
HAL Id: hal-01534596
https://hal.inria.fr/hal-01534596

Submitted on 7 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exclusive graph searching vs. pathwidth
Euripides Markou, Nicolas Nisse, Stéphane Pérennes

To cite this version:
Euripides Markou, Nicolas Nisse, Stéphane Pérennes. Exclusive graph searching vs. pathwidth.
Information and Computation, Elsevier, 2017, 252, pp.243 - 260. �10.1016/j.ic.2016.11.007�. �hal-
01534596�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/84966382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01534596
https://hal.archives-ouvertes.fr

Exclusive Graph Searching vs. Pathwidth

Euripides Markou1,∗

University of Thessaly, Lamia, Greece

Nicolas Nisse∗

Inria, France and Univ. Nice Sophia Antipolis, CNRS, I3S, Sophia Antipolis, France

Stéphane Pérennes∗

Univ. Nice Sophia Antipolis, CNRS, I3S, Sophia Antipolis, France

Abstract

In Graph Searching, a team of searchers aims at capturing an invisible fugitive
moving arbitrarily fast in a graph. Equivalently, the searchers try to clear a
contaminated network. The problem is to compute the minimum number of
searchers required to accomplish this task. Several variants of Graph Searching
have been studied mainly because of their close relationship with the pathwidth
of a graph.

Blin et al. defined the Exclusive Graph Searching where searchers cannot
“jump” and no node can be occupied by more than one searcher. In this paper,
we study the complexity of this new variant. We show that the problem is
NP-hard in planar graphs with maximum degree 3 and it can be solved in
linear-time in the class of cographs. We also show that monotone Exclusive
Graph Searching is NP-complete in split graphs where Pathwidth is known to
be solvable in polynomial time. Moreover, we prove that monotone Exclusive
Graph Searching is in P in a subclass of star-like graphs where Pathwidth is
known to be NP-hard.

Hence, the computational complexities of monotone Exclusive Graph Search-
ing and Pathwidth cannot be compared. This is the first variant of Graph
Searching for which such a difference is proved.

Keywords: graph searching, pathwidth

∗Corresponding author
Email addresses: emarkou@ucg.gr (Euripides Markou), Nicolas.Nisse@inria.fr

(Nicolas Nisse), stephane.perennes@inria.fr (Stéphane Pérennes)
1Part of this work was done while this author was visiting INRIA at Sophia-Antipolis. This

research has been co-financed by the European Union (European Social Fund — ESF) and
Greek national funds through the Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF) — Research Funding Program: THALIS-
NTUA (MIS 379414).

Preprint submitted to Elsevier October 23, 2016

1. Introduction

In Graph Searching [Bre67, Par78], a team of searchers aims at clearing
a contaminated network. Many variants have been studied that differ with
respect to the moves allowed to the searchers, the ways of clearing the graph
and the constraints imposed to the search strategies (see the survey [FT08]). In
each variant, the main problem consists of computing the minimum number of
searchers, called search number of G, required to clear the graph G.

Graph Searching has been introduced by Breish for modeling the rescue
of a lost speleologist by a team of searchers in a network of caves [Bre67].
Later on, Parsons formalized Graph Searching as a game to clear contaminated
networks [Par78]. Formally, in edge Graph Searching, the searchers can be
placed at nodes of a graph, removed from nodes or may slide along edges. Any
edge of the graph is cleared when a searcher slides along it. A clear edge e is
recontaminated as soon as there is a path from e to a contaminated edge without
any searcher on it. As an example, to clear a path P , it is sufficient to place a
searcher at an end of P and then to slide it until its other end.

Kirousis and Papadimitriou defined node Graph Searching in which searchers
can only be placed at and removed from nodes, and edges are cleared only when
both their endpoints are simultaneously occupied [KP86]. In this variant, two
searchers are required to clear a path (v1, · · · , vn), n > 1: place first a searcher
at v1, then, for i = 2 to n, place a searcher at vi and remove the searcher at vi−1.
Note that, in this variant, it is not possible to clear a path with one searcher
since, each time the searcher is removed, the whole path is recontaminated.

