
HAL Id: hal-01471916
https://hal.inria.fr/hal-01471916v2

Submitted on 22 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Making Cloud-based Systems Elasticity Testing
Reproducible

Michel Albonico, Jean-Marie Mottu, Gerson Sunyé, Frederico Alvares

To cite this version:
Michel Albonico, Jean-Marie Mottu, Gerson Sunyé, Frederico Alvares. Making Cloud-based Systems
Elasticity Testing Reproducible. 7th International Conference on Cloud Computing and Services
Science, Apr 2017, Porto, Portugal. �10.5220/0006308905230530�. �hal-01471916v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/84972473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01471916v2
https://hal.archives-ouvertes.fr

Making Cloud-based Systems Elasticity Testing Reproducible

Michel Albonico1;3, Jean-Marie Mottu1, Gerson Sunye1 and Frederico Alvares2

1AtlanModels team (Inria, IMT-A, LS2N), France
2Ascola team (Inria, IMT-A, LS2N), France

3Federal Technological University of Parana, Francisco Beltr~ao, Brazil
michelalbonico@utfpr.edu.br, fjean-marie.mottu,gerson.sunye,frederico.alvaresg@inria.fr

Keywords:
Cloud Computing, Elasticity, Elasticity Testing, Controllability, Reproducibility.

Abstract:
Elastic cloud infrastructures vary computational resources at runtime, i. e., elasticity, which is
error-prone. That makes testing throughout elasticity crucial for those systems. Those errors are
detected thanks to tests that should run deterministically many times all along the development.
However, elasticity testing reproduction requires several features not supported natively by the
main cloud providers, such as Amazon EC2. We identify three requirements that we claim to
be indispensable to ensure elasticity testing reproducibility: to control the elasticity behavior, to
select speci�c resources to be unallocated, and coordinate events parallel to elasticity. In this
paper, we propose an approach ful�lling those requirements and making the elasticity testing
reproducible. To validate our approach, we perform three experiments on representative bugs,
where our approach succeeds in reproducing all the bugs.

1 Introduction

Elasticity is one of the main reasons that
makes cloud computing an emerging trend. It
allows to vary (allocate or deallocate) sys-
tem resources automatically, according to de-
mand [Agrawal et al., 2011, Herbst et al., 2013,
Bersani et al., 2014]. Therefore, Cloud-Based

Systems (CBS) must adapt themselves to re-
source variations.

Due to their scalability nature, CBS
adaptations may be complex and error-
prone [Herbst et al., 2013]. This is the case,
for instance, of bug 2164 that a�ects Apache
ZooKeeper [Hunt et al., 2010], a coordination
service for large-scale systems. According to the
bug report, the election of a new leader never
ends when the leader leaves a system with three
nodes. This happens when the resource (e. g.,
virtual machine) that hosts the leader node is
deallocated.

Furthermore, some bug reproductions require
more than adaptation tasks. This is the case of
MongoDB NoSQL database bug 7974, where elas-
ticity and consequently, adaptation tasks, happen

in parallel with other events. In that case, adap-
tation tasks are not the unique cause of the bug,
though they are still a requirement for its repro-
duction.

Reproducing bugs several times is necessary
to diagnose and to correct them. That is,
bugs reported in a CBS bug tracking should
be corrected by developers, who need to repro-
duce them, at �rst. Moreover, during the de-
velopment, regression tests should be run reg-
ularly [Engstrom et al., 2010], requiring the de-
sign of e�cient and deterministic tests. Making
CBS testing reproducible is then an important
concern.

In this paper, we consider any bug that occurs
in presence of elasticity as an elasticity-related

bug. To verify the existence of this kind of bug in
the real-world and to get insights about them, we
analyze MongoDB's bug tracking, a popular CBS.
In the bug tracking we identify a total of 43 bugs
that involve elasticity. Since these bugs occur in
real-world, testers must manage elasticity when
writing and running their tests. However, writing
and executing tests considering the reproduction
of elasticity-related bugs is complex. Besides the

typical di�culty of writing test scenarios and or-
acles, it requires to deterministically manage the
elasticity and parallel events.

The management of elasticity involves driv-
ing the system through a sequence of resource
changes, which is possible by varying the work-
load accordingly [Albonico et al., 2016]. In addi-
tion, tester should also manage parameters that
cannot be natively controlled. For instance, re-
source changes are managed by the cloud provider
according to its own policy. This prevents the
tester to choose which resource must be deallo-
cated, a requirement for 19 of the 43 MongoDB's
elasticity-related bugs. Another parameter that
the tester should manage is the coordination of
events in parallel to elasticity (17/43 bugs) that,
among others, requires a precise monitoring of re-
sources.

In this paper, we present an approach for elas-
ticity testing that allows the tester to reproduce
tests concerned with elasticity-related bugs. We
control the elastic behavior by sending satisfac-
tory workload to CBS that drives it through a se-
quence of resource allocations and deallocations.
Our approach also provides two original contribu-
tions: the deallocation of speci�c resources, and
the coordination of events in parallel with elastic-
ity. The two original contributions are required
to reproduce 30 of the 43 elasticity-related bugs
of MongoDB, i. e., � 70%. In the paper, we also
present a prototype for the approach.

