finite domains that are useful when reason-

ing about CSPs. All of the pure and additional constraints can be used to build

up much more sophisticated predicates, however they are unfolded to the basic

constraints when evaluating queries [Bratko, 2001, Chapter 14].

The GNU Prolog [Diaz and Codognet, 2000] implementation of the Prolog

interpreter, providing constraint solving over finite domains, was used for the de-

velopment and evaluation of the constraint based model described in this chapter.

Others, such as SWI Prolog [Wielemaker, 2003] or ECLiPSe [Cheadle, 2008],

could also be used with a slight variation in the syntax of the generated con-

straints. Some preliminary comparisons were performed between these, evaluating

the same sets of constraints in each. From these comparisons it was found that

for this application the GNU Prolog interpreter proved to be the most effective in

terms of time taken and its ability to handle a larger number of goals.

CHAPTER 5. CONSTRAINT-BASED MODEL 78

5.1.2 GNU Prolog

GNU Prolog is a freely available application and conforms to the ISO standards

for Prolog, while providing some additional features [Diaz, 2009]. Some of the fea-

tures provided by GNU Prolog include more than 300 built-in predicates, global

variables and a constraint solver amongst others. The constraint solver provides

an efficient finite domain solver when compared to commercial constraint solvers,

integrating finite domain variables into the Prolog environment, with a lot of prede-

fined constraints including more than 50 finite domain constraints and predicates.

If necessary, the user can extend this by defining their own new constraints. A

summary of the predicates, constraints and notation used in the development of

this model are given below. Where additional predicates are defined for common

operations such as finding the intersection of two sets, these are based on the

techniques described in [Bratko, 2001].

CSPs are generally solved using some form of search or inference algorithms [Tsang,

1993]. These are typically based on backtracking, constraint propagation and local

search techniques. The backtracking algorithm consists of two phases, forwards

and backwards. When going forwards, the algorithm works through the variables

in sequence assigning a value from their domain that is consistent with all the

constraints and values assigned to previous variables. When the algorithm reaches

a variable for which there is no valid assignment, it then backtracks to the previous

variable, changes the value and attempts to move forwards again [Dechter, 2003].

The points to which the algorithm backtracks are known as choice points, where

the solver made a choice of value to assign to a variable. The map colouring exam-

ple given above is simple enough that the first available value for each county will

give a valid solution. In a more complex example, backtracking would be required

to find a valid solution.

A technique called constraint propagation is used to reduce the size of the

problem into something that is smaller and simpler to solve. This takes into con-

sideration local consistency, where consistent solutions for a subset of the variables

are maintained. Constraints are propagated using node and arc consistency and

is the approach used by the solver in GNU Prolog.

CHAPTER 5. CONSTRAINT-BASED MODEL 79

Node consistency applies constraints to the domains of variables so that the

constraints can then be discarded, for example, a variable V with domain {1, 2, 3, 4}
and a constraint V < 3 will have its domain reduced to {1, 2} and the constraint

removed to simplify the constraint checking of the final solution.

Arc consistency considers the constraints between two variables. For exam-

ple, suppose variables X and Y each have the domain {1, 2, 3, 4} and a constraint

between them X < Y . The value 4 can be removed from the domain of X as

this value will never satisfy the constraint. Similarly, the value 1 can be removed

from the domain of Y . However, unlike in node consistency, the constraint can-

not be discarded as it would still be possible to assign values to the two variables

that would not satisfy the constraint. As each variable’s domain is updated, all

the other variables need to be reconsidered to ensure all arcs remain consistent,

propagating the updates through all the variables. Path consistency extends this

notion by considering variables along arcs that form paths connecting all the vari-

ables together.

It is possible to draw a tree of a CSP to represent its search space, where

each node in the tree represents a choice made, with the branches from that point

representing the choices available. For example, the first set of branches in the

map colouring problem described above would represent the counties available for

selection. Each of the counties would then have a branch for each colour. After

a colour had been assigned to a county, another county would be selected, with

the list of colours available from there, as illustrated in figure 5.2. In the diagram,

only the first branch has been expanded in a depth-first search to illustrate the

branching in the search space. The depth of the tree is fixed based on the number

of variables in the problem and in a fully expanded tree the leaves at the maximum

depth would represent the end points of paths containing valid solutions.

Local searching starts with a complete but probably invalid assignment and

searches the local search space in order to improve the assignment. There is a risk

that a solution will never be found with this approach, even if a valid solution does

exist. This is due to the search being restricted to a small area of the full search

space.

CHAPTER 5. CONSTRAINT-BASED MODEL 80

C D N B L

D N B L

N B L

B L

C: Cumbria
D: Durham
N: Northumberland
B: Borders
L: LothianL

Figure 5.2: Search tree for map colouring problem

CHAPTER 5. CONSTRAINT-BASED MODEL 81

5.1.3 GNU Prolog Notation

In Prolog, facts such as “Socrates is male” and “all men are mortal” can be rep-

resented as shown below. In GNU Prolog, all descriptions for a given predicate

must be consecutive unless they have been defined to be discontiguous using the

predicate discontiguous(Predicate), which removes the restriction requiring all

the clauses defining Predicate to be consecutive within a source file. This was

used when defining the goals and plans (described in section 5.2) allowing them

to be listed as they were encountered within a goal-plan tree, rather than being

required to list all the goals followed by all the plans separately.

The following is an example of defining facts based on family relations within

Prolog:

parent(raymond, patricia).

parent(valerie, patricia).

parent(frances, valerie).

parent(leonard, valerie).

...

Questions can be asked about the facts defined, or about the rules and relations

defined in the Prolog source. Four example queries of the facts above are shown

here:

parent(valerie, patricia).

parent(X, patricia).

parent(X,_).

parent(X,Y), parent(Y, patricia).

The first query asks if Valerie is a parent of Patricia, while the second is slightly

more general asking who are Patricia’s parents. The result of the first would simply

be yes as there is a fact matching the query, while in the second we are asking Pro-

log to unify, i.e. associate, the variable X with all the parent facts where the second

term matches the atom patricia. The first result will therefore be X = raymond

and the next answer X = valerie. Unless you tell Prolog to give you all answers, it

will only list one at a time, waiting for you to request the next or finish. The source

CHAPTER 5. CONSTRAINT-BASED MODEL 82

is evaluated from top down, so while the relation parent(raymond, patricia).

appears before parent(valerie, patricia)., the answer X = raymond will al-

ways be given before X = valerie.

The query on the third line shown above is only interested in finding out who

is a parent. In Prolog, the character indicates that we are not interested in

that term, so this will give Raymond, Valerie, Frances and Leonard as answers.

Patricia is not listed as the first term for any of the parent relations, so is not

given in this answer. Finally, the last query on line 4 is a compound query asking

who the grandparents of Patricia are. The first solution will give X = frances,

Y = valerie and a second solution of X = leonard, Y = valerie. A rule for

this could be written in the source file saving the user from having to enter the

compound query each time they wanted to ask the same question, as shown here:

grandparent(X, Z):-

parent(X, Y),

parent(Y, Z).

The symbol :- separates the head of the clause or rule from the body. In order

for the head to be true, all of the body must also evaluate to true, in this case

finding a valid unification of each of the variables in the clause.

Prolog provides a selection of control constructs for use within clauses, includ-

ing infix operators for conjunction and disjunction, along with a construct for

if-then-else control. When evaluating these constructs, true will always succeed,

while fail will force the query to backtrack to the last “choice-point” in order to

try a different assignment of terms. If required, the “cut” construct represented by

‘!’ can be used to remove all choice-points created up to that point. This means

that if the solver needs to backtrack, this is the last point to which it will back

track as any choice-points before this point will have been removed.

Conjunctions are represented with the ‘,’ operator and disjunction by the ‘;’

operator. The if-then construct is represented by a ‘->’ operator and a ‘;’ can be

added to represent the else part of the statement, for example:

Task1 -> Task2 ; Task3.

CHAPTER 5. CONSTRAINT-BASED MODEL 83

This is evaluated by executing the first query, Goal1, and if it is successful

then the second query is executed, Goal2. When the else part is included, in this

example Goal3, this is only executed if the first query fails or if the evaluation

backtracks to this point.

Lists are represented in Prolog using square brackets, where [H | T] can be

used to obtain the head and tail of a list. H is unified with the first element in

the list, while T is unified with the tail of the list, i.e. the original list with the

first element removed. A variety of predicates are supplied for manipulating lists,

including append, member and reverse amongst others.

It is often useful to be able to represent pairs of terms or variables. While this

could be done with a list of two elements, a simpler notation is provided in Prolog

using the form V1/V2.

One of the additional features provided in GNU Prolog outside the Prolog

ISO standard is the availability of global variables. These can be accessed using

g assign(GVarName, Value) and g read(GVarName,Value). Related to this are

dynamic clauses that can contain entire relations and can be asserted and retracted

dynamically in Prolog. The predicates asserta(Clause), retract(Clause) and

retractall(Head) can be used to add and remove these clauses. Any predefined

clauses in the Prolog source need to be declared as dynamic using dynamic(Head)

in order to be able to assert and retract them. This can be useful to keep track of

values for example a Fibonacci series can be generated with the first n numbers in

the series being asserted as facts that can then be queried. In the approach devel-

oped here, this is used to monitor resource availability of the different consumable

resources, as described in section 5.3.

When performing a query, it is sometimes useful to obtain all the possible so-

lutions in one go. In order to achieve this, Prolog provides a findall(Template,

Query, Instances) predicate to automate the process, building up the list Instances

of all the solutions for Query. Template provides the format for the results that

are added to the list, for example if we wanted to find all grandparents we could

use the query findall(X,grandparent(X, Y),GP).

Finite Domains The finite domain solver incorporated into GNU Prolog is

based on the clp(FD) solver [Codognet and Diaz, 1996]. The new constraints added

CHAPTER 5. CONSTRAINT-BASED MODEL 84

include arithmetic, boolean, reified and symbolic constraints. These constraints

are solved using arc-consistency propagation techniques. In addition to the new

constraints included with the finite domain extension, a new type of variable is

also added. This is a finite domain variable that has an integer data type that

can be limited to ranges or specific values. The variable can then only be assigned

a value from its domain. These domains can be set using fd domain(VarsList,

Lower, Upper) to give each element in the VarsList a domain of values from

Lower to Upper. Alternatively a list of values can be given in place of the lower

and upper bounds to specify a non-consecutive range of values.

The basic arithmetic operators are represented simply by using the standard

symbols, for example, ‘+’ for summing integer values of two variables, while the

arithmetic constraints in the finite domain solver are represented by prefixing

and suffixing the operator with a # symbol. This can either be done with just

the prefixed # to only apply the constraint to the bounds of the domain of the

variables (e.g. #=< meaning less than or equal to), or if both are used the full

domain of the variables are updated (e.g. #=<#). The use of the partial update is

generally more efficient for arithmetic constraints as less propagation is required.

After all the constraints have been defined, the final step used in the fi-

nite domain solving is that of assigning specific values to each of the variables

in order to satisfy all of the constraints. This is done by using the predicate

fd labeling(VarsList, [variable method(Heuristic)]). The second argu-

ment is optional, as the default standard heuristic, which simply works through

the list starting from the left applying values to each as they are considered, is

used if no heuristic is specified.

Heuristics When evaluating the CSP, different heuristics can be used to vary

the order in which variables are mapped to values when considering the constraints

upon them. Some of these heuristics include standard, most constrained and max-

imum regret. The standard heuristic simply starts at the leftmost variable or the

first variable in the list and works the way through the list assigning the first avail-

able consistent value, while the most constrained and maximum regret heuristics

apply some ordering to the list of variables before starting to assign values to them.

As suggested by the name, the most constrained heuristic orders the list such that

CHAPTER 5. CONSTRAINT-BASED MODEL 85

those variables with the smallest number of elements in their domain are at the

start of the list. Selecting these elements first will reduce the amount of back-

tracking required to find a satisfying assignment for all the variables, or identify

sooner if no valid solution exists. When multiple variables have the same number

of values in their domains then the variable appearing in the greatest number of

constraints is selected first.

The maximum regret heuristic orders the variables based on the difference

between the smallest value and the next value of its domain, for example if there

were two variables X and Y where X had the domain {1, 3, 7} and Y had the

domain {1, 5, 6} then the solver would select Y first as there is a greater distance

between the first and second values in the domain. As with the most constrained

heuristic, if there is a tie between two or more variables, the variable appearing in

the greatest number of constraints is selected first.

An example of the map colouring CSP described above, using the outline coun-

ties map in figure 5.1, is presented here in GNU Prolog to show how some of the

predicates described above are used and to demonstrate the three heuristics dis-

cussed above. In this example, numbers have been used instead of words to identify

the colours, i.e. 0 = red, 1 = green, 2 = blue. Text placed after % symbols are

comments.

uk(V):-

% V: List of variables representing counties

V=[Cumbria, Durham, TyneAndWear, Northumberland,

Borders, DumfriesAndGalloway, Lothian],

% set domain of each variable in V to {0,1,2}

fd_domain(V,0,2),

% define constraints between counties

Cumbria #\= Durham,

Cumbria #\= Northumberland,

Cumbria #\= Borders,

Cumbria #\= DumfriesAndGalloway,

Durham #\= Northumberland,

Durham #\= TyneAndWear,

CHAPTER 5. CONSTRAINT-BASED MODEL 86

Northumberland #\= TyneAndWear,

Northumberland #\= Borders,

Borders #\= DumfriesAndGalloway,

Borders #\= Lothian,

% assign values to each variable in V

fd_labeling(V).

When this is evaluated with the default standard heuristic, the first result re-

turned is V = [0, 1, 0, 2, 1, 2, 0], which is the list of values assigned to each of the

variables in V , i.e. {Cumbria = 0, Durham = 1, TyneAndWear = 0, Northum-

berland = 2, Borders = 1, DumfriesAndGalloway = 2, Lothian = 0}. This was

found by assigning the first available value to the first element in the list and

working through. Again, this example was simple enough that backtracking was

not necessary, so the first available values were sufficient for each variable.

Replacing the final predicate for labelling the variables, fd labeling(V), with

fd labeling(V, [variable method(most constrained)]) changes the heuris-

tic used to order the list of variables from the default to the most constrained

heuristic. As all variables initially have the same sized domains the ordering

is based on the number of constraints each variable appears in. In this exam-

ple the list is dynamically reordered to: [Cumbria, Northumberland, Borders,

Durham, TyneAndWear, DumfriesAndGalloway, Lothian]. Cumbria is assigned

the value 0, removing this value from the domains of Durham, Northumberland,

Borders and DumfriesAndGalloway. The list is again reordered to indicate the

most constrained variables, now appearing as: [Cumbria, Northumberland, Bor-

ders, Durham, DumfriesAndGalloway, TyneAndWear, Lothian]. The next unas-

signed variable, Northumberland, is selected with the first available value, 1, being

assigned from its domain. This removes the value 1 from the domains of Durham,

TyneAndWear and Borders. Both Borders and Durham are each constrained to

one value in their domains, however as Borders appears in more constraints than

Durham the list remains unchanged at this iteration. The next two variables

assigned are Borders and Durham, each being assigned the value 2 from their

domain and constricting DumfriesAndGalloway and TyneAndWear to one value

each, these being 1 and 0 respectively. The final variable Lothian still has a choice

CHAPTER 5. CONSTRAINT-BASED MODEL 87

of two values so the first of these, 0 is selected to complete the solution. Giving

the solution in the original ordering of the variables, the final solution returned

was [0, 2, 0, 1, 2, 1, 0].

Finally, if evaluating this example with the maximum regret heuristic, written

fd labeling(V, [variable method(max regret)]), the evaluation starts with

the same ordering as for the most constrained heuristic. After assigning Cumbria

with 0 all variables still have the same level of ‘regret’, however DumfriesAndGal-

loway is again more constrained than TyneAndWear so steps just ahead of it as

it did when using the most constrained heuristic. Northumbria is again assigned

the value 1 from its domain. This time however, when the value is removed from

TyneAndWears domain, the ‘regret’ level of this variable is the highest out of all

the variables, with a domain of [0, 2], so it is moved up the list ahead of Borders

and is selected next. The value 0 is assigned to TyneAndWear, followed by 2 to

Borders and Durham again. Next DumfriesAndGalloway is assigned 1, finishing

with 0 assigned to Lothian. While the final ordering is the same as that produced

by the most constrained heuristic in this example, the order in which the variable

were assigned values was slightly different. In a larger more complex example these

could have produced different solutions.

For the purposes of comparison, each of these heuristics listed here will be used

when evaluating the effectiveness of the constraint-based approach to see if one

heuristic was more suitable to this problem domain than another.

5.2 Modelling the Goal-Plan Tree

In chapter 4, we presented the Petri net model developed for representing the

goal-plan tree problem. In the remainder of this chapter, we present our second

approach, developed here, for representing and reasoning about this problem. This

uses constraints in GNU Prolog to represent the goal-plan trees and reason about

the same three types of reasoning as that done in the Petri net model. The same

types of summary information as used for reasoning about consumable resources

in the previous chapter are used in this reasoning and the reasoning about positive

and negative interactions has again been developed in such a way as to avoid the

CHAPTER 5. CONSTRAINT-BASED MODEL 88

use of any summary information. Each of these types of reasoning are discussed

in sections 5.3 – 5.5. Firstly, we present the approach to simply representing the

goal-plan tree using constraints in GNU Prolog.

The idea surrounding the model used for representing the goal-plan tree prob-

lem as a set of constraints is to find an ordering of the plans for all of the goals

such that all the goals adopted are achieved and as many goals as possible are

adopted.

To start with, the plans and goals are both defined as facts using the name

node within Prolog, with the plans being represented by 5-tuples 〈Pl, S, Pr, E,R〉
where Pl is a unique identifier for each plan; S is the list of subgoals for achieving

the plan; Pr is a list of preconditions and E is a list of effects caused by the plan;

R is a list of pairs showing the resource requirements for the different resources

that a plan uses. The plans at the bottom of the goal-plan tree that form the

leaves of the tree will not have any subgoals listed in S, and not all plans will have

preconditions, effects or resource requirements.

As in the Petri net model, a series of “variables” are used to represent re-

sources and the effects on the environment. The resources make use of dynamic

facts that can be retracted and asserted with updated values as the resources are

consumed, (e.g. resource(r1,50). The effects on the environment use a similar

form to those used in the Petri net where a series of places, representing different

attributes within the environment that can be modified, stored values indicating

the current state of a given attribute within the environment. In Prolog, the ef-

fects on the environment are simply represented as pairs consisting of the attribute

identifier and the value representing its current state (eg. e1/7). As is described

in sections 5.4 and 5.5 these are used to identify plans that can either be safely

merged or that could interfere so need to be scheduled accordngly.

In the plan definitions, the preconditions, effects and resources are all repre-

sented as pairs of values, for example r1/5 represents the requirement of 5 units

of resource r1. The preconditions and effects are represented in a similar way

with e1/7 stating that the plan changes the variable representing the environment

factor e1 to have the value 7.

Goals and subgoals require less details so they are simply represented as 2-

tuples, 〈G,P 〉, where the G is a unique identifier for the goal or subgoal and P

CHAPTER 5. CONSTRAINT-BASED MODEL 89

is a non-empty list of plans that can be used to achieve G. The following Prolog

sample from the goal’s definition shows a top-level goal node and a plan node

that achieves this goal, using itself 1 unit of resource r1 and causing the effect of

assigning the value 7 to variable e3, while having no preconditions required for it

to start.

node(aag48,[aap50]). % Goal node

node(aap50,[aasg22,aasg47],[],[e3/7],[r1/1]). % Plan node

To improve the flow of the goals definitions, the definitions for the goals, sub-

goals and plans are all interspersed rather than writing out the definitions for all

the plans followed by all the goals and subgoals. As a result, Prolog requires that

the node predicates are defined as discontiguous so this is managed by the pred-

icates discontiguous(node/2). and discontiguous(node/5). being placed

before the start of the node definitions.

These node definitions allow a set of predicates to be defined for traversing

the tree, for example generating a list of branch options, and sub-trees. This

also allows the definition of predicates to remove branches such as when choosing

between multiple plans for a given subgoal or goal, or when dropping plans as a

result of positive interaction.

In order to reason about the tree structure, various predicates are defined to

query the definitions of the goal-plan tree. These include listing all the plans in

the sub-tree of a goal or plan, finding all the plan options for achieving a goal or

subgoal and querying plan hierarchy within the goal-plan tree.

Where there is a choice of plans to achieve a goal or subgoal, only one of these

needs to be used in order for the goal to be successful. The surplus plans can

therefore be removed from consideration, reducing the number of plans that need

to be considered later on. Where resource reasoning is included in the reasoning

being performed, the choice of plan selected will be based on the resource costs

of the different options, keeping the plan with the lowest resource requirements.

To ensure that the unnecessary plans are removed from consideration their plan

definitions are retracted. In doing so, the sub-tree of the plan also needs to be

retracted where the plan contains subgoals. This is illustrated in figure 5.3 where

CHAPTER 5. CONSTRAINT-BASED MODEL 90

the plan and its sub-tree inside the dashed line is being retracted in preference of

the alternative plan for achieving the subgoal.

...

Subgoal

Plan 1 Plan 2

Subgoal Subgoal Subgoal Subgoal Subgoal

Figure 5.3: Removal of surplus sub-trees where there is a choice of plans

CHAPTER 5. CONSTRAINT-BASED MODEL 91

In Prolog, this is defined as a series of predicates to “strip” the tree of the

branch options:

branchOptions:-

findall(O,option(_,O),All),

branchStrip(All).

This first predicate uses the option(Goal,OptionList) predicate to generate a

list of all the sets of options for subgoal branches. O is a list of plans from which just

one plan needs to be selected so the variable A, the result of the findall equates

to a list of plan lists. Each of these lists of plans then needs to be considered,

selecting one plan to keep and the remainder to retract. By default, the plan that

is kept is the first plan in the list, however when resource reasoning is incorporated,

the summary resource requirements for each branch is considered so the plan with

the lowest summary resource requirements is kept.

branchStrip([]).

branchStrip([[H | T2] | T]):-

rmBranch(T2),

branchStrip(T).

rmBranch([]).

rmBranch([P|T]):-

strip(P),

rmBranch(T).

When removing plans, it is important to remember to remove the sub-tree

formed from any subgoals that were required by the plan. This is handled by a

final recursive predicate to iterate through the list ensuring each of the members

of the sub-tree are removed. As it is possible for plans within the subtree of an

optional plan to also contain branches, it is feasible for plans and subgoals to

have already been removed. To prevent this from causing the retraction to fail a

disjunction finishing with true is included as shown below.

CHAPTER 5. CONSTRAINT-BASED MODEL 92

strip(P):-

subtree(P,T),!,

stripTree(T),

retract(node(P,_,_,_,_)).

stripTree([]).

stripTree([H|T]):-

(((retract(node(H,_,_,_,_))); retract(node(H,_))); true),

stripTree(T).

An evaluation of the CSP gives each plan that is considered a number that

can be used to sequence the plans. A global finite domain variable is created

for each of the plans to store the plans domain of values, ranging from 0 to the

number of plans. A solution is a valid sequence where the goals adopted would

be achieved if the plans were executed in the order specified by the evaluation.

A tree scheduling predicate, treeScheduler shown below, is applied to the plan

variables to ensure the tree structure is maintained when considering the order in

which to execute plans, forming the basis of any scheduling over the plans. This

includes preconditions and effects of plans between different branches within a

tree to ensure a plan is not scheduled to execute before the plan producing the

necessary preconditions has been scheduled to execute.

treeScheduler([]).

treeScheduler([[P1,P2]|T]):-

g_read(P1,I),

g_read(P2,J),

I#<#J,

g_assign(P1,I),

g_assign(P2,J),

treeScheduler(T).

In many cases, the ordering between subsets of the plans is not important as

they will not affect each other in any way so these plans can safely be given the

same sequence number. When executing the plans, this could be seen as either

CHAPTER 5. CONSTRAINT-BASED MODEL 93

executing them in parallel or executing them in sets, such that all the plans with

sequence number 1 are executed before those with sequence number 2, and so

on and so forth. By not specifying an exact ordering to the plans, the agent is

able to maintain a lot of its autonomy when selecting which plan to execute next.

Essentially the “ordering” of plans indicates to the agent which plans are safe to

execute together, grouping them into “safe” sets. Provided the agent completes

all the plans within one group before moving onto the next, there should be no

interference between the various goals. In the worst case, where there was a lot of

interference between all of the goals, each plan could be assigned a unique number

from their domain of values, specifying an exact ordering in which the plans must

be executed for the agent to be successful.

When searching for valid solutions to goal-plan tree problem, the query is di-

rected from the reasoning predicate shown below. When a solution is found, each

of the parameters in the head of the predicate is unified with part of the solution

or details about the solution for evaluation purposes. This includes counting the

number of plans used, the number of goals achieved and the time taken for the

solution to be found. The Prolog predicate real time(Time) is used to obtain

start and end timings for the evaluation of the model.

reasoning(Schedule, Plans, PlanCount, TimeTake,

GoalsSet, GoalsAchieved):-

% start timing the reasoning

real_time(Start),

findall(G,root(G),Goals),

length(Goals, GoalsSet),

branchOptions,

% positive interaction reasoning

findall([Pa,Pb],pos(Pa,Pb),Merge),

posScheduler(Merge),

% resource reasoning

branchList(Goals,SumList),

CHAPTER 5. CONSTRAINT-BASED MODEL 94

sort(SumList,SortedSumList),

resReasoning(SortedSumList),

findall(P,node(P,_,_,_,_),Plans),

length(Plans,PlanCount),

varSetup(Plans,PlanCount),

findall([Px,Py],tree(Px,Py),A),

reverse(A,A2),

treeScheduler(A2),

% negative interference reasoning

findall([Pc,Pd,Pe],neg(Pc,Pd,Pe),Neg),

negScheduler(Neg),

varResult(Plans,Schedule),

fd_labeling(Schedule,[variable_method(standard)]),

% reasoning finished

real_time(End),

TimeTaken#=End-Start,

findall(G2,root(G2),Goals2),

length(Goals2,GoalsAchieved).

The first step in the predicate unifies the variable Goals with a list of all

the top-level goals. The length of this list is queried to identify how many goals

have been defined at the start. When reasoning about consumable resources, it

is likely that not all goals will be achieved, so a repeat of this is performed to

count the number of goals after the actual reasoning and scheduling components

of this predicate have been completed. Once the list of goals has been unified,

the reduction of the goal-plan trees can start by removing the branch options as

described above. If reasoning about positive interactions is included (section 5.4),

then this is inserted after the branch options have been removed. Similarly, if the

consumable resource reasoning is incorporated into the constraints (section 5.3),

CHAPTER 5. CONSTRAINT-BASED MODEL 95

the main reasoning concerning which goals can safely be adopted is inserted after

the branch options and after the positive interaction reasoning where both are

included.