Then, Bienstock and Seymour defined the mixed Graph Searching [BS91], in
which the allowed moves are similar as in edge Graph Searching but an edge
e is cleared when a searcher slides along it or when both endpoints of e are
simultaneously occupied. The edge-strategy described above for the path is
also a mixed-strategy.

The search numbers corresponding to the three above mentioned variants
are known as edge-, node- and mixed-search numbers, denoted by es, ns and s
respectively. For instance, for any n-node path Pn, n > 1, es(Pn) = s(Pn) = 1
and ns(Pn) = 2.

One of the main motivations for studying Graph Searching arises from the
fact that it provides an algorithmic interpretation of path-decompositions of
graphs [RS83, KP86]. For the sake of completeness we mention below the defi-
nition of path-decomposition and pathwidth of a graph.

Definition 1. [RS83] Let G(V,E) be a graph. A sequence (X1, . . . Xr), of sub-
sets of V (G) is a path-decomposition of G if the following conditions hold:

•
⋃

1≤i≤rXi = V (G).

• For every edge e of G, there is a Xi, with 1 ≤ i ≤ r, which contains both
endpoints of e.

• For each i, j, k, where 1 ≤ i ≤ j ≤ k ≤ r, Xi ∩Xk ⊆ Xj.

2

The width of a path decomposition (X1, . . . Xr) is the maximum size of its sub-
sets minus 1, i.e., maxi≤r |Xi| − 1. The pathwidth of G is the minimum width
of its path-decompositions.

The node-search number of any graph equals its pathwidth plus one [KP86,
BS91] and any other “classical” variant differs from pathwidth up to a constant
ratio (see Related Work). Since computing the pathwidth is NP-hard in many
graph classes (e.g., [Gus93]), a polynomial-time algorithm for computing some
“classical” variant of search number in one of these classes would provide a
polynomial-time approximation algorithm for pathwidth. To the best of our
knowledge, no graph class is known where the complexities of pathwidth and
some “classical” variant of Graph Searching are different.

An important property of Graph Searching is the monotonicity. A strategy
is monotone if no edge is ever recontaminated. Each of the node-, edge- and
mixed Graph Searching variants is monotone. That is, for any graph G, there is
a monotone mixed (resp., node, resp., edge) strategy that clears G using s(G)
(resp., ns(G), resp., es(G)) searchers [BS91]. The monotonicity property is very
important, in particular because it is the corner stone of the link between the
node search number of a graph and its pathwidth.

Recently, Blin et al. introduced a new variant, namely Exclusive Graph
Searching, that appears to be very different from the previous ones [BBN13].
They show that the corresponding optimization problem is polynomial in trees
and give some evidence that this new variant of the problem behaves differently
than pathwidth. For instance, Exclusive Graph Searching is not monotone in
trees. It is also shown that the search-number in Exclusive Graph Searching may
differ exponentially from previous variants. However, it equals the pathwidth
up to a constant ratio in bounded degree graphs. The complexity of this variant
in arbitrary graphs is left open.

In this paper, we study the computational complexity of this new variant. In
particular, we prove that the computational complexities of monotone Exclusive
Graph Searching and Pathwidth cannot be compared.

Exclusive Graph Searching. An exclusive search strategy [BBN13] consists
of first placing k searchers at distinct nodes of a connected graph G = (V,E).
Then, at each step, a searcher at some node v ∈ V can slide along an edge
{v, u} ∈ E only if node u is not yet occupied by another searcher. By definition,
any exclusive search strategy satisfies the exclusivity property: at any step,
any node is occupied by at most one searcher. Initially, all edges of G are
contaminated and an edge e ∈ E is cleared if either a searcher slides along it or
if both endpoints of e are occupied simultaneously. An edge e is recontaminated
if there is a path, free of searchers, from e to another contaminated edge. In
this paper, a node is said clear if it is occupied by a searcher or if all its incident
edges are clear.

A strategy is winning if eventually all edges of G become clear. As an
example, a winning exclusive strategy in a n-node star (a tree with n− 1 leafs)
consists of: 1) first placing searchers at n− 2 distinct leafs (i.e., all but one leaf,
say v), and then 2) sliding a searcher from a leaf to the center of the star and

3

then along the last contaminated edge (to v). It is easy to see that there are no
winning strategies using ≤ n− 3 searchers in an n-node star.