To support our claims and to validate our ap-
proach, we select 3 representative bugs out of the
43 elasticity-related bugs previously mentioned,
and conducted a set of experiments on Amazon
EC2. All the 3 bugs require our approach to sat-
isfy at least one of the requirements we identi�ed.
Experiment results show that our approach repro-
duces real-world elasticity-related bugs ful�lling
all the 3 requirements.

The paper is organized as follows. In the next
section, we remind the major aspects of cloud
computing elasticity. Section 3 details the re-
quirements we claim be necessary for elasticity
testing. Section 4 introduces the testing approach
we propose. The experiments and their results
are described in Section 5. Section 6 discusses
threats to validity. Finally, Section 7 concludes.

2 Cloud Computing Elasticity

This section provides the de�nitions of the
main concepts related to Cloud Computing Elas-

ticity that are required for the good understand-
ing of our approach.

2.1 Typical Elastic Behavior

Figure 1 presents the typical behav-
ior of elastic cloud computing applica-
tions [Albonico et al., 2016]. In this �gure,
the resource demand (continuous line) varies
over time, increasing from 0 to 1:5 then decreas-
ing to 0. A resource demand of 1.5 means that
the application demands 50% more resources
than the current allocated ones.

1.5

Resource Allocation
Resource Demand
Scale-out Threshold

Scale-in Threshold
Scale-out Threshold Breaching
Scale-in Threshold Breaching

Time (s)

R
es

ou
rc

e
(P

ro
ce

ss
or

s)

2

1

0.4

0.8

1.6

scale-out reaction time

scale-out time scale-in reaction time

scale-in time

Legend

Figure 1: Typical Elastic Behavior

When the resource demand exceeds the scale-
out threshold and remains higher during the scale-
out reaction time, the cloud elasticity controller
assigns a new resource. The new resource be-
comes available after a scale-out time, the time
the cloud infrastructure spends to allocate it.
Once the resource is available, the threshold val-
ues are updated accordingly. It is similar con-
sidering the scale-in, respectively. Except that,
as soon as the scale-in begins, the threshold val-
ues are updated and the resource is no longer
available. Nonetheless, the infrastructure needs
a scale-in time to release the resource.

2.2 Elasticity States

When an application is deployed on a cloud in-
frastructure, workload uctuations lead to re-
source variations (elasticity). These variations
drive the application to new, elasticity-related,
states. Figure 2 depicts the runtime lifecycle of
an application running on a cloud infrastructure.

 ready (ry)
scaling

-out (so)
steady
(ry_s)

si reaction
(ry_sir)

scaling
-in (si)

so reaction
(ry_sor)

Figure 2: Elasticity States

At the beginning the application is at the
ready state (ry), when the resource con�guration
is steady (ry s substate). Then, if the applica-
tion is exposed for a certain time (scale-out re-
action time, ry sor substate) to a pressure that
breaches the scale-out threshold, the cloud elas-
ticity controller starts adding a new resource. At
this point, the application moves to the scaling-

out state (so) and remains in this state while the
resource is added. After a scaling-out, the appli-
cation returns to the ready state. It is similar
with the scaling-in state (si), respectively.

2.3 Elasticity Control

We can categorize elasticity control approaches in
two groups: (i) direct resource management, and
(ii) generation of adequate workload.

The �rst and simplest one (i) interacts directly
with the cloud infrastructure, asking for resource
allocation and deallocation. The second one (ii)
consists in generating adequate workload varia-
tions that drive CBS throughout elasticity states,
as previously explained in Section 1. It is more
complex since requires a preliminary step for pro-
�ling the CBS resource usage, and calculating
the workload variations that trigger the elastic-
ity states.

3 Requirements for Elasticity

Testing Reproduction

In this paper, we consider three requirements
for reproducing elasticity testing: elasticity con-

trol, selective elasticity, and events scheduling.
Elasticity Control is the ability to reproduce a

speci�c elastic behavior. Elasticity-related bugs
may occur after a speci�c sequence of resource
allocations and deallocations. Logically, all the 43
elasticity-related bugs of MongoDB should satisfy
this requirement.

Analyzing elasticity-related bugs, we identify
two other requirements: selective elasticity, and
event scheduling. Those requirements are neces-
sary to reproduce 30 of the 43 selected bugs.

Selective Elasticity is the necessity to spec-
ify precisely which resource must be deallocated.
The reproduction of some elasticity-related bugs
requires a deterministic management of elastic-
ity changes. For instance, deallocating a resource
associated to the master component of a cloud-
based system. From the selected bugs, 19 require
selective elasticity.

Event Scheduling is the necessity to synchro-
nize elasticity changes with parallel events. We
consider as an event any interaction or stimulus to
CBS, such as forcing a data increment or to sim-
ulate infrastructure failures. The reproduction of
17 of MongoDB elasticity-related bugs requires
event scheduling.

Table 1 shows the number of bugs that should
meet those requirements in order to be repro-
ducible. As already said, all the bugs require
elasticity control.A total of 30 bugs (70%) should
meet requirements besides elasticity, where 6 bugs
need all the requirements. Finally, only 13 bugs
only need elasticity control (30%) .