Once all the plans have been removed that are surplus to requirements either

because of branch options, positive interactions or limited resources restricting the

number of goals that can be adopted, the finite domain variables for each of the re-

maining plans are asserted as global variables. This is contained within a varSetup

predicate which iterates through the list of all the remaining plans asserting the

global variables with the domain ranging from 0 to the number of plans now being

considered, i.e. the length of the list of plans. After this has been successfully

completed, it is then possible to start applying the constraints that restrict the

assignment of the values from the domains to the variables. This starts with the

scheduling based on the tree structure and finishes with the negative interference

reasoning (section 5.5), when this is incorporated into the types of reasoning be-

ing performed. At this point, the labelling of values to variables is performed,

so the varResult predicate collects all of the finite domain variables back into

a list which is passed to the finite domain labelling predicate. In this predicate,

the heuristic to be used by the solver for labelling the variables is specified. In

the extract below, the default heuristic is applied, however the most constrained

and maximum regret heuristics are also applied in the evaluation of this approach

(see chapter 6). Once the labelling has been completed, the reasoning process has

finished so the variable End is unified with the system time to calculate how long

the solver has taken to find a solution. A final goal count is performed when the

reasoning about resources is included to count the number of goals the agent was

able to adopt and successfully achieve.

While this design achieves the objectives of representing and reasoning about

the goal-plan tree it may be possible to optimise some of the constraints in order

to improve their efficiency, thereby reducing the length of time taken for a solution

to be found.

The definition of the constraints used in this approach are split across three

files. The first of these files contains the discontiguous definitions of all the goal and

plan nodes for each of the goals, while the second contains all the constraints for

reasoning about the goal-plan trees. The final file, contains some utility predicates

CHAPTER 5. CONSTRAINT-BASED MODEL 96

that were not included in the built-in predicates for GNU Prolog. These consist of

definitions for finding the union and intersections of two lists along with identifying

if two unordered lists are equivalent.

As with the Petri net approach, the constraint based approach has again been

designed using a modular approach. This means that when generating the con-

straints for a given goal-plan tree it is possible to restrict the types of reasoning

included to just cover one or more of the reasoning types. If all the types of reason-

ing were omitted, the constraints produced would only model the tree structure,

producing an ordering based on this alone with no constraints preventing it from

scheduling plans after all the resources have been consumed or causing plans to

fail due to interference. The solutions given would be solutions to problems with-

out any limitations on resources or interactions between goals, unlike the results

generated by the random version of the Petri net model where it is possible to

include the resource consumption and goal interaction without having to include

the reasoning. As a result, experiments using this model are only concerned with

the inclusion of at least one of the three types of reasoning.

In order to model the goal-plan tree problem as constraints, a set of predicate

functions has been defined to represent each of the different forms of reasoning.

Each of these predicates can then be used to form the additional reasoning con-

straints over the domains of variables as shown in the subsequent sections.

5.3 Modelling Consumable Resource Reasoning

The reasoning described here is again limited to that of consumable resources

rather than reusable resources. As with the Petri net model, the purpose of the

reasoning is to restrict the number of goals adopted to those that can be achieved

with the amount of consumable resources available and to endeavour to make the

best use of those resources through the careful selection of plans when there is a

choice between which plan to use in order to achieve the desired result. As with

the Petri net model, the reasoning about consumable resources again makes use

of a small amount of generated summary information to perform this reasoning.

As described in the section above, the resource requirements for each plan are

represented by a list of pairs consisting of resource type and quantity required.

CHAPTER 5. CONSTRAINT-BASED MODEL 97

The total available resources for each type are each defined using a resource

predicate as shown below. This predicate is defined to be dynamic so that when

reasoning about resources the quantity available can be updated by retracting and

reasserting the predicate with the new quantity. While it would have been possible

to use global variables to achieve the same result, this method was used to improve

the readability of queries over the quantity of resources available.

resource(r1,50).

The first part of the resource reasoning is incorporated into the constraint

reasoning for the selection between lists of plan options for achieving a goal or

subgoal. For each of the plans listed as being an option, a summary of the resource

requirements for the sub-tree with the plan at its root is generated. At this point,

a single number for all the resource quantities required regardless of resource type

is used to decide which plan to use. It is possible to extend the reasoning here

to incorporate weightings into the summation of resource requirements in order to

indicate preference for the use of certain resources over others.

In the Prolog constraints defined above, when this type of reasoning is included,

the definition of the branchStrip predicate is extended to refer to a predicate that

pairs the summary resource requirement with each plan in the list of options. The

list of plan options is sorted so that the subgoal branches nearest the leaves at the

bottom of the tree are considered first. This is to reduce the number of plans being

considered at each iteration through the list and to allow for simplified predicates

summing the resource requirements as they do not need to consider branches at

lower subgoals. Once the list of plan options paired with resource requirements

is formed, it is then sorted into order of increasing resource requirements so the

first element in the list is the preferred plan and the remaining plans can again be

retracted.

branchStrip([]).

branchStrip([H|T]):-

branchList(H,L),

sort(L,[_|T2]),

rmBranch(T2),

CHAPTER 5. CONSTRAINT-BASED MODEL 98

branchStrip(T).

branchList([],T):-T=[].

branchList([P|T],T1):-

branchList(T,T2),

subtree(P,X),

resAll(S,X),

append([S/P],T2,T1).

The resAll predicate starts by producing a single long list of the resource

requirements for each plan. For each plan, this takes the pairs representing the

type of resource and quantity required and appends them to a list of all the resource

requirements for the sub-tree being considered. Once all the resource requirements

have been compiled into one list, this is sent to a summing predicate to simply

add together all the quantities to produce a total resource requirement. It is in

this final predicate where weightings could be included if necessary to indicate any

preferences for which types of resources should be used.

resAll(S,Ps):-

resourceList(L,Ps),

resSum(S,L),!.

resourceList(L,[]):-L=[],!.

resourceList(L,[SG|T]):- % Ignore subgoals

node(SG,_),

resourceList(L,T).

resourceList(L,[P|T]):-

node(P,_,_,_,R),

resourceList(L1,T),

append(L1,R,L).

resSum(S,[]):- S=0,!.

resSum(S,[_/X|T]):-

S#=X+S1,

CHAPTER 5. CONSTRAINT-BASED MODEL 99

resSum(S1,T).

After the plan options have been removed, the resource reasoning is next used

to consider which goals can be safely adopted given the quantity of each resource

available. The reasoning is performed in this order to firstly reduce the number of

plans being considered and secondly to allow the summary information generated

for reasoning about goal adoption to represent the actual requirements of the goal.

The list of top-level goals can be ordered in the same manner as the list of

plan options for selecting the plans or, in this case, goals with the lowest resource

requirements. To do this, the first step as before, is to generate the list of plans

in the tree for each goal. This can be performed using the branchList predicate

with a list of the top-level goals. This will pair up each of the goals with a number

representing the sum of resource requirements regardless of type. It is possible to

apply different orderings to the list of goals to indicate the importance of a goal,

thereby preferring to complete less goals of greater importance than to achieve

more goals of less importance. If the order in which the goal are considered for

adopting is not important, or if the order is predefined by the order in which the

goals were defined this step can be skipped. This will also provide a decrease in

the number of steps and hence the length of time taken to evaluate the problem

each time to find a solution. In the evaluation of this approach, the sorting and

ordering was included in the reasoning.

The main reasoning about resources for goal adoption requires summary infor-

mation broken down by the different types of resources required. This is so that the

reasoning can check that there is actually sufficient resources available for each goal

to be adopted. For each goal in the list, the summary information separating the

different types of resource information is generated. While the resAll predicate

produces a combined summary of each of the resource types into one number, the

resType predicate used here, keeps the different types of resources separate when

generating the summary information. The summary information produced by the

predicate resType is an unsorted list containing each of the resource types and the

quantity of it required by the goal, for example S = [r3 / 6, r2 / 5, r1 / 7,

r5 / 0, r4 / 0]. From this list, each of the types of resource is extracted and

compared to the quantity of that resource available.

CHAPTER 5. CONSTRAINT-BASED MODEL 100

resReason(G):-

goalPlans(G,P),

resType(S,P), % generate resource summary by type

member(r1/A,S), % unify the resource values

member(r2/B,S),

...

resource(r1,RA), RA#>=A, % check sufficient available

resource(r2,RB), RB#>=B,

... % reserve resources

retract(resource(r1,RA)), NewRA #= RA-A, asserta(resource(r1,NewRA)),

retract(resource(r2,RB)), NewRB #= RB-B, asserta(resource(r2,NewRB)),

...

If each type of resource has sufficient resources available then the predicate

resReason will succeed and the quantity of each of the resources available will

be lowered accordingly. If one or more types of resource has insufficient available

then the predicate will fail and the if-then-else construct from which the predicate

was queried (resReason(G) -> true; strip(G)), will step to the else component

where the goal will be retracted in the same way as removing the sub-tree of a plan

that is not required. After all the goals have been considered, adopting those that

are safe to start, and removing those which are not, the reasoning then returns

to the core part of the goal-plan tree representation to schedule the plans for the

goals that have been adopted.

5.4 Modelling Positive Interaction Reasoning

The positive interaction attempts to identify plans in different goal-plan trees that

can be ‘merged’ as they produce the same effects, as was described in section 3.3.

When referring to plan merging, it is actually possible to achieve the effects by only

using one of the two plans. By doing this, the number of plans required to achieve

all the goals adopted can be significantly reduced, especially as the sub-trees of

the plans that are not used are also removed when the two plans are merged. If

the interaction between the goals occurs at a high level in the goal-plan trees, i.e.

CHAPTER 5. CONSTRAINT-BASED MODEL 101

near the root with each plan itself having a large sub-tree, then the impact of the

merging is particularly significant.

To perform the reasoning in Prolog, a predicate is defined that identifies pairs

of plans that produce the same effects by checking the lists of effects for the two

plans are equivalent. This starts by unifying two plans and the list of effects

generated by each of the plans, checking that the two plans are not the same plan.

The reasoning cycle in Prolog when requested for all pairs of positively interacting

plans will iteratively test every pair of plans including every plan with itself. This

last test will fail on the constraint Px\=Py, where Px and Py are the names of two

plans, and trigger a backtrack to the selection of the plan Py to try a different

plan. For pairs of different plans, the effects of the plans are considered to identify

if there is any possibility of merging them. Firstly, it is checked that the list of

effects for the first plan is not empty, otherwise all plans that don’t themselves

achieve effects could be included for merging. Where an effect is produced by Px,

the list of effects for the two plans are compared to see if they are equivalent. If

so, then with all the constraints satisfied, the pair of plans is returned as a pair of

positively interacting plans that can be merged. If the effects are not equivalent,

then the solver backtracks again to try another pairing until all possible pairings

have been tested.

CHAPTER 5. CONSTRAINT-BASED MODEL 102

pos(Px,Py):-

node(Px,_,_,XEffects,_),

node(Py,_,_,YEffects,_),

Px\=Py,

not(XEffects=[]),

seteq(XEffects,YEffects).

The findall([Px,Py], pos(Px,Py), Merge) predicate is used to generate a

list all the pairs of plans where it is possible for them to be merged. The template

used to form the list from the solutions to the pos(Px,Py) predicate, places each

solution pair of plans into its own sub-list. The complete list of positively inter-

acting plans is then used to select and remove plans that are not needed as the

effects they produce are duplicated by other plans. By default, the second plan in

the pair of interacting plans is retracted, however this is not always the case.

While in the positive interaction reasoning considered here all the effects in

the list must match for the plans to be considered for merging, it is also possible

to consider a weaker version of positive interaction where only some of the effects

match. In this case, in order to ensure that a plan that is kept from the merging

with another plan is not then deleted by a later merging, the plan is “marked”.

This is done by asserting the predicate mark(Plan) for each of the plans that has

been kept from a merged pair. When a pair is first considered, it is checked to see if

either plan is already marked. If both plans are already marked, then neither plan

can be safely removed as it is possible that the intersecting effect that was used

to identify the two plans as positively interacting is different to the intersecting

effects from the interactions where they have already been “merged”.

As the reasoning here checks that the effects are equivalent, it is not necessary

to check if one or both plans are already marked. This is because if one plan is

marked, and has appeared in more than one positive interaction then the effects of

three or more plans must all be equivalent, therefore only one plan is still needed

to achieve the effects on behalf of all of the plans. However, as merges could occur

within the sub-tree of one or both of the interacting plans, it is still necessary to

mark the plan kept from a merge to ensure it does not get removed as part of a

sub-tree.

CHAPTER 5. CONSTRAINT-BASED MODEL 103

The posScheduler predicate defined below starts by checking that the two

plans both still exist and that one or both have not already been removed by

other merges. The sub-trees of each plan are then generated to check for any

marked plans within the sub-trees that could prevent one of the plans from being

removed in a merge. If just one of the plan’s sub-trees contains a marked plan,

then that plan can be kept while the other is retracted, otherwise neither plan and

its sub-tree can be removed.

posScheduler([]).

posScheduler([[P1,P2] | T]):-

node(P1,_,_,_,_), node(P2,_,_,_,_),

subtree(P1,X), subtree(P2,Y),

not((member(XP,X), mark(XP));

(member(YP,Y), mark(YP))),

((not(member(XP,X), mark(XP)), asserta(mark(P1)), strip(P2));

(not(member(YP,Y), mark(YP)), asserta(mark(P2)), strip(P1))),

posScheduler(T).

When the reasoning about positive interactions is combined with that of rea-

soning about consumable resources, then the selection for which plan to keep and

which plan to retract is influenced by the summary resource requirements for the

sub-tree of each plan. In this case the predicate resAll is used to produce the

summary information for the sub-tree of each of the two plans. The plan with the

lower resource requirements is then kept when there is a free choice between the

two plans as neither sub-tree contains any marked plans.

The positive interaction reasoning is incorporated into the set of constraints

after the branch options have been removed. This is to reduce the number of

matches as the branches provide different sets of plans for achieving the same

effects within a goal-plan tree.

5.5 Modelling Negative Interference Reasoning

While the reasoning about positive interaction identifies plans that produce the

same effects, the reasoning about negative interference identifies sets of three plans

CHAPTER 5. CONSTRAINT-BASED MODEL 104

where one plan generates the effect required by the second plan, and the third plan

produces an opposite effect that if it were executed between the first two would

cause interference. This can be thought of as a casual link between the first two

plans, which the third plan would break, as described in section 3.4.

In Prolog, in order to identify the negative interactions between plans, the

neg(Px,Py,Pz) predicate is defined to find pairs of plans that have causal links

and the plans that can interfere with those links. Px is the plan that starts the

causal link by producing the desired effect required as a precondition for plan Py.

Once Py has executed, it is assumed that the effect is no longer required, so can be

safely altered by other plans such as Pz. If however Pz attempts to execute between

Px and Py then this will cause interference possibly leading to plan and then goal

failure. As with the positive interaction reasoning, it is important to check that

the plans are all different before comparing the preconditions and effects of the

plans. To compare the effects, it is important to split up the pair notation for

representing the effects of plans into the two component parts, the factor identifier

and the value representing its current state (eg. e1/7). The member(Element,

List) predicate, in the reasoning predicate shown below, unifies factors of the

environment that are common to all three plans, but where the value assigned to

that factor is different in the interfering plan to the value used by the linked plans.

neg(Px,Py,Pz):-

node(Px,_,_,XEffects,_),

node(Py,_,YPrecon,_,_),

node(Pz,_,_,ZEffects,_),

Px\=Py,Px\=Pz,Py\=Pz,

member(V/N1,YPrecon),

member(V/N1,XEffects),

member(V/N2,ZEffects),

N1#\=N2.

This predicate is again queried with the findall([Px,Py,Pz],neg(Px,Py,Pz),Neg)

predicate to generate a list of all the possible instances of the interference so they

can be scheduled to ensure the interference is avoided. For this, the interfering plan

either needs to be scheduled to execute before the other plans or after both have

CHAPTER 5. CONSTRAINT-BASED MODEL 105

executed so the effect is no longer required. This is handled by the negScheduler

predicate shown below.

negScheduler([]).

negScheduler([[Px,Py,Pz]|T]):-

g_read(Px,A),

g_read(Py,B),

g_read(Pz,C),

A#<#B,(C#<#A;C#>#B),

g_assign(Px,A),

g_assign(Py,B),

g_assign(Pz,C),

negScheduler(T).

The negScheduler predicate refers to the finite domain global variables that

have been defined for representing the domain of values that can be assigned to

each of the variables representing the plans for generating a schedule. The plan,

Px, producing the effect must always occur before the plan, Py, using the effect.

However, it is possible to schedule the interfering plan to either execute before Px

or after Py, as long as it does not execute between the two plans.

The reasoning about negative interference is incorporated into the set of con-

straints after the tree scheduling has been performed. This is to ensure the min-

imum number of plans are considered as the evaluation of the neg(Px,Py,Pz)

predicate considers all the possible combinations of three plans. In addition, the

main purpose of the negative reasoning is to schedule potentially interfering plans

to ensure they do not interfere, rather than reducing the number of plans, so this

“scheduling” is performed after all the surplus plans have been removed and the

schedule refined based on the constraints in the tree structure.

5.6 Constraint Automated Generation

For the purposes of evaluation, as with the Petri net model, it is necessary to

automate the production of the instances of the constraint-based model in order

CHAPTER 5. CONSTRAINT-BASED MODEL 106

to be able to evaluate the different tree structures and settings considered in a

reasonable length of time (see chapter 6). The structure of this model allows the

automation to be simplified as the constraints are written in a plain text format

where the main component to change is the goal-plan tree representation. By

separating the different aspects of the constraint definitions into different files, the

major changes for the goal-plan tree representation can be limited to one text file,

with the fixed components remaining untouched in separate plain text files. The

fixed components include the predicates for the different types of reasoning, and

a set of utility predicates for set operations that had not been predefined in GNU

Prolog. The file with the reasoning predicates will change depending on the types

of reasoning selected for inclusion, but the predicates for each type of reasoning in

them are fixed.

As most of the constraints remain the same, the most complex part of the auto-

mated generation for this model is the generation of the goal definitions themselves.

Each plan and goal needs to have a unique ID so that it can be individually refer-

enced, hence each node is prefixed with a two letter code to identify the top-level

goal it belongs to, and a number to refer to the specific plan or subgoal within that

goal. The tree is then traversed to list the subgoals and plan options for each of the

plans and goals, along with the preconditions, effects and resource requirements

for each of the plans. It should be clear that generating the list of goals and plans

is done in one pass of the goal-plan tree making this linear with respect to the size

of the tree.

Chapter 6

Evaluation

In this chapter we evaluate the performance of the two models when consider-

ing each of the types of reasoning separately and combined together. Presented

in [Shaw and Bordini, 2008, Shaw et al., 2008] are some preliminary results for

the Petri net model, using both an abstract scenario and a more concrete Mars

rover scenario. Due to the large number of new experimental results covering both

models, the preliminary results from the papers are not included in this thesis. As

with the results presented in this chapter, the three types of reasoning individually

and combined in the Petri net model for the two scenarios show improvements in

the performance when compared to the Petri net model without any reasoning,

with only a small increase in time in some cases else a reduction in time taken.

Summaries of all the results are given in section 6.5.

6.1 Experimental set-up

This section discusses the experimental set up that was used to test the two models

described in chapters 4 and 5. The aim of this experimental analysis is to measure

the performance of the models under highly constrained conditions as well as

attempting to identify subclasses of the goal-plan tree problem where one model

may be more suitable than the other. To this end, three different structures of

goal-plan trees have been used to compare performance in different classes. The

three tree structures are a deep tree, a broad tree and a general tree that is a cross

107

CHAPTER 6. EVALUATION 108

between the deep and branching trees to test the scalability of the two approaches.

The experiments cover each of the types of reasoning discussed in chapter 3

individually as well as each of the possible combinations of them working together.

The data recorded from the run time results was the number of goals successfully

achieved, the number of plans used, the time taken and the sizes of the generated

files. Also recorded were the memory and processor usage and the time taken to

load the files in order to run each of the models.

When measuring processor usage for the two models it was noted that despite

the computers used to run the experiments having dual core processors (specifica-

tion given below), the applications (i.e., Renew for simulating the Petri net models

and GNU Prolog for evaluating constraint models), were only able to make effec-

tive use of a single processor at a time. The processor they did use was used to the

maximum in both models for the duration of the run time after which the usage

dropped back down to 0.

The memory requirements recorded took into account the standby memory for

when the files were loaded before the experiments were run, and the runtime mem-

ory usage whilst the simulations were running. The basic memory requirements

for each application were recorded without any files loaded. This was 36.88 Mb

for the Petri net editor Renew, and 4.89 Mb for the Prolog editor GNU Prolog.

As was stated in section 4.6 of chapter 4, the loading of the Petri net model

takes two steps, first importing the three PNML files then saving them to the Re-

new file format with specific names to allow the cross referencing between the three

Petri nets. The timings of these operations are discussed along with those for the

constraint-based model when comparing the two approaches, however the graphs

presenting the timings only show the run times for performing each of the exper-

iments. The break down of the load times for each model are presented in tables

accompanying the graphs, with the graphs showing the runtime measurements of

time taken, goals started & achieved, and plans used.

To evaluate the effectiveness of the different types of reasoning under different

conditions there are a large number of parameters that can be varied. These

include tree size, reasoning type, resource availability, height of positive interaction,

duration of negative interference, amount of interaction between goals and finally

the number of goals. Due to time constraints, it was not possible to evaluate

CHAPTER 6. EVALUATION 109

all possible combinations of parameters so a subset has been selected to analyse

performance where the greatest effectiveness of the reasoning for each given tree

was expected to be. The combinations of parameters that were considered and the

experiments that were performed are detailed in tables 6.1–6.4, with the results

for each given in the sections 6.2–6.4.

Where appropriate, some statistical analysis of the results is performed. This is

based on the Coefficient of Variation (CV) that provides a statistical measure of the

dispersion of data points in a data series around the mean and is often expressed

as a percentage [Anderson et al., 2007, Chapter 3]. This allows the comparison of

different variables with different standard deviations and means. The formula for

calculating the CV is shown in equation 6.1 where σ is the standard deviation of

the data series and µ is the mean. This is multiplied by 100 to give the percentage

CV.

σ

µ
× 100 (6.1)

This formula works well with high mean values that show the percentage of vari-

ance from this mean, such as for analysing plans used and goals achieved. However,

when the mean is less than the standard deviation for a set of results, the resulting

percentage is greater than 100 and provides very little meaningful interpretation

of the results. In these cases, a separate analysis is used to provide a more mean-

ingful interpretation of the data based on the range of values in the data set. For

example, in an experiment for reasoning about resources (see section 6.2.1), the

random Petri net model achieved an average of 0.13 goals, with a standard de-

viation of 0.35. This gives a CV of 263.9%, when a more meaningful analysis is

simply that the range of goals achieved is between 0 and 1.

Tree Size Within the deep and broad trees, the tree sizes are varied in some

of the experiments, with the medium tree size being the main size used in most

of the experiments. This is to evaluate how the performance of the reasoning

varies depending on the tree size. The small tree sizes have approximately 25

plans, while the medium trees have approximately 50 plans and the large trees

have approximately 100 plans. The final tree structure is only used as a large tree,

CHAPTER 6. EVALUATION 110

with 94 plans, to further evaluate how well the two models for reasoning scale,

particularly when adding in more goals.

Goal Interaction Level The level of interaction between goals was varied

through the use of a set of variables. Where positive and negative reasoning were

being evaluated the effects on the environment was simulated through the use of

variables representing the attributes in the environment that were being changed.

There are 5 variables that represent the attributes that can be changed within the

environment. At low levels of goal interaction, each goal only modifies 1 of these

variables, while at medium level each goal modifies 2 variables and at high level

each goal modifies 3 variables. This means that, when there are 20 goals, at low

levels of goal interaction each variable is being modified by 4 goals, at medium

level this increases to 8 goals modifying the same variable and at high levels there

are 12 goals competing over the same variables. This results in greater interaction

between the goals as more goals are attempting to access and modify the same

variables. The distribution of goal interactions on the variables was kept at an

even level, such that each variable was accessed by the same number of goals.

Resource availability The amount of resources available was varied to analyse

how the reasoning was able to perform under highly constrained conditions, and

the cost of the reasoning when the availability is high. This was set to three levels;

low, medium and high availability. The low level was set to approximately 30% of

the total resource requirements, while the medium level provided approximately

half the required resources and the high level provided approximately 85%. In a

similar way to the goal level interaction, there were 5 different types of consumable

resources available, each starting with the same quantity of resources. The number

of goals consuming each type of resource was varied in the same way as the goal

interaction level to simulate the interaction when only resource reasoning was

being evaluated. The amount of each resource being consumed by a given plan

was varied between 1 and 5 units such that the goals had approximately the same

overall resource requirements but they may require more of one type of resource

than another.

CHAPTER 6. EVALUATION 111

Positive Interaction Level This was simulated by setting different goals to

assign the same values to variables, thereby achieving the same effect on the envi-

ronment. The height within the tree at which this interaction occurred is used to

vary the overall impact that this interaction has on the number of plans used. If

the interaction occurs near the root at the top of the goal-plan tree, the effect is

more dramatic as a greater number of plans can be dropped from the sub-trees of

the interacting plans, significantly reducing the total number of plans used. The

three levels used here are high, middle and low level, where high level refers to

interactions occurring near the root, around levels 3 and 4 in the deep tree (see

figure 6.1), and level 2 in the broad and general trees (see figures 6.12 and 6.18).

At low level, the interaction occurs at the lower levels of the tree, around level 14

in the deep tree, and levels 4 or 5 in the broad tree and general tree respectively.

The mid-level interaction is part way between the two extreme levels. In the gen-

eral and broad tree in particular, there is very little variation in the level due to

the relatively shallow nature of the trees, so the changes to this variable are most

visible in the deep tree.

Negative Interference Duration As with the positive interaction, this is sim-

ulated by setting different goals to assign values to the variables. In this case

however, the values assigned by each goal are different, and the goal must read

the same variable at the end. If the value has changed between writing and read-

ing it then the plan fails causing the goal to fail as well. To obtain the longest

duration, the reading of the variables is done at the lowest level in the tree, while

the level at which the variable is written is changed in the same way as was done

in the positive interaction. In the low level interaction, this is changed to writing

the variables at the penultimate level, rather than the last level in the tree where

the variables are now being read, or by moving up the point at which the vari-

ables are read. The fewer plans or the shorter the duration between the writing

then reading of a variable, the greater the probability of that goal being achieved

successfully without any reasoning. As with the positive interaction, the effects

on the duration from changing this variable are most visible in the deep tree. It

should be noted here that the plans themselves are not given any execution time,

the duration simply arises from the distance between the level in the tree at which

CHAPTER 6. EVALUATION 112

Consumable Resource Reasoning
Availability Interaction No. Goals

High Med. Low High Med. Low High Med. Low

Deep
Tree

Small
Medium 4 4 4 4 4 4 4

Large

Broad
Tree

Small 4 4 4

Medium 4 4 4

Large 4 4 4

General
Tree

Small
Medium
Large 4 4 4 4 4

Table 6.1: Settings considered in experiments for reasoning about resources

the variable is written and the level at which the variable is read. The greater the

difference between the levels, the longer the duration that the variable would need

to be protected.