The exclusive search-number of G, xs(G), is the minimum number k such
that there is a winning strategy using k searchers to clear G. The monotone-
exclusive search-number of G, mxs(G), is the smallest k such that there is a
winning monotone strategy using k searchers to clear G. By definition, xs(G) ≤
mxs(G) for any graph G. Note that this inequality may be strict [BBN13]. If
mxs(G) = xs(G) for any graph G in some class C of graphs, Exclusive Graph
Searching is said monotone in C.

In [BBN13], the question of the complexity of computing xs in arbitrary
graphs was left open, as well as the question of whether there exists a graph class
in which computing the exclusive search-number could provide a polynomial-
time approximation of pathwidth. In this paper, we answer the first question
and further investigate the second one.

Our results2. We first show that computing the exclusive search-number is
NP-hard in the class of planar graphs with maximum degree 3 (Sec. 2).

Then, we focus on star-like graphs (Section 3). We show that the compu-
tational complexities of monotone Exclusive Graph Searching and pathwidth
differ in star-like graphs. More precisely, in Section 3.1, we show that monotone
Exclusive Graph Searching can be computed in polynomial time in a subclass of
star-like graphs where pathwidth is known to be NP-complete [Gus93], and in
Section 3.2 we show that computing the monotone exclusive search-number is
NP-complete in split graphs (where the pathwidth can be solved in polynomial-
time [Gus93]). This is the first variant of Graph Searching where such a differ-
ence arises.

Finally, we show that Exclusive Graph Searching is monotone and can be
computed in linear-time in the class of cographs (Section 4), where pathwidth
can also be computed in polynomial time.

Our results are summarized in Table 1. We leave as open problems the
question of whether Exclusive Graph Searching is monotone in split graphs and
the question of whether there are graph classes where Exclusive Graph Searching
provides a polynomial-time approximation of pathwidth.

Let us emphasize that all graphs considered in this paper are undirected,
simple (without loops nor multiple edges) and connected, except in Section 4
where graphs might be not connected.

Related Work. The edge, node and mixed Graph Searching variants are very
close one from each other (note that both edge and node strategies are mixed
strategies). In particular, for any graph G, ns(G) − 1 ≤ es(G) ≤ ns(G) + 1
and s(G) ≤ ns(G) ≤ s(G) + 1 [KP86, BS91](all inequalities are tight). For
all these variants, there are simple graph transformations allowing to compute
one of these parameters from another one [KP86, BS91]. For instance, es(G) =

2We postpone the formal definitions of the graph classes mentioned here to the correspond-
ing sections.

4

pathwidth pw edge-search mixed-search exclusive-search
(node-search ns) es s [this paper]

planar graphs NP-hard
with bounded NP-complete [MS88, KP86] (xs)

maximum degree (Section 2)

split graphs P P linear NP-complete
[Gus93] [PTK+00] [FHM10] (mxs) (Sec. 3.2)

star-like graphs with NP-complete P
≥ 2 peripheral nodes [Gus93] ? ? (mxs)
per peripheral clique (Section 3.1)

cographs P [BM93] linear P [HM08] linear (Sec. 4)
[GHM12] xs = mxs

Table 1: Summary of the complexity results.

s(G+) for any graph G where G+ is obtained from G by subdividing3 each edge
once [KP86].

The problem of computing the edge search number has been shown to be
NP-complete in the class of planar graphs with maximum degree 3 [MS88]. As
mentioned above es(G) = s(G+) in any graph G [KP86] and this reduction
from edge search to mixed search preserves planarity and maximum degree.
Moreover, in the resulting graph G+, the set of vertices with degree at least
three induces an independent set. Altogether, it gives:

Theorem 1. [MS88, KP86] The problem of computing the mixed search num-
ber is NP-complete in the class of planar graphs with degree ≤ 3 where the set
of vertices with degree exactly 3 induces an independent set.