Elasticity

Control
Selective
Elasticity

Event
Scheduling All

Only

Elasticity

Control

Quantity 43 19 17 6 13

Table 1: Requirements for Bug Reproductions

4 Elasticity Testing Approach

In this section, we present the overall archi-
tecture of our approach.

4.1 Architecture Overview

Figure 3 depicts the overall architecture of our
approach. The architecture has four main compo-
nents: Elasticity Controller Mock (ECM), Work-

load Generator (WG), Event Scheduler (ES), and
Cloud Monitor (CM).

Elasticity
Controller

Mock

Event
Scheduler

E = {ec1=(s1,W1),ec2, …, ecn}
 SER = {(eci, seri), …}

Events Schedule

Workload
Generator

Wj Cloud
System

Workload

C
ur

re
nt

 E
la

st
ic

ity
 S

ta
te

Event Execution

Resource Variation

Cloud
Monitor

Figure 3: Overall Architecture

The ECM simulates the behavior of the cloud
provider elasticity controller, allocating and deal-
locating determined resources, according to test-

ing needs. It also asks the WG to generate the
workload accordingly, reproducing a realistic sce-
nario. The role of the ES is to schedule and exe-
cute a sequence of events in parallel with the other
components. Finally, the CM monitors the cloud
system, gathering information that helps orches-
trating the behavior of the three other compo-
nents, ensuring the sequence of elasticity states,
and their synchronization with the events.

Table 2 summarizes the requirements that
each component helps in ensuring, as we detail
in this section.

REQUIREMENT

COMPONENT

Elasticity

Control
Selective
Elasticity

Event
Scheduling

ECM YES YES YES

WG YES NO NO

ES NO NO YES

CM YES YES NO

Table 2: Requirements Ensured by Architecture's
Components

4.1.1 Elasticity Controller Mock

The ECM is designed to reproduce the elastic
behavior. By default, ECM requires as input a
sequence of elasticity changes, denoted by E =
fec1; ec2; :::; ecng, where each ec is a pair that
corresponds to an elasticity change. Elasticity
change pairs are composed of a required elastic-
ity state (si) and a workload (Wi), eci = hsi;Wii
where 1 � i � n. A workload is characterized
by an intensity (i. e., amount of operations per
second), and a workload type (i. e., set of trans-
actions sent to the cloud system).

ECM reads elasticity change pairs sequen-
tially. For each pair, ECM requests resource
changes to meet elasticity state si and requests
the Workload Generator to apply the workload
Wi. Indeed, we have to send the corresponding
workload to prevent cloud infrastructure to pro-
voke unexpected resource variations. In particu-
lar, it could deallocate a resource that ECM just
allocated, because the workload has remained low
and under the scale-in threshold.

Instead of waiting for the cloud computing in-
frastructures for elasticity changes, it directly re-
quests to change the resource allocation (elastic-
ity control). Based on both, required elasticity
state and workload (elasticity change pair), ECM
anticipates the resource changes. To be sure CBS
enters the expected elasticity state, ECM queries
the Cloud Monitor, which periodically monitors
the cloud infrastructure.

The ECM may also lead to a precise resource
deallocation (selective elasticity). Typically, elas-

ticity changes are transparent to the tester, man-
aged by the cloud provider. To set up the selec-
tive elasticity, ECM requires a secondary input,
i. e., Selective Elasticity Requests (SER). SER is
denoted by SER = f(ec1; ser1); :::; (ecn; sern)g,
where eci 2 E, and seri refers to a selective

elasticity request. A selective elasticity request

is a reference to an algorithm (freely written by
tester) that gets a resource's ID. When eci is per-
formed by ECM, the algorithm referred by seri is
executed, and the resource with the returned ID
is deallocated by ECM.

ECM helps in ensuring all of elasticity testing
requirements. As earlier explained in this sec-
tion, it deterministically requests resource varia-
tions (elasticity control and selective elasticity),
and helps on ensuring the event scheduling pro-
viding information of the current elasticity state
to the Event Scheduler.

4.1.2 Workload Generator

The Workload Generator is responsible for gener-
ating the workload (W). We base it on Albonico
et al. work [Albonico et al., 2016], which takes
into account a threshold-based elasticity (see Fig-
ure 1), where resource change demand occurs
when a threshold is breached for a while (reaction
time). Therefore, a workload should result in ei-
ther threshold breached (for scaling states) or not
breached (for ready state), during the necessary
time. To ensure this, the Workload Generator
keeps the workload constant, either breaching a
threshold or not, until a new request arrives.

Considering a scale-out threshold is set as 60%
of CPU usage, the workload should result in a
CPU usage higher than 60% to request a scale-
out. In that case, if 1 operation A hypothetically
uses 1% of CPU, it would be necessary at least
61 operations A to request the scale-out. On the
other hand, less than 61 operations would not
breach the scale-out threshold, keeping the re-
source steady.

The Workload Generator contributes with the
Elasticity Controller Mock to the elasticity con-

trol requirement.

4.1.3 Event Scheduler

The Event Scheduler input is a map associating
sets of events to elasticity changes (eci), i. e., the
set of events that should be sent to the cloud sys-
tem when a given elasticity change is managed by
the ECM. Table 3 abstracts an input where four
events are associated to two elasticity changes.

