
HAL Id: hal-01529737
https://hal.inria.fr/hal-01529737

Submitted on 31 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The KGRAM Abstract Machine for Knowledge Graph
Querying

Olivier Corby, Catherine Faron Zucker

To cite this version:
Olivier Corby, Catherine Faron Zucker. The KGRAM Abstract Machine for Knowledge Graph Query-
ing. Web Intelligence and Intelligent Agent Technology, Aug 2010, Toronto, Canada. pp.338 - 341,
�10.1109/WI-IAT.2010.144�. �hal-01529737�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/84970018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01529737
https://hal.archives-ouvertes.fr

The KGRAM Abstract Machine for Knowledge Graph Querying

Olivier Corby
Edelweiss, INRIA Sophia Antipolis, France

olivier.corby@sophia.inria.fr

Catherine Faron Zucker
I3S, Université de Nice Sophia-Antipolis, CNRS, France

catherine.faron-zucker@unice.fr

Abstract—In this paper we present the KGRAM abstract
machine dedicated to querying knowledge graphs. It is the re-
sult of an abstraction process we performed to reach a generic
solution to the problem of querying graphs in various models.
We identified high level abstract primitives that constitute
the expressions of the query language and the interfaces of
KGRAM for both its data structures and its operations.

Keywords-Knowledge graphs, Query languages, Abstract
machine, Natural Semantics

I. INTRODUCTION

In this paper we present KGRAM (Knowledge Graph
Abstract Machine) dedicated to querying knowledge graphs.
KGRAM result from an abstraction process we conducted
in order to propose a generic solution to the problem of
querying oriented labelled graphs and more specifically
knowledge graphs in various models. This work addresses
current major challenges related to the multiplication of co-
existing knowledge representation languages. With KGRAM
we propose to unify reasoning mechanisms for querying
knowledge bases in different models. To do so, we identified
high level abstract primitives which constitute KGRAM
expressions and interfaces. KGRAM can be viewed as an
interpreter of a generic query language which manipulates
corresponding interfaces for both its data structures and its
graph operations.

The abstraction work we performed in the definition of
KGRAM has been inspired by the results of the GRIWES
[1] project to which we participated. The conception of
KGRAM benefited from our experience on the conception
and development of the Corese semantic engine1 dedicated
to querying Semantic Web data with internal data structures
and operations relying on the Conceptual Graph model
[4], [5]. Finally, our idea to build an abstract machine for
knowledge graphs relates KGRAM to the YAM abstract
machine [7] and the AMaXoS abstract machine [2].

YAM implements the graph programming language GP
and enables to perform any operation over oriented labelled
graphs. It is a very low level abstract machine whereas
we seeked in KGRAM a high level of abstraction: YAM
manipulates hashtables whereas KGRAM manipulates node
and edge interfaces; the YAM instructions are simple stack
operations whereas the KGRAM language is a high level

1http://www.inria.fr/sophia/edelweiss/software/corese

API for querying graphs – which notably generalize and
extend SPARQL.

AMaXoS implements the Xcerpt language for querying
XML data. In Xcerpt, queries are patterns and answers to
queries are instances of patterns. KGRAM and AMaXoS
share the same goal of unifying data querying on the
Web by subsuming both data representation languages and
query languages. However, AMaXoS only considers the data
structure while KGRAM takes into account the semantics of
nodes and edges in knowledge graphs. Moreover, AMaXoS
executes some low level code resulting from the compilation
of Xcerpt queries. Like YAM and contrary to KGRAM it is
a low level abstract machine.

The genericity of KGRAM is relative to the various graph
models it enables to query. Its function for evaluating a query
over a graph base only manipulates interfaces — of nodes
and edges — and calls for functions of interfaces — of
an abstract graph manager, an abstract comparator of node
labels and of an abstract constraint evaluator. KGRAM thus
enables to query graphs of various models, provided the
implementation of these interfaces. This genericity makes
KGRAM interoperable in the sense that it enables to exploit
graphs coming from different models by connecting different
graph managers and constraint evaluators implementing the
same interfaces. In the simplest case, KGRAM enables
to match oriented labelled graphs by supplying a basic
implementation of a comparator of node and edge labels.
As further described later in this paper, we developed
two implementations of KGRAM interfaces which take
into account the semantics of the graphs and then match
conceptual graphs with constraints or query RDF graph with
an extension of SPARQL.