The pathwidth problem and the variants of Graph Searching have been stud-
ied in many particular graph classes. To the best of our knowledge, no classes
of graphs are known where the computational complexities of these problems
are different. Pathwidth, edge-search number and mixed-search number can
be computed in polynomial-time in trees [Sko03, CHM12]. All these parame-
ters can also be computed in polynomial-time in cographs [BM93, GHM12], in
split-graphs [Gus93, FHM10] or in permutation graphs [HM08]. On the other
hand, pathwidth is NP-hard in star-like graphs [Gus93]. Moreover, pathwidth
cannot be approximated up to an additive constant in arbitrary graphs (unless
P=NP) [DKL87]. It is a long standing open problem to answer whether there
is a class of graphs where the complexities of pathwidth and mixed- (or edge-)
search number are different.

Blin et al. defined Exclusive Graph Searching [BBN13] to address two
somewhat unrealistic assumptions of edge- (node-, mixed-) search strategies.
In previous variants, searchers are enabled to “jump” from one node of the

3The subdivision of an edge e = uv consists in adding a new node x and replacing e by
two edges ux and xv.

5

graph to another, potentially far away, node. Second, several searchers may oc-
cupy simultaneously the same node. Therefore, in Exclusive Graph Searching,
searchers are only allowed to slide along edges and must satisfy the exclusiv-
ity constraint. The case when searchers are only allowed to slide along edges
has been previously studied under the context of Connected Graph Search-
ing in [BFF+12]. Notice that any exclusive strategy is a mixed one (hence
s(G) ≤ xs(G) for any graph G). However, the results in [BBN13] show that Ex-
clusive Graph Searching seems to behave differently from the previous variants.
Indeed, in a graph G, xs(G) may differ exponentially from the pathwidth pw(G)
of G. For instance, pw(T) = O(log n) for any n-node tree T [MHG+88], while
xs(S) = mxs(S) = n − 2 for any n-node star S. The main result in [BBN13]
is that xs(T) can be computed in polynomial-time in any tree T . Finally, it
is shown that pw(G) ≤ xs(G) ≤ mxs(G) ≤ (∆ − 1)(pw(G) + 1) in any graph
G with maximum degree ∆ [BBN13]. It is also shown that Exclusive Graph
Searching is not monotone in the class of trees, i.e., there are trees T such that
xs(T) < mxs(T) [BBN13].

2. NP-hardness of Exclusive Search Number in planar graphs with
maximum degree 3

In this section, we prove that the problem of computing the exclusive search
number is NP-hard in planar graphs with maximum degree 3. For our purpose,
we reduce to our problem the problem of computing the mixed search number
of planar graphs with maximum degree 3 where no two nodes with degree 3 are
adjacent (this problem is NP-hard by Theorem 1).

The construction part of the reduction consists in replacing any node of
degree three by a triangle. Exclusive search differs from mixed search because
searchers can only slide and therefore, because of the exclusivity property, the
searchers have to avoid to meet other searchers at the same node. Intuitively,
the triangles allow the searchers to bypass each other.

Let G = (V,E) be any planar graph with maximum degree 3 and such that
the nodes with degree exactly 3 induce an independent set. Let T ⊆ V be the
set of nodes with degree exactly 3. T is an independent set and all nodes in
V \ T have degree at most two. The planarity of G will not be used below, but
it is well preserved by our reduction.

We construct G4 from G as follows. For any node v ∈ T with neighbors
a, b, c (note that {a, b, c} ⊆ V \T), we replace v by a triangle with nodes va, vb, vc
and we add edges ava, bvb and cvc (see Figure 1).

Let Tv = {va, vb, vc} and Ev = {vavb, vbvc, vcva} be the set of edges of the
triangle with vertex-set Tv. More formally,

V (G4) = (V \ T) ∪
⋃
v∈T

Tv

F1 = {uv ∈ E | u, v ∈ V \ T} ∪ {ava | a /∈ T, v ∈ T, av ∈ E}

6

a a

b c b c

v

va

vb vc

G�G

(a) (b)

Figure 1: A node v of degree three in G (a) is transformed to a triangle Tv in G4 (b).