Elasticity Change Event ID Execution Order Wait Time

ec1

e1 1 0 s
e2 2 10 s
e3 2 0 s

ec2
e2 1 0 s
e4 2 0 s

Table 3: Events Schedule

Periodically, the Event Scheduler polls the
ECM for the current elasticity change, executing
the events associated to it. For instance, when
the ECM manages the elasticity change ec1, it
executes the events e1, e2, and e3. Events have
execution orders, which de�ne priorities among
events associated to the same state: event e1 is
executed before events e2 and e3. Events with
the same execution order are executed in paral-
lel (e. g., e2 and e3). Events are also associated
to a wait time, used to delay the beginning of an
event. In Table 3, event e2 has a wait time of
10 s (starting 10 s after e3, but nonetheless exe-
cuted in parallel). This delay may be useful, for
instance, to add a server to the server list a few
seconds after the ready state begins, waiting for
data synchronization to be �nished.

The Event Scheduler ensures the event

scheduling requirement.

4.1.4 Cloud Monitor

Cloud Monitor helps ECM to ensure elasticity

control and selective elasticity. It periodically re-
quests current elasticity state and stores it in or-
der to respond to the ECM queries, necessary for
elasticity control. It also executes the selective
elasticity algorithm of SER, responding to ECM
with the ID of the found resources.

4.2 Prototype Implementation

Each component of the testing approach archi-
tecture is implemented in Java and communicate
with each other through Java RMI. Currently, we
only support Amazon EC2 interactions, though
one could adapt our prototype to interact with
other cloud providers.

4.2.1 Elasticity Controller Mock

The elasticity changes are described in a property
�le. The entries are set as hkey; valuei pairs, as
presented in Listing 1. The key corresponds to
the elasticity change name, while the value cor-
responds to the elasticity change pair. The �rst
part of the value is the elasticity state, and the

second part is the workload, divided into intensity
and type.

Listing 1: Example of Elasticity Controller Mock In-
put File (Elasticity Changes)

ec1=ready, (1000,write)
ec2=scaling�out, (2000,read/write)
...
ec4=scaling�in, (1500,read)

As previously explained, for each entry, the
ECM sends the workload parameters to the
Workload Generator and deterministically re-
quests the speci�ed resource change. Resource
changes are requested through the cloud provider
API, which enables resource allocation and deal-
location, general infrastructure settings, and
monitoring tasks. Before performing an elas-
ticity change, the ECM asks the Cloud Mon-
itor whether the previous elasticity state was
reached. Cloud Monitor uses the Selenium1 au-
tomated browser to gather pertinent information
from cloud provider's dashboard Web page.

We use Java annotations to set up selective
elasticity requests (SER), as illustrated in List-
ing 2. A Java method implements the code that
identi�es a speci�c resource and returns its iden-
ti�er as a String type. It is annotated with meta-
data that speci�es its name and associated elas-
ticity change.

Listing 2: Selective Elasticity Input File

@Selectionfname="ser1", elasticity change="ec4"g
public String select1() f

... //code to �nd a resource ID
return resourceID; g

4.2.2 Workload Generator

The WG generates the workload according to the
parameters received from the ECM (i. e., work-
load type and intensity), whereas the workload
is cyclically generated until new parameters ar-
rive. It uses existing benchmark tools, setting
the workload parameters in the command line.

For instance, YCSB benchmark tool allows
three parameters related to the workload: the
preset workload pro�le, the number of operations,
and the number of threads. The preset workload
pro�le refers to the workload type, while the mul-
tiplication of the two last parameters results in
the workload intensity.

4.2.3 Event Scheduler

Event schedule is set in a Java �le, where each
event is an annotated method, such as the exam-

1http://www.seleniumhq.org/

http://www.seleniumhq.org/

ple illustrated in Listing 3. Java methods are an-
notated with the event identi�er, the related elas-
ticity change, the order, and the waiting time. EC
periodically polls the ECM to obtain the current
elasticity change. Then, it uses Java Reection
to identify and execute the Java methods related
to it.

Listing 3: Example of Event Scheduler Input File

@Eventfid="e1",elasticity change="ec1",
order="1", wait="0"g
public void event1() f ... g

4.3 Prototype Execution

Before executing our approach's prototype,
testers must deploy the CBS, which is done
using an existing approach based on a Do-
main Speci�c Language (DSL) by Thiery et
al. [Thiery et al., 2014]. The DSL enables us
to abstract the deployment complexities inher-
ent to CBS. Information in deployment �le, such
as cloud provider's credentials and Virtual Ma-
chine's con�guration, are then used by the com-
ponents of our prototype. However, since the de-
ployment of CBS is not a contribution of our ap-
proach, we do not further explain it in this paper.

To execute our approach's prototype, testers
write the input �les: E, SER, and ES �les. These
�les as well as the deployment �le are passed
to the prototype as command line parameters.
Then, all the execution is automatically orches-
trated.

5 Experiments

In this section, we present three experiments
that aim at validating our approach for elastic-
ity testing. We reproduce three representative
elasticity-related bugs from two di�erent CBS:
MongoDB and ZooKeeper. The �rst bug is the
MongoDB-7974, which we gather from the Mon-
goDB's elasticity-related bugs described in Sec-
tion 3. The other two bugs, ZooKeeper-2164 and
ZooKeeper-2172, we gather from the o�cial bug
tracking of ZooKeeper, another popular CBS.

We attempt to reproduced all the bugs in two
ways: using our approach, and relying on the
cloud computing infrastructure. Then, we com-
pare both approaches to verify whether the re-
quirements that we identify in this paper are met.

5.1 Experimental Environment

5.1.1 CBS Case Studies

MongoDB2 is a NoSQL document database.
MongoDB has three di�erent components: the
con�guration server, MongoS and MongoD. The
con�guration server stores metadata and con�g-
uration settings. While MongoS instances are
query routers, which ensure load balance, Mon-
goD instances store and process data.

Apache ZooKeeper3 is a server that pro-
vides highly reliable distributed coordination.
ZooKeeper is intended to be replicated over a
set of nodes, called as an ensemble. Requests
from ZooKeeper's clients are forwarded to a sin-
gle node, the leader (which is elected using a dis-
tributed algorithm). The leader works as a proxy,
distributing the request among other nodes called
as followers. The followers keep a local copy of
the con�guration data to respond to requests.

5.1.2 Cloud Computing Infrastructure

All the experiments are conducted on the com-
mercial cloud provider Amazon Elastic Cloud
Compute (EC2), where we set scale-out and
scale-in thresholds as 60% and 20% of CPU us-
age, respectively.

In the experiment with MongoDB, MongoS in-
stance is deployed on a large machine (m3.large),
while the other instances are deployed on medium
machines (m3.medium). In the experiments with
ZooKeeper, every node is deployed on a medium
machine (m3.medium)4.

5.1.3 Workload Tools

To generate the workload for the experiment
with MongoDB, we use the Yahoo Cloud Serving
Benchmark (YCSB) [Cooper et al., 2010], while
for the experiments with ZooKeeper, we use an
open-source benchmark tool [Hunt et al., 2010].

5.1.4 Selected Bugs: Requirements for

Reproduction

Table 4 summarizes the requirements for the re-
production of the three selected bugs. Those bugs
cover all the possible combinations of require-
ments, constrained by the mandatory presence of
elasticity control, and the need of at least one of

2https://www.mongodb.org/
3https://zookeeper.apache.org/
4https://aws.amazon.com/fr/ec2/itype/

https://www.mongodb.org/
https://zookeeper.apache.org/
https://aws.amazon.com/fr/ec2/instance-types/
https://aws.amazon.com/fr/ec2/itype/

the other requirements. We do not attempt to re-
produce any bug that only requires elasticity con-
trol, since one could reproduce the required elas-
tic behavior using Albonico et al. elastic control
approach [Albonico et al., 2016] and then meets
elasticity control requirement only.

FEATURE

BUG

Elasticity

Control
Selective
Elasticity

Event
Scheduling

MongoDB � 7974 YES YES YES

ZooKeeper � 2164 YES YES NO

ZooKeeper � 2172 YES NO YES

Table 4: Requirements for Reproduction the Three
Selected Bugs

MongoDB bug 7974

This bug a�ects the MongoDB versions 2:2:0 and
2:2:2, when a secondary component of a Mon-
goDB replica set5 is deallocated. Indeed, in a
MongoDB replica set, one of the components is
elected as primary member, which works as a co-
ordinator, while the others remain as secondary
members.

To reproduce this bug, we must follow a spe-
ci�c elastic behavior: initialization of a replica set
with three members, deallocation of a secondary
member, and allocation of a new secondary mem-
ber. Therefore, the second step of the elastic
behavior requires the deallocation of a precise
resource, one of the secondary members. The
bug reproduction also requires two events syn-
chronized to elasticity changes. Right after the
secondary member deallocation, we must create a
unique index, and after the last step of the elastic
behavior, we must add a document in the replica
set.

In conclusion, the reproduction of this bug
needs to meet all the requirements that we con-
sider in this paper: elasticity control, selective

elasticity, and event scheduling.

ZooKeeper bug 2164

This bug is related to ZooKeeper version 3:4:5
and concerns the leader election. According to
the bug report6, in an ensemble with three nodes,
when the node running the leader shuts down, a
new leader election starts and never ends.

The reproduction of this bug must follow a
precise sequence: initialization (allocation of the
�rst node), followed by the allocation of two

5https://docs.mongodb.com/replica-set
6https://issues.apache.org/jira/ZK2164

nodes and the deallocation of the leader node.
The main di�culty of reproducing this bug is that
when ZooKeeper is deployed on three nodes, the
deallocated node is not necessarily the leader.

In conclusion, the reproduction of this bug
needs to meet two requirements: elasticity con-

trol and selective elasticity.

ZooKeeper bug 2172

This bug is related to ZooKeeper version 3:5:0,
which introduces the dynamic recon�guration.
According to the bug report7, when a third node
is added to a ZooKeeper ensemble, the system
enters an unstable state and cannot recover.

After a thorough analysis of the available logs,
we understand that the bug occurs when a leader
election starts right after the allocation of a third
node. More precisely, when a new node joins the
ensemble, its synchronizes the con�guration data
with the leader. Therefore, if the data is not al-
ready synchronized at the moment of the leader
election, the bug occurs.

The reproduction of this bug requires a simple
elastic behavior: initialization and two node allo-
cations. However, this sequence alone does not
reproduce the bug: we need to be sure that the
leader election starts before the end of the data
synchronization process. We can force this by in-
creasing the data amount through an event syn-
chronized with the completion of the third node
allocation.

The reproduction of this bug needs to meet
two requirements: elasticity control and event

scheduling.

5.2 Bug Reproduction

In this section, we describe the use of our ap-
proach to reproduce the three bugs, and compare
the results to reproduction attempts without our
approach. We do not explain in details the setup
of reproductions without our approach but we as-
sume one can manage the control elasticity and
meet this requirement. Indeed, reproducing elas-
ticity is a native feature of cloud computing in-
frastructures, and we just drive CBS through re-
quired elastic behavior using Albonico et al. ap-
proach [Albonico et al., 2016].

5.2.1 MongoDB-7974 Bug Reproduction

To reproduce MongoDB bug 7974 using our ap-
proach, we �rst manually create the MongoDB

7https://issues.apache.org/jira/ZK2172

https://docs.mongodb.com/v3.2/core/replica-set-architecture-three-members/
https://docs.mongodb.com/replica-set
https://issues.apache.org/jira/browse/ZOOKEEPER-2164
https://issues.apache.org/jira/ZK2164
https://issues.apache.org/jira/browse/ZOOKEEPER-2172
https://issues.apache.org/jira/ZK2172

replica set, composed by three nodes. Then, we
set up the following sequence of elasticity changes,
which should drive MongoDB through the re-
quired elastic behavior:

E = hry1; h4500; rii ; hsi1; h1500; rii ;

hry2; h3000; rii ; hso1; h4500; rii ; hry3; h4500; rii

Since we must deallocate a secondary member
of MongoDB replica set at elasticity change ec2,
it is associated to a selective elasticity re-
quest (SER). The SER queries MongoDB replica
set's members, using MongoDB shell method
db.isMaster, until �nding a member that is sec-
ondary.

In parallel to the elasticity changes, we set up
two events, e1 and e2, which respectively create
a unique index, and insert a new document in
the replica set. The e1 is associated to elasticity
change ec3, a ready state that follows the scaling-
in state where a secondary member is deallocated.
The e2 is associated to elasticity change ec5, the
last ready state. Both events are scheduled with-
out waiting time.

Elasticity Change Event ID Execution Sequence Wait Time

ec3 e1 1 0 s
ec5 e2 1 0 s

Table 5: MongoDB-7974 Event Schedule

We repeat the bug reproduction for three
times. After each execution, we look for the ex-
pression "duplicate key error index" in the log
�les. If the expression is found, we consider the
bug is reproduced.

Table 6 shows the result of all the three exe-
cutions, either using our approach or not. All the
attempts using our approach reproduce the bug,
while none of the attempts without our approach
do it.

Reproduction Reproduced Not Reproduced

With Our Approach 3 0
Without Our Approach 0 3

Table 6: MongoDB-7974 Bug Reproduction Results

For the executions without our approach, we
force MongoDB to elect the intermediate node
(in the order of allocation) as primary member8,
what can occasionally occur in a real situation.
In this scenario, independent of scale-in settings,
cloud computing infrastructure always deallocate
a secondary member, since Amazon EC2 only al-
lows to deallocated the oldest or newest nodes.
Despite in this experiment we force a selective

8https://docs.mongodb.com/force-primary

elasticity, in a real situation without using our
approach it is not deterministic. For instance,
the newest or oldest node could be elected as a
primary member. Even though cloud computing
infrastructures reproduces the required elastic be-
havior, this bug still needs the event executions,
which must be correctly synchronized. This is
the reason the bug is not reproduced without our
approach.

5.2.2 ZooKeeper-2164 Bug Reproduction

To reproduce this bug, we translate and complete
the scenario (Section 5.1.4) into the following se-
quence of elasticity changes:

E = hry1; h3000; rii ; hso1; h5000; rii ; hry2; h5000; rii ;

hso2; h10 000; rii ; hry3; h10 000; rii ; hsi1; h5000; rii

The sequence of elasticity changes �rst initial-
izes the cloud system with one node, then it re-
quests two scale-out. Once the three nodes are
running, the sequence requests a scale-in.

To discover the leader node, we write a SER
that is associated to the last elasticity change e6
(hsi1; h5000; rii). The SER method connects to
every Zookeeper node and executes ZooKeeper
command named stat. This command describes,
among other information, the node execution
mode: leader or follower.

The sequence of elasticity states, including a
selective elasticity, is supposed to reproduce the
bug. To verify whether the failure occurs, we
write a test oracle, which is implemented in JU-
nit [Gamma and Beck, 1999]. It is run after the
last elasticity change (hsi1; h5000; rii), and repet-
itively searches for a leader until it is found or the
timeout is reached. In the �rst case, the verdict
is pass, what means the bug is reproduced and
observed. Otherwise, the verdict is fail.

As well as in the �rst experiment, we use two
di�erent setups to execute this experiment: with
our approach, and without our approach. We re-
peat the experiment three times for each setup.

Since the selective elasticity is one of the re-
quirements for this bug reproduction, when exe-
cuting without our approach, we try to reproduce
a real scenario, where every node can be elected as
a leader. Therefore, we force ZooKeeper to elect a
di�erent node as the leader at each execution: the
newest, the oldest, then the intermediate node.
Then, we use AmazonEC2 to deallocate a node.
Its policy is to deallocate either the newest or the
oldest node, it is not possible to deallocate the
intermediate node. Hence, during the �rst two

https://docs.mongodb.com/v3.0/tutorial/force-member-to-be-primary/
https://docs.mongodb.com/force-primary

executions we can ask AmazonEC2 to deallocate
the leader, but not during the last one.

Table 7 summarizes the results. When using
our approach, all the three test executions pass,
demonstrating the ability of our testing approach
to deterministically reproduce the bug. In con-
trast, only two executions without our approach
pass, the ones where the leader is the newest or
the oldest node. Therefore, without our approach
the bug was not reproduced deterministically.

Reproduction Pass Verdicts Fail Verdicts

With Our Approach 3 0
Without Our Approach 2 1

Table 7: ZooKeeper-2164 Bug Reproduction Results

5.2.3 ZooKeeper-2172 Bug Reproduction

We create the following sequence of elasticity
changes to reproduce this bug (Section 5.1.4):

E = hry1; h3000; rii ; hso1; h5000; rii ;

hry2; h5000; rii ; hso2; h10 000; rii ; hry3; h10 000; rii

According to the bug log �les, the bug occurs
when the leader election starts before the end of
the data synchronization between the third node
and the previous leader. Thus, the test sequence
must ensure that the data synchronization pro-
cess is longer than the delay needed to start a
new election, which is about 10 s according to the
log �les. Forcing the data synchronization to take
long enough, we create an event schedule to asso-
ciate an event e1 to the state so2, as described in
Table 8. The e1 requests a data increasing to an
amount that should take longer than 10 seconds
to synchronize. Since this experiment uses Ama-
zon m3:large machines, which have a bandwidth
of 62:5MB/s, the data amount must be� 625MB
of data.

Elasticity Change Event ID Execution Sequence Wait Time

ec4 e1 1 0 s

Table 8: ZooKeeper-2172 Event Schedule

We use the test oracle as for the bug 2164,
which is associated to the last ready elasticity
state which is supposed not to be able to elect
a leader before the timeout. Table 9 summa-
rizes the experiment execution. In all three ex-
ecutions, the test verdict is pass, meaning that
the testing approach reproduces the bug success-
fully. Since the AmazonEC2 cannot manage na-
tively the scheduling of events synchronized with
elasticity states, then it cannot reproduce the bug
deterministically.

Reproduction Pass Verdicts Fail Verdicts

With Our Approach 3 0
Without Our Approach 0 3

Table 9: ZooKeeper-2172 Bug Reproduction Results

5.3 Threats to validity

In all the experiments, we set the cloud provider
scale-out and scale-in thresholds to 60% and 20%
of CPU usage, respectively. These values do not
inuence our experiments, though we seek for bug
reproductions that require other thresholds.

In the experiments, our approach to drive CBS
works �ne. However, the elasticity driving could
be compromised when the scalability is not linear.

Finally, controlling the elasticity directly
could introduce some bias in the bug reproduc-
tion. For instance, one could anticipate an elastic-
ity change, even before CBS enters a ready state.
However, for the reproduced bugs we respect typ-
ical elastic behavior (see Figure 1).

6 Related Work

Several research e�orts are related to our
approach in terms of elasticity control, selec-
tive elasticity, and events scheduling. The
work of Gambi et al. [Gambi et al., 2013b,
Gambi et al., 2013a] addresses elasticity testing.
The authors predict elasticity state transition
based on workload variations and test whether
cloud infrastructures react accordingly. However,
they do not focus on controlling elasticity and
cannot drive cloud application throughout di�er-
ent elasticity states.

Banzai et al. [Banzai et al., 2010] propose D-
Cloud, a virtual machine environment specialized
in fault injection. Like our approach, D-Cloud is
able to control the test environment and allows
testers to specify test scenarios. Test scenarios
are speci�ed in terms of fault injection and not
on elasticity and events (as in our approach).

Yin et al. [Yin et al., 2013] propose CTPV, a
Cloud Testing Platform Based on Virtualization.
The core of CTPV is the private virtualization re-
source pool. The resource pool mimics cloud in-
frastructures environments, which in part is simi-
lar to our elasticity controller. CTPV di�ers from
our approach in two points: (i) it does not use
real cloud infrastructures and (ii) it uses an elas-
ticity controller that does not anticipate resource
demand reaction.

Vasar et al. [Vasar et al., 2012] propose a
framework to monitor and test cloud computing
web applications. Their framework replaces the
cloud elasticity controller, predicting the resource
demand based on past workload. Contrary to our
approach, they do not allow to control a speci�c
sequence of elasticity states or events.

