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Introduction 
 
Outcrop is arguably the most important source of data to study subsurface geology and 
geomorphology. Despite being a traditional technique, outcrop analysis has recently seen a 
methodological regain of interest, with the application of spatial remote sensing techniques, 
such as close-range hyperspectral imagery for mapping mineral content (Buckley et al., 
2013), and terrestrial laser scanner to retrieve millimeter to centimeter scale features (Bellian 
et al., 2005), or a mix of both approaches (Buckley et al., 2013). When these techniques can 
be very cost-prohibitive, the application of a 3D photogrammetric low-cost method has been 
developing very rapidly in the last 5 years: Structure from Motion (SfM) and Multiple-View 
Stereophotogrammetry (MVS). 
For this contribution, the authors aim to (1) present the usage of Structure from motion 
associated with Multiple-View Stereophotogrammetry - a method that can achieve results 
comparable to terrestrial laser scanner for almost no-cost – and its application to outcrop 
analysis; and (2) test the use of wavelet decomposition to surface roughness analysis and by 
then the development of semi-automated analysis. 
 
In 1979, SfM was first developed in the field of computer-vision engineering (Ullman, 1979). 
It has since developed into a valuable tool for generating 3D models from 2D imagery 
(Szelinski, 2011). This development has then in turn benefited the fields of geomorphology 
and geomorphometry, from hand-sample sizes (Westobuy et al., 200x), using either 
purposely taken photographs or existing archives (Gomez, 2014; Gomez et al., 2014) either 
from handheld cameras (XXX, Morgenroth and Gomez, 2014) or cameras mounted on flying 
vehicles (Obanawa et al., 2014a,b). The success of the method is based the limited necessary 
parameters, which makes it very polyvalent. Indeed, traditional photogrammetry requires a 
series of identifiable points identifiable in at least two photographs and, perhaps more 
importantly, known values of camera projection, distortion, position, and orientation 
(Robertson and Cipolla, 2009). By contrast, SfM uses algorithms to identify matching 
features in a collection of overlapping digital images, and calculates camera location and 
orientation from the differential positions of multiple matched features (Fisher et al., 2005; 
Quan, 2010; Szeliski, 2011). Based on these calculations overlapping imagery can be used to 
reconstruct a 3D model of the photographed object or scene. Where relative projection 
geometry and camera position are known, the values can be integrated into the SfM 
reconstruction to improve the calculation productivity and accuracy of the model (Agisoft 



Photoscan-PRO Users Manual, http://downloads.agisoft.ru/pdf/photoscan-pro_0_9_0_en.pdf). 
 
A number of desktop (e.g. Bundler; Snavely et al., 2006; Snaveley, 2010) and browser-based 
(e.g. Microsoft Photosynth; photosynth.net) SfM software packages are freely available for 
generating 3D scenes from digital photographs. However, this study used a commercial 
software program, Agisoft Photoscan-Professional, which has been used in several of the 
published studies in geomorphometr (http://agisoft.ru/products/photoscan/professional). 
Although the procedures described in this study are achievable using the freeware options, 
the decision to use Photoscan-Professional software was also made, because it also includes 
MVS algorithms, meshing the produced pointclouds. Using the combination of SfM and 
MVS, the software can then retrieve an initial set of sparse points from matching features 
(SfM), increase the point-cloud density, and then mesh the pointcloud into a surface using the 
MVS algorithm (Agisoft Photoscan-PRO Users Manual; James and Robson, 2012; 
Verhoeven et al., 2012). 
 
Data	 collection	 and	 creation	 methods	 such	 as	 laser	 scanners	 or	 photogrammetric	
methods	have	multiplied	the	amount	of	measures	possible	by	at	least	6	digits	compared	
to	previous	manual	collection	methods,	and	consequently	one	arising	issue	that	had	to	
be	 addressed	 is	 how	 to	 process	 effectively	 large	 datasets	 and	 also	 what	 extra-
information	can	be	extracted	from	it	-	as	increasing	the	size	of	datasets	for	its	own	sake	
isn’t	a	goal	for	geoscientists.	
One	of	 the	possibility	 to	extract	 information	 from	large	morphometric	datasets	comes	
from	the	broad	field	of	 ‘data	mining’,	with	different	statistical	and	analytical	tools,	 like	
Fourier	 transforms	 and	 wavelet	 analysis	 that	 can	 be	 adapted	 from	 time-series	 to	
topographic	features	(Gomez,	20XX),	the	later	we	used	for	the	present	contribution.	
During	 the	 last	 10	 years,	 the	 use	 of	wavelet	 analysis	 in	 Earth-sciences	 has	 increased	
concomitantly	 with	 the	 increasing	 availability	 of	 numerical	 data.	 It	 has	 especially	
benefited	 the	 study	 of	 time-series	 for	 the	 determination	 of	 different	 frequencies	 and	
momentum	(e.g.	Andreo	et	al.	2006;	Partal	and	Küçük	2006;	Rossi	et	al.	2009).	Analyses	
of	space-scale	data	with	wavelet	-	although	more	scarce	in	earth-sciences	–	are	also	on	
the	 rise	 (e.g.	 Audet	 and	 Mareschal	 2007;	 Booth	 et	 al.	 2009;	 Lashermes	 et	 al.	 2007),	
eventually	 following	 the	 influence	 of	 research	 in	 medical	 imagery,	 which	 has	 been	
widely	 using	wavelet	 for	 topographical	 analysis	 for	 instance	 (e.g.	 Langenbucher	 et	 al.	
2002).	
Wavelets	 allow	 the	 decomposition	 of	 a	 signal	 into	 a	 set	 of	 approximations,	 which	 is	
hierarchically	 organized	 in	 a	 combination	 of	 different	 scales.	Wavelet	 analyses	 use	 a	
short-term	 duration	 wave	 as	 a	 kernel	 function	 in	 an	 integral	 transform.	 There	 are	
several	 types	 of	 wavelet,	 which	 are	 named	 after	 their	 ‘creators’:	 e.g.	 Morlet	 wavelet,	
Meyer	wavelet.	Based	on	the	shape	of	the	series/function	that	needs	to	be	analyzed,	the	
appropriate	mother	wavelet	 is	 scaled	and	 translated	 (daughter	wavelet),	 allowing	 the	
detection	of	the	different	frequencies	of	a	signal	at	different	time	(Torrence	and	Compo	
1998;	Schneider	and	Farge	2006).	Wavelet	 is	a	well-fitted	 tool	 for	 separating	spectral	
components	of	 the	 topography	(i.e.	working	on	 the	different	scales	of	a	single	object),	
because	it	returns	both	the	spatial	and	the	spectral	resolution.	
The	present	contribution,	therefore	uses	a	method	based	on	the	combination	of	(1)	SfM-
MVS	based	data	collection	and	creation	and	(2)	wavelet	decomposition.	
 



 
Location 
 
The dataset used in the present contribution is an outcrop peel conserved at the University of 
Niigata and that has been retrieved from deposits produced by Numazawa Volcano, Honshu, 
Japan (FIG LOCATION). Numazawa Volcano erupted last 5,000 years ago, emplacing at 
least 4 km3 of ignimbrites confined in valley around the volcano, reaching tens of meters 
thickness in the Agano and the Tadami rivers (Kataoka et al., 2008). In this publication, the 
authors demonstrate that the eruption also resulted in floods that impacted the Tadami River, 
from which the peel of the sediment outcrop has been retrieved. The peel is part of a 15 m 
thick hyperconcentrated-flow deposit that lied on top of debris-flow deposits, and which is 
made of coarse sand to pebble size material. 
 
 
Method 
 
For the present study, a sandy to gravely material from Numazawa Volcano (Japan) has been 
digitally acquired and analyzed. The sedimentary peel from Numazawa volcano is 85 cm 
wide and 290 cm high. It is mainly displaying a matrix of coarse sands with intercalated 
layers of coarser material ranging from sands to pebbles. The digital data has been collected 
using a point and shoot digital camera (Canon cybershot), by ‘hoovering’ over the outcrop 
taking 170 photographs from a distance of 10 to 40 cm. To reach the best results, the 
favoured image retrieval to conduct SfM on a dataset varying over a horizontal plane, is to 
reproduce the movement of an imaginary aircraft flying to take aerial photographs (Agisoft	
Photoscan-PRO	 Users	 Manual). Therefore, the photographs were taken following this 
method and in such a way that it allows sufficient overlap to display features on multiple 
photographs. The SfM processing was carried out using the software Photoscanpro® created 
by Agisoft®. From the created dense pointcloud, a surface was then extrapolated before 
being exported into Matlab as a Tiff file representing the surface variation from a hypothetic 
vertical wall. In Matlab, the surface was transformed into series of vertical and horizontal 
signals, decomposed into ‘7 scales’ signals using Haar wavelets (Fig. Method). From the 
decomposed signal, the general trend of outcrop-scale slant was subtracted in order to only 
keep the variations at the millimeter to pluri-centimeter scale.  
 



                       
Fig. Method Transformation of the surface ‘topography’ obtained from Structure From 
Motion. (a) Orthophotograph constructed from Structure from Motion; (b) Surface variation, 
the 0 being the perfect vertical; (c) Surface extraction of the vertical transect at the centre of 
the outcrop; (d) ‘topographic’ general trend as extracted by Haar wavelet decomposition 
(Level 7 of a 7 scales decomposition); (e) Combination of the 4 lowest level of wavelet 
decomposition minus the main trend at level 7 (e = L1+L2+L3+L4-L7). 
 
Results 
 
The conserved peel is dominated by a series of horizontal sandy layers with intercalations of 
coarse sands to pebble size material, which have generated on the SfM-MVS created surface 
variations usually referred to as surface roughness, and which can be associated to 
topographic variations for a horizontal surface. The high-density of points (more than 10 



millions for a surface of 290 cm x 85 cm, i.e. > 4 millions points per square meter, allows a 
precise reconstruction of the peel-surface roughness (cf. b in fig. method and right-hand side 
of fig. x). 
 
 
 
 

 
Fig. Reconstruct_signalLevel1 
 
3D reconstruction of both outcrops with SfM-MVS shows the capacity of the method at 
different scales 
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