F2 =
⋃
v∈T

Ev

E(G4) = F1 ∪ F2

Note that there is a bijection between E and F1, therefore we will identify
the edges of both sets. Let φ4 : E → F1 be this bijection and let φ4(F) =
{φ4(f) | f ∈ F} for any F ⊆ E. Similarly, there is a bijection ψ4 between
V (G) \ T and V (G4) \

⋃
v∈T Tv.

Clearly, G4 can be constructed from G in polynomial time (with respect to
G’s size) and it is planar and has maximum degree 3. We will prove that any
monotone mixed-strategy for G can be transformed into an exclusive strategy
for G∆ without increasing the number of searchers. This part of the proof is
quite technical because the obtained exclusive strategy is not monotone and we
need to control the recontamination. Conversely, from any exclusive strategy for
G∆, we will define a mixed-strategy for G using the same number of searchers.

Theorem 2. For any planar graph G with maximum degree 3 and no two ad-
jacent nodes with degree exactly 3, s(G) = xs(G4).

The proof of Theorem 2 directly follows from the following Lemmata 1 and 2.

Lemma 1. For any planar graph G with maximum degree 3 and no two adja-
cent nodes with degree exactly 3, xs(G4) ≤ s(G).

Proof: Let s(G) = k ≤ |V (G)| and let S be a mixed strategy for G using k
searchers. By monotonicity of mixed-search [BS91], we may assume that S is
monotone. It is easy to see that in S it is never useful that a searcher is placed
or slides to an already clear (occupied or not) node. Thus we may restrict our

7

attention to a monotone mixed search strategy S in which a searcher always
slides or it is placed at a previously contaminated (and hence unoccupied) node.
Therefore, it is easy to see that we may assume that S proceeds as follows (up
to a reordering of the steps of S): first S places the searchers on k distinct
nodes4, then, while there is at least one contaminated node, either S slides a
searcher from a node u to an unoccupied node v, or S removes a searcher from
a node all neighbors of which are clear and places it on a contaminated node.
We call such a sliding-step or such a pair of steps (removal-placement) a Round
of S. Note that, in the case of a sliding-step, by monotonicity, v is the unique
contaminated neighbor of u.

For any i ≥ 0, let Ci ⊆ V (G) be the set of clear nodes after Round i, let
Ei ⊆ E(G) be the set of clear edges after Round i, let Oi ⊆ V (G) be the set of
occupied nodes after Round i and let Ri ⊆ Ci be the set of clear nodes whose
all incident edges are in Ei.

In Round 0 the k searchers are initially placed at k distinct nodes by S.
Hence after the initial placement of the searchers we have: The set O0 ⊆ V (G)
consists of the k vertices where the searchers are initially placed by S. Note
that O0 is the set of nodes that are clear after these first k placements. Hence
E0 = {uv ∈ E | u, v ∈ O0} and R0 = {v ∈ O0 | N(v) ⊆ O0} is the set of
vertices5 in O0 with all their neighbors in O0. Note that the searchers in R0 are
the ones that can be removed (by a pair of removal-placement steps).

We first make some general remarks. Since we focus on a monotone strategy
S in which a searcher always slides or it is placed at a previously contaminated
(and hence unoccupied) node, for any i > 0, Ci−1 ⊂ Ci, Ei−1 ⊂ Ei and Ri−1 ⊂
Ri when Round i corresponds to a sliding-step, and Ci−1 ⊂ Ci, Ei−1 ⊆ Ei and
Ri−1 ⊆ Ri when Round i corresponds to a pair of removal-placement steps.
The searchers at the nodes in Ri ∩ Oi are exactly the searchers that may be
removed (by a pair of removal-placement steps) during the next round. Finally,
Ci = Ri ∪ Oi since nodes in Ci \ Ri are in the border of the clear part and
therefore must be preserved from recontamination by a searcher.