The Petri net model experiments were each repeated 15 times to allow for

the slight variation between repeats, averaging them to avoid distortion, while

the experiments for the constraints model were only repeated 3 times each. This

was due to the consistency of the results returned each time, generating the same

solutions to achieving the same number of goals using the same plans. The only

variation came in the duration of the reasoning which was averaged out over the

3 repeats. In terms of the total duration of the executions however, this variation

was very small.

The variation in the number of plans or goals achieved by the Petri net model is

caused by a certain amount of random selection. Where there are choices between

two equally good plans at a subgoal within a goal the model randomly selects

between the two, while the constraints model always selects the first available.

Also, the order in which the goals are started is not fixed in the Petri net model,

even in the scenarios involving limited consumable resources. This means that the

Petri net model could start goals with large resource requirements first, or take

on several goals that all require a lot of the same resource, rather than starting

goals with a more evenly distributed demand for resources. In future work, this

CHAPTER 6. EVALUATION 113

Positive Interaction Reasoning
Position Interaction No. Goals

High Med. Low High Med. Low High Med. Low

Deep
Tree

Small 4 4 4

Medium 4 4 4 4 4

Large 4 4 4

Broad
Tree

Small
Medium 4 4 4 4 4

Large

General
Tree

Small
Medium
Large 4 4 4

Table 6.2: Settings considered in experiments for reasoning about positive inter-
action

Negative Interference Reasoning
Duration Interaction No. Goals

Long Med. Short High Med. Low High Med. Low

Deep
Tree

Small 4 4 4

Medium 4 4 4 4 4 4 4

Large 4 4 4

Broad
Tree

Small
Medium 4 4 4 4 4

Large

General
Tree

Small
Medium
Large 4 4 4

Table 6.3: Settings considered in experiments for reasoning about negative inter-
ference

CHAPTER 6. EVALUATION 114

Resource Positive Negative
Availability Position Duration Interaction No. Goals

High Med. Low High Med. Low Long Med. Short High Med. Low High Med. Low

Deep
Tree

Small
Medium 4 4 4 4 4

Large

Broad
Tree

Small
Medium 4 4 4 4 4

Large

General
Tree

Small
Medium
Large 4 4 4 4 4 4 4 4

Table 6.4: Settings considered in experiments for combined reasoning

is something that could be modified to give some kind of ordering to the goals,

either by adding a weighting indicating importance of a given goal or controlling

the order in which goals were started to optimise the number of goals achieved.

Part of this difference comes from the different styles of the approaches used to

model the reasoning. The CSPs are essentially sequential, selecting the first valid

assignments, while Petri nets are essentially concurrent.

Where timings are taken, the timing does not include any time for the actual

execution of the plans, purely the time taken for the Petri net simulation or con-

straint evaluation to complete. The hardware used was a set of six machines, each

with 2.66 GHz dual core processors and 3.5GB RAM, running Linux Ubuntu 8.04

(Hardy) and Gnome Desktop 2.22.2. GNU Prolog version 1.3.1 and Renew version

2.1 were used for running the models themselves.

The aim of these experiments is to stress test the different types of reasoning

in the two models under different conditions to analyse their performance. The

test results are presented and evaluated for each of the different tree structures

in turn before comparing the performance between the different tree structures.

This starts with a thorough investigation using a deep tree to illustrate the effect

of the reasoning over the absence of reasoning in the Petri net model. This is then

followed by a comparison using a broad tree as opposed to a deep tree structure

for the two models. The deep tree provides a large number of sub-plans and

CHAPTER 6. EVALUATION 115

subgoals, with very few choice branches, while the broad tree offers a lot of choices

between different branches in the tree while having very little depth. The final tree

structure used in these experiments is a cross between the straight depth of the

deep tree and the large scale branching of the broad tree. This tree is mainly used

to analyse how well the reasoning scales in general by using a large tree structure

and a large number of goals.

Within each tree structure, the three types of reasoning are each considered

individually, before looking at the effects produced by combining two or more

of the reasoning types. An attempt has been made to select the most relevant

experiments out of the thousands of possible variations of settings, to show where

the largest potential gains can be made from applying the reasoning. Therefore,

selection is based on the tree structure and the type of reasoning being considered.

6.2 Deep Goal-Plan Trees

The deep tree model used here is aimed at evaluating the performance of the two

approaches where the depth of plan paths required to achieve each individual goal

ranges from a depth of 6 for the small tree size to 15 for the large tree size, as

illustrated in figure 6.1. At any level across the breadth of the tree, the number

of branching plans or subgoals is at most two, with most levels containing either

0 or 1 branches and where there is a branch, there are just two options to choose

between. This allows for a certain amount of choice within the tree, without the

tree getting too broad so that the main attention is on the depth. Most of the

branching also occurs at the plans so both subgoals have to be achieved rather

than at the subgoals giving an option of plans to use. This means that there is

very little variation in the minimum and maximum number of plans required to

achieve each goal individually, as shown in table 6.5.

The main effects illustrated from the use of this tree structure are related to

negative interference spread over a long duration, stretching from a high level in

the tree down to the leaves at the bottom of the tree. Reasoning singly about

consumable resources is unlikely to make any difference to the number of plans

used to achieve each goal due to the small number of places where this reasoning

can be used within the tree structure. However when combined with reasoning

CHAPTER 6. EVALUATION 116

Size Depth Total Plans Total Subgoals Min. Plans req. Max. Plans Req.
Small 6 23 21 22 22
Medium 10 50 47 38 41
Large 15 96 90 62 66

Table 6.5: Plan requirements for the three sizes of deep tree used

over positive interactions at high levels in the goal-plan tree there is likely to be a

much greater impact for the number of goals achieved when applying the resource

reasoning over the limited availability of the consumable resources.

The remainder of this chapter is dedicated to presenting and analysing the re-

sults generated from the experiments described above. The results are all presented

uniformly to aid reading, with a set of graphs for the Petri net model followed by

those for the constraint model. Each set contains the graphs for running times,

goals started & achieved, and the number of plans used. For ease of reference, a

consistent colour scheme for each of the graphs has been used, shown in figure 6.2.

This is then followed by two tables, the first showing the loading times for each

model, while the second shows the memory usage.

6.2.1 Consumable Resources

In this section we focus on the application of reasoning about resources in the two

models developed in chapters 4 and 5. The effectiveness of this type of reasoning

within the deep tree is measured by first varying the number of goals vying for the

same resources, before varying the availability of the resources for a fixed number

of goals.

Varying Number of Goals

The first set of experiments involves the reasoning about the limited availability

of consumable resources. In this set of experiments the number of goals was

varied between 10, 20 and 30. The medium tree size was used with high levels

of interactions between the actual goals, and low availability of resources. The

results for the Petri net and constraint models are shown in figure 6.3.

CHAPTER 6. EVALUATION 117

G

P
SG SG

P

SG

P

SG SG

P P

SG SG SG

P P P

SG SG SG

P P P

SG SG

P P

SG

P

SG

P

SG

P

SG SG

P P

SG SG

Level
1

2

3

4

5

6

7

8

Sm
al
l

SG

P

P

SG

P

P

SG

P

P9

10

M
ed
iu
m

P

SG SG

P P

SG

P

SG SG

P P

SG SG

P P

SG

P

SG

P

P

SG

P

SG

P

SG SG

P P

SG

P

SG

P

SG

P

SG

SG

P

P

SG

P

SG SG

P P

SG

P11

12

13

SG

P

SG

P

SG

P P

SG

P

SG

P

SG

P

14

15

SG

P

SG

P

SG SG

P P

SG

P

SG

SG

P

P

SG

P

SG

P

SG

P

SG

P P

SG

P

SG

P

La
rg
e

SG

P

SG

P

SG SG

P P

SG

P

SG

P

SG SG

P P

SG

P

SG SG

P P

SG

P

SG

P

SG

P

SG

SG

P

P

SG

P

SG

P

SG

P P

SG

P

SG

SG

P

P

SG

P

SG SG

P P

SG

P

Figure 6.1: Deep goal-plan tree showing the levels used for small, medium and
large goals

CHAPTER 6. EVALUATION 118

Reasoning
Random

Reasoning started Reasoning achieved
Random started Random Achieved

(a) General Petri net
model legend

CSP Standard
CSP Most Constrained
CSP Max Regret

CSP Standard started
CSP Standard achieved
CSP Most Constrained started
CSP Most Constrained achieved
CSP Max Regret started
CSP Max Regret achieved

(b) General constraints model
legend

0

7.5

15.0

22.5

30.0

10 20 30

Deep Med Res PN Goals varying num goals

N
u
m

b
e
r

o
f

G
o

a
ls

 S
ta

rt
e
d

/A
c
h
ie

v
e
d

Total Number of Goals

Reasoning started
Reasoning achieved
Random started
Random Achieved

(c) Petri net goals count legend

CSP Standard
CSP Most Constrained
CSP Max Regret

CSP Standard started
CSP Standard achieved
CSP Most Constrained started
CSP Most Constrained achieved
CSP Max Regret started
CSP Max Regret achieved

(d) Constraints goals count legend

Figure 6.2: The different legends for the result graphs of the Petri net and con-
straint models

The first point to notice from the results shown in figure 6.3(b) is the difference

between goals started and goals achieved for the reasoning and random Petri nets.

The reasoning Petri net only started goals it was able to achieve given the limited

availability of resources, while the random Petri net attempted to start all goals. As

a result, very few goals were actually achieved by the random Petri net, achieving

just 1 goal out of the 20 started in two of the repeats, and an average of 1 goal

over all out of the 30 goals started. In nearly half of the repeats from the Petri

net experiments with 30 goals, the random model did not achieve any goals, only

achieving 1 goal in a quarter of the repeats. In two of the repeats however, 4 and

5 goals were achieved indicating that is possible for a random selection to achieve

some goals occasionally. The results for the reasoning Petri net were much more

consistent, with all but one repeat achieving 3 goals out of 10, the other repeat

achieving 2 goals, similarly all but one repeat achieving 7 goals out of 20, with

the other repeat achieving 8. Out of the repeats for the experiments involving 30

goals, approximately half the repeats achieved 11 out of 30 and the other half 12

out of 30 for the reasoning Petri net. This is compared to the 11 goals out of 30

achieved by the constraint-based model.

As the total amount of resources increased, while still being limited propor-

tionally to the number of goals set, there was a greater chance for a goal adopted

CHAPTER 6. EVALUATION 119

0

4

8

12

16

20

10 20 30

T
im

e
 i
n

 S
e
c
o

n
d

s

Total Number of Goals

(a) Petri net Timing

0

6

12

18

24

30

10 20 30

N
u

m
b

e
r

o
f

G
o

a
ls

Total Number of Goals0

6

12

18

24

30

10 20 30

N
u

m
b

e
r

o
f

G
o

a
ls

Total Number of Goals

(b) Petri net Goals

0

120

240

360

480

600

10 20 30

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

0

6

12

18

24

30

N
u

m
b

e
r

o
f

G
o

a
ls

(c) Petri net Plans

0

160

320

480

640

800

10 20 30

T
im

e
 i
n

 S
e
c
o

n
d

s

Total Number of Goals

(d) Constraint Timing

0

3

6

9

12

15

10 20 30

N
u

m
b

e
r

o
f

G
o

a
ls

Total Number of Goals

0

100

200

300

400

500

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

0

100

200

300

400

500

10 20 30

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals0

100

200

300

400

500

10 20 30

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

(f) Constraint Plans

Figure 6.3: Results for setting: Medium sized deep tree, low resource availability,
high goal interaction, varying number of goals and reasoning about resources

early to be successful in the random Petri net resulting in the higher success rate

as the number of goals increased. These two occurrences were probably also made

possible by the large number of plans available for selection resulting in the ran-

dom occurrences where the plans selected did not compete for the same resources

allowing some goals to be occasionally achieved. As the average shows, this is

the exception and not the norm. Compared to the total number of goals started

though, and the total number achieved by the reasoning Petri net and constraints

model this is still not an acceptable success rate for the purely random selection

approach.

Comparing the results of the reasoning Petri net with those of the constraint-

based model show much greater consistency in the number of goals achieved. The

constraint model consistently achieved 11 goals out of 30 using 418 plans, while

the reasoning Petri net achieved an average of 11.5 goals using an average of 436

plans, or more precisely, 418 plans for each repeat where 11 out of 30 goals were

achieved, and exactly 456 plans where 12 out of 30 goals were achieved. This

equates to 38 plans per goal and is in fact the minimum number of plans required

CHAPTER 6. EVALUATION 120

to achieve the medium sized deep tree goal (see table 6.5 for the table of plans per

goal for the deep tree). The same is also true for the experiments using 10 and

20 goals, with both reasoning Petri net and constraint model using 114 plans to

achieve 3 out of 10 goals, and 266 plans to achieve 7 out of 20 goals.

When considering the timings for the running of the experiments, the reasoning

Petri net does add an increasing amount of time on to the time taken by the random

Petri net, 1.2, 2.4 and 3.6 seconds respectively. Along with the time actually taken

for the reasoning itself, the main reason for this should be clear as the extra goals

achieved will cause an increase in the time taken. Conversely, when comparing the

number of plans used between the reasoning and random Petri nets the explanation

is less clear as the random Petri net uses a greater number of plans yet achieves a

considerably smaller number of goals. The reason though is quite simply that plans

are being executed in an attempt to achieve all the goals in the random model and

not all the plans will consume any resources. Looking at the plan to goal ratio

though, with an average of 20 plans per goal adopted across all three sets, shows

that the average number of plans executed per goal adopted is insufficient for the

goals to have been achieved.

As is shown in figure 6.3(d), the effect of the different heuristics used by the

constraint solver was minimal. They made no different to the number of plans used

or goals achieved, and very little difference to the time taken. This difference is

most noticeable in the longer runs. In the experiment where there are 30 goals, the

Most Constrained heuristic took slightly longer than the other two. To be precise,

it was 12 seconds slower than the standard heuristic and 10 seconds slower than

the Maximum Regret heuristic. This is just 1.5% of the total time taken, so is a

relatively small difference. The CV values for the timings of each of the heuristics

is less than 0.2% showing the very small variance between the three repeats using

the constraint model.

The major difference however, occurs when the run times of the two different

approaches are compared. The reasoning Petri net takes 3.04 seconds (CV 13%)

to finish reasoning about 10 goals, while the constraint model takes 27 seconds

(CV 0.2%). This increased to 9.05 (CV 10%) and 222 seconds (CV 0.1%) for 20

goals, and 16 seconds (CV 5%) in the Petri net model compared to 755 seconds

(CV 0.15%) in the constraint model for 30 goals respectively. The coefficient of

CHAPTER 6. EVALUATION 121

variance decreasing in the Petri net model as the mean of the values increases.

However, when including the loading times of the two models the comparison is

much closer. As described in section 4.6, the production of the Petri net model

is a two stage process, firstly generating the files using a Petri net interchange

format that gives a concise definition of the Petri nets then importing these files

into Renew. As the reference nets need the file names of the referenced nets to

be specified the imported nets need to be saved using the file names specified in

the manager Petri net. Together this means there are two additional timings for

the Petri net model to import then save the files before they can be run. In the

constraints model, the files generated are already in the appropriate format for

GNU Prolog so can be loaded in one step ready for evaluation.

As can be seen in table 6.6, the time taken to import and save the files for the

Petri net model is considerably longer than that taken by the constraint model.

The total time taken to import and save the files is actually longer than the time

taken for the constraint model to find a solution, however the difference in the

time taken between loading the Petri net and the constraint solver reduces as the

number of goals increases. Part of the difference in loading times comes from the

file sizes produced for each model. The Prolog files for 10 goals are just 32Kb,

increasing to 87Kb for 30 goals, while the PNML files that are imported to Renew

start at 699Kb for 10 goals and increase in size to 2164Kb for 30 goals. Once these

are imported into Renew and saved in the Renew file format, the file size increases

even further up to 4723Kb for 10 goals and 9426Kb for 30 goals.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
10 22 26 21 26 0.116 0.112 0.114
20 88 212 87 207 0.307 0.306 0.310
30 222 686 218 531 0.586 0.603 0.601

Table 6.6: Load timings for setting: Medium sized deep tree, low resource availabil-
ity, high goal interaction, varying number of goals and reasoning about resources

Comparing the time taken between the reasoning Petri net and the random

Petri net models shows that the reasoning model does take slightly longer to load

CHAPTER 6. EVALUATION 122

with the additional transitions and places for the reasoning, the difference increas-

ing slightly as the number of goals increases. Once the Petri net model has been

loaded the time taken to run the experiments is much faster, allowing repeats to

be performed in a reasonable length of time if desired. Once loaded the Petri

nets can also be modified although currently this is a manual process that could

potentially be automated in the future.

The files used by the constraint model are all the same size, regardless of which

heuristic is being used. As a result the loading times for each heuristic only vary

slightly due to variances caused by the operating system and application whilst

loading the files.

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
10 61.80 90.10 61.40 95.45 5.74 6.73 5.75 6.74 5.75 6.74
20 77.74 127.38 105.32 125.66 6.13 7.93 6.13 7.94 6.14 7.95
30 132.17 159.93 173.00 180.00 6.45 9.00 6.45 9.06 6.45 9.03

Table 6.7: Memory usage for setting: Medium sized deep tree, low resource avail-
ability, high goal interaction, varying number of goals and reasoning about re-
sources

Similarly, the memory requirements for the constraint model have little vari-

ation once loaded and ready to run. When evaluating the constraints, the Most

Constrained and Maximum Regret heuristics do require slightly more memory for

the labelling of variables compared to the Standard heuristic, especially as the

number of goals increases and the list of variables to assign values to grows in size.

In addition to the extra loading time for the Petri net model, the memory

requirements for this model are considerably greater than those required by GNU

Prolog to perform the constraint reasoning, as shown in table 6.7. Recalling the

memory requirements stated above of the applications themselves, GNU Prolog

requires approximately 4.89Mb of memory and Renew 36.88 Mb. Using this, the

results show a small additional memory cost for the constraints model, while the

increase for the memory usage in the Petri net model is more significant with an

increase of 53.22 Mb when running 10 goals, increasing to 136.12 Mb for 30 goals.

The trade off here is between the speed of the reasoning and the amount of memory

CHAPTER 6. EVALUATION 123

required. However, when comparing the memory requirements for the reasoning

Petri net model to random Petri net there is a general decrease in the amount

of memory required when the reasoning is included, especially when there are 30

goals, with a decrease of 41Mb when in standby and 21Mb of memory required to

run the models.

Varying Resource Availability

In this second set, the number of goals in the system was maintained at 20, however,

the availability of the resources was gradually increased to the point where there

were sufficient resources available to achieve more than three quarters of the goals

in the system, provided they were not wasted. The results for the Petri net and

constraint model are shown in figure 6.4.

0

3

6

9

12

15

Low Medium High

T
im

e
 i
n

 S
e
c
o

n
d

s

Resource Availability

(a) Petri net Timing

0

4

8

12

16

20

Low Medium High

N
u

m
b

e
r

o
f

G
o

a
ls

Resource Availability

0

140

280

420

560

700

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

140

280

420

560

700

Low Medium High

N
um

b
er

 o
f P

la
ns

 U
se

d

Resource Availability

(c) Petri net Plans

0

80

160

240

320

400

Low Medium High

T
im

e
 i
n

 S
e
c
o

n
d

s

Resource Availability

(d) Constraint Timing

0

4

8

12

16

20

Low Medium High

N
u

m
b

e
r

o
f

G
o

a
ls

Resource Availability

0

140

280

420

560

700

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

0

140

280

420

560

700

Low Medium High

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Resource Availability0

140

280

420

560

700

Low Medium High

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Resource Availability

(f) Constraint Plans

Figure 6.4: Results for setting: Medium sized deep tree, high goal interaction, 20
goals, varying resource availability and reasoning about resources

As before, the reasoning Petri net is only starting the goals that it is able to

achieve given the resources available, and the number of goals started increases at

the availability of the resources increases. This time, the random Petri net is able

CHAPTER 6. EVALUATION 124

to achieve more goals than in the previous experiments, ranging from 0-3 goals at

medium availability and 3-9 goals at high levels of resource availability. However

even at high resource availability, the random Petri net still achieved less than

half the number of goals achieved by its reasoning counterpart. This is due to

it still starting goals where there were insufficient resources available to complete

them, thereby wasting resources and reducing the number of goals it can achieve.

The difference in plans used between the two different Petri nets did decrease as

the availability increased, showing that the random Petri net was getting closer to

achieving all its goals with an average plan to goal ratio of 34 when given a high

availability of resources. The reasoning Petri net was again using exactly 38 plans

per goal achieved.

When comparing the number of goals achieved between the two approaches

the results are the same except for the high availability, where the constraint

model consistently achieved 18 goals while the reasoning Petri net model achieved

an average of 16.5 goals, varying evenly between 16 and 17 goals on different

runs. While the Petri net model does contain reasoning to stop it from starting

goals it cannot achieve, the goals it selects to start are selected randomly while

there are sufficient resources available to definitely be able to achieve all the goals

started. This means that it is possible it will select goals with higher resource

requirements or goals with similar resource requirements such that in the case of

these experiments it runs out of one type of resource first, rather than attempting

to optimise the selection. While the constraint model also does not necessarily

optimise the number of goals achieved, it does sort them into order based on

the sum of all the resources that each goal will need, and starts from the lowest

requirements working up. This means that it may be able to achieve a few extra

goals by accepting those with slightly lower resource requirements than the other

goals, and leaving out those with the larger more expensive resource requirements.

An extension of this could be to consider the importance of each goal. Sort-

ing the top-level goals based on how important they are to ensure that they are

achieved first, before less important goals are executed and consume limited re-

sources.

Comparing the running and loading timings between the two approaches again

yields the largest difference with the reasoning Petri net taking 11.7 seconds (CV

CHAPTER 6. EVALUATION 125

4.7%) to simulate the model when resource availability is high, compared to the

340 seconds (CV 0.1%) required by the constraint model. There is a large jump

in the timings for the constraint model between the medium and high availability

due to the extra number of goals being achieved and the additional plans related

to them. Between low and medium, there are just 4 extra goals, however between

medium and high there are 7 extra goals, and this will add to the overall size of

the computation being performed.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
Low 88 212 87 207 0.307 0.306 0.310

Med. 88 212 86 214 0.309 0.317 0.321
High 88 212 85 213 0.315 0.317 0.313

Table 6.8: Load timings for setting: Medium sized deep tree, high goal interaction,
20 goals, varying resource availability and reasoning about resources

Table 6.8 shows the file loading times for the two models, again showing a

significant difference in the time taken to load the Petri net model files compared

to the constraint model. The changes to resource availability has no effect on the

load times or on the file sizes of either model, the file sizes being 1439 Kb for

the PNML and 9425 Kb for the Renew file format, compared to 60 Kb for the

GNU Prolog files. Comparing the total times taken for loading and reasoning,

the loading portion, which takes the longest for the Petri net model, is constant

regardless of the availability, while the constraint reasoning time increases as the

availability and hence number of goals increases. As a result, the total time taken

by the Petri net model at high resource availability is 311.7 seconds compared to

342.0 seconds in the constraint model.

Comparing the memory requirements of the two models, shown in table 6.9,

again shows that with the exception of the Petri net reasoning model for low

availability, which is an outlier, the standby requirements for both models are

consistent. When simulating the Petri net model the memory requirements still

remain relatively consistent despite the variation in the number of goals started.

However, in the constraint model, the memory requirement again increases as the

availability of resources increases and therefore the number of goals. This increase

CHAPTER 6. EVALUATION 126

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
Low 77.74 127.38 105.32 125.66 6.13 7.93 6.13 7.94 6.14 7.95

Med. 105.55 141.18 105.24 124.80 6.14 8.03 6.14 8.05 6.14 8.05
High 106.31 126.88 105.00 126.53 6.14 8.20 6.12 8.23 6.13 8.24

Table 6.9: Memory usage for setting: Medium sized deep tree, high goal interac-
tion, 20 goals, varying resource availability and reasoning about resources

still gives a memory requirement significantly lower than that used by the Petri

net model.

6.2.2 Positive Interaction

In this section, the focus is on reasoning about positive interaction. When rea-

soning about positive interaction, the experiments are set up such that all goals

are achievable by both models, and the random Petri net. The key result being

measured here is the number of plans used, and the effect this has on the time

taken. As a result, the graphs showing goals started and achieved are omitted as

all goals are always achieved.

Varying Tree Size

The first set of experiments applying the reasoning about positive interaction fo-

cuses on the effects of varying the size of tree used by the goals. The different sizes

of the deep tree can be found in figure 6.1 along with the plan requirements in

table 6.5. The level within the tree at which the plan interaction occurs in these

experiments has been set to a high level. This means that plans near the root

of the goal-plan tree will interact. This causes the greatest effect as the size of

the sub-tree from the plan that is dropped due to the merging is at its largest.

If the interaction occurred near the leaves, this would make very little difference

to the number of plans executed as there would be very few, if any, subgoals and

sub-plans to drop. The results for the Petri net and constraint models are shown

in figure 6.5.

The results show that where the tree size is small the effect of the positive

CHAPTER 6. EVALUATION 127

0

10

20

30

40

50

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Size

(a) Petri net Timing

0

260

520

780

1040

1300

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size0

260

520

780

1040

1300

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

(b) Petri net Plans

0

400

800

1200

1600

2000

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Size

0

400

800

1200

1600

2000

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Size0

400

800

1200

1600

2000

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

0

400

800

1200

1600

2000

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

(c) Constraint Timing

0

180

360

540

720

900

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

0

180

360

540

720

900

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size0

180

360

540

720

900

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

0

180

360

540

720

900

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

(d) Constraint Plans

Figure 6.5: Results for setting: Deep tree, high level positive interaction, high goal
interaction, 20 goals, varying tree size and reasoning about positive interaction

interaction is also small in terms of both plans saved and time taken. This is

because the size of the sub-tree and hence the number of sub-plans beneath the

interacting plans is quite small, so the saving is minimal. However, this saving

increases rapidly as the size of the tree, and hence the sub-trees being dropped,

increases. This is emphasised in the large tree where the number of plans used by

the reasoning Petri net is almost half that of those used by the random Petri net.

This saving is also echoed in the time taken. When fewer plans are being used,

the length of time taken is also reduced, by as much as 16.4 seconds for the large

size tree in the Petri net model.

In the small tree size, the random Petri net consistently uses 441 plans as all

the possible branches in the small deep tree contain the same number of plans.

The reasoning Petri net reduces this down to an average of 315.5 plans with a CV

of 0.7%. This increases to an average saving of 318 plans for 20 goals with a CV of

CHAPTER 6. EVALUATION 128

2.9% and a saving of 636 plans in the large tree with a CV of 3.6%. The variance

increases as the tree size increases due to the different sizes of the branch options

resulting in more variance in the number of plans used.

Comparing the number of plans used between the reasoning Petri net model

and the constraint model, it is clear that the constraint model has not achieved

such great savings as the reasoning Petri net model has managed to obtain, instead

requiring 900 plans for the large tree, 640 for the medium and 371 for the small

tree. However, there is still a significant reduction in the number of plans used

compared to those required by the random Petri net, with a 29.4% reduction in

the number of plans used for the large tree, along with 15.8% and 18.9% for the

small and medium sized trees respectively.