Li et al. [Li et al., 2014] propose Reprolite, a
tool that reproduces cloud system bugs quickly.
Similarly to our approach, Reprolite allows the
execution of parallel events on the cloud system
and on the environment. Di�erently from our ap-
proach, Reprolite does not focus on elasticity, one
of our main contributions.

7 Conclusion

In this paper, we proposed an approach to
reproduce elasticity testing in a deterministic
manner. This approach is based on three main
features: elasticity control, selective elasticity,
and event scheduling. We applied this approach
successfully for reproducing three representative
bugs from two popular open source systems:
ZooKeeper and MongoDB.

Our approach allows the reproduction of bugs
that could not be deterministically reproduced
with state-of-the-art approaches. However, test-
ing is not only about reproducing existing bugs,
but also about detecting unknown ones. In this
context, a likely evolution for our approach is to
generate di�erent test scenarios combining elas-
ticity state transitions, workload variations, se-
lective elasticity, and event scheduling.

Another feature we plan to investigate as fu-
ture work is the speediness of test executions.
Deterministic resource allocation can accelerate
state transitions and thus optimize the number
of executions per period of time, and/or reduce
execution costs. This is particularly important
when testing cloud systems: to perform our three
experiments, we used 136 machine-hours in Ama-
zon EC2 .

Finally, we also plan to apply model-driven en-
gineering to create an uni�ed high-level language.
In the current implementation, the writing of test
cases involves a mix of shell scripts, Java classes,
and con�guration �les, which are not very suit-
able for users.

References

[Agrawal et al., 2011] Agrawal, D., El Abbadi, A.,
Das, S., and Elmore, A. J. (2011). Database scal-
ability, elasticity, and autonomy in the cloud. Pro-
ceedings of the 16th DASFAA.

[Albonico et al., 2016] Albonico, M., Mottu, J.-M.,
and Suny�e, G. (2016). Controlling the Elasticity
of Web Applications on Cloud Computing. In The
31st SAC 2016, Pisa, Italy. ACM/SIGAPP.

[Banzai et al., 2010] Banzai, T., Koizumi, H., Kan-
bayashi, R., Imada, T., Hanawa, T., and Sato, M.
(2010). D-Cloud: Design of a Software Testing En-
vironment for Reliable Distributed Systems Using
Cloud Computing Technology. In Proceedings of
CCGRID'10, Washington, USA.

[Bersani et al., 2014] Bersani, M. M., Bianculli, D.,
Dustdar, S., Gambi, A., Ghezzi, C., and Krsti�c, S.
(2014). Towards the Formalization of Properties
of Cloud-based Elastic Systems. In Proceedings of
PESOS 2014, New York, NY, USA. ACM.

[Cooper et al., 2010] Cooper, B. F., Silberstein, A.,
Tam, E., Ramakrishnan, R., and Sears, R. (2010).
Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of SoCC'10, New York, NY, USA.
ACM.

[Engstrom et al., 2010] Engstrom, E., Runeson, P.,
and Skoglund, M. (2010). A systematic review on
regression test selection techniques. Information
and Software Technology, 52(1):14{30.

[Gambi et al., 2013a] Gambi, A., Hummer, W., and
Dustdar, S. (2013a). Automated testing of cloud-
based elastic systems with AUToCLES. In The pro-
ceedings of ASE'13, pages 714{717. IEEE/ACM.

[Gambi et al., 2013b] Gambi, A., Hummer, W.,
Truong, H.-L., and Dustdar, S. (2013b). Testing
Elastic Computing Systems. IEEE Internet Com-
puting, 17(6):76{82.

[Gamma and Beck, 1999] Gamma, E. and Beck, K.
(1999). Junit: A cook's tour. Java Report.

[Herbst et al., 2013] Herbst, N. R., Kounev, S., and
Reussner, R. (2013). Elasticity in Cloud Comput-
ing: What It Is, and What It Is Not. ICAC.

[Hunt et al., 2010] Hunt, P., Konar, M., Junqueira,
F. P., and Reed, B. (2010). Zookeeper: Wait-free
coordination for internet-scale systems. In 2010
USENIX, Boston, MA, USA, 2010.

[Li et al., 2014] Li, K., Joshi, P., Gupta, A., and
Ganai, M. K. (2014). ReproLite: A Lightweight
Tool to Quickly Reproduce Hard System Bugs. In
Proceedings of SOCC'14, New York, NY, USA.

[Thiery et al., 2014] Thiery, A., Cerqueus, T.,
Thorpe, C., Sunye, G., and Murphy, J. (2014). A
DSL for Deployment and Testing in the Cloud. In
Proc. of the IEEE ICSTW 2014, pages 376{382.

[Vasar et al., 2012] Vasar, M., Srirama, S. N., and
Dumas, M. (2012). Framework for Monitoring and

Testing Web Application Scalability on the Cloud.
In Proc. of WICSA/ECSA Companion, NY, USA.

[Yin et al., 2013] Yin, L., Zeng, J., Liu, F., and Li,
B. (2013). CTPV: A Cloud Testing Platform Based
on Virtualization. In The proceedings of SOSE'13.