We now build an exclusive strategy S4 for clearing G4 using k searchers.
S4 is divided into phases such that Phase 0 corresponds to the initialization
of S and each Phase i (i ≥ 1) corresponds to Round i of S. As above, let us

define, for any i ≥ 0, C4i ⊆ V (G4) as the set of clear nodes after Phase i,

E4i ⊆ E(G4) as the set of clear edges after Phase i, let O4i ⊆ V (G4) be the

set of occupied nodes after Phase i and let R4i ⊆ V (G4) be the set of clear

4Notice that S can always be modified so that it initially places all k searchers at k distinct
nodes: The only modification is that all searchers are initially placed at the nodes they appear
for the first time. It cannot happen that two searchers are placed at the same node u, since this
would mean that one of them (the one that appeared later at u in the original strategy) was
placed at an already cleared node. It is easy to see that this modified strategy is also monotone
and clears the graph: the modified strategy may clear sooner than the original strategy some
nodes and/or edges and those nodes and edges cannot be recontaminated because of the
monotonicity of the original strategy.

5In the whole paper, N(v) denotes the set of neighbors of v ∈ V (G).

8

nodes whose all incident edges are in E4i . To clear G4, each searcher of S4
will mimic the moves of a searcher in S. More precisely, for any i ≥ 0, we will
ensure that, after Phase i:

1. ψ4(Ri\T)∪
⋃
v∈Ri∩T Tv ⊆ R

4
i . That is, when all edges incident to a node

in V (G) are clear, the same holds for the corresponding node or triangle
in G4.

2. O∆
i ∩ψ4(V \T) = ψ4(Oi\T). That is, for any occupied node in V (G)\T ,

the corresponding node inG4 is also occupied. Moreover, for any occupied
node w in ψ∆(V \ T), the corresponding node ψ−1

∆ (w) of G is occupied.

3. φ4(Ei) ⊆ E4i , i.e., for any clear edge in E(G), the corresponding edge is
clear in G4.

4. For any v ∈ T , then v ∈ Oi if and only if |O4i ∩ Tv| = 1.
Moreover, let N(v) = {a, b, c}:
(a) if no edges incident to v are clear or v ∈ Ri (i.e., all edges incident to

v are clear), then the searcher in S4 is at some arbitrary node in Tv.

Moreover, in the latter case, x ∈ R4i for any x ∈ Tv (in particular

Ev ⊆ E4i);
(b) if exactly one edge, say av ∈ E(G), incident to v is clear, i.e., Ei ∩
{av, bv, cv} = {av}, then O∆

i ∩ Tv = {va};
(c) if exactly two edges, say av, bv ∈ E(G), incident to v are clear, i.e.,

Ei ∩ {av, bv, cv} = {av, bv}, then O∆
i ∩ Tv = {vc} and Ev ⊆ E4i .

If S4 satisfies Property (1), then it clearly clears G4. Indeed, let t be
the index of the last round in S, then Rt = V (G) (because S clears G) and

ψ4(Rt \ T) ∪
⋃
v∈Rt∩T Tv = V (G4) ⊆ R4t .

Moreover, by Properties 2 and 4 (first line), S4 uses k searchers.

We finally define strategy S4 and prove it satisfies these properties by induc-
tion on the number of rounds of S. As said previously, strategy S4 is divided
into phases such that Phase i corresponds to Round i of S. Let us emphasize
that a phase of S4 may consist of several sliding steps.

Phase 0 proceeds as follows. First, for any v ∈ O0 \ T , place one searcher at
ψ4(v) (hence Property (2) holds) and for any v ∈ O0 ∩ T , place one searcher
at some node in Tv (to be explained below at which one). Note that exactly k
searchers are used. For any v ∈ T , let N(v) = {a, b, c}. There are three cases
depending on the number 0 ≤ h ≤ 3 of v’s incident edges that are in E0.

• If h = 0, then the searcher is placed at an arbitrary node of Tv. Hence
Property (4.a) holds for node v.

• If h = 1, let av ∈ E0 and hence a is occupied. Then, the searcher is placed
at va ∈ Tv (see Figure 2). Hence Property (4.b) holds for node v. Since
ψ4(a) is also occupied, φ4(av) is cleared.

• If h ∈ {2, 3}, let {av, bv} ⊆ E0 ∩ {av, bv, cv}, then the searcher in Tv is
placed at vc, the searcher at ψ4(b) slides to vb and the searcher at ψ4(a)

9

slides to va. The edges in Ