
HAL Id: hal-01531157
https://hal.inria.fr/hal-01531157

Submitted on 1 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of SPARQL Query Language Based on
Graph Homomorphism

Olivier Corby, Catherine Faron Zucker

To cite this version:
Olivier Corby, Catherine Faron Zucker. Implementation of SPARQL Query Language Based on Graph
Homomorphism. International Conference on Conceptual Structures, Jul 2007, Sheffield, United King-
dom. �10.1007/978-3-540-73681-3_37�. �hal-01531157�

https://hal.inria.fr/hal-01531157
https://hal.archives-ouvertes.fr


Implementation of SPARQL Query Language

based on Graph Homomorphism

Olivier Corby1 and Catherine Faron-Zucker2

1 INRIA 2004 route des lucioles - BP 93
FR-06902 Sophia Antipolis cedex
Olivier.Corby@sophia.inria.fr

2 I3S, Université de Nice Sophia Antipolis, CNRS
930 route des Colles - BP 145

FR-06903 Sophia Antipolis cedex
Catherine.Faron-Zucker@unice.fr

Abstract. The sparql query language is a W3C candidate recommen-
dation for asking and answering queries against RDF data. It offers capa-
bilities for querying by graph patterns and retrieval of solutions is based
on graph pattern matching. This paper is dedicated to the implementa-
tion of the sparql query language and its pattern matching mechanism
which is reformulated into a graph homomorphism checking constrained
by filter evaluation3.

1 Introduction

The sparql4 query language is a W3C candidate recommendation for asking
and answering queries against rdf5 data. It offers capabilities for querying by
graph patterns and retrieval of solutions is based on graph pattern matching. This
paper is dedicated to the implementation of the sparql query language and its
pattern matching mechanism in the corese6 semantic search engine.

Intuitively, a SPARQL basic graph pattern P is an rdf graph whose some
terms are replaced by variables; the basic graph pattern P of a query Q answered
against an rdf graph G matches with pattern solution S if G entails S(P ), with
S(P ) the replacement of every variable v in P by S(v). This lead us to rdf
graph entailment. The early development of corese relies on the reformulation
of rdfs-entailment as graph homomorphism [2]. In corese last versions, sparql
pattern matching is also reformulated as a graph homomorphism: it answers a
sparql query by searching all the existing projections of the conceptual graph
P representing the query pattern into the conceptual graph G representing the
rdf(s) dataset.

3 Published in the proceedings of the International Conference on Conceptual Struc-
tures, ICCS, Sheffield, July 2007. Springer Verlag.

4 http://www.w3.org/TR/rdf-sparql-query/
5 http://www.w3.org/TR/rdf-mt/
6 http://www-sop.inria.fr/acacia/corese/



We propose an efficient algorithm relying on two main principles. A first
principle comes from our choice to represent the sparql query pattern and
the rdf graph by conceptual graphs: we take advantage of their structure to
limit the search space for node projections by dealing with relations first and
ordering them so as to force node projections. Second, our algorithm integrates
value constraints in the search for graph homomorphisms: sparql is provided
with a wide range of functions and expressions to filter solutions to queries
and our algorithm integrates these value constraints during the search process
to efficiently reduce the search space. We further detail both principles in the
following.

2 Solution Filtering while Pattern Matching

Value constraints and solution modifiers allow to filter solutions retrieved by
pattern matching. However a sequential algorithm where filtering would succeed
pattern matching would be quite unefficient. For instance, let us consider a query
asking for research reports and their authors, members of the INRIA institute,
after 2002. The process of retrieving all the reports before filtering them to keep
the only few ones written after 2002 would be unnecessarily expensive.

Consequently, our algorithm takes into account value constraints during the
search for a graph projection: while searching for a projection of a sparql query
graph into an rdf graph, as soon as for instance a date in the rdf graph is
rejected because it does not pass a sparql filter, the projection as a whole
which involves this date can be rejected.

Moreover, the sooner value constraints are taken into account the smaller the
search space becomes. Therefore our algorithm handles sparql filters as soon as
they are evaluable, which may depend on several graph nodes. For instance, let
us consider the following sparql query asking for the research reports written
before the graduating dates of their authors.

SELECT ?doc ?a ?d1 ?d2 WHERE {

?doc rdf:type ex:ResearchReport . ?doc ex:date ?d1 .

?doc ex:createdBy ?a . ?a ex:graduationDate ?d2 .

FILTER (xsd:date(?d1) >= xsd:date(?d2)) }

Before its filter can be evaluated, both variables ?d1 and ?d2 occuring in it must
be projected into rdf terms.

This ”as early as possible” constraint evaluation principle implicitly defines
an ordering of query graph nodes and characterizes an incremental process for
the construction of a projection: the set of evaluable constraints increases as
fast as possible, depending on the chosen current node of the query for which a
projection is searched and those for which a projection has already been found.



3 Highest Precedence for Relations in Conceptual

Graphs

Our algorihm takes advantage of the hypergraph structure of our representation
of rdf graphs as conceptual graphs to limit the search space for node projections.
We view conceptual graphs as hypergraphs where relation nodes have become
hyperarcs, while concepts nodes remain the only nodes [1]. As a result, when
searching for homomorphisms, relations no more are nodes: in our algorithm
they are viewed as constraints for (concept) node projection. Nodes no more
are projected in isolation but each one is projected at the same time as the
other arguments of a chosen relation to which it participates; relations thus are
constraints which reduce the search space of possible projections of nodes. This
principle is close to the one described in [4].

Formally, we choose a first relation r = (x1, ..., xi) ∈ U(P ), such that ∀t ∈
type(r), ∃r′ = (x′

1
, ..., x′

i
) ∈ U(G) such that ∃t′ ∈ type(r′) with t′ ≤ t. This choice

determines the projections π(x1) = x′

1, ..., π(xi) = x′

i
of x1, ..., xi. While doing

so the theoretical search space V (G)× ...×V (G) has become the extension of t′.
Moreover, when dealing with the next chosen relations, some of their arguments
will already have projections previously chosen and the search space for the
remaining arguments will even more decrease.

4 Algorithm

Ordering Relations in the Query Graph Relations in the query graph P

are heuristically ordered to constrain at best the search space. Heuristics are
based on both the structure of query graph P and the rdf graph G.

Regarding the query graph structure, the ordering depends on both the con-
nexity of relations on their arguments and the occurence of value constraints
associated to relation arguments. By choosing a relation connected by the great-
est number of arguments to previously chosen relations of P , these arguments
already have projections which diminish the search space for the remaining ar-
guments. Furthermore, the more value constraints on nodes are evaluated, the
more the search space will diminish. At each step of the search we chose to
handle the relation for which the greatest number of constraints are evaluable.

Regarding graph G against which the query is asked, the ordering depends
on relation types and on how often relations of a given type (or subtype of it)
occur in G. The early choice of the relations whose type occur the least in G will
significantly reduce the search space.

Graph Indexing and Candidate Relations Graph G against which the
sparql query is asked is indexed by relation types and by each argument of the
relations. Hence there is a direct access to the list of relations of a given type
which involve a given node. This graph indexing is a preliminary step of our
algorithm; it is preprocessed and statically stored.



Based on this static index of G, we associate to each relation r ∈ U(P ) a set
candidates(r) of relations of U(G) candidates for arguments of r to be projected
on theirs: candidate(r) = {s ∈ U(G), type(s) ≤ type(r)}. When a candidate s is
elected, each ith argument of r is projected on the ith argument of s.

The backbone of our algorithm is the stack of the ordered relations of U(P )
associated to their candidate lists. Candidate lists initially correspond to the
static index of G; we incrementally reduce their sizes as we pile them up according
to the heuristic criterions described above. Their decreasing is as follows. Let r

the current relation elected to be piled up. If it is connected to some relation r′

previously piled up with the ith argument of r being the jth argument of r′, then
relations in candidate(r) can be eliminated whose ith argument does not appear
as jth argument in candidate(r′). Moreover, if some value constraint is evaluable
once r is piled up, candidate(r) is further decreased by eliminating candidates
for which the constraint evaluates to false.

As a result, let stack(P ) the stack where all relations of U(P ) are piled up;
it constitutes the search space for graph projection search.

Backjump Our algorithm incrementally search for a partial projection for
nested subgraphs of P . To build these subgraphs we consider relations as they
are ordered in stack(P ). This static ordering enables the handling of constraints
during the projection search without ever and ever testing their evaluable status
at each step of the algorithm, which would be too time consuming.

Based on this static ordering of relations defined by stack(P ), in case of
failure of a partial projection search, our algorithm does not just systematically
backtrack to the preceding relation in the stack but possibly goes to a deeper
relation. It directly backjumps to the relation which solves the failure: the latest
relation which binds (for the first time) one of the variables in the failing relation
or the failing filter.

5 Conclusion

In this paper, we have presented the corese implementation of the sparql
query language and its pattern matching mechanism. We reformulated the prob-
lem of answering sparql queries against rdf(s) data into a graph homomor-
phism checking and the corese algorithm takes advantage of the structure of
graphs translating rdf(s) and sparql data and constrains graph homomor-
phism checking by sparql value constraints. Corese has proven its usability in
a wide range of real world applications since 2000 [3]. Its implementation has
widely evolved and it is now compliant with the core of sparql query language.

References

1. J.F. Baget, Simple Conceptual Graphs Revisited: Hypergraphs and Conjunctive
Types for Efficient Projection Algorithms, In Proc. of the 11th ICCS, Dresden, Ger-
many, 2003, LNCS 2746, Springer Verlag, pages 229-242.



2. O. Corby, R. Dieng, C. Faron, F. Gandon. Searching the Semantic Web: Approxi-
mate Query Processing based on Ontologies, IEEE Intelligent Systems 21(1), 2006.

3. R. Dieng-Kuntz, O. Corby. Conceptual Graphs for Semantic Web Applications, In
Proc. of the 13th ICCS, Kassel, Germany, 2005, LNCS 3596, Springer-Verlag.

4. M. Croitoru, E. Compatangelo. A combinatorial approach to conceptual graph pro-
jection checking, In Proc. of the 24th International Conference of Specialist Group
on Artificial Intelligence (AI’2004), Springer SBM, pages 130-143.