The KGRAM genericity and interoperability broaden the
perspective to distribute the treatment of queries over differ-
ent knowledge graph bases that may be heterogeneous. This
is a multiple perspective. KGRAM can first be viewed as
a mean to unify querying over graph-based data in various
models. This is a major issue for the Web of Data where
RDF/S, Topic Maps, XML or DB data coexist. Moreover
combining the results of partial results on different bases
should enable the development of mashup applications. Fi-
nally, the call of several graph managers in separate parallel
threads should enables to tackle with KGRAM the problem
of scaling in Web querying.

II. THE ABSTRACT QUERY LANGUAGE

A. Abstract Syntax
The abstract syntax of KGRAM’s query language is given

by the following grammar:

QUERY ::= query(NODE *, EXP)
EXP ::= QUERY | NODE | EDGE | FILTER | PATH

| and(EXP, EXP) | union(EXP, EXP)
| option(EXP) | not(EXP) | exist(EXP)
| graph(NODE, EXP)

NODE ::= node(label)
EDGE ::= edge(label, NODE *)
PATH ::= path(RegExp, NODE, NODE)
FILTER ::= filter(FilterExp)

Here is a simple example of an expression which enables to
query for authors and titles of documents (the query does
not depend on the model of the graphs which are queried).

query({node(’?x’), node(’?title’)},
and(edge(’hasCreated’,

{node(’?x’), node(’?doc’)}),
edge(’hasTitle’,

{node(’?doc’), node(’?title’)})))

A query is defined by an expression to be evaluated and a list
of variables for which the list of values is searched when the
query expression is evaluated on the graph which is queried.
A QUERY expression enables to express such a query. Its
EXP parameter represents the expression to evaluate and its
NODE parameters the variables for which the bindings are
searched. These variables correspond in a concrete syntax to
those of a SELECT clause in an SPARQL-like language or
to the parameters of a lambda-expression in the Conceptual
Graph model. A QUERY expression also enables to formulate
a query nested into another. In that case the result of its
evaluation determines bindings for the rest of the evaluation
of the embedding query.
NODE and EDGE expressions enable to query for nodes or
n-ary relations (hyperarcs) in a hypergraph. The label
parameter of a NODE or EDGE expression represents the
label of a node or an edge in a graph; it is a constant (or a
variable for NODE).
The FilterExp parameter of a FILTER expression en-
ables to express constraints on the searched nodes in the
graph which is queried. It is a boolean expression of a
constraint language (interpreted by a filter evaluator given
to KGRAM):

FilterExp ::= Variable | Constant | Term
Term ::= Oper(FilterExp *)
Oper ::= ’<’ | ’<=’ | ’>=’ | ’=’ | ’!=’

| ’&’ | ’|’ | ’!’ | ’+’ | ’-’
| ’*’ | ’/’ | FunctionName

Let us note that NODE, EDGE and FILTER expressions
are primitive and we will show in section III that they
correspond to interfaces of the abstract machine KGRAM.

A PATH expression is a generalization of an EDGE expres-
sion. It enables to query for paths of binary relations between

two nodes in a graph. An AND (resp. UNION) expression
enables to express a conjunction (resp. disjunction) between
two expressions. An OPTION expression makes optional the
existence of solutions to some expression in the search of
solutions to a query. A NOT expression expresses negation as
failure. An EXIST expression enables to search for only one
solution (the first retrieved). A GRAPH expression enables
to specify the knowledge graph upon which the query is
evaluated (without such an expression it is a default graph
which is considered).

B. Natural Semantics

Natural Semantics has first been introduced by [6] to
provide an operational semantics to programming languages.
In Natural Semantics the operational semantics of a language
is given by a set of inference rules. These rules enable to
evaluate the expressions of the language in an environment
and produce lists of environments. Therefore the rules of
Natural Semantics established for KGRAM’s query language
describe the evolution of the environment (initially empty)
during the evaluation of an expression building up a query.

The following rule 1 governs the way to evaluate an
expression for searching an EDGE in a graph. It specifies that
the evaluation of such an expression in an environment ENV
requires to compute the list of environments LENV capturing
the possible matching of EDGE in the graph which is queried
and to merge ENV and LENV. These two operations are
synthesized in the rule bases match and merge which specify
the semantics of the comparator of edge labels and the
environment manager of KGRAM (see section III).

match(ENV ` EDGE → LENV) ∧
merge(ENV, LENV → LENV ′)

ENV ` EDGE → LENV ′
(1)

A similar rule governs the way to evaluate an expression
for searching a NODE in a graph.

The following rules 2 and 3 define the way to evaluate
a FILTER expression. The rule base eval relative to the
evaluation of the boolean expression by which a FILTER
expression is parameterized exploits the bindings of the
query variables embedded in the current environment ENV.
Rule 2 specifies that if this boolean expression is evaluated
to false then an empty environment list (nil) is produced:
there is no solution. Rule 3 specifies that otherwise the list
produced contains a single element which is the current
environment (this list is created with the list operator).

eval(ENV ` F : false)
ENV ` filter(F) → nil

(2)

eval(ENV ` F : true)
ENV ` filter(F) → list ENV

(3)

For lack of space, we do not detail in this paper the
Natural Semantics rules for the other expressions of the
KGRAM’s language.

C. Some Remarquable Languages

Depending on the subset of expressions that we consider,
we define a particular (sub) language. Worth noticing, the
NODE and EDGE expressions define a query language corre-
sponding to the one of the Simple Conceptual Graph model
[3]. The operationalization of the Natural Semantics rules
associated to these expressions corresponds to the search of
homomorphisms on labelled graphs whose relations may be
n-ary.

The expressions NODE, EDGE, FILTER, AND, UNION, OP-
TION and GRAPH define a sublanguage which corresponds
to the core of SPARQL SELECT-WHERE query pattern
extended to n-ary relations. In addition, the EXIST expression
corresponds to the ASK query pattern of SPARQL and the
notion of nested query captured in the QUERY expression is
under review by SPARQL 1.1 WG as well as PATH.

III. THE ABSTRACT MACHINE KGRAM

A. KGRAM’s Interfaces

KGRAM accesses the graph through an abstract API
that hides the graph’s structure and implementation. In
other words, KGRAM operates on a graph abstraction by
means of abstract structures and functions and it ignores
the internal structure of the nodes and edges manipulated
in its function of evaluation of a query expression over a
target graph. More precisely, the target graph is accessed by
node and edge iterators that implement the Node and Edge
interfaces of KGRAM. These are the very same interfaces
that operationalize the NODE and EDGE expressions. As a
result, KGRAM can process any kind of knowledge graph,
in particular conceptual graphs (with n-ary relations) as well
as RDF graphs (with binary relations).

KGRAM manipulates not only abstract data structures but
also abstract operators:

• KGRAM accesses the target graph through an abtract
graph manager which implements its Producer inter-
face. This graph manager enumerates the graph nodes
and edges (implementing the Node and Edge APIs)
that match the nodes and edges occurring in a given
expression (and implementing the same APIs).

• A node and edge matcher implements the KGRAM
Matcher interface. Depending on the Matcher imple-
mentation, label comparison consists in testing string
label equality or it may take into account class and
property subsumption, or compute approximate match-
ing based on semantic similarities, etc.

• Constraints (or filters) are abstract entities that im-
plement the Filter interface which corresponds to the
FILTER expression. Filters are evaluated by an object
that implements the Evaluator interface. KGRAM ig-
nores the internal structure of filters, it calls the eval
function of Evaluator on Filter objects and passes the
Environment as argument.

APIKGRAM

Producer

BDXMLGCRDF …

DLOWLGCRDFS …

Matcher

Filter

Evaluator

Graphe

Requête
Graphe

RequêteSPARQL

P
a
rs

e
r

Figure 1. KGRAM in a nutshell

To sum up, KGRAM interprets expressions and implements
their natural semantics by using an abstract API. Figure
1 presents the KGRAM’s architecture and highlights the
high abstraction level we kept while designing KGRAM.
The KGRAM query evaluation algorithm uses only abstract
interfaces and hence remains independent of any graph
implementation and any data structures.

B. KGRAM’s Evaluation Function

KGRAM’s algorithm for evaluating a query expression
implements the natural semantics rules. It specially relies on
rule 1 associated to the expression EDGE. The environments
produced by these rules represent the (partial) homomor-
phisms found between the expression an the target graph.
KGRAM’s algorithm is described below. The queryStack
argument of the eval function represents the stack of
expressions participating to the query that is evaluated. Its
argument i represents the current position in this stack.
The function is initially called with the whole query in the
stack and a value of zero for i. An instance of KGRAM
is created with (1) a producer which implements the
Producer interface, (2) a matcher which implements the
Matcher interface, (3) an evaluator which implements
the Evaluator interface, (4) an environment manager env
which stores in a stack structure the current environment, i.e.
a partial homomorphism described as node bindings and (5)
a list of complete homomorphisms (representing the results
of the evaluated query).

eval(queryStack, i){
if (queryStack.size() = i){
store(env); return;}

exp = queryStack(i);
switch(exp){
case EDGE:

for (Edge r :
producer.candidate(exp, env)){

env.push(exp, r))
eval(queryStack, i+1);
env.pop(exp, r);}

break;
case FILTER:

if (evaluator.eval(exp, env))
eval(queryStack, i+1);

}}

In the switch control instruction, the blocks labelled by
EDGE implement the rule 1 and hence complete the current
environment with node and edge bindings between the query
and target graphs. The candidate function of the graph
manager producer is called; it takes as argument a NODE
or EDGE expression from the stack queryStack and the
current environment env. It uses the environment to retrieve,
if any, the nodes in the exp expression that are already
bound. Therefore it returns the only edges compatible with
the bindings in the current environment. These candidate
edges are added each one its turn in the current environment
as new bindings. The search of a homomorphism eventually
succeeds and the partial homomorphism is completed when
the summit of the stack is reached: env is then added into
the result list by calling the function store().