Compared to the reasoning about resources, both models take significantly

longer to finish. This is mainly due to the larger number of simultaneous goals

being considered and the number of plans involved as no goals are prevented from

starting due to a lack of resources. This is most noticeable in the large tree size

where the constraint model took 1731 seconds using the standard heuristic, and

an additional 7-9 seconds for the other two heuristics. This equates to nearly half

an hour for the solver to find a solution. Once loaded, the Petri net model only

takes 24 seconds, however as shown in table 6.10 the importing and saving times

for the Petri net model are again significantly larger than those for the constraint

model.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
Small 24 57 20 21 0.110 0.109 0.108
Med. 93 217 80 191 0.318 0.313 0.313
Large 376 738 345 692 0.882 0.884 0.881

Table 6.10: Load timings for setting: Deep tree, high level positive interaction,
high goal interaction, 20 goals, varying tree size and reasoning about positive
interaction

The reasoning Petri net model again takes slightly longer to load than the

random Petri net model, with the difference here being more noticeable, especially

with the large tree size. This difference is again due to the inclusion of models

CHAPTER 6. EVALUATION 129

for reasoning about the interactions, with the extra time taken here of 77 seconds

outweighing the saving of 16 seconds saved by the reasoning. Comparing the

total time of the reasoning Petri net model, 1137 seconds, to that of the constraint

model, 1731 seconds, the Petri net is still slightly faster at performing the reasoning

and also offers the better results based on plans used for these settings. However,

comparing the memory requirements shown in table 6.11 again shows the Renew

application simulating the Petri net model using markedly more memory than

GNU Prolog for evaluating the constraint model. The reduction in the number of

plans used is mirrored in the memory used for the Petri net model for the large

tree size where the reduction is the greatest, however the reduction is not large

enough for the smaller tree sizes to counter the additional memory required for

the reasoning itself.

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
Small 79.97 91.36 77.79 88.14 5.61 6.21 5.60 6.23 5.60 6.23
Med. 107.02 143.73 105.04 136.03 6.09 7.39 6.09 7.43 6.10 7.45
Large 154.77 188.04 99.43 213.51 6.86 9.22 6.86 9.26 6.87 9.30

Table 6.11: Memory usage for setting: Deep tree, high level positive interaction,
high goal interaction, 20 goals, varying tree size and reasoning about positive
interaction

The load times and memory usage are a reflection of the file sizes for the two

models, with the files for the constraint model starting at 36 Kb for the small

tree size and increasing to 116 Kb for the large tree size. In comparison, the

Petri net model starts at 804 Kb for the initial PNML file format containing the

representation for the small goal-plan trees, which increases to 5389 Kb when

imported to the Renew file format and the large tree taking 2760 Kb in the PNML

file format and 18141 Kb once loaded into Renew.

Varying Positive Interaction Level

Having looked at the effect of tree size on the positive interaction reasoning of the

two models, this next set of experiments looks at the effect of varying the level

at which the positive interaction occurs. This is done using the medium sized

CHAPTER 6. EVALUATION 130

deep tree and 20 goals with high levels of goal interaction between them. This

high level of interaction simply refers to the amount of interaction between the

different goals, while the positive interaction level refers to the depth within the

tree that the interaction actually takes place. The goals are again all designed to

be achievable by both models and without reasoning, so the graphs showing goals

started and achieved are omitted. The results for the Petri net and constraint

model are shown in figure 6.6.

0

3

6

9

12

15

High Level Mid Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

Positive Interaction Level

0

3

6

9

12

15

High Level Mid Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

Positive Interaction Level0

3

6

9

12

15

High Level Mid Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

0

3

6

9

12

15

High Level Mid Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

0

160

320

480

640

800

High Level Mid Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Positive Interaction Level

0

160

320

480

640

800

High Level Mid Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Positive Interaction Level0

160

320

480

640

800

High Level Mid Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Positive Interaction Level

0

160

320

480

640

800

High Level Mid Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Positive Interaction Level

(b) Petri net Plans

Small Medium Large

Small Medium Large

0

82

164

246

328

410

High Level Mid Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

Positive Interaction Level0

82

164

246

328

410

High Level Mid Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

(c) Constraint Timing

Small Medium Large

Small Medium Large

0

160

320

480

640

800

High Level Mid Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Positive Interaction Level0

160

320

480

640

800

High Level Mid Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Positive Interaction Level

(d) Constraint Plans

Figure 6.6: Results for setting: Medium sized deep tree, high goal interaction, 20
goals, varying positive interaction level and reasoning about positive interaction

As described above, the impact of the positive interaction is greatest when

the positive interaction occurs at a high level within the goal-plan tree. When

occurring at a lower level, the reduction in the number of plans and time saved is

quite small, for the same reasons as those for the small tree size in the previous

set of experiments. For the constraint model, the number of plans used in the

experiments for interaction at a low level in the goal-plan tree was 780 compared

CHAPTER 6. EVALUATION 131

to the 787 used by the random Petri net, giving a saving of just 7 plans, while the

reasoning Petri net was able to save an average of 79 plans with a CV of 0.6%.

Clearly the saving from the constraint model does not justify the extra time taken

for reasoning about the interaction at the lower level, however when the positive

interaction occurs at high levels in the goal-plan tree both models, in particular

the Petri net model, make considerable savings on the number of plans used.

In the experiments applying the positive interaction at a high level, the reason-

ing Petri net used just 471.6 plans on average, as opposed to the 789.6 plans used

by the random Petri net. This leads to the reasoning Petri net using just 23.58

plans per goal, compared to the 39.48 needed by the random Petri net, an overall

saving of 15.9 plans per goal, which is a significant saving. This saving reduces to

12.11 plans for the mid level, and just 3.97 plans per goal at low level using the

reasoning Petri net. This saving is again mirrored in the time taken for the simu-

lation of the Petri net model, with a reduction of 4.3 seconds for interactions at a

high level in the goal-plan trees, dropping to an average saving of just 0.2 seconds

for interactions at a low level, with the CV being just 5% for the timings of the

experiments. The additional times for loading the models are shown in table 6.12.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
High 93 217 80 191 0.318 0.313 0.313
Mid 96 223 77 193 0.307 0.307 0.309
Low 111 224 81 201 0.306 0.310 0.310

Table 6.12: Load timings for setting: Medium sized deep tree, high goal inter-
action, 20 goals, varying positive interaction level and reasoning about positive
interaction

Despite the Petri net model having a faster run time than the constraint-based

model, the combined load and run times of the Petri net experiments are much

slower. The slowest of these totalling to 349 seconds for the Petri net model to

load and run a simulation of the interaction occurring at low levels. This is slightly

slower than the total time taken for the constraint model to evaluate the interaction

at high levels, 324 seconds, but faster than the evaluation of the constraints at mid

and low levels in the tree, 354 and 408 seconds respectively.

CHAPTER 6. EVALUATION 132

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
High 107.02 143.73 105.04 136.03 6.09 7.39 6.09 7.43 6.10 7.45
Mid 108.41 131.55 105.51 135.69 6.10 7.30 6.09 7.35 6.10 7.36
Low 124.00 138.58 104.99 123.64 6.09 7.15 6.10 7.19 6.10 7.22

Table 6.13: Memory usage for setting: Medium sized deep tree, high goal inter-
action, 20 goals, varying positive interaction level and reasoning about positive
interaction

Comparing the file sizes to those produced for reasoning about resources, the

positive interaction generates slightly larger files for the Petri net model, while the

constraint model files are slightly smaller. This is reflected in the memory usage,

shown in table 6.13, where the differences in file sizes are exaggerated between the

reasoning for positive interaction in this set of experiments compared to those for

the resource reasoning with 20 goals. The Petri net model for reasoning about

resources required an average of 96.5 Mb of memory once loaded and waiting to

run, while the average memory used for the Petri net model of positive interaction

is 113.1 Mb. The run time usage is slightly closer for the two types of reasoning

however this is due to the reduction in plans used in this set and the reduction in

the number of goals adopted in the resource reasoning.

In the constraint-based model this difference is reversed requiring an average

of 6.14 Mb of memory to load the files for resource reasoning before starting the

evaluation, while only needing an average of 6.09 Mb for loading the positive

reasoning constraints into memory.

6.2.3 Negative Interference

Here we now consider the results for reasoning about negative interference inde-

pendently of the other two types of reasoning. The experiments for the negative

reasoning were set up such that the goals were all achievable provided careful plan

selection was made. These experiments illustrate the effectiveness of the reasoning

under high levels of negative interference.

CHAPTER 6. EVALUATION 133

Varying Tree Size

As with the positive interaction, for reasoning about negative interference we start

by varying the tree size using 20 top-level goals. A long duration of interference is

applied, meaning that the length of time during which interference could occur is

set at its maximum, as described in section 6.1.

For the deep tree in particular, there are a lot of subgoals and sub-plans between

the writing and reading of the variables, and the plans for many other goals will

also be attempting to write their own values to the same variables. Therefore,

the reasoning must protect the variables once set until they have been read and

the values can be discarded. This involves sequencing the plans such that the

interference will not occur and all goals can be achieved.

The results for the Petri net and constraint-based models are shown in fig-

ure 6.7.

0

14

28

42

56

70

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Size

0

14

28

42

56

70

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Size0

14

28

42

56

70

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

0

14

28

42

56

70

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

Small Medium Large

Tree Size

Small Medium Large

Tree Size

0

4

8

12

16

20

Small Medium Large

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Size

0

4

8

12

16

20

Small Medium Large

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Size

0

260

520

780

1040

1300

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

260

520

780

1040

1300

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

260

520

780

1040

1300

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

0

260

520

780

1040

1300

Small Medium Large
N

u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size0

260

520

780

1040

1300

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

0

260

520

780

1040

1300

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

(c) Petri net Plans

Small Medium Large

Small Medium Large

0

1200

2400

3600

4800

6000

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Size0

1200

2400

3600

4800

6000

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

(d) Constraint Timing

Small Medium Large

Small Medium Large

Small Medium Large

Tree Size

0

4

8

12

16

20

Small Medium Large

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Size

0

260

520

780

1040

1300

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

Small Medium Large

Small Medium Large

0

260

520

780

1040

1300

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size0

260

520

780

1040

1300

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

(f) Constraint Plans

Figure 6.7: Results for setting: Deep tree, long duration negative interference,
high goal interaction, 20 goals, varying tree size and reasoning about negative
interference

The first thing to notice in figure 6.7(b) is the small number of goals being

achieved by random Petri net. The highest success is achieved with a small tree,

CHAPTER 6. EVALUATION 134

where the depth is the least and therefore the duration of the interaction is also

shortest. On average, the random Petri net when applied to the small tree was

able to able to achieve 1.2 goals, with one repeat achieving 3 goals and two repeats

achieving 2 goals out of the 20 started. As a result of this, the random Petri net

also has slightly fewer plans used as it is the leaf plans where the interference is

noticed so only stops a few plans from being executed. In contrast, the reasoning

Petri net and constraint models consistently achieved all the goals.

The average number of plans used per goal by the reasoning Petri net were

22, 39.4 and 63.7 respectively, while the constraint model used 22, 41, 63 plans

per goal respectively. The CV for the plans used in the Petri net model is 0%,

0.4% and 0.8% respectively showing that there is very little variation between

the individual repeats of the experiments. The extra plans used by the constraint

model for the medium sized tree is due to the slightly larger size of the first options

in the branches within the tree. The number of plans are still within the range of

plans required and in this set the plans themselves do not have any specific costs

such as resource consumption so the extra plans do not cause any problems. In

section 6.2.4, where the negative reasoning is combined with resource reasoning, it

is shown that the minimum number of plans required is used in order to minimise

the amount of resources consumed by individual goals.

Considering timing, the length of time taken by the random Petri net is signifi-

cantly more than that required by the reasoning Petri net for each of the tree sizes,

particularly for the large tree. This is due to the random nature of the Petri net

unsuccessfully attempting to execute lots of different plans in the different goals,

all attempting to access the variables at the same time, so constantly changing

the values. This has the effect of slowing down the simulation, while the reasoning

Petri net manages the order in which plans are selected, and by doing so prevents

unnecessary firing of transitions in the Petri net that would otherwise slow down

the simulation. The CV for the timings in both the reasoning and random Petri net

is just 5% showing a very small amount of variation between the various repeats.

In the constraint model, the standard heuristic took slightly longer than the

other two heuristics showing that in this reasoning there was additional backtrack-

ing caused by the constraints that could have been avoided by applying a heuristic

to the model. The time difference caused in this case is only small, equating to

CHAPTER 6. EVALUATION 135

45 seconds between the standard and maximum regret heuristics, out of the 5598

seconds taken by the standard heuristic in total.

Comparing the timing of the Petri nets to the constraint model again reveals a

large difference in the length of time taken, with the negative interference reasoning

also being the slowest out of all three types of reasoning, due to the fact that all

the plans in all the goals are having to be considered, whereas in the other two

types either whole goals could be dropped due to insufficient resources, or sub-trees

could be dropped where there is a positive interaction with another related goal.

The effect of this increase in scale is most greatly felt by the constraint model,

where given the large tree size with the largest number of plans and subgoals, the

reasoning now takes on average 5574 seconds or 92.9 minutes to finish. The large

increase in time between the medium tree size and large tree size is due to the

number of additional plans between the two tree sizes. In this deep tree, moving

from the small to medium tree adds 27 extra plans per goal, while moving from

the medium to large tree size adds a further 46 plans per goal to reason about. As

the negative interference reasoning is mainly focused on finding a safe sequence of

plans to avoid interference this large jump in time taken is to be expected.

Even when including the load times shown in table 6.14, the total times for

each of the tree sizes is faster for the Petri net model than for the constraint

model. The rate of increase in the Petri net model is also slower than that for

the constraint model so for the negative reasoning the tree sizes and number of

goals involved would probably need to be quite small for the constraint model to

perform better with this type of reasoning.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
Small 20 24 19 23 0.111 0.108 0.108
Med. 89 204 80 193 0.310 0.310 0.308
Large 349 707 338 921 0.883 0.879 0.875

Table 6.14: Load timings for setting: Deep tree, long duration negative interfer-
ence, high goal interaction, 20 goals, varying tree size and reasoning about negative
interference

Comparing the file sizes for the two models, the representations for the negative

CHAPTER 6. EVALUATION 136

interaction in both models actually produce slightly smaller files than those used

by the positive interaction reasoning. As shown in table 6.15, there is a small

reflection of this in the memory used once the files have been loaded and before

being run, between the negative interaction here and the positive interaction when

varying tree size, particularly in the reasoning Petri net model.

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
Small 77.67 88.88 76.57 93.69 5.59 6.54 5.59 6.57 5.60 6.58
Med. 105.92 137.32 104.18 139.66 6.07 7.52 6.08 7.58 6.09 7.59
Large 152.27 213.16 153.35 212.57 6.84 8.96 6.86 9.06 6.87 9.10

Table 6.15: Memory usage for setting: Deep tree, long duration negative interfer-
ence, high goal interaction, 20 goals, varying tree size and reasoning about negative
interference

Varying Negative Interference Level

While in the previous set of experiments, the interference level was set to the max-

imum to give the longest duration of interference, in this set of experiments that

level or duration is being varied by varying the height at which the interference

starts within the tree, in the same way as with the positive interaction level ex-

periments. The medium tree size is used for 20 goals, and the results are shown

in figure 6.8.

Out of the 20 goals started, the random Petri net is able to attain a slight

increase in the number of goals achieved as the level of negative interference de-

creases. However, at an average of 1.5 goals out of 20 for short periods of inter-

ference this is still a very poor result, even for the single repeat that achieved 4

goals, which shows the necessity for adding in reasoning. Interestingly, the number

of plans used by the random Petri net also decreases as the level of the interac-

tion decreases. This is a similar effect to the positive interaction, in this case the

duration of the interaction is reduced by setting plans nearer to the root to read

the variables, rather than moving the plans doing the writing down the tree. As

a result, when the interference occurs it prevents a greater number of sub-plans

from being used. This reduction in plans also leads to a reduction in the length of

CHAPTER 6. EVALUATION 137

0

6

12

18

24

30

Long Med Short

T
im

e
 i
n

 S
e
c
o

n
d

s

Negative Interference Duration

0

6

12

18

24

30

Long Med Short

T
im

e
 i
n

 S
e
c
o

n
d

s

Negative Interference Duration

(a) Petri net Timing

0

4

8

12

16

20

Long Med Short

N
u

m
b

e
r

o
f

G
o

a
ls

Negative Interference Duration

0

4

8

12

16

20

Long Med Short

N
u

m
b

e
r

o
f

G
o

a
ls

Negative Interference Duration

0

160

320

480

640

800

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

160

320

480

640

800

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

160

320

480

640

800

Long Med Short

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Negative Interference Duration

0

160

320

480

640

800

Long Med Short

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Negative Interference Duration0

160

320

480

640

800

Long Med Short

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Negative Interference Duration

0

160

320

480

640

800

Long Med Short

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Negative Interference Duration0

160

320

480

640

800

Long Med Short

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

160

320

480

640

800

Long Med Short

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(c) Petri net Plans

Long Med Short

Negative Interference Duration

0

282

564

846

1128

1410

Long Med Short

T
im

e
 i
n

 S
e
c
o

n
d

s

Negative Interference Duration

N
u

m
b

e
r

o
f

G
o

a
ls

 S
ta

rt
e
d

/A
c
h

ie
v
e
d

(d) Constraint Timing

Long Med Short

Negative Interference Duration

0

4

8

12

16

20

Long Med Short

N
u

m
b

e
r

o
f

G
o

a
ls

Negative Interference Duration

0

164

328

492

656

820

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

Long Med Short

Negative Interference Duration

Long Med Short

Negative Interference Duration

Long Med Short

0

164

328

492

656

820

Long Med Short

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Negative Interference Duration0

164

328

492

656

820

Long Med Short

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Negative Interference Duration0

164

328

492

656

820

Long Med Short

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(f) Constraint Plans

Figure 6.8: Results for setting: Medium sized deep tree, high goal interaction, 20
goals, varying negative interference level and reasoning about negative interference

time taken for the random Petri net to complete, although still longer than that

of the reasoning Petri net, which changes very little in the length of time taken to

complete a simulation. This is also true for the constraint model whose timing is

consistent for all three levels of negative interference as the number of plans being

scheduled remains consistent.

The constraint model again uses 41 plans per goal, while the reasoning Petri

net uses an average of 39.5 plans per goal across all three levels with a CV of

0.9% over the total number of plans used. While the time taken by the constraint

model is again consistent between the three heuristics, the standard heuristic does

show a greater time taken over the other two heuristics as was seen when varying

the tree size. This variation between the three heuristics is still small compared

to the total time taken for the reasoning as a whole. The loading times shown in

table 6.16 again show that the total time taken for the Petri net to load and run

a simulation is still significantly less than that taken by the constraint model.

As the tree sizes are all consistent the load times and in particular the memory

usage, shown in table 6.17 are relatively consistent throughout and again less than

CHAPTER 6. EVALUATION 138

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
Long 89 204 80 193 0.310 0.310 0.308
Med. 83 204 81 192 0.314 0.328 0.319
Short 85 201 82 199 0.306 0.305 0.309

Table 6.16: Load timings for setting: Medium sized deep tree, high goal inter-
action, 20 goals, varying negative interference level and reasoning about negative
interference

the requirements and load times for the positive interaction models with equivalent

settings.

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
Long 105.92 137.32 104.18 139.66 6.07 7.52 6.08 7.58 6.09 7.59
Med. 105.39 126.76 105.07 123.71 6.08 7.52 6.08 7.58 6.08 7.58
Short 105.53 126.95 104.19 125.26 6.07 7.52 6.07 7.59 6.08 7.59

Table 6.17: Memory usage for setting: Medium sized deep tree, high goal inter-
action, 20 goals, varying negative interference level and reasoning about negative
interference

Varying Goal Interaction Level

The previous set was concerned with varying the level or duration of the negative

interference. This was done at a high level of goal interaction where a lot of goals

were contending for the same variables. In this set, the level at which the negative

interference occurs is maintained, while the amount of interaction between goals

is varied. This is accomplished by reducing the number of variables referred to by

each goal so that each variable is used by a smaller number of goals, leading to a

reduction in the competition between goals for a particular variable. The results

for the Petri net and constraint models are shown in figure 6.9.

As with the previous set where the performance of the random Petri net in-

creased as the duration of the interference reduced, here the performance of the

random Petri net improves as the level of interaction decreases. This time however,

CHAPTER 6. EVALUATION 139

0

6

12

18

24

30

High Level Mod Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

Goal Interaction Level

0

6

12

18

24

30

High Level Mod Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

Goal Interaction Level0

6

12

18

24

30

High Level Mod Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

0

6

12

18

24

30

High Level Mod Level Low Level

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

High Level Mod Level Low Level

Goal Interaction Level

High Level Mod Level Low Level

Goal Interaction Level

0

4

8

12

16

20

High Level Mod Level Low Level

N
u

m
b

e
r

o
f

G
o

a
ls

Goal Interaction Level

0

4

8

12

16

20

High Level Mod Level Low Level

N
u

m
b

e
r

o
f

G
o

a
ls

Goal Interaction Level

0

158

316

474

632

790

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

158

316

474

632

790

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

158

316

474

632

790

High Level Mod Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Goals Interaction Level

0

158

316

474

632

790

High Level Mod Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Goals Interaction Level0

158

316

474

632

790

High Level Mod Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Goals Interaction Level

0

158

316

474

632

790

High Level Mod Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Goals Interaction Level

(c) Petri net Plans

High Level Mod Level Low Level

High Level Mod Level Low Level

0

274

548

822

1096

1370

High Level Mod Level Low Level

T
im

in
g

 i
n

 S
e
c
o

n
d

s

Goal Interaction Level0

274

548

822

1096

1370

High Level Mod Level Low Level

T
im

in
g

 i
n

 S
e
c
o

n
d

s

(d) Constraint Timing

High Level Mod Level Low Level

High Level Mod Level Low Level

High Level Mod Level Low Level

Goal Interaction Level

0

4

8

12

16

20

High Level Mod Level Low Level

N
u

m
b

e
r

o
f

G
o

a
ls

Goal Interaction Level

0

164

328

492

656

820

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

High Level Mod Level Low Level

High Level Mod Level Low Level

0

164

328

492

656

820

High Level Mod Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Goal Interaction Level0

164

328

492

656

820

High Level Mod Level Low Level

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Goal Interaction Level

(f) Constraint Plans

Figure 6.9: Results for setting: Medium sized deep tree, long duration negative
interference, 20 goals, varying goal interaction and reasoning about negative inter-
ference

the effect is more substantial, with the random Petri net achieving an average of

5.3 goals out of 20 at low levels of goal interference. The number of goals achieved

is quite consistent in the random Petri net with a range from 5-6 goals. This is still

very low when compared to what is shown to be possible by using reasoning. In

addition, the reasoning Petri net model, as explained previously, is in fact nearly

8 seconds faster than the random Petri net for this experimental setting, despite

achieving the additional goals.

The number of plans used by the reasoning Petri net and constraint models is

consistent throughout, despite the change in levels of interaction as the interaction

does not affect the plans used, simply the order in which they are used. As before,

the constraint model is using 41 plans per goal and the reasoning Petri net is

averaging 39.5 plans per goal with a CV of 0.8%. The plans used by the random

Petri net do increase slightly as the number of goals achieved increases, but still

less than those required to achieve all goals.

Within the constraints model, there is very little variation in the timings again,

CHAPTER 6. EVALUATION 140

even between the different levels of goal interaction. As with the Petri net model,

this is due to the reasoning being based on the scheduling of plans rather than

on the plans used and it is this scheduling that takes the same length of time.

When comparing these results to the previous set where the negative interference

duration was being modified, the timings are approximately the same for this as

well.

Adding in the load times for the two models, shown in table 6.18 again shows

the sizes of the models and hence the load times are not changed by the variation in

the level of goal interactions. The total time required for loading and simulating

the reasoning Petri net is still less than the total time taken for the constraint

model to find a solution.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
High 89 204 80 193 0.310 0.310 0.308
Med. 83 200 81 193 0.321 0.310 0.309
Low 84 195 83 195 0.306 0.313 0.305

Table 6.18: Load timings for setting: Medium sized deep tree, long duration neg-
ative interference, 20 goals, varying goal interaction and reasoning about negative
interference

The memory used, (see table 6.19), shows little variation for both the standby

and running memory usage when varying the amount of goal interaction. In the

constraint model, there is a slight reduction in the runtime memory usage as the

level of interaction reduces, indicating the reduction in the number of plans causing

conflict constraints that need to be scheduled, however this does not show up in

the timings for the model.

6.2.4 Combined Reasoning

So far each of the types of reasoning have been analysed on their own to show their

individual benefits and costs. By combining the reasoning, the benefits gained may

be even greater than those gained using the three types of reasoning individually.

In this section we will be combining the reasoning firstly in pairs, then all three

CHAPTER 6. EVALUATION 141

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
High 105.92 137.32 104.18 139.66 6.07 7.52 6.08 7.58 6.09 7.59
Med. 104.71 141.13 105.04 123.79 6.08 7.28 6.08 7.34 6.07 7.34
Low 106.00 135.79 104.46 123.32 6.07 7.13 6.07 7.20 6.08 7.21

Table 6.19: Memory usage for setting: Medium sized deep tree, long duration neg-
ative interference, 20 goals, varying goal interaction and reasoning about negative
interference

types combined together to examine the combined effects of the reasoning. A single

setup has been used across all combinations, namely, 20 goals using the medium

sized tree with low resource availability and high levels of positive, negative and

goal interaction as described in the previous experiments. The results for the Petri

net and constraint models are shown in figure 6.10, and for ease of reference the

individual types of reasoning for the same settings are shown in 6.11.

0

6

12

18

24

30

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Combination

0

6

12

18

24

30

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Combination
0

6

12

18

24

30

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n

 S
e
c
o

n
d

s

0

6

12

18

24

30

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

0

6

12

18

24

30

ResPos ResNeg PosNeg ResPosNeg

Reasoning Combination

0

6

12

18

24

30

ResPos ResNeg PosNeg ResPosNeg

Reasoning Combination

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Combination

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Combination

0

160

320

480

640

800

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

160

320

480

640

800

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

160

320

480

640

800

ResPos ResNeg PosNeg ResPosNeg

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Combination

0

160

320

480

640

800

ResPos ResNeg PosNeg ResPosNeg

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Combination
0

160

320

480

640

800

ResPos ResNeg PosNeg ResPosNeg

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Combination

0

160

320

480

640

800

ResPos ResNeg PosNeg ResPosNeg

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Combination

(c) Petri net Plans

ResPos ResNeg PosNeg ResPosNeg

ResPos ResNeg PosNeg ResPosNeg

0

160

320

480

640

800

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Combination
0

160

320

480

640

800

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n

 S
e
c
o

n
d

s

0

6

12

18

24

30

T
im

e
 i
n

 S
e
c
o

n
d

s

0

6

12

18

24

30

T
im

e
 i
n

 S
e
c
o

n
d

s

(d) Constraint Timing

ResPos ResNeg PosNeg ResPosNeg

ResPos ResNeg PosNeg ResPosNeg

0

160

320

480

640

800

ResPos ResNeg PosNeg ResPosNeg

Reasoning Combination

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Combination

0

140

280

420

560

700

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

4

8

12

16

20

N
u

m
b

e
r

o
f

G
o

a
ls

0

160

320

480

640

800

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

ResPos ResNeg PosNeg ResPosNeg

ResPos ResNeg PosNeg ResPosNeg

0

140

280

420

560

700

ResPos ResNeg PosNeg ResPosNeg

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Combination
0

140

280

420

560

700

ResPos ResNeg PosNeg ResPosNeg

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Combination

0

160

320

480

640

800
N

u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

0

160

320

480

640

800

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(f) Constraint Plans

Figure 6.10: Results for setting: Medium sized deep tree, low resource availabil-
ity, high level positive interaction, long duration negative interference, high goal
interaction, 20 goals, varying reasoning combinations

CHAPTER 6. EVALUATION 142

0

6

12

18

24

30

Resources Positive Negative

Reasoning Type

0

6

12

18

24

30

Resources Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Type

0

6

12

18

24

30

Resources Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Type0

6

12

18

24

30

Resources Positive Negative
0

6

12

18

24

30

Resources Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

0

6

12

18

24

30

Resources Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

Resources Positive Negative

Reasoning Type

Resources Positive Negative

Reasoning Type

Resources Positive Negative

Reasoning Type

0

4

8

12

16

20

Resources Positive Negative

Reasoning Type

0

4

8

12

16

20

Resources Positive Negative

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Type

0

4

8

12

16

20

Resources Positive Negative

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Type

0

160

320

480

640

800

0

160

320

480

640

800

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

160

320

480

640

800

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

160

320

480

640

800

Resources Positive Negative

Reasoning Type

0

160

320

480

640

800

Resources Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type

0

160

320

480

640

800

Resources Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type0

160

320

480

640

800

Resources Positive Negative

Reasoning Type

0

160

320

480

640

800

Resources Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type

0

160

320

480

640

800

Resources Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type

(c) Petri net Plans

Resources Positive Negative

Resources Positive Negative

0

300

600

900

1200

1500

Resources Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Type0

300

600

900

1200

1500

Resources Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

(d) Constraint Timing

Resources Positive Negative Resources Positive Negative

Reasoning Type

Resources Positive Negative
0

4

8

12

16

20

Resources Positive Negative

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Type

0

180

360

540

720

900

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

Resources Positive Negative

Resources Positive Negative

0

180

360

540

720

900

Resources Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type0

180

360

540

720

900

Resources Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type

(f) Constraint Plans

Figure 6.11: Comparison results for medium sized deep tree, individual reasoning
types

The first point to note from these combined results comes from the combination

of resource reasoning with negative reasoning. In terms of the reasoning Petri net

this makes very little difference, however the random Petri net is unable to achieve

any goals. Between running out of resources and goals interfering it is highly

unlikely that a random selection will find a successful ordering of plans under

these circumstances.

The most interesting combination is that of resource reasoning combined with

positive interaction reasoning. As the positive reasoning reduces the number of

plans needed, and some of these plans would have consumed resources this means

that the overall resource requirements of a goal can drop significantly. As a result,

more goals can be achieved given the same amount of resources, so instead of just

achieving 7 goals, the reasoning Petri net with the combined reasoning is now able

to achieve 13-15 goals using the same amount of resources. In addition to this,

the random selection of goals started when all types of reasoning are included in

the Petri net model allows additional goals to be started, bringing the average up

to 15 goals. However, as shown by the constraint model, this is purely due to the

CHAPTER 6. EVALUATION 143

random order in which the goals are selected as the number of goals completed by

the constraint model when resource and positive interaction reasoning are included

is the same as for when all the types of reasoning are included, where the constraint

model consistently achieves 15 goals.

The timing for the combination of positive and negative interaction for both the

Petri nets and the constraint models are the longest as expected due to the larger

number of goals and plans being used, however it is quite interesting to note that

the timing for the combinations of resource & positive and resource & negative are

almost identical, despite the resource & positive achieving more goals. However,

when looking at the number of plans used, these are also almost identical for the

Petri net as the same number of plans will consume the same amount of resources.

Equally interesting is the difference between the reasoning and random Petri nets

for the positive & negative combination. In this experiment, the random model is

considerably slower, using substantially more plans while only achieving one goal

during four repeats and an overall average of just 0.3 goals.

As with the individual types of reasoning, the Petri net model is able to make

greater savings in terms of the number of plans used when reasoning about positive

interaction. This does not affect the performance when combined with resource

reasoning as the same number of goals are achieved even though more plans are

used, as not all the plans will consume resources. In addition, the constraint model

is sorting the goals into order of increasing resource requirements so more goals

can be achieved. In comparison, where the Petri net is using fewer plans, the range

of goals achieved for all three types of reasoning combined varies from 13 to 18,

with just one repeat at each extreme. If the order in which the goals for the Petri

net model were selected was sorted by resource requirements, it is possible that

more goals would be consistently achieved here with the lower number of plans

being used.

Comparing the timings of the various combinations, it is clear to see that

the reasoning about the negative interference is the slowest of the three types of

reasoning individually and slows down any combination of reasoning where it is

included. While the resource & positive combination and the resource & negative

combination in the constraint model seem to take roughly the same length of time,

it should be noted that the first combination achieves more goals and uses slightly

CHAPTER 6. EVALUATION 144

more plans than the second combination.

When considering the load times for the different combinations of reasoning

in the two models, as shown in table 6.20 and comparing them to those for the

individual types of reasoning, as shown in table 6.21 it is clear to see that the

combined reasoning produces larger files and that they take longer to load for both

models. As with the individual types of reasoning in the first set of experiments,

when the loading times for the resource & positive reasoning combination are

included into the total simulation time for the Petri net model, then the constraint

model is faster. This is repeated for the resource & negative combination; the

constraint model is also slightly faster for the three types of reasoning combined

together.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
ResPos 101 249 86 203 0.317 0.309 0.315
ResNeg 91 222 85 212 0.315 0.310 0.313
PosNeg 96 230 82 196 0.322 0.307 0.305

ResPosNeg 105 261 88 207 0.308 0.309 0.321

Table 6.20: Load timings for setting: Medium sized deep tree, low resource avail-
ability, high level positive interaction, long duration negative interference, high
goal interaction, 20 goals, varying reasoning combination

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
Res 88 212 87 207 0.307 0.306 0.310
Pos 93 217 80 191 0.318 0.313 0.313
Neg 89 204 80 193 0.310 0.310 0.308

Table 6.21: Load timings for comparison results of medium sized deep tree, indi-
vidual reasoning types

Finally comparing the memory used for each combination of reasoning in the

two models, shown in table 6.22, against the individual types of reasoning shown

in table 6.23, the increase in the file sizes can again be seen in the increased

memory requirements for the two models. When evaluating the constraint model,

CHAPTER 6. EVALUATION 145

the memory requirements are more pronounced as the additional constraints need

to be taken into account for the two models together.

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
ResPos 80.14 147.29 105.35 142.20 6.14 8.04 6.15 8.06 6.16 8.07
ResNeg 108.00 138.29 106.76 127.27 6.15 8.00 6.15 8.00 6.15 8.01
PosNeg 108.90 130.94 105.29 135.94 6.10 7.82 6.11 7.87 6.11 7.88

ResPosNeg 110.40 133.26 106.13 137.61 6.17 8.27 6.16 8.29 6.15 8.29

Table 6.22: Memory usage for setting: Medium sized deep tree, low resource
availability, high level positive interaction, long duration negative interference,
high goal interaction, 20 goals, varying reasoning combination

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
Res 77.74 127.38 105.32 125.66 6.13 7.93 6.13 7.94 6.14 7.95
Pos 107.02 143.73 105.04 136.03 6.09 7.39 6.09 7.43 6.10 7.45
Neg 105.92 137.32 104.18 139.66 6.07 7.52 6.08 7.58 6.09 7.59

Table 6.23: Memory usage for comparison results of medium sized deep tree,
individual reasoning types

6.2.5 Deep Goal-Plan Tree Conclusions

In this section we have looked at the performance of the three types of reasoning

individually under different conditions to analyse and demonstrate the effectiveness

of the reasoning.

While the Petri net approach can provide very fast results once loaded, they

are not always optimal, and will vary slightly with each simulation. In some

cases the time taken to load the Petri net model is greater than the time taken

by the constraint-based model to find a solution, particularly when there is a

limited amount of resources resulting in a small number of goals that can be safely

adopted. The Petri net model does outperform the constraint model in terms of

positive reasoning and the reduction in the number of plans used during positive

CHAPTER 6. EVALUATION 146

interaction in the Deep Tree, however the constraint model matches and can even

outperform the number of goals achieved by the Petri net when there are limited

resources available. This is most notable when resource reasoning is combined with

positive interaction where the constraint model is able to sort the goals in order

of resource requirement and also select the positive plan with the lowest resource

requirements to keep when merging two plans.

The slowest type of reasoning for both models is that of reasoning about nega-

tive interference. This is most notable in the constraint model where the increase in

time taken is considerably larger than the other two types of reasoning, especially

as the number of goals and hence plans being considered increases.

When considering the memory requirements of the different types of reason-

ing, it can be seen that the resource reasoning requires the most memory for the

constraint model, while the reasoning for the positive interaction generates the

largest files in the Petri net model and hence takes the longest time to load and

also requires the greatest memory

6.3 Broad Goal-Plan Trees

The broad goal-plan tree that is used for the next set of experiments (see fig-

ure 6.12) is aimed at evaluating the branch selection aspects of the two approaches,

particularly in relation to the resources required and positive interaction between

goals. The depth of the tree is limited to 4 levels of plans so the number of plans

used when positive interaction reasoning is applied between high and low levels

will not vary much. As a result, the experiments for positive interaction focus on

varying the number of goals rather than the level at which the positive interaction

occurred, as was done in the deep tree. As before, the experiments performed using

the broad tree were selected to highlight the key features of the tree structures. In

this case, the large number of branches with multiple options for selection between

them.

The tree was produced such that each branch had a minimum of 2 children,

with most having at least 3. The tree also had at least 3 branching plans or

subgoals on each layer within the tree to form a tree that quickly expanded in

width with a lot of choice within it, whilst being kept quite shallow. While in the

CHAPTER 6. EVALUATION 147

Size Depth Total Plans Total Subgoals Min. Plans req. Max. Plans Req.
Small 4 24 17 13 16
Medium 4 54 39 28 34
Large 4 85 67 48 58

Table 6.24: Plan requirements for the three sizes of broad tree used

deep tree the different sizes referred to the depth of the tree, in this section the

depth is kept static and the breadth of the tree is varied when varying the tree

size. The large tree structure used is illustrated in figure 6.12 with markings to

indicate the breadth of the medium and small sized trees. The number of plans

required to achieve each individual goal in the broad tree are shown in table 6.24.

6.3.1 Consumable Resources

In this section effectiveness of reasoning about resources is considered focusing on

the branching aspects of the tree when there is a limited availability of consumable

resources. To evaluate this, the breadth of the tree is varied to increase the number

of branches and plan options available to the reasoning models for selecting the

best branches to use based on their resource requirements.

Varying the Tree Size:

This first set of experiments using the broad goal-plan tree looks at the effects of

varying the tree size on the reasoning about resources. The setting for the experi-

ments consists of 20 goals with low resource availability and high goal interaction.

The results for the Petri net and constraint model are shown in figure 6.13.

The first point to note here is the number of goals achieved by the two models.

While the reasoning Petri net model is averaging 4 goals from the small tree, with

a range from 3 to 5, the constraint model is able to achieve 7 goals. Similarly,

for the medium and large sized trees the constraint model consistently achieved

8 goals as there was insufficient additional resources to achieve any extra goals in

the large sized tree. However, the Petri net model only achieved an average of 6.8

goals with a range of 6 to 7 goals over all of the repeats. The better performance

CHAPTER 6. EVALUATION 148

G P

SG
SG

SG
SG

P
P

P
P

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

SG
SG

P
P

P
P
P

P
P

P
P

P
P
P
P
P

P
P

P
P

P
P

P
P
P
P

P
P
P

P

SG
SG

SG

P
P

P

SG
SG

SG

P
P
P

SG
SG

SG
SG

P
P

P
P

P
P

SG P
P

P

SG P

SG P
P

P

SG P

SG
SG

SG

P
P

P

SG P

SG P

SG P

SG
SG

SG P
P
P

P
P

Sm
al
l

M
ed
iu
m

La
rg
e

Le
ve
l

1 2 3 4

Figure 6.12: Goal-plan tree for the broad tree, showing the breadths used for small,
medium and large trees

CHAPTER 6. EVALUATION 149

0

3

6

9

12

15

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Size

0

3

6

9

12

15

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Size0

3

6

9

12

15

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

0

3

6

9

12

15

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

Small Medium Large

Tree Size

Small Medium Large

Tree Size

0

4

8

12

16

20

Small Medium Large

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Size

0

4

8

12

16

20

Small Medium Large

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Size

0

120

240

360

480

600

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

120

240

360

480

600

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

120

240

360

480

600

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

0

120

240

360

480

600

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size0

120

240

360

480

600

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size

0

120

240

360

480

600

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size0

120

240

360

480

600

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

120

240

360

480

600

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(c) Petri net Plans

Small Medium Large

Small Medium Large

0

180

360

540

720

900

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Size0

180

360

540

720

900

Small Medium Large

T
im

e
 i
n

 S
e
c
o

n
d

s

(d) Constraint Timing

Small Medium Large

Small Medium Large

Small Medium Large

Tree Size

0

2

4

6

8

10

Small Medium Large

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Size

0

80

160

240

320

400

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

Small Medium Large

Small Medium Large

Small Medium Large

0

80

160

240

320

400

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size0

80

160

240

320

400

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Size0

80

160

240

320

400

Small Medium Large

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(f) Constraint Plans

Figure 6.13: Results for setting: Broad tree, low resource availability, high goal
interaction, 20 goals, varying tree size and reasoning about resources

here from the constraint model demonstrates the effectiveness of ordering the goals

based on their resource requirements, showing the number of additional goals that

can be achieved when goals with lower resource requirements are started first.

While the available resources were increased proportionally as the tree sizes

were increased, the increase was not sufficient for additional goals to be achieved

by the constraint model in the large size. As the tree size increases, the resource

requirements for the tree increase as well. The additional resources were only

able to cover the increased cost of the same number of goals with the larger tree

structure, without leaving sufficient for any further goals to be started.

Comparing the goals achieved by the random Petri net for this tree structure to

those achieved when applied to the deep tree structure, a greater number of goals

have been successfully completed here, achieving an average of 2.4 goals with the

medium sized broad tree, compared to 0.1 goals for the same settings in the deep

tree. This is due to the reduced depth of the tree and increased branching resulting

in random selection of branches that have lower resource requirements, which can

be completed quicker than the deep plan branches in the previous tree structure.

CHAPTER 6. EVALUATION 150

When considering the number of plans used, the number of plans per goal used

by both models was the minimum number as stated in 6.13 for the small tree size

where the range of branches was the smallest. In the medium and large tree sizes,

there was greater variation in the resource costs of each of the branches resulting

in the cheapest branch not always containing the least plans. This is shown by

the reasoning for the medium sized tree using an average of 33 plans per goal in

both models, and 49 plans per goal for the large tree size in both models.

The timings for the Petri net model show that the duration taken by the

reasoning Petri net to achieve its goals compared to the random Petri net, which

achieved a smaller number of goals, is quite close. However, the time taken by the

random Petri net increased faster than that taken by the reasoning Petri net as

the tree size increased so in the large tree the Petri net model had a significant

saving in the time taken compared to the random Petri net. This is highlighted

in the number of plans used by each, with the random Petri net starting all the

goals and executing as many plans as possible from each of them, compared to the

reasoning Petri net where only goals that could be achieved were adopted, thereby

limiting the selection of plans.

Comparing the time taken between the two models again shows a large differ-

ence between them which is compensated for when including the loading times,

shown in table 6.25. As can be seen in both models, the time taken to load the

Petri net model and to find a solution in the constraint based model increases dra-

matically as the tree size increases. For the Petri net model this is slightly more

linear than the constraint model, increasing from a total of 53 seconds for the

small tree, 511 seconds for the medium tree and 1312 seconds for the large sized

tree compared to the 816 seconds required for the constraint model, up from 224

seconds for the medium sized tree and 14 seconds for the small sized tree. In each

case, the constraint model is faster, however as the tree size or resource availability

increases it is likely that the total duration taken by the Petri net model would be

less than that taken by the constraint model.

The memory usage for the two models are shown in table 6.26 and reflect the

increase in files sizes again as the tree sizes increase. The memory requirements for

the constraint model increase significantly more here than for the same settings in

the deep tree.

CHAPTER 6. EVALUATION 151

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
Small 23 27 20 23 0.098 0.100 0.092
Med. 158 346 132 307 0.347 0.345 0.422
Large 426 875 375 783 0.697 0.701 0.698

Table 6.25: Load timings for setting: Broad tree, low resource availability, high
goal interaction, 20 goals, varying tree size and reasoning about resources

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
Small 78.99 96.92 77.18 88.12 5.62 6.23 5.62 6.25 5.62 6.24
Med. 121.68 146.37 112.20 140.12 6.21 7.85 6.21 7.93 6.22 7.94
Large 161.42 193.67 154.6 213.12 6.73 9.36 6.73 9.36 6.73 9.39

Table 6.26: Memory usage for setting: Broad tree, low resource availability, high
goal interaction, 20 goals, varying tree size and reasoning about resources

6.3.2 Positive Interaction

In the broad tree, there are only a small number of levels so varying the level at

which the interaction occurs will have little affect on the number of plans used.

Instead, varying the number of goals with high levels of goal interaction will provide

a more suitable test to evaluate the performance of the reasoning when there is a

large number of branching options to consider.

As with the deep tree, the positive interaction experiments are designed so that

all goals are achievable without any reasoning. Therefore, the graphs showing the

goals achieved are omitted as all the goals are always achieved by both models and

the random Petri net.

Varying number of goals:

The experiments performed in this section vary the number of goals used, while

using a medium sized broad tree, positive interaction at a high level within the

tree and high goal interaction. The results for the Petri net and constraint models

are shown in figure 6.14.

CHAPTER 6. EVALUATION 152

0

10

20

30

40

50

10 20 30

T
im

e
 i
n
 S

e
c
o

n
d

s

Total Number of Goals

0

10

20

30

40

50

10 20 30

T
im

e
 i
n
 S

e
c
o

n
d

s

Total Number of Goals0

10

20

30

40

50

10 20 30

T
im

e
 i
n
 S

e
c
o

n
d

s

0

10

20

30

40

50

10 20 30

T
im

e
 i
n
 S

e
c
o

n
d

s

(a) Petri net Timing

0

220

440

660

880

1100

10 20 30

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

0

220

440

660

880

1100

10 20 30

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals0

220

440

660

880

1100

10 20 30

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

0

220

440

660

880

1100

10 20 30

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

(b) Petri net Plans

10 20 30

10 20 30

0

300

600

900

1200

1500

10 20 30

T
im

e
 i
n
 S

e
c
o

n
d

s

Total Number of Goals0

300

600

900

1200

1500

10 20 30

T
im

e
 i
n
 S

e
c
o

n
d

s

(c) Constraint Timing

10 20 30

10 20 30

0

200

400

600

800

1000

10 20 30

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals0

200

400

600

800

1000

10 20 30

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

(d) Constraint Plans

Figure 6.14: Results for setting: Medium sized broad tree, high level positive
interaction, high goal interaction, varying number of goals and reasoning about
positive interaction

The number of plans saved by the reasoning Petri net model is 86 plans for the

small tree size (CV 2.9%), 203 plans for the medium sized tree (CV 1.6%) and 316

plans for the large tree size (CV 1.6%). Compared to this, the constraint model

gives less saving, with the large tree size requiring 984 plans compared to the

random Petri net requiring 1027 plans. This is just a saving of 43 plans. As with

the deep tree, this is because the constraint model simply selects the first branch

to keep when no other reasoning is applied. By applying a sort to interacting plan

options it would be possible to select the branch with the smaller number of plans

contained in it, thereby reducing the total number of plans used.

As is to be expected, the random Petri net takes longer than the reasoning

CHAPTER 6. EVALUATION 153

Petri net model due to the larger number of plans being used. This shows that the

additional run-time cost introduced by the reasoning is negligible when compared

to the savings gained from the reasoning. The major difference in the time costs

comes from the loading times for the Petri net model, shown in table 6.27, showing

that the reasoning Petri net does take slightly longer to import and save than

the random Petri net due to the additional places and transitions included for the

reasoning. This also illustrates the differences in the file sizes between the reasoning

and random Petri net models. While the reasoning Petri net for the positive

interaction in the deep tree was larger than that for the resource reasoning, the

opposite here is true. The files for the broad tree are larger than those generated for

the deep tree model, with the broad tree files being 1799 Kb while the equivalent

for the deep tree model being 1534 Kb.

Comparing the combined timings for the loading and running of the two models,

shown in table 6.27, shows that the total time taken for the Petri net model is

again greater than that taken for the constraint model. However, the difference

in timings decreases in proportion to the total time taken as the number of goals

increases, starting at a difference of 42 seconds for the small tree, 191 seconds for

the medium and 55 seconds for the large tree size.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
10 36 43 30 58 0.139 0.138 0.128
20 149 342 124 296 0.342 0.340 0.343
30 381 757 320 641 0.653 0.682 0.654

Table 6.27: Load timings for setting: Medium sized broad tree, high level positive
interaction, high goal interaction, varying number of goals and reasoning about
positive interaction

The memory usage of the two models is shown in table 6.28. Again the memory

used for the Petri net model is greater than the memory used for the constraint

model. It should also be noted that the memory required for the constraint model

to reason about 30 goals is less here than that required to reason about 20 large

goals with limited resource availability.

CHAPTER 6. EVALUATION 154

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
10 86.64 99.18 85.15 103.88 5.74 6.39 5.74 6.42 5.74 6.43
20 120.22 162.07 115.00 155.25 6.16 7.32 6.15 7.35 6.17 7.37
30 155.69 188.65 144.76 196.00 6.50 8.04 6.50 8.12 6.50 8.12

Table 6.28: Memory usage for setting: Medium sized broad tree, high level positive
interaction, high goal interaction, varying number of goals and reasoning about
positive interaction

6.3.3 Negative Interference

As with the experiments on positive interaction reasoning for the broad tree, the

focus here is on the effects of branching on the reasoning. This is evaluated by

varying the number of goals.

Varying number of goals:

The settings used to evaluate the negative interference reasoning on the broad

tree consist of varying the number of goals with a medium tree size, long duration

negative interference and high goal interaction. The results for the Petri net and

constraint models are shown in figure 6.15.

As in the experiments for the deep tree, the random Petri net model is only

able to achieve an average of less than 1 goal regardless of how many goals are

started. This is despite the duration for which the effects need to be protected

being much shorter than that required in the deep tree.

The plans used by the random Petri net model is slightly less than those used

by the reasoning Petri net and the constraint models, where the Petri net model

is using an average of 33.6 plans per goal, with a CV of 1% over the total number

of plans used and the constraint model is using 34 plans per goal.

When considering the timings, the Most Constrained heuristic used by the

constraint model is noticeably slower than the other two, adding an extra 176

seconds onto the time taken by the standard heuristic. However, with this taking

over 56 minutes in total the time difference is still very small. Comparing the time

taken here by the negative interference reasoning in the constraint model to that

CHAPTER 6. EVALUATION 155

0

16

32

48

64

80

10 20 30

T
im

e
 i
n

 S
e
c
o

n
d

s

Total Number of Goals

0

16

32

48

64

80

10 20 30

T
im

e
 i
n

 S
e
c
o

n
d

s

Total Number of Goals0

16

32

48

64

80

10 20 30

T
im

e
 i
n

 S
e
c
o

n
d

s

0

16

32

48

64

80

10 20 30

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

10 20 30

Total Number of Goals

10 20 30

Total Number of Goals

0

6

12

18

24

30

10 20 30

N
u

m
b

e
r

o
f

G
o

a
ls

Total Number of Goals

0

6

12

18

24

30

10 20 30

N
u

m
b

e
r

o
f

G
o

a
ls

Total Number of Goals

0

220

440

660

880

1100

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

220

440

660

880

1100

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

220

440

660

880

1100

10 20 30

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

0

220

440

660

880

1100

10 20 30

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals0

220

440

660

880

1100

10 20 30

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

0

220

440

660

880

1100

10 20 30

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

(c) Petri net Plans

10 20 30

10 20 30

0

800

1600

2400

3200

4000

10 20 30

T
im

e
 i
n

 S
e
c
o

n
d

s

Total Number of Goals0

800

1600

2400

3200

4000

10 20 30

T
im

e
 i
n

 S
e
c
o

n
d

s

(d) Constraint Timing

10 20 30

10 20 30

10 20 30

Total Number of Goals

0

6

12

18

24

30

10 20 30

N
u

m
b

e
r

o
f

G
o

a
ls

Total Number of Goals

0

220

440

660

880

1100

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

10 20 30

10 20 30

0

220

440

660

880

1100

10 20 30

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals0

220

440

660

880

1100

10 20 30

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

(f) Constraint Plans

Figure 6.15: Results for setting: Medium size broad tree, long duration negative
interference, high goal interaction, varying the number of goals and reasoning
about negative interference

in the deep tree, there is a significant reduction in the time taken by the reasoning

for the broad tree, by approximately 360 seconds. This is a result of the reduced

depth and so a reduction in the number of plans that need to be scheduled between

the start and end points of causally linked plans.

The additional load times shown in table 6.29 show that despite the extra time

taken to load the Petri net model, the total time taken by the Petri net model is

still less than that taken by the constraint model to find a solution.

The file sizes produced for the Petri net model of reasoning about negative

interference are smaller than those produced for the positive interaction model.

As a result, the load times are slightly faster and the memory requirements for the

Petri net model here are slightly lower. In the constraint model, which uses very

little memory in comparison, the file sizes are the same and the reasoning requires

slightly more memory whilst finding a solution.

CHAPTER 6. EVALUATION 156

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
10 31 38 28 38 0.127 0.129 0.127
20 127 298 124 284 0.344 0.348 0.349
30 325 653 323 554 0.658 0.659 0.663

Table 6.29: Load timings for setting: Medium size broad tree, long duration nega-
tive interference, high goal interaction, varying the number of goals and reasoning
about negative interference

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
10 85.30 97.13 84.43 96.69 5.74 6.41 5.74 6.44 5.73 6.43
20 116.23 157.60 115.08 154.50 6.16 7.57 6.16 7.61 6.15 7.61
30 149.91 183.05 155.01 182.70 6.50 8.74 6.50 8.84 6.50 8.87

Table 6.30: Memory usage for setting: Medium size broad tree, long duration neg-
ative interference, high goal interaction, varying the number of goals and reasoning
about negative interference

6.3.4 Combined Reasoning

In this final section using the broad tree, the different types of reasoning that have

been considered separately above are combined in each of the possible combina-

tions to evaluate the effectiveness of the joint reasoning over the broad goal-plan

tree. The settings used are again the extreme settings for each of the types of

reasoning, so low resource availability, positive interaction at a high level, negative

interference for a long duration, and high goal interaction. The results for the

Petri net and constraint models are shown in figure 6.16. For ease of comparison,

the related results for the individual types of reasoning are included in figure 6.17.

While in the deep tree the combination of resource & positive reasoning had a

large impact on the number of goals that were achieved, the effect is less noticeable

here especially in the Petri net model with an increase of just 2 goals out of 20

on top of the 6 goals achieved with the negative interference reasoning combined

with the resource reasoning. In the constraint model, the effect of the combined

reasoning is more obvious with an increase of 4 goals, over and above the higher

CHAPTER 6. EVALUATION 157

0

6

12

18

24

30

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n
 S

e
c
o

n
d

s

Reasoning Combination

0

140

280

420

560

700

T
im

e
 i
n
 S

e
c
o

n
d

s
(a) Petri net Timing

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

Reasoning Combination

(b) Petri net Goals

0

140

280

420

560

700

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Combination

0

120

240

360

480

600

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

(c) Petri net Plans

0

140

280

420

560

700

ResPos ResNeg PosNeg ResPosNeg

Reasoning Combination

0

140

280

420

560

700

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n
 S

e
c
o

n
d

s

Reasoning Combination

0

140

280

420

560

700

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n
 S

e
c
o

n
d

s

Reasoning Combination

(d) Constraint Timing

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

Reasoning Combination

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

Reasoning Combination
0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

(e) Constraint Goals

ResPos ResNeg PosNeg ResPosNeg

Reasoning Combination

ResPos ResNeg PosNeg ResPosNeg

Reasoning Combination

0

120

240

360

480

600

ResPos ResNeg PosNeg ResPosNeg

Reasoning Combination

0

120

240

360

480

600

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Combination

0

120

240

360

480

600

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Combination

(f) Constraint Plans

Figure 6.16: Results for setting: Medium sized broad tree, low resource availability,
high level positive interaction, long negative interference, high goal interaction, 20
goals, varying reasoning combination

number of goals achieved independently. Despite the additional goals achieved in

both models, there is very little additional time required. In fact there is a reduc-

tion in the time taken by the constraint model despite an increase in the number

of plans used when compared to the second combination comprising resource &

negative interference reasoning.

The combination of positive & negative interaction reasoning is again the slow-

est, however it is not as slow as the negative interference reasoning on its own.

This is due to the reduction in the number of plans that are considered for the

final scheduling.

Adding the load times, shown in table 6.31, the first point to notice is that

with the exception of the second combination of reasoning, the three combinations

of reasoning for the Petri net model are relatively even in the total length of time

that they add to the full reasoning time. The consequence of this is that the total

length of time take to load and simulate the Petri net model is slower than that

of the constraint model in all the combinations except the positive & negative

CHAPTER 6. EVALUATION 158

0

6

12

18

24

30

Resource Positive Negative

Reasoning Type

0

6

12

18

24

30

Resource Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Type0

6

12

18

24

30

Resource Positive Negative
0

6

12

18

24

30

Resource Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

Resource Positive Negative

Reasoning Type

Resource Positive Negative

Reasoning Type

0

4

8

12

16

20

Resource Positive Negative

Reasoning Type

0

4

8

12

16

20

Resource Positive Negative

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Type

0

140

280

420

560

700

0

140

280

420

560

700

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

140

280

420

560

700

Resource Positive Negative

Reasoning Type

0

140

280

420

560

700

Resource Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type0

140

280

420

560

700

Resource Positive Negative

Reasoning Type

0

140

280

420

560

700

Resource Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type

(c) Petri net Plans

0

200

400

600

800

1000

Resource Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Type0

200

400

600

800

1000

Resource Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

(d) Constraint Timing

Resource Positive Negative

Reasoning Type

0

4

8

12

16

20

Resource Positive Negative

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Type

0

160

320

480

640

800

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

0

160

320

480

640

800

Resource Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type0

160

320

480

640

800

Resource Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type

(f) Constraint Plans

Figure 6.17: Comparison results for medium sized broad tree, individual reasoning
types

combination. The Petri net model does however have a greater reduction in the

number of plans required when positive reasoning is incorporated.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
ResPos 190 414 135 305 0.340 0.349 0.343
ResNeg 162 370 132 303 0.349 0.345 0.344
PosNeg 151 440 135 349 0.353 0.350 0.349

ResPosNeg 188 420 132 312 0.347 0.348 0.356

Table 6.31: Load timings for setting: Medium sized broad tree, low resource avail-
ability, high level positive interaction, long negative interference, high goal inter-
action, 20 goals, varying reasoning combination

Comparing the load times to the those for the individual types of reasoning,

shown in table 6.32, it is clear in the Petri net model that the size of the files and

hence the load times have increased with the additional reasoning being incorpo-

rated into them.

CHAPTER 6. EVALUATION 159

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
Res 158 346 132 307 0.347 0.345 0.422
Pos 149 342 124 296 0.342 0.340 0.343
Neg 127 298 124 284 0.344 0.348 0.349

Table 6.32: Load timings for comparison results of medium sized broad tree, indi-
vidual reasoning types

Finally, the memory usage of the different combinations, shown in table 6.33,

reflects the file sizes in the loading times, with the resource & positive reasoning

pair having the largest file size out of all the pairs for the Petri net model. This also

follows through to the memory used when running the simulations and evaluating

the constraints with the first combination having the highest memory usage of the

pairs of combinations. When they are all combined together, the memory used by

the Petri net model drops slightly while the constraint model uses a little more

than previously.

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
ResPos 126.86 172.14 119.55 141.66 6.23 8.01 6.23 8.03 6.23 8.04
ResNeg 122.32 164.67 116.69 140.64 6.23 8.00 6.22 8.01 6.22 8.02
PosNeg 123.27 164.05 115.33 138.79 6.18 7.75 6.18 7.80 6.18 7.80

ResPosNeg 127.32 152.77 116.53 140.27 6.23 8.20 6.25 8.23 6.24 8.23

Table 6.33: Memory usage for setting: Medium sized broad tree, low resource
availability, high level positive interaction, long negative interference, high goal
interaction, 20 goals, varying reasoning combination

A comparison of the memory requirements for the individual types of reasoning,

shown in table 6.34, shows the increased memory cost when the types of reasoning

are combined together.

6.3.5 Broad Goal-Plan Tree Conclusions

In this section the effectiveness and performance of the different types of reasoning

have been evaluated using a broad goal-plan tree structure. The experiments

CHAPTER 6. EVALUATION 160

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
Res 121.68 146.37 112.2 140.12 6.21 7.85 6.21 7.93 6.22 7.94
Pos 120.22 162.07 115.00 155.25 6.16 7.32 6.15 7.35 6.17 7.37
Neg 116.23 157.60 115.08 154.50 6.16 7.57 6.16 7.61 6.15 7.61

Table 6.34: Memory usage for comparison results of medium sized broad tree,
individual reasoning types

performed here have shown that the constraint-based approach has achieved better

results when reasoning about resources than the Petri net model, and solutions

have been found in a shorter length of time.

In comparison to this, the Petri net model has achieved the better results when

reasoning about positive interaction, finding greater reductions in the number of

plans needed. Despite this, the overall time taken from loading to completing a

simulation in the Petri net model is still slightly slower than that of the constraint

model. However, the changes in time taken as the size of the problem increases

suggests that the Petri net model may overtake the constraint model. In the

negative interference reasoning experiments, the Petri net model is the faster of

the two models, with both models able to schedule plans such that all goals can

be achieved.

Finally, when all three types of reasoning are combined, the reasoning about

resources and positive interactions provides a slight increase in the number of goals

achieved, especially in the constraint model. The constraint model is also able to

find the solutions faster than the Petri net model, when the loading times for this

model are taken into consideration.

6.4 General Goal-Plan Tree

This tree was developed for the purpose of testing the performance of the two

reasoning approaches with a tree that was somewhere between the deep and broad

trees in formation. The tree had more branching than the deep tree, whilst having

more depth than the broad tree. The main purpose of this being to test the two

approaches with all the reasoning types together using a large tree size and large

CHAPTER 6. EVALUATION 161

Size Depth Total Plans Total Subgoals Min. Plans req. Max. Plans Req.
Large 5 93 47 19 45

Table 6.35: Plan requirements for the general tree, only large size is used

numbers of goals to see how well they scaled up.

The tree structure used is shown in figure 6.18. Only the full tree size is used

in the experiments in this section. The plan requirements for the tree are shown

in table 6.35.

6.4.1 Varying the Combined Reasoning Types

As the main purpose for using this tree structure is to see how the three types of

reasoning combined together scale when applied to an increasing number of large

goals, this set of results starts by comparing the individual types of reasoning

before they are combined together so as to provide a baseline for the experiments

combining them. The settings used here are the extreme settings for each of the

types of reasoning. That is, low resource availability, positive interaction at high

levels in the goal-plan tree, negative interference over a long duration, high goal

interaction and 20 goals. The combinations of reasoning are varied starting with

pairs of reasoning types then combining all three types together. The results for

the individual types of reasoning are shown in figure 6.19, with the combined

reasoning shown in figure 6.20.

Firstly considering the individual types of reasoning, the number of goals

achieved by the constraint model when reasoning about resources is again greater

than that achieved by the Petri net model, as was the case for the broad tree. In

this case, the number of goals achieved by the reasoning Petri net model is less

than half that achieved in the constraint model and only slightly greater than the

number achieved by the random model. The reasoning Petri net model achieved

an average of 3.2 goals with a range from 3 to 4, while the random Petri net

achieved an average of 1.8 goals with a range from 0 to 3. This is again related to

the random order in which the goals are started in the Petri net model, whereas

CHAPTER 6. EVALUATION 162

G P

SG
SG

SG

P
P

SG
SG

SG
SG

Le
ve
l

1 2
P

P

SG P

SG
SG

P
P

P
P

P

SG
SG

SG
SG

P
P

P
P

P
P

P

SG
SG

SG
SG

SG

P
P

SG
SG

SG

P
P

P
P

P
P

P

SG
SG

SG

P
P

P
P
P

P
P

P
P

SG

P
P

P

SG
SG

P
P

P
P

P

P
P

P
P

P
P

SG
SG

P
P

P

P
P

SG
SG

SG

P
P

P
P

P

P

SG
SG P

P
P

SG
SG

P
P

P
P

P
P

P
P

P

SG
SG

P
P

P

P
P

SG
SG

P
P

P
P

P

SG
SG

SG

P
P

P
P

P
P

P

SG
SG

SG

P
P

P
P

3 4

P SG
SG

SG

5

Figure 6.18: Goal-plan tree for the general tree used, showing the large tree struc-
ture

CHAPTER 6. EVALUATION 163

0

8

16

24

32

40

Resource Positive Negative

Reasoning Type

0

8

16

24

32

40

Resource Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Type0

8

16

24

32

40

Resource Positive Negative
0

8

16

24

32

40

Resource Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

Resource Positive Negative

Reasoning Type

Resource Positive Negative

Reasoning Type

0

4

8

12

16

20

Resource Positive Negative

Reasoning Type

0

4

8

12

16

20

Resource Positive Negative

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Type

0

140

280

420

560

700

0

140

280

420

560

700

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

140

280

420

560

700

Resource Positive Negative

Reasoning Type

0

140

280

420

560

700

Resource Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type0

140

280

420

560

700

Resource Positive Negative

Reasoning Type

0

140

280

420

560

700

Resource Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type

(c) Petri net Plans

0

160

320

480

640

800

Resource Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

Reasoning Type0

160

320

480

640

800

Resource Positive Negative

T
im

e
 i
n

 S
e
c
o

n
d

s

0

4

8

12

16

20

N
u

m
b

e
r

o
f

G
o

a
ls

(d) Constraint Timing

Resource Positive Negative

Reasoning Type

0

4

8

12

16

20

Resource Positive Negative

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Type0

4

8

12

16

20

Resource Positive Negative

N
u

m
b

e
r

o
f

G
o

a
ls

Reasoning Type

0

120

240

360

480

600

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

0

120

240

360

480

600

Resource Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type0

120

240

360

480

600

Resource Positive Negative

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Reasoning Type

(f) Constraint Plans

Figure 6.19: Comparison results for large sized general tree, individual reasoning
types

the constraint model is able to sort the goals into an order based on the resource

requirements of each goal.

In comparison, the Petri net model finds greater savings over the number of

plans needed when reasoning about positive interaction than the constraint model.

The random Petri net model used an average of 602 plans (CV 2.3%, 30 plans per

goal), while the reasoning Petri net was able to bring this down to an average of

447.5 plans (CV 3.8%, 22.4 plans per goal) giving an average saving of 154.4 plans.

Interestingly, this is still greater than the minimum number of plans required to

achieve each of the goals, showing that the random selection of plans is inefficient.

In the constraint model, this is even more noticeable, with the reduction in plans

required just being 142 plans, giving an average of 23 plans per goal. This is again

due to the positive interaction reasoning in the constraint model selecting the first

available branch to keep when selecting branch options or merging plans, rather

than considering the number of plans in each branch.

The negative interference reasoning is again the slowest of the three types of

reasoning in both of the models, however without the reasoning there, the random

CHAPTER 6. EVALUATION 164

Petri net is only able to achieve an average of 0.3 goals with a range from 0 to 1 goals

across all of the repeats. Comparing the time taken by the negative interference

reasoning in the constraint model to the times taken in the deep and broad trees,

there is a significant reduction, especially as the tree size being considered here

is much larger. This is due to the amount of branching and sub-tree size in this

tree structure reducing the total number of plans required to achieve each goal to

the point where the number of plans used in total here is slightly less than that

required in the previous two trees.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
Res 546 1089 373 785 0.590 0.601 0.638
Pos 408 837 376 883 0.824 0.658 0.650
Neg 373 776 378 768 0.596 0.595 0.656

Table 6.36: Load timings for comparison results of large sized general tree, indi-
vidual reasoning types

Including the load times, shown in table 6.36 into the total time taken by the

two models shows that the load time for the Petri net model in particular is more

substantial with this large sized tree, especially for the resource reasoning where

the largest file sizes are produced. Despite the files for resource reasoning in the

constraint model being slightly larger, the positive reasoning model takes a little

longer to load. In total, the time taken by the Petri net model is significantly

greater than that taken by the constraint model, even when reasoning about neg-

ative interference within this tree structure.

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
Res 172.97 238.78 157.88 188.18 6.59 8.48 6.58 8.47 6.59 8.49
Pos 161.57 224.68 159.18 213.17 6.54 7.74 6.54 7.78 6.54 7.79
Neg 156.96 216.43 155.36 186.22 6.52 8.04 6.54 8.09 6.53 8.09

Table 6.37: Memory usage for comparison results of large sized general tree, indi-
vidual reasoning types

Comparing the memory usage for the two models, it is again the Petri net

CHAPTER 6. EVALUATION 165

simulations that require the greatest memory, and the larger file size of the resource

reasoning is reflected in the memory required to run the simulations.

0

8

16

24

32

40

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n
 S

e
c
o

n
d

s

Total Number of Goals
0

8

16

24

32

40

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n
 S

e
c
o

n
d

s

0

140

280

420

560

700

T
im

e
 i
n
 S

e
c
o

n
d

s

(a) Petri net Timing

ResPos ResNeg PosNeg ResPosNeg

Total Number of Goals

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

Total Number of Goals
0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg
N

u
m

b
e
r

o
f

G
o

a
ls

0

4

8

12

16

20

N
u
m

b
e
r

o
f

G
o

a
ls

0

4

8

12

16

20

N
u
m

b
e
r

o
f

G
o

a
ls

(b) Petri net Goals

ResPos ResNeg PosNeg ResPosNeg

Total Number of Goals

0

120

240

360

480

600

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

0

100

200

300

400

500

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

(c) Petri net Plans

0

140

280

420

560

700

ResPos ResNeg PosNeg ResPosNeg

Total Number of Goals

0

140

280

420

560

700

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n
 S

e
c
o

n
d

s

Total Number of Goals

0

140

280

420

560

700

ResPos ResNeg PosNeg ResPosNeg

T
im

e
 i
n
 S

e
c
o

n
d

s

Total Number of Goals

(d) Constraint Timing

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

Total Number of Goals

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

Total Number of Goals

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

Total Number of Goals
0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg
0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

0

4

8

12

16

20

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

G
o

a
ls

(e) Constraint Goals

ResPos ResNeg PosNeg ResPosNeg

Total Number of Goals

ResPos ResNeg PosNeg ResPosNeg

Total Number of Goals

ResPos ResNeg PosNeg ResPosNeg

Total Number of Goals

0

100

200

300

400

500

ResPos ResNeg PosNeg ResPosNeg

Total Number of Goals

0

100

200

300

400

500

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

0

100

200

300

400

500

ResPos ResNeg PosNeg ResPosNeg

N
u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

(f) Constraint Plans

Figure 6.20: Results for setting: Large sized general tree, low resource availabil-
ity, high level positive interaction, long duration negative interference, high goal
interaction, 20 goals, varying reasoning combinations

Comparing the individual types of reasoning to the combined reasoning shown

in figure 6.20, the first point to notice is the combinations of resource and positive

reasoning. In both models, the number of goals is not increased unlike the com-

bined effects when applied to the deep tree. In the Petri net model the average

number of goals achieved increases slightly to 3.5, however the savings from the

plans not used due to positive interaction are not sufficient for either of the models

to achieve additional goals for this large tree size.

As expected, the combination of positive & negative interaction reasoning is

the slowest, however this is partly due to all the goals being achieved compared to

just a small number, and in the constraint model this difference is proportionally

smaller to that in the Petri net model. When the negative interference reasoning is

incorporated with the resource & positive reasoning, the increase in cost for both

models is very small.

CHAPTER 6. EVALUATION 166

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
ResPos 584 1561 403 796 0.591 0.604 0.647
ResNeg 530 1634 376 1007 0.659 0.601 0.593
PosNeg 425 1003 366 875 0.591 0.598 0.605

ResPosNeg 614 1231 387 803 0.595 0.650 0.602

Table 6.38: Load timings for setting: Large sized general tree, low resource avail-
ability, high level positive interaction, long duration negative interference, high
goal interaction, 20 goals, varying reasoning combinations

As shown in table 6.38, when comparing the load times to those for the indi-

vidual types of reasoning, the time taken has increased considerably for each of the

combinations, especially when all three types of reasoning are combined together.

Interestingly, the combination of all three types of reasoning takes less time to save

than the two pairings containing resource reasoning.

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
ResPos 181.90 250.53 158.17 189.57 6.61 8.52 6.61 8.52 6.60 8.51
ResNeg 176.62 204.66 160.46 217.02 6.59 8.54 6.60 8.55 6.60 8.55
PosNeg 163.98 226.90 160.78 216.14 6.56 8.19 6.54 8.21 6.55 8.22

ResPosNeg 183.01 211.62 158.43 215.97 6.61 8.57 6.61 8.57 6.61 8.58

Table 6.39: Memory usage for setting: Large sized general tree, low resource
availability, high level positive interaction, long duration negative interference,
high goal interaction, 20 goals, varying reasoning combinations

Table 6.39 shows the memory requirements for the different combinations of

reasoning. In the Petri net model, the resource & positive interaction reasoning

types use the most memory, while in the constraint model the complete combina-

tion uses slightly more than the other combinations to find a solution.

Varying Resource Availability:

In the previous set of experiments a low level of resource availability was main-

tained for all the goals. However, when considering scaling, it is preferable to have

CHAPTER 6. EVALUATION 167

as many goals as possible being adopted to evaluate the scaling ability of the two

models. To this end, this set of experiments varies the resource availability up to

a high level of availability so that in the final set the high resource availability can

be applied as the number of goals increases to stress test the two models. The

results for the Petri net and constraint models are shown in figure 6.21.

0

3

6

9

12

15

Low Medium High

T
im

e
 i
n

 S
e
c
o

n
d

s

Resource Availability

0

3

6

9

12

15

Low Medium High

T
im

e
 i
n

 S
e
c
o

n
d

s

Resource Availability

(a) Petri net Timing

0

4

8

12

16

20

Low Medium High

N
u

m
b

e
r

o
f

G
o

a
ls

Resource Availability

0

4

8

12

16

20

Low Medium High

N
u

m
b

e
r

o
f

G
o

a
ls

Resource Availability

0

120

240

360

480

600

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

120

240

360

480

600

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Petri net Goals

0

120

240

360

480

600

Low Medium High

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Resource Availability

0

120

240

360

480

600

Low Medium High

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Resource Availability0

120

240

360

480

600

Low Medium High

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Resource Availability

0

120

240

360

480

600

Low Medium High

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Resource Availability

(c) Petri net Plans

Low Medium High
0

120

240

360

480

600

Low Medium High

T
im

e
 i
n

 S
e
c
o

n
d

s

Resource Availability0

120

240

360

480

600

Low Medium High

T
im

e
 i
n

 S
e
c
o

n
d

s

(d) Constraint Timing

Low Medium High

Low Medium High

Resource Availability

0

4

8

12

16

20

Low Medium High

N
u

m
b

e
r

o
f

G
o

a
ls

Resource Availability

0

100

200

300

400

500

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

Low Medium High

Low Medium High

0

100

200

300

400

500

Low Medium High
N

u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Resource Availability0

100

200

300

400

500

Low Medium High

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Resource Availability

(f) Constraint Plans

Figure 6.21: Results for setting: Large sized general tree, high level positive inter-
action, long duration negative interference, high goal interaction, 20 goals, varying
resource availability and reasoning about all types

While at low levels of resource availability the Petri net model fails to achieve as

many goals as the constraint model, this is reversed when the resource availability

is high and positive interaction reasoning is still included. This is because the total

number of plans saved increases as the availability of resources rises and more goals

are being safely adopted. At the high level of availability, sufficient plans are saved

to provide the necessary resources to complete the extra goals resulting in all goals

being achieved by the Petri net model. In comparison, the constraint model is still

unable to save sufficient resources so only achieves 17 out of the 20 goals. Despite

the increased number of goals and plans being used between the two models, the

time taken does not increase that much.

CHAPTER 6. EVALUATION 168

Looking at the additional times for loading the two models, shown in table 6.40,

the changes to the resource availability make very little difference to the total

times taken. For the Petri net model, the total time taken is still greater than that

required by the constraint model to find a solution at high levels of availability,

however the Petri net model does achieve additional goals using slightly less plans

at the high level of resources availability.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
Low 614 1231 387 803 0.595 0.650 0.602

Med. 594 1252 380 799 0.594 0.599 0.601
High 639 1246 391 802 0.588 0.593 0.593

Table 6.40: Load timings for setting: Large sized general tree, high level positive
interaction, long duration negative interference, high goal interaction, 20 goals,
varying resource availability and reasoning about all types

The memory usage, shown in table 6.41, shows the increase in memory required

by the constraint model as the number of goals being adopted increases due to the

increased availability of resources. There is also an increase in the runtime memory

required by the Petri net model taking into consideration all the additional goals

that are being executed.

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
Low 183.01 211.62 158.43 215.97 6.61 8.57 6.61 8.57 6.61 8.58

Med. 181.24 220.83 159.82 208.29 6.61 8.76 6.60 8.78 6.60 8.78
High 183.67 245.52 157.94 216.99 6.61 9.11 6.61 9.14 6.61 9.15

Table 6.41: Memory usage for setting: Large sized general tree, high level positive
interaction, long duration negative interference, high goal interaction, 20 goals,
varying resource availability and reasoning about all types

Varying number of goals:

In this final set of experiments we stretch the two models to see how far they can

go. This is done using the large tree size with an increasingly large number of

CHAPTER 6. EVALUATION 169

goals at high resource availability, positive interaction at a high level in the goal-

plan tree, negative interference for a long duration and high goal interaction. The

results for the Petri net and constraint model are shown in figure 6.22.

0

2.94

5.88

8.82

11.76

14.70

20 50 70

T
im

e
 i
n

 S
e
c
o

n
d

s

Total Number of Goals0

2.94

5.88

8.82

11.76

14.70

20 50 70

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Petri net Timing

0

4

8

12

16

20

20 50 70
N

u
m

b
e
r

o
f

G
o

a
ls

Total Number of Goals

0

4

8

12

16

20

20 50 70

N
u

m
b

e
r

o
f

G
o

a
ls

Total Number of Goals0

4

8

12

16

20

20 50 70

N
u

m
b

e
r

o
f

G
o

a
ls

0

4

8

12

16

20

20 50 70
N

u
m

b
e
r

o
f

G
o

a
ls

(b) Petri net Goals

0

120

240

360

480

600

20 50 70

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

0

120

240

360

480

600

20 50 70

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals0

120

240

360

480

600

20 50 70

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

0

120

240

360

480

600

20 50 70

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

(c) Petri net Plans

0

8000

16000

24000

32000

40000

20 50 70

T
im

e
 i
n

 S
e
c
o

n
d

s

Total Number of Goals0

8000

16000

24000

32000

40000

20 50 70

T
im

e
 i
n

 S
e
c
o

n
d

s

0

14

28

42

56

70

N
u

m
b

e
r

o
f

G
o

a
ls

(d) Constraint Timing

20 50 70

Total Number of Goals

0

14

28

42

56

70

20 50 70

N
u

m
b

e
r

o
f

G
o

a
ls

Total Number of Goals0

14

28

42

56

70

20 50 70

N
u

m
b

e
r

o
f

G
o

a
ls

Total Number of Goals
0

14

28

42

56

70

20 50 70

N
u

m
b

e
r

o
f

G
o

a
ls

0

400

800

1200

1600

2000

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(e) Constraint Goals

20 50 70

20 50 70

20 50 70

Total Number of Goals

0

400

800

1200

1600

2000

20 50 70

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals0

400

800

1200

1600

2000

20 50 70

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Total Number of Goals

(f) Constraint Plans

Figure 6.22: Results for setting: Large sized general tree, high resource availabil-
ity, high level positive interaction, long duration negative interference, high goal
interaction, varying number of goals and reasoning about all types

The most obvious point to first notice here is the limitations of the Petri net

model. In this set of experiments the large tree size was used to see how far the

models could be expanded, and the Petri net model reached its limit. The Java

based simulator, Renew, used to develop and run the Petri nets was unable to load

the Petri nets used to represent the 50 goals being evaluated here. It is quite likely

that in the future, updates to this editor or new editors will increase this limit

allowing more goals using this model to be represented. It is also possible that the

way goals are represented could be optimised or modified allowing current editors

to handle a greater number of goals. These are all aspects that will be considered

in the future work developing this model.

In chapter 4, section 4.6, different approaches to representing the Petri nets

were discussed. The approach that was finally chosen was to store all the goals

CHAPTER 6. EVALUATION 170

individually within a single file. With the large number of large sized goals being

evaluated here the editor simply was not able to handle the size of the net so

failed to even import the goals definition. It is possible that if the goals had each

been stored in separate files, or if one file had been instantiated 75 times, that this

problem may have been avoided, however attempting to load 75 separate goal files

could well have caused a different set of problems.

In comparison to this, the performance of the CSP was impressive with its

ability to reason about 75 goals. The downside is that this took over 9 hours to

complete, and it is predicted that 100 goals would take approximately 24 hours.

Given a scenario where time was not an important factor, but being able to reason

about large numbers of goals with consistent results was very important, then the

CSP model would provide a viable option for performing that reasoning.

The load times shown in table 6.42, present the increased time taken for the

constraint model to load as the number of goals increases. This is still very small

compared to the length of time required to load the Petri net model. It is predicted

that if the Petri net model had been able to load the goals, then the total time to

load and run a simulation would have been less than the total time required by

the constraint model as the increase in time for loading the Petri net model would

be less than that for evaluating the constraint model.

Petri net model (seconds) Constraints model (seconds)
Reasoning Random Standard Most Max.

Import Save Import Save Constr. Regret
20 639 1246 391 802 0.588 0.593 0.593
50 - - - - 1.282 1.245 1.269
75 - - - - 3.674 3.668 3.681

Table 6.42: Load timings for setting: Large sized general tree, high resource avail-
ability, high level positive interaction, long duration negative interference, high
goal interaction, varying number of goals and reasoning about all types

Finally, the memory requirements for the constraint model, shown in table 6.43,

illustrate the increase in the memory required for the reasoning as the number of

goals increases.

CHAPTER 6. EVALUATION 171

Petri net model (Mb) Constraints model (Mb)
Reasoning Random Standard Most Constr. Max. Regret

Ready Run Ready Run Ready Run Ready Run Ready Run
20 183.67 245.52 157.94 216.99 6.61 9.11 6.61 9.14 6.61 9.15
50 - - - - 7.62 12.65 7.62 12.73 7.62 12.79
75 - - - - 8.49 15.66 8.50 15.78 8.50 15.81

Table 6.43: Memory usage for setting: Large sized general tree, high resource
availability, high level positive interaction, long duration negative interference,
high goal interaction, varying number of goals and reasoning about all types

6.4.2 General Goal-Plan Tree Conclusions

In this section, the two models have been evaluated to consider how they perform

with a large tree size and how well they scale to handle an increasing number

of goals when all three types of reasoning are incorporated. Within this tree

structure, the constraint model has performed better overall in terms of scaling

and goals achieved when there are low levels of resource availability. However, the

Petri net model has still performed better when resource availability has been high

and when reasoning about positive interaction. The longer loading times for the

Petri net model to import and save the large tree sizes have meant that despite any

savings on running time from reduced plans being used, the total time taken by

the Petri net model has been greater than that required by the constraint model to

find a solution. However, if the execution time for the plans is included, the load

time may be negligible. This is most noticeable when reasoning about resources

where the files produced for the Petri net model have been the largest leading to

increased load times and memory usage.

6.5 Summary of Comparison of Tree Structures

and Reasoning Models

In this chapter, the results from a wide set of experiments evaluating the perfor-

mance of the three types of reasoning in the two models have been presented. The

situations and conditions under which each model has been tested has highlighted

areas where one model or the other performs better.

CHAPTER 6. EVALUATION 172

To compare the performance of the three types of reasoning on the different tree

structures, a series of graphs, combining the results for common settings in each of

the tree structures discussed above for each type of reasoning, are presented here

for ease of reference. These show the results for experiments using medium sized

deep and broad tree or large tree from the general tree structure, 20 goals, low level

resource availability, positive interaction at a high level, negative interference over a

long duration and high goal interaction. As the three heuristics for the constraint-

based model have all given very similar timings, only the standard heuristic is

presented here. In addition, when showing the timings, the load timings for both

models are included in the graphs rather than separately in a table. The legend

for the graphs below is shown in figure 6.23.

Deep Broad General

Deep Broad General

Petri net
Random
Constraints

Figure 6.23: Legend for graphs comparing performance over the three different
tree structures

6.5.1 Reasoning about Consumable Resources

While the Petri net model was able to match the number of goals achieved by

the constraint model in the deep tree, the performance in the broad and general

trees was much worse, see figure 6.24. In comparison, the random Petri net model

was able to achieve more goals in the broad and general trees than in the deep

tree. The timings for the Petri net model were greater than those for the con-

straint model when including loading times, especially in the large sized general

tree structure experiments. Overall, the constraint model gave the better results

both in terms of time and number of goals achieved when there is a limited avail-

ability of consumable resources, especially in trees where there is a large amount

of branching.

CHAPTER 6. EVALUATION 173

0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Structure

0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Structure0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Resource Timing

0

2

4

6

8

10

Deep Broad General

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Structure

0

2

4

6

8

10

Deep Broad General

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Structure

0

80

160

240

320

400

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

80

160

240

320

400

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Deep Broad General

Tree Structure

Deep Broad General

Tree Structure

(b) Resource Goals

0

80

160

240

320

400

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure

0

80

160

240

320

400

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure0

80

160

240

320

400

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure

0

80

160

240

320

400

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure0

80

160

240

320

400

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

80

160

240

320

400

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(c) Resource Plans

Figure 6.24: Comparison results for reasoning about resources across the three
tree structures

6.5.2 Reasoning about Positive Interaction

When reasoning about positive interaction, the Petri net was able to generate

better results based on the reduction in the number of plans used in each of the

tree structures, see figure 6.25. Comparing the timings here shows that while

the time taken between the Petri net and the constraint models was the same

for the deep tree, the Petri net model did take longer to load in the experiments

for the other two tree structures, especially the large tree size of the general tree

structure. Where the number of plans used is the key criteria then the Petri

net model performs better, however if time is critical then the constraint model

can produce results slightly faster when reasoning about positive interactions is

desired.

0

260

520

780

1040

1300

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Structure

0

260

520

780

1040

1300

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Structure0

260

520

780

1040

1300

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

0

260

520

780

1040

1300

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Positive Timing

Deep Broad General

Tree Structure

Deep Broad General

Tree Structure

0

160

320

480

640

800

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure

0

160

320

480

640

800

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure

(b) Positive Plans

Figure 6.25: Comparison results for reasoning about positive interaction across
the three tree structures

CHAPTER 6. EVALUATION 174

6.5.3 Reasoning about Negative Interference

While the reasoning about negative interference was the most time consuming of

all the three types of reasoning, it is perhaps the most critical when comparing the

results achieved to those produced when no reasoning is included, as illustrated

in figure 6.26. In this case, the time taken by the Petri net even when the load

times are included is much shorter for the experiments on the deep and broad

tree structures. However, the loading time on the large sized tree for the general

tree structure does take longer than the constraint model in this setting. Overall

the Petri net model offers the better results here, especially with the small and

medium tree structures.

0

300

600

900

1200

1500

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Structure

0

300

600

900

1200

1500

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Structure0

300

600

900

1200

1500

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

0

300

600

900

1200

1500

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Negative Timing

Deep Broad General

Tree Structure

Deep Broad General

Tree Structure

0

4

8

12

16

20

Deep Broad General

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Structure

0

4

8

12

16

20

Deep Broad General

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Structure

0

180

360

540

720

900

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

180

360

540

720

900

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Negative Goals

0

180

360

540

720

900

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure

0

180

360

540

720

900

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure0

180

360

540

720

900

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure

0

180

360

540

720

900

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure0

180

360

540

720

900

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

180

360

540

720

900

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(c) Negative Plans

Figure 6.26: Comparison results for reasoning about negative interference across
the three tree structures

6.5.4 Combined Reasoning

When combining the three types of reasoning together, the number of goals achieved

increased, especially in the deep tree where a large number of plans were saved

by the positive interaction reasoning, as shown in figure 6.27. The resources that

would have been consumed by these plans were then available for use in achieving

other goals. This combined effect is less noticeable in the broad and general trees.

However, the constraint model was generally able to make the most optimisations

here. The exception to this is as the availability of the resources was increased in

the general tree structure, the number of goals started and hence the plans inter-

acting increased, resulting in more plans not being used so more resources being

CHAPTER 6. EVALUATION 175

saved for use in achieving further goals. In the high level resource availability for

the general tree, this lead to all goals being achieved by the Petri net model.

In the experiments for the deep tree, the Petri net timings even when including

the loading times were quite similar to those for the constraint model, however in

the experiments for the other two tree structures, especially the large sized general

tree, the time taken for loading the Petri net model was greater than the time taken

for the constraint model to find a solution. Despite the additional time taken for

the reasoning in both models, the benefits gained from performing the reasoning

over those shown in the random Petri net model show that it is worth considering

taking the time to find a good solution. In dynamic environments, there may not

be the time available to consider this as too much would have changed by the time

a simulation had finished.

0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Structure

0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

Tree Structure0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

0

400

800

1200

1600

2000

Deep Broad General

T
im

e
 i
n

 S
e
c
o

n
d

s

(a) Combined Timing

Deep Broad General

Tree Structure

Deep Broad General

Tree Structure

0

4

8

12

16

20

Deep Broad General

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Structure

0

4

8

12

16

20

Deep Broad General

N
u

m
b

e
r

o
f

G
o

a
ls

Tree Structure

0

80

160

240

320

400

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

0

80

160

240

320

400

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

(b) Combined Goals

0

80

160

240

320

400

Deep Broad General
N

u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure

0

80

160

240

320

400

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure0

80

160

240

320

400

Deep Broad General

N
u

m
b

e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure

0

80

160

240

320

400

Deep Broad General
N

u
m

b
e
r

o
f

P
la

n
s
 U

s
e
d

Tree Structure

(c) Combined Plans

Figure 6.27: Comparison results for combined reasoning across the three tree struc-
tures

6.5.5 Conclusion

While the Petri net model has the faster running times, it also has the slowest

loading times with the greatest memory usage once loaded. One of the side effects

of this is that, as the size of the trees or the number of top-level goals increases, the

load times rapidly increase until the application running the Petri net simulations

is no longer able to load the Petri net goal-plan tree representation. Refinements

and changes in the way the goals are represented may reduce the problem allowing

greater numbers of goals to be handled in the Petri net model. Similarly, it is

possible that refinements in the efficiency of the Prolog constraints used in the

CHAPTER 6. EVALUATION 176

constraint-based model may improve the performance of this model as well.

As has been shown by these experiments and discussed above, the constraint

model produces the same results each time, with just a small variation in the

time taken between repeats, while there is greater variance in the performance

of the Petri net model. For an agent looking for unchanging results then the

constraint model provides the better solution, however in some cases the Petri

net model can give better results. In particular, when reasoning about positive

interaction, the Petri net model gives better results on the number of plans used,

and when reasoning about negative interference, the Petri net model also gives

faster results for successfully achieving all goals, even when including the loading

times. In the deep tree, both models perform well at reasoning about consumable

resources, however when the reasoning is applied to the other two tree structures,

the constraint model is able to achieve more goals when the resource availability

is low.

Where the ability to reason about large number of goals is required, especially

for large sized trees, the constraint model demonstrated that it was able to scale

and find solutions to larger problems, however the trade-off comes at the time

taken, taking 9 hours to reason about 75 goals.

The results presented here have compared the individual types of reasoning

within the models and the combined reasoning. While in most cases it makes sense

to combine all three types of reasoning, there may be application areas where only

one is needed. For example, in applications where there is limited availability of

consumable resources but very little interaction between the goals it may only

make sense to use the resource reasoning. Similarly, in applications where there

are a lot of common goals to achieve the same effects, and abundant resources

it may be possible to just use the positive interaction reasoning. In applications

where there is likely to be a lot of conflict between the goals or where it is more

critical that all the goals are achieved, but again with abundant resources, it may

be sufficient to just apply the negative interference reasoning.

In conclusion, the following recommendations can be made to agents about

which model they may wish to consider:

• When just considering resource reasoning, if the goal-plan trees contain a lot

CHAPTER 6. EVALUATION 177

of branching then the constraint-based model gives better results in terms of

goals achieved.

• When just considering positive interaction reasoning, the Petri net model

gives better results for all goal-plan tree structures in terms of the reduction

in plans used.

• When just considering negative interaction reasoning, the Petri net model

gives better results for all goal-plan tree structures in terms of the time taken

to perform the reasoning.

• When considering the combining of all three types of reasoning, the constraint-

based model gives better results in terms of goals achieved except when there

is high resource availability in which case the Petri net model performs bet-

ter.

• When there are a large number of large goals (i.e., 50 or more goals containing

more than 100 plans), the constraint-based model is able to perform the

reasoning however it will take a long time to find a solution.

Chapter 7

Conclusions and Future Work

As technology is constantly evolving, the application of intelligent agents is becom-

ing increasingly popular in a wide range of applications, in particular in dynamic

environments where agents have incomplete knowledge of their surroundings. The

agents are often required to pursue multiple goals simultaneously in these appli-

cations, so they need to be able to reason about the interactions between the

goals and any constraints restricting the agent such as the limited availability of

resources.

Summary of contributions In this thesis we have considered three domain

independent types of reasoning about goals, represented using a goal-plan tree

structure, that rational agents could apply when considering new goals to adopt

and when selecting which plans to use in order to achieve the adopted goals. The

three types of reasoning considered are: reasoning about the limited availability

of consumable resources; positive interactions between goals; and negative inter-

ference between goals (see chapter 3).

These three types of reasoning have been incorporated into two models de-

veloped here for representing the goal-plan tree problem, the first is a Petri net

model (see chapter 4) and the second is a constraint-based model (see chapter 5).

These two models each represent a goal-plan tree with modules representing the

different types of reasoning, that can be incorporated into them to perform the

different types of reasoning. The three types of reasoning can either be used indi-

vidually or combined together, the greatest increase in performance coming from

178

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 179

combining the reasoning about positive interactions between goals with that of

reasoning about the limited availability of consumable resources. This is because

the positive interaction reduces the number of plans used and hence the amount of

resources being consumed, thereby allowing additional goals to be achieved with

the resources saved.

When the models are executed, they produce outputs indicating the goals that

can be safely adopted and the plans that can be used to achieve them. This is

provided in the form of a list giving a suggested ordering in which the plans could

be safely executed in order to avoid any interference. Each of the models is capable

of reasoning effectively about the three types of reasoning considered in this thesis

and, as shown in chapter 6, they both provide beneficial results, especially when

compared to the performance without any reasoning included, as shown in the

random (Petri net) model.

While both models perform effectively in each of the goal-plan tree structures

evaluated here, it has been possible to identify tree structures where one approach

is more successful than the other, or situations where it may be preferable to

use one type of reasoning over the other. For example, the results for the broad

tree scenario in section 6.3 show the constraint-based model performed better

when reasoning about resources while the Petri net model performed better when

reasoning about positive interactions. The number of plans saved by the Petri

net model when reasoning about positive interaction in each of the tree structures

is greater than that saved by the constraint-model due to differences between the

two styles of implementation. However, the time taken to load the Petri net model

gives a total time slightly greater than that taken by the constraint model. In each

of the tree structures, the Petri net model provided overall better results when

reasoning about negative interference. While both models were able to achieve all

goals, the total time taken from loading to running a simulation in the Petri net

was always less than the time taken to load and evaluate the constraints in the

constraint-based model.

In the experiments, no time was allocated to the actual execution of the plans

themselves so only the loading and reasoning times were recorded. If time was

added for the execution of the plans, then it is possible that the loading time for

the Petri net model and the evaluation time for the constraint-based model may

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 180

become negligible in comparison.

When considering the scalability of the two models, as was evaluated by the

final tree structure in section 6.4, the constraint model performed considerably

better than the Petri net model. The application used to simulate the Petri nets

reached a limit where it was no longer able to load the large files required to

represent the goal-plan trees, while the constraint model was able to load and

evaluate the larger number of goals without any problems. However, the increase

in time taken by the constraint model as the number of goals increased means that

the use of this model in practice may be limited when considering large numbers

of goals.

In situations where consistent good results are required and time is not an

issue then the constraint satisfaction approach is shown to be a preferred model,

particularly with a broad tree or with many large goal-plan trees. On the other

hand, the Petri net model is more suited to deeper goal-plan trees, providing re-

sults quickly once loaded. As the results from the Petri net model vary slightly in

each simulation, the short simulation time means that a number of repetitions can

also be performed quickly with the Petri net approach. This allows the agent to

potentially perform several repeats and select the best result based on its prefer-

ences, such as number of plans used or goals achieved where these can vary slightly

between repeats of the positive reasoning and resource reasoning.

Comparison to existing approaches The types of reasoning that have been

developed here are based on those defined in the work by Thangarajah et al. The

relative performance and merits of the two approaches are discussed here.

The key difference between the approaches is the use of summary information

in the different types of reasoning. In the reasoning about consumable resources,

the summary information used by Thangarajah contained lists of necessary and

possible resource requirements listing each of the resources and the quantity re-

quired. In the case of the two approaches developed here, the summary information

defined focuses on best case and worst case resource requirements, since the aim

of the two models is to select the best case wherever possible. When selecting

which goals could be safely adopted, a normalised list of each of the types of re-

sources and quantities required was used. However, for the subgoals with a choice

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 181

of plan branches, then a single number representing the sum of best case resource

requirements for each branch was sufficient for selecting which plan branch to use.

This means an overview of the resource requirements was stored for each of the

top-level goals, with summed values being stored at the subgoal branches.

In the reasoning about the positive and negative interactions, the use of sum-

mary information was removed completely from the approaches developed here.

For the positive interaction, this is because the reasoning here focuses on the effects

being achieved by the plans, rather than synchronising the plans forcing them to

wait until all matching plans are ready before selecting one to proceed. Here, the

effects are achieved by the first available plan with the effects then ready to be

used in the precondition of any further plans making use of the effects. In the Petri

net model, checks are performed before attempting to execute a plan, to see if the

effect has already been achieved, while in the constraint model, the duplicate plans

are removed once identified so that only the plans that will be needed to achieve

the goals are considered. This is possible as there was no negative interference

included when just reasoning about positive interactions.

When reasoning about negative interference, the Petri net model protects all

effects until they are no longer needed, while the constraint model sequences the

plans identified as potentially interfering to ensure the interference is avoided. In

both types of reasoning, once the interactions have been identified and dealt with,

the information about the interactions is no longer required, removing the need

for the summary information to be stored and monitored during execution.

To evaluate the performance of the approach developed by Thangarajah, two

different tree structures were used. The first of depth 2 containing four plans

and the second of depth 5 containing 12 plans. These were used to evaluate the

performance of their approach when varying depths of tree, in particular for when

reasoning about resources.

When comparing the goal-plan trees used in the evaluation of the approach

developed by Thangarajah et al. and the evaluation here, there is a significant

difference in the size of the trees. The experiments performed on the two models

developed here were defined in a similar style to those adopted by Thangarajah

and Padgham [2004], Thangarajah [2004]. This was to allow for a certain amount

of comparison between the approaches. However, the goal structures used here are

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 182

considerably larger and more complex, so an exact comparison of performance is

not possible. The specification of machines used to run the experiments is also

different so time costs in particular will not be comparable.

In Thangarajah’s approach and the approaches developed here, the evaluations

compared the performance of the reasoning to a control case without any reason-

ing. Each case shows a similar improvement to those seen here over the control

case, with only a small additional time cost for the reasoning models. When just

considering the simulation times in Thangarajah’s approach and the Petri net

model, there is often a reduction in the time taken when compared to the control

cases.

In the experiments by Thangarajah and Padgham [2004] for reasoning about

resources, execution time for the plans themselves was included which increased the

length of time for the simulation significantly. In comparison, their reasoning about

negative interference and positive interaction simply focused on the reasoning cost

without the additional plan execution time, with the negative interference being

slower than the positive interaction reasoning. However, the time taken was less

than the approaches developed here. In their approach, the average run time for

the reasoning was 3 seconds, and without any reasoning just 1.2 seconds. Part

of this increase is due to the extra number of goals being achieved, along with

the computational costs introduced by the reasoning itself. While this run time is

comparable to 10 medium sized broad tree goals when reasoning about negative

interference in the Petri net model, the load times for the Petri net model are

considerably more. The size of the trees used are also greater with at least twice

as many plans in the small sized trees and four times the number of plans in the

medium sized trees.

The results presented by Thangarajah et al. have evaluated each of the types

of reasoning independently. While this has shown their individual effectiveness,

a lot of the strength and practical application within agents involves the various

types of reasoning being combined together as has been done here. Each of the

types of reasoning produced in their work generated lists of summary information

that was used in the reasoning process. As the size and complexity of the trees

grow, these lists will also grow, potentially exponentially [Clement and Durfee,

2000a]. When combining the summary information for each of types of reasoning

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 183

together, this could lead to very large computational overheads, especially as the

size of the trees increases. However, a lot of this computation is performed off-line

so this increase may be acceptable when compared to the benefits gained from the

reasoning.

The greatest benefit from combining the three types of reasoning comes from

the positive interaction reasoning being combined with that about the limited

availability of resources. As the positive interaction reasoning reduces the number

of plans required for achieving some goals, the resource requirements for those

goals lowers to the point where sufficient resources are saved for additional goals

to be successfully completed.

Limitations While the approaches developed here are domain independent, they

do have certain limitations. One of the current limitations to the approaches devel-

oped here is the assumption that plans always achieve their effects. Unfortunately

in many application domains this assumption is not always applicable, especially

in highly dynamic environments where there is a risk of plans failing.

Currently, in order for agents in an agent development language to make use of

the reasoning developed here, they must first export their plan and goal descrip-

tions to XML representations of the goal-plan trees. This can then be parsed to

generate the desired models with the desired types of reasoning for the application.

The developer must be able to specify the amount of resources that will be required

by each plan if they wish to make use of the reasoning about consumable resources.

The design of the reasoning has been based on the Belief Desire Intention (BDI)

model of agents, so for agents that have been developed using different architec-

tures it may not be as easy to generate the goal-plan tree representation required

as input to the reasoning. However, a significant number of agent programming

languages are based on the BDI model [Bordini et al., 2005a, 2009].

Once the instances of the models for reasoning have been produced there is

currently no automated method provided to alter them, for example where a com-

pletely new top-level goal is added, or where the requirements for an existing

plan are changed. These changes would either need to be made manually, or new

instances of the models generated. Particularly with the constraint satisfaction

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 184

based approach, where the reasoning process can take a long time, there is cur-

rently no mechanism built-in to allow reuse of partial solutions. Similarly, in the

Petri net model, due to the length of time taken to load the goal representations,

it may be desirable to modify the nets once loaded, rather than have to reproduce

them when there is a change.

Future Work The reasoning about resources that has been considered here

has focused on that of consumable resources that are limited in their availabil-

ity. Another type of resource that is often used are reusable resources, such as

communication channels. A model was shown in figure 4.6(a) of how this could

be incorporated into the Petri net model, and constraints could be added into

the constraint-based approach to prevent two plans attempting to use the same

reusable resource at the same time. This was not initially included as the use

of these resources can be scheduled, while the use of consumable resources has

greater restrictions applied to it. The reasoning about consumable resources is

also the more difficult of the two types of resources, with it being possible to

later incorporate the reasoning for reusable resources easily. In addition, when

considering consumable resources, all the goals are assumed to consume resources

without any goals to recharge them. The Petri net approach and to some extent

the constraint-based approach are however robust enough to handle this, at least

in a simplistic manner. However, further work to extend both approaches to allow

for more generic maintenance goals, as well as achievement goals is required.

The results on resource reasoning showed that the constraint-based model was

generally better at handling the limited availability, allowing more goals to be

achieved. This was due to the sequential nature of the constraints solvers and the

ability to order the goals based on their resource requirements. While a benefit of

Petri nets is their concurrent behaviour, incorporating a mechanism to control the

order in which goals are adopted should improve the performance of the Petri net

model when reasoning about resources.

When considering the effects caused by plans, it is assumed that all effects are

reversible, allowing plans that could interfere with each other to be scheduled to

achieve all goals. In some cases, the effects are permanent so this would not be

possible. Incorporating this into the models would allow the reasoning to be used

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 185

in a greater number of applications.

A further extension that is required is to handle plan failures, which is par-

ticularly important for agents operating in highly dynamic environments. While

plans can fail due to negative interference, properties of the environment can also

change either due to other agents in the environment or natural environmental

changes that occur over time. For agents to be truly rational and intelligent, they

need to be able to handle plans failing and recover from such failures, rather than

allowing them to cause the goal to fail.

When evaluating the two approaches, the Petri net editor failed to load the

instances of the model for reasoning about large numbers of top-level goals with

the final large goal-plan tree structure. In section 4.6, alternative approaches to

representing the goals in the Petri net model were suggested. One or more of these

alternatives can be tried to compare how well each of the approaches scales, along

with loading time, against the approach used here. It is possible that refinements in

both models will reduce either the loading times or the evaluation times providing

improvements in the performance of both approaches.

Currently, when a developer is programming the agents, they will need to

implement their own appropriate mechanisms for managing any possible conflicts

between the goals. To make use of the reasoning developed here, they would

need to export the goals and plans for the agent into the XML representation of

goal-plan trees. From that point, they can generate the instances of the required

model with the necessary types of reasoning incorporated, then manually apply

the results to the agents’ plan selection. By incorporating these approaches as

an extension to an agent development language such as AgentSpeak, developers

would be able to gain benefits from the improvements provided by the reasoning

without having to manually include reasoning into every application developed.

Bibliography

H. L. Akin. Managing an autonomous robot team: The cerberus team case study.

International Journal of Human-friendly Welfare Robotic Systems, 6(2):35–40,

2005.

A. Alshamsi, S. Abdallah; and I. Rahwan. Multiagent self-organization for a

taxi dispatch system. In proceedings of Eighth International Conference on Au-

tonomous Agents and Multiagent Systems, pages 21–28, Budapest, Hungry, May

2009. International Foundation for Autonomous Agents and Multiagent Systems

(IFAAMAS).

D. R. Anderson, D. J. Sweeney, T. A. Williams, J. Freeman; and E. Shoesmith.

Statistics for Business and Economics. Thomson Learning, London, UK, 2007.

Q. Bai, M. Zhang; and K. T. Win. A colored petri net based approach for multi-

agent interactions. In proceedings of the 2nd IEEE International Conference on

Autonomous Robots and Agents, pages 152–157. ICARA, 2004.

I. Bakam, F. Kordon, C. L. Page; and F. Bousquet. Formalization of a spatialized

multiagent model using coloured petri nets for the study of an hunting manage-

ment system. In FAABS ’00: Proceedings of the First International Workshop

on Formal Approaches to Agent-Based Systems-Revised Papers, pages 123–132,

London, UK, 2001. Springer-Verlag.

M. Baldoni, G. Boella; and L. van der Torre. Bridging agent theory and object

orientation: Importing social roles in object oriented languages. In Programming

Multi-Agent Systems, volume 3862 of Lecture Notes in Computer Science, pages

57–75. Springer, 2006.

186

BIBLIOGRAPHY 187

M. Benisch and N. M. Sadeh. Examing DCSP coorination tradeoffs. Technical Re-

port CMU-ISRI-05-140, Institute for Software Research International, Carnegie

Mellon University, PA 15213, December 2005.

J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci,

R. Post, C. Stehno; and M. Weber. The petri net markup language: Concepts,

technology, and tools. In proceedings of 24th International Conference on Ap-

plications and Theory of Petri Nets, volume 2679 of Lecture Notes in Computer

Science, pages 1023–1046, Eindhoven, The Netherlands, March 2003. Springer.

K. E. Björnberg. What relations can hold among goals, and why does it matter?

Cŕıtica, Revista Hispanoamericana de Filosof́ıa, 41(121):47–66, April 2009.

O. Bonnet-Torrès and C. Tessier. From team plan to individual plans: a petri

net-based approach. In proceedings of AAMAS’05, 4th International Joint Con-

ference on Autonomous Agents and Multiagent Systems, pages 797–804, New

York, July 2005. ACM Press.

S. Bonura, V. Morreale, G. Francavigilia, A. Marguglio, G. Cammarata; and

M. Puccio. Intentions in bdi agents: From theory to implementation. In 7th In-

ternational Conference on Practical Applications of Agents and Multi-Agent Sys-

tems, volume 55/2009 of Advances in Soft Computing, pages 227–236. Springer,

2009.

R. H. Bordini, A. L. C. Bazzan, R. de Oliveira Jannone, D. M. Basso, R. M. Vic-

cari; and V. R. Lesser. AgentSpeak(XL): Efficient intention selection in BDI

agents via decision-theoretic task scheduling. In C. Castelfranchi and W. John-

son, editors, proceedings of First International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS-2002), pages 1294–1302, New York,

USA, July 2002. NY: ACM Press.

R. H. Bordini, M. Dastani, J. Dix; and A. El Fallah Seghrouchni, editors. Multi-

Agent Programming: Languages, Platforms and Applications. Number 15 in

Multiagent Systems, Artificial Societies, and Simulated Organizations. Springer-

Verlag, 2005a.

BIBLIOGRAPHY 188

R. H. Bordini, J. F. Hübner; and R. Vieira. Jason and the golden fleece of

agent-oriented programming. In Multi-Agent Programming. Springer, 2005b.

R. H. Bordini, J. F. Hübner; and M. J. Wooldridge. Programming Multi-Agent

Systems in AgentSpeak using Jason. Wiley Series in Agent Technology. John

Wiley and Sons, Ltd., 2007.

R. H. Bordini, M. Dastani, J. Dix; and A. E. F. Seghrouchni, editors. Multi-Agent

Programming: Languages, Tools and Applications. Spriger-Verlag, 2009.

I. Bratko. Prolog: Programming for Artificial Intelligence. International Computer

Science Series. Pearson Education Limited, third edition, 2001.

M. E. Bratman. What is intention? In P. R. Cohen, J. Morgan; and M. E. Pollack,

editors, Intentions in Communication, chapter 2, pages 15–32. MIT Press, June

1990.

P. Busetta, R. Rönnquist, A. Hodgson; and A. Lucas. JACK intelligent

agents - components for intelligent agents in java. AgentLink, Available from

http://www.agentlink.org/newsletter/2/newsletter2.pdf, 2:2–5, 1999.

C. Castelfranchi and R. Falcone. Conflicts within and for collaboration. In

C. Tessier, L. Chaudron; and H.-J. Müller, editors, Conflicting Agents: Con-

flict Management in Multiagent Systems, Multiagent systems, Artificial soci-

eties, and Simulated organizations, chapter 2, pages 33–62. Kluwer Academic

Publishers, 2001.

L. Ceccaroni and D. Robertson. WaRP - a reactive planner integrated in an envi-

ronmental decision-support system for wastewater treatment plant management.

In ECAI 2000: 14th European Conference on Artificial Intelligence, volume 14,

pages 491–495, August 2000.

A. Cheadle. The ECLiPSe constraint programming system, September 2008. URL

http://www.eclipse-clp.org/eclipse.

Y. Chen, B. W. Wah; and C.-W. Hsu. Temporal planning using subgoal partition-

ing and resolution in SGPlan. Journal of Artificial Intelligence Research, 26:

323–369, 2006.

BIBLIOGRAPHY 189

C.-C. Cheng and S. F. Smith. Applying constraint satisfaction techniques to

job shop scheduling. Technical Report CMU-RI-TR-95-03, Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA, January 1995.

S. Christensen and N. D. Hansen. Coloured petri nets extended with place ca-

pacities, test arcs and inhibitor arcs. Lecture notes in Computer Science, 691:

186–205, 1993.

B. Clement, E. Durfee; and A. Barrett. Abstract reasoning for planning and

coordination. Lecture notes in Computer Science, Jan 2002.

B. J. Clement and E. H. Durfee. Identifying and resolving conflicts among agents

with hierarchical plans. In proceedings of AAAI Workshop on Negotiation: Set-

tling Conflicts and Identifying Opportunities, Technical Report WS-99-12, pages

6–11. AAAI Press, 1999a.

B. J. Clement and E. H. Durfee. Exploiting domain knowledge with a concurrent

hierarchical planner. In proceedings of AI and Planning Systems (AIPS-2000)

Workshop on Analysing and Exploiting Domain Knowledge for Efficient Plan-

ning, pages 57–62, April 2000a. Working Notes.

B. J. Clement and E. H. Durfee. Theory for coordinating concurrent hierarchical

planning agents using summary information. In AAAI ’99/IAAI ’99: Pro-

ceedings of the sixteenth national conference on Artificial intelligence and the

eleventh Innovative applications of artificial intelligence conference innovative

applications of artificial intelligence, pages 495–502, Menlo Park, CA, USA,

1999b. American Association for Artificial Intelligence.

B. J. Clement and E. H. Durfee. Performance of coordinating concurrent hierar-

chical planning agents using summary information. In proceedings of 4th Inter-

national Conference on Multi-Agent Systems (ICMAS), pages 373–374, Boston,

Massachusetts, USA, July 2000b. IEEE Computer Society.

B. J. Clement, A. C. Barrett, G. Rabideau; and E. H. Durfee. Using abstraction

in planning and scheduling. In proceedings of the Sixth European Conference on

Planning (ECP-01), September 2001.

BIBLIOGRAPHY 190

P. Codognet and D. Diaz. Compiling constraint in clp(FD). Journal of Logic

Programming, 27(33):185–226, 1996.

C. Conway, C.-H. Li; and M. Pengelly. Pencil: A petri net specification language

for java, December 2002.

R. S. Cost, Y. Chen, T. Finin, Y. Labrou; and Y. Peng. Modeling agent con-

versations with colored petri nets. In proceedings of Working notes of the Au-

tonomous Agents ’99 Workshop on Specifying and Implementing Conversation

Policies, Seattle, Washington, May 1999.

R. S. Cost, Y. Chen, T. Finin, Y. Labrou; and Y. Peng. Using colored petri nets

for conversation modeling. In Agent Communication Languages, volume 1916 of

Lecture Notes in AI, pages 178–192. Springer-Verlag, 2000.

M. Dastani. 2apl: A practical agent programming language. Autonomous Agents

and Multi-Agent Systems, 16(3):214–248, June 2008.

L. de Silva, S. Sardina; and L. Padgham. First principles planning in bdi sys-

tems. In proceedings of Eighth International Conference on Autonomous Agents

and Multiagent Systems, pages 1105–1112, Budapest, Hungry, May 2009. Inter-

national Foundation for Autonomous Agents and Multiagent Systems (IFAA-

MAS).

R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

D. Diaz. The GNU prolog web site, February 2009. URL

http://www.gprolog.org.

D. Diaz and P. Codognet. The GNU prolog system and its implementation. In

proceedings of the 2000 ACM Symposium on Applied Computing, volume 2, pages

728–732. ACM Press, 2000.

M. D’Inverno, M. Luck, M. P. Georgeff, D. Kinny; and M. J. Wooldridge. The

dMARS architecture: A specification of the distributed multi-agent reasoning

system. Autonomous Agents and Multi-Agent Systems, 9(1-2):5–53, October

2004.

BIBLIOGRAPHY 191

D. A. Dolgov and E. H. Durfee. Resource allocation among agents with mdp-

induced preferences. Journal of Artificial Intelligence (JAIR), 27:505–549, De-

cember 2006.

M. Duvigneau, D. Moldt; and H. Rölke. Concurrent architecture for a multi-

agent platform. In F. Giunchiglia, J. Odell; and G. Weiß, editors, proceedings of

Agent-Oriented Software Engineering III. Third International Workshop, Agent-

oriented Software Engineering (AOSE)2002, Bologna, Italy, July 2002. Revised

Papers and Invited Contributions, volume 2585, pages 59–72. Springer, LNCS,

2003.

K. Erol, J. Hendler; and D. S. Nau. Semantics for hierarchical task-network plan-

ning. Technical Report 64432, King Fahd University of Petroleum and Minerals,

1994.

T. A. Estlin, A. Gray, T. Mann, G. Rabideau, R. Castano, S. Chien; and E. Mjol-

sness. An integrated system for multi-rover scientific exploration. In proceedings

of the Sixteenth National Conference on Artificial Intelligence (AAAI), pages

613–620, July 1999.

FIPA. Specification part 2 - agent communication language. Technical report, The

Foundation for Intelligent Physical Agents, 1999.

M. Fisher and C. Ghidini. Exploring the future with resource-bounded agents.

Journal of Logic, Language and Information, 18(1):3–21, January 2009.

M. I. A. Galipienso and F. B. Sanch́ıs. A mixed closure-CSP method to solve

scheduling problems. In IEA/AIE ’01: Proceedings of the 14th International

conference on Industrial and engineering applications of artificial intelligence

and expert systems, pages 559–570, London, UK, 2001. Springer-Verlag.

M. Georgeff, B. Pell, M. Pollack, M. Tambe; and M. Wooldridge. The belief-

desire-intention model of agency. In J. P. Müller, M. P. Singh; and A. S. Rao,

editors, Intelligent Agents V—Proceedings of the Fifth International Workshop

on Agent Theories, Architectures, and Languages (ATAL-98), held as part of

the Agents’ World, Paris, 4–7 July, 1998, number 1555 in Lecture Notes in

Artificial Intelligence, pages 1–10, Heidelberg, 1999. Spriger-Verlag.

BIBLIOGRAPHY 192

M. P. Georgeff. Communication and interaction in multi-agent planning. In pro-

ceedings of American Association for Artificial Intelligence, 1983.

M. P. Georgeff and A. L. Lansky. Procedural knowledge. Proceedings of the IEEE

Special issue on Knowledge Representation, 74(10):1383–1398, October 1986.

M. Hannebauer. Their problems are my problems - the transition between internal

and external conflict. In C. Tessier, L. Chaudron; and H.-J. Müller, editors,

Conflicting Agents: Conflict Management in Multiagent Systems, Multiagent

systems, Artificial societies, and Simulated organizations, chapter 3, pages 63–

110. Kluwer Academic Publishers, 2001.

M. Hannebauer. A formalization of autonomous dynamic reconfiguration in dis-

tributed constraint satisfaction. Fundamenta Informaticae, 43(1–4):129–151,

2000.

J. F. Horty and M. E. Pollack. Evaluating new options in the context of existing

plans. Artificial Intelligence, 127(2):199–220, 2004.

M. J. Huber. JAM: a BDI-theoretic mobile agent architecture. In proceedings

of the Third International Conference on Autonomous Agents, pages 236–243,

Seattle, Washington, USA, 1999. ACM Press.

M. Jakob, M. Pěchouček, S. Miles; and M. Luck. Case studies for contract-based

systems. In proceedings of seventh International Conference on Autonomous

Agents and Multiagent Systems, pages 55–62. International Foundation for Au-

tonomous Agents and Multiagent Systems (IFAAMAS), May 2008.

N. R. Jennings, K. Sycara; and M. Wooldridge. A roadmap of agent research and

development. International Journal of Autonomous Agents and Multi-Agent

Systems, 1(1):7–38, 1998.

M. Köhler and H. Rölke. Properties of object petri nets. In Applications and

Theory of Petri Nets 2004, volume 3099 of Lecture notes in Computer Science,

pages 278–297. Springer, 2004.

BIBLIOGRAPHY 193

L. M. Kristensen, S. Christensen; and K. Jensen. The practitioner’s guide to

coloured petri nets. International Journal on Software Tools for Technology

Transfer: Special section on coloured Petri nets, 2(2):98–132, 1998.

M. Kumar and S. Rajotia. Integration of process planning and scheduling in a job

shop environment. International Journal of Advanced Manufacturing Technol-

ogy, 28(1-2):109–116, February 2006.

O. Kummer, F. Wienberg; and M. Duvigneau. Renew – the Reference Net Work-

shop, May 2006. URL http://www.renew.de/. Release 2.1.

J. J. Leifer and R. Milner. Transition systems, link graphs and petri nets. Technical

Report UCAM-CL-TR-598, Computer Laboratory, University of Cambridge,

Cambridge, UK, August 2004.

J. Leite, J. Alferes; and B. Mito. Resource allocation with answer-set programming.

In proceedings of Eighth International Conference on Autonomous Agents and

Multiagent Systems, pages 649–656, Budapest, Hungry, May 2009. International

Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS).

V. Lesser, B. Horling, F. Klassner, A. Raja, T. Wagner; and S. X. Zhang. BIG: A

resource-bounded information gathering and decision support agent. Artificial

Intelligence, 118(1-2):197–244, January 2000.

R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce; and P. Varakantham.

Taking DCOP to the real world : Efficient complete solutions for distributed

event scheduling. In proceedings of Third International Joint Conference on

Autonomous Agents and Multiagent Systems - Volume 1 (AAMAS’04), pages

310–317. AAMAS, 2004.

R. Mailler and V. Lesser. Solving distributed constraint optimization problems

using cooperative mediation. In proceedings of Third International Joint Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS 2004), pages

438–445. IEEE Computer Society, 2004a.

BIBLIOGRAPHY 194

R. Mailler and V. Lesser. Using cooperative mediation to solve distributed con-

straint satisfaction problems. In proceedings of Third International Joint Con-

ference on Autonomous Agents and Multi Agent Systems (AAMAS 2004), pages

446–453. IEEE Computer Society, 2004b.

R. Mailler and V. Lesser. Asynchronous partial overlay: A new algorithm for

solving distributed constraint satisfaction problems. In Journal of Artificial

Intelligence Research (JAIR), 25:529–576, 2006.

L. Matthies, E. Gat, R. Harrison, B. Wilcox, R. Volpe; and T. Litwin. Mars

microrover navigation: Performance evaluation and enhancement. Special Issue

on Autonomous Vehicles for Planetary Exploration, 2(4):291–311, 1995.

H. Mazouzi, A. E. F. Seghrouchni; and S. Haddad. Open protocol design for

complex interactions in multi-agent systems. In AAMAS ’02: Proceedings of

the first international joint conference on Autonomous agents and multiagent

systems, pages 517–526, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-

480-0. doi: http://doi.acm.org/10.1145/544862.544866.

F. Meneguzzi and M. Luck. Motivations as an abstraction of meta-level reasoning.

In Multi-Agent Systems and Applications V, volume 4696/2007 of Lecture Notes

in Computer Science, pages 204–214. Springer, 2007.

T. Mora, A. Sesay, J. Denzinger, H. Golshan, G. Poissant; and C. Konecnik.

Cooperative search for optimizing pipeline operations. In proceedings of seventh

International Conference on Autonomous Agents and Multiagent Systems, pages

115–122, Estoril, Portugal, May 2008. International Foundation for Autonomous

Agents and Multiagent Systems (IFAAMAS).

T. Murata. Petri nets: Properties, analysis and applications. In proceedings of the

IEEE, Vol. 77, Issue 4, pages 541–580. IEEE, April 1989.

N. Muscettola, P. P. Nayak, B. Pell; and B. C. Williams. Remote agent: to boldly

go where no ai system has gone before. Artificial Intelligence, 103(1-2):5–47,

August 1998.

BIBLIOGRAPHY 195

R. Nair, P. Varakantham, M. Tambe; and M. Yokoo. Networked distributed

POMDPs: A synergy of distributed constraint optimization and POMDPs. In

proceedings of Twentieth National Conference on Artificial Intelligence (AAAI-

05), pages 1758–1760, 2005.

T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D. Dang,

T. D. Nguyen, V. Deora, J. Shao, W. A. Gray; and N. J. Fiddian. CONOISE:

Agent-based formation of virtual organisations. In proceedings of 23rd SGAI In-

ternational Conference on Innovative Techniques and Applications of AI Special

Issue of Knowledge Based Systems, pages 353–366. Cambridge, UK, 2003.

I. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis; and S. Burion. Human-

robot teaming for search and rescue. IEEE Pervasive Computing: Mobile and

Ubiquitous Systems, pages 72–78, January 2005.

J. Odell. Objects and agents compared. Journal of Object Technology, 1(1):41–53,

May-June 2002.

L. Padgham and M. Winikoff. Developing Intelligent Agent Systems: A practical

guide. John Wiley and Sons, Ltd., June 2004.

J. Palmer. Autonomous tech ‘requires debate’, September 2009. URL

http://news.bbc.co.uk/1/hi/technology/8210477.stm.

P. Paruchuri, E. Bowring, R. Nair, J. P. Pearce, N. Schurr, M. Tambe; and

P. Varakantham. Multiagent teamwork: Hybrid approaches. In proceedings

of Computer society of India Communications, 2006.

J. P. Pearce, R. T. Maheswaran; and M. Tambe. Solution sets in DCOPs and

graphical games. In proceedings of Fifth International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), pages 577–584, Hakodate,

Japan, May 2006. ACM Press.

J. L. Peterson. Petri Net Theory and the modeling of Systems. Prentice-Hall, 1981.

BIBLIOGRAPHY 196

A. Pokahr, L. Braubach; and W. Lamersdorf. A goal deliberation strategy for BDI

agent systems. In Third German conference on Multi-Agent System TEchnolo-

gieS (MATES-2005); Springer-Verlag, Berlin Heidelberg New York, pp. 82-94.

Springer-Verlag, Berlin Heidelberg New York, September 2005.

A. Raja and V. Lesser. Reasoning about coordination costs in resource-bounded

multi-agent systems. proceedings of AAAI 2004 Spring Symposium on Bridging

the multiagent and multi robotic research gap, pages 25–40, March 2004a.

A. Raja and V. Lesser. Meta-level reasoning in deliberative agents. In proceed-

ings of international conference on Intelligent Agent Technology, pages 141–147,

September 2004b.

P. Ramachandran and M. Kamath. A sufficient condition for reachability in a

general petri net. Discrete Event Dynamic Systems: Theory and Applications,

14(3):251–266, July 2004.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.

In R. van Hoe, editor, proceedings of Seventh European Workshop on Modelling

Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands, 1996.

A. S. Rao and M. P. Georgeff. Bdi agents: From theory to practice. Technical

Note 56, Australian Artificial Intelligence Institute, 1995.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, chapter

17: Making Complex Decisions, pages 613–648. Prentice Hall, New Jersey, 2nd

edition, 2003.

S. Sardina, L. de Silva; and L. Padgham. Hierarchical planning in BDI agent

programming. In proceedings of Fifth International Joint Conference on Au-

tonomous Agents and Multi-Agent Systems (AAMAS), pages 1001–1008, Hako-

date, Japan, May 2006.

P. Scerri, D. V. Pynadath; and M. Tambe. Towards adjustable autonomy for the

real world. Journal of Artificial Intelligence Research, 17:171–228, 2002.

BIBLIOGRAPHY 197

N. Schurr, J. Marecki, J. P. Lewis, M. Tambe; and P. Scerri. The defacto system:

Coordinating human-agent teams for the future of disaster response. In Multi-

Agent Programming. Springer, 2005.

J. R. Searle. Speech Acts: an Essay in the Philosophy of Language. Cambridge

University Press, 1969.

A. E. F. Seghrouchni and S. Haddad. A recursive model for distributed planning.

In proceedings of Second International Conference on Multi-Agent Systems (IC-

MAS). IEEE press, December 1996.

P. Shaw and R. Bordini. Towards alternative approaches to reasoning about goals.

In Proceedings of the 5th International Workshop on Declarative Agent Lan-

guages and Technologies, volume 4897/2008 of Lecture Notes in Computer Sci-

ence, pages 104–121. Springer, January 2008.

P. Shaw, B. Farwer; and R. H. Bordini. Theoretical and experimental results on

the goal-plan tree problem. Proceedings of the 7th international joint conference

on Autonomous Agents and Multiagent Systems, 3:1379–1382, May 2008.

G. Simari and S. Parsons. On the relationship between MDPs and the BDI archi-

tecture. In proceeding of Fifth International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS’06), pages 1041–1048, May 2006.

L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques.

MIT Press series in logic programming. MIT Press, second edition, 1994.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.

M. Tambe, E. Bowring, H. Jung, G. Kaminka, R. T. Maheswaran, J. Marecki, P. J.

Modi, R. Nair, S. Okamoto, J. P. Pearce, P. Paruchuri, D. Pynadath, P. Scerri,

N. Schurr; and P. Varakantham. Conflicts in teamwork: Hybrids to the rescue. In

proceedings of the Fourth International Joint Conference on Autonomous Agents

and Multi-Agent Systems (AAMAS), pages 3–12, New York, 2005. ACM Press.

BIBLIOGRAPHY 198

C. C. Teo, R. Bhatnagar; and S. C. Graves. An extension to the tactical planning

model for a job shop: Continuous-time control. In proceeding of Singapore-MIT

Alliance (SMA) Conference, pages 8–16, July 2005.

C. Tessier, L. Chaudron; and H.-J. Müller, editors. Conflicting Agents: Conflict

Management in Multiagent Systems. Multiagent systems, Artificial societies,

and Simulated organizations. Kluwer Academic Publishers, 2001.

J. Thangarajah. Managing the Concurrent Execution of Goals in Intelligent

Agents. PhD thesis, School of Computer Science and Informaiton Technology,

RMIT University, Melbourne, Victoria, Australia, December 2004.

J. Thangarajah and L. Padgham. An empirical evaluation of reasoning about

resource conflicts in intelligent agents. In proceedings of the Third International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 04),

pages 1298–1299, 2004.

J. Thangarajah, M. Winikoff; and L. Padgham. Avoiding resource conflicts in

intelligent agents. In proceedings of 15th European Conference on Artifical In-

telligence 2002 (ECAI 2002), Amsterdam, 2002. IOS Press.

J. Thangarajah, L. Padgham; and M. Winikoff. Detecting and avoiding interfer-

ence between goals in intelligent agents. In proceedings of 18th International

Joint Conference on Artificial Intelligence (IJCAI), pages 721–726, Acapulco,

Mexico, August 2003a. Morgan Kaufmann.

J. Thangarajah, L. Padgham; and M. Winikoff. Detecting and exploiting positive

goal interaction in intelligent agents. In Proceedings of the second international

joint conference on Autonomous agents and multiagent systems, pages 401–408,

New York, NY, USA, 2003b. ACM Press.

J. Thangarajah, J. Harland; and N. Yorke-Smith. A soft COP model for goal delib-

eration in a BDI agent. Sixth International Workshop on Constraint Modelling

and Reformulation (ModRef’07) on Constraint Modelling and Reformulation

(ModRef’07), 2007.

BIBLIOGRAPHY 199

The RoboCup Federation. RoboCup rescue official web page, 2009a. URL

http://www.robocuprescue.org/.

The RoboCup Federation. Robocup official site, July 2009b. URL

http://www.robocup.org/.

Theorectical Foundations Group. Renew - the reference net workshop, 2006. URL

http://www.renew.de/. Department of Informatics, University of Hamburg.

N. A. M. Tinnemeier, M. Dastani; and J.-J. C. Meyer. Goal selection strategies

for rational agents. In Languages, Methodologies and Development Tools for

Multi-Agent Systems, volume 5118/2008 of Lecture Notes in Computer Science,

pages 54–70. Springer, 2008.

W. Truszkowski, M. Hinchey, J. Rash; and C. Rouff. Autonomous and autonomic

systems: a paradigm for future space exploration missions. IEEE Transactions

on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 36(3):

279–291, May 2006.

J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez; and M. Tambe. IRIS - a tool for

strategic security allocation in transportation networks. In proceedings of Eighth

International Conference on Autonomous Agents and Multiagent Systems, pages

37–44, Budapest, Hungry, May 2009. International Foundation for Autonomous

Agents and Multiagent Systems (IFAAMAS).

E. Tsang. Foundation of Constraint Satisfaction. Academic Press, 1993.

P. Varakantham, R. T. Maheswaran; and M. Tambe. Practical POMDPs for

personal assistant domains. In D. Shapiro, P. Berry, J. Gersh; and N. Schurr,

editors, proceedings of AAAI Spring Symposium, Menlo Park, California, 2005.

AAAI Press.

A. Walczak, L. Braubach, A. Pokahr; and W. Lamersdorf. Augmenting BDI

agents with deliberative planning techniques. In proceedings of Fourth Inter-

national Workshop on Programming Mulit-Agent Systems (PROMAS), volume

4411/2007 of Lecture Notes in Computer Science, pages 113–127, Hakodate,

Japan, May 2007. Springer-Verlag.

BIBLIOGRAPHY 200

R. Washington, K. Golden, J. Bresina, D. E. Smith, C. Anderson; and T. Smith.

Autonomous rovers for mars exploration. In proceedings of the 1999 IEEE

Aerospace Conference, volume 1, pages 237–251. IEEE, March 1999.

R. Weigel and B. Faltings. Compiling constraint satisfaction problems. Artificial

Intelligence, 115(2):257–287, 1999.

G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. MIT Press, 1999.

D. Weyns and T. Holvoet. A colored petri net for a multi-agent application.

In proceedings of Modeling Components, Objects and Agents, MOCA’02, pages

121–140. MOCA, August 2002.

J. Wielemaker. An overview of the SWI-prolog programming environment. In

F. Mesnard and A. Serebrenik, editors, proceedings of the 13th International

Workshop on Logic Programming Environments, pages 1–16, 2003.

M. Winikoff, L. Padgham, J. Harland; and J. Thangarajah. Declarative and pro-

cedural goals in intelligent agent systems. In proceedings of Eighth International

Conference on Principles of Knowledge, pages 470–481, April 2002.

M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice. In

Knowledge Engineering Review, 10(2):115–152, January 1995.

M. J. Wooldridge. An Introduction to MultiAgent Systems. John Wiley and Sons,

Ltd., 2nd edition, 2009.

M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction: A

review. Autonomous Agents and Multi-Agent Systems, 3(2):185–207, June 2000.

V. A. Ziparo and L. Iocchi. Petri net plans. In proceedings of Fourth International

Workshop on Modelling of Objects, Components, and Agents (MOCA), pages

267–290, 2006.

V. A. Ziparo, L. Iocchi, D. Nardi, P. Palamara; and H. Costelha. Petri net plans: A

formal model for representation and execution of multi-robot plans. In proceed-

ings of the Seventh International Joint Conference on Autonomous Agents and

BIBLIOGRAPHY 201

Multiagent Systems, volume 1, pages 79–86, Estoril, Portugal, May 2008. Inter-

national Foundation for Autonomous Agents and Multiagent Systems (IFAA-

MAS).