The FILTER block in the switch control instruction im-
plements the rules 2 and 3 relative to the expression FILTER.
KGRAM then implements the search of homomorphisms
under constraints. If the filter evaluates to true, the search
of an homomorphism continues with the same environment.
Otherwise the partial homomorphism represented by the
current environment cannot be completed and a backtrack
in the eval function enables to go back to a previous level
in the stack of expressions queryStack, enumerate new
candidates and then evaluate the filter in other environments
where it may succeed.

The whole natural semantics rule base is implemented in
KGRAM by specific blocks integrated to the backbone of
the algorithm shown above: each expression has it’s own
block.

C. KGRAM’s Interoperability

We have tested KGRAM’s portability by implementing
its interfaces Node, Edge, Producer, Matcher, Evaluator
described above with both Corese and Jena. In order to
validate KGRAM, we use a RDF base with 25,000 triples
and almost 500 queries.

The connection to Corese was almost immediate because
KGRAM was designed as an abstraction of the principles of
Corese. In this port, KGRAM handles the whole query lan-
guage and queries RDF graphs implemented as conceptual
graphs. We have also ported KGRAM (except property path)
on Jena within a Master trainee of Corentin Follenfant. The
port requires less than 1000 lines of code and it succeeded.
These two implementations testify the genericity of the

design of KGRAM and show that the connection to other
implementations is easy.

IV. CONCLUSION AND ON-GOING WORK

We have presented the KGRAM abstract machine for
querying knowledge graphs and its graph based query lan-
guage. We have established the natural semantics rules for
each expressions and these rules represent the specification
of the KGRAM algorithm — KGRAM can be viewed as an
interpreter of the query language. We have highlighted the
high abstraction level of KGRAM and the simplicity of its
algorithm which relies on the manipulation of interfaces for
both operations and data structures.

We have extended the query language with an XPath
extension, similar to its property path, to access XML nodes
into some retrieved documents during the processing of an
expression.

Finally, our future prospects deals with the distribution
of treatments over the Web of Data. We consider to handle
this problem by interconnecting different graph managers
implementing the KGRAM API, responsible of one knowl-
edge base each. We envision KGRAM as a response element
to the problem of scaling in processing the Web of Data and
as the keystone to mashup applications combining results of
several graph managers.

REFERENCES

[1] J.F. Baget, O. Corby, R. Dieng-Kuntz, C. Faron-Zucker,
F.Gandon, A. Giboin, A. Gutierrez, M. Leclère, M.L. Mugnier,
and R. Thomopoulos. GRIWES: Generic Model and Prelimi-
nary Specifications for a Graph-Based Knowledge Representa-
tion Toolkit. In Proc. of the 16th International Conference on
Conceptual Structures, ICCS 2008, LNCS 5113, pages 297–
310. Springer, 2008.

[2] F. Bry, T. Furche, and B. Linse. AMaXoS Abstract Machine for
Xcerpt: Architecture and Principles. In Proc. of 4th Workshop
on Principles and Practice of Semantics Web Reasoning, LNCS
4187, pages 105–119, 2006.

[3] M. Chein and M.L. Mugnier. Graph-based Knowledge Repre-
sentation: Computational Foundations of Conceptual Graphs.
Springer London Ltd, 2009.

[4] O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker. Querying the
Semantic Web with Corese Search Engine. In Proc. of the 16th
Eureopean Conference on Artificial Intelligence, ECAI 2004,
pages 705–709. IOS Press, 2004.

[5] O. Corby and C. Faron-Zucker. Implementation of SPARQL
Query Language Based on Graph Homomorphism. In Proc. of
the 15th International Conference on Conceptual Structures,
ICCS 2007, LNCS 4604, pages 472–475. Springer, 2007.

[6] G. Kahn. Natural Semantics. In Proc. of 4th Annual Sympo-
sium on Theoretical Aspects of Computer Science, STACS 87,
LNCS 247, pages 22–39. Springer, 1987.

[7] G. Manning and D. Plump. The York Abstract Machine.
Electron. Notes Theor. Comput. Sci., 211:231–240, 2008.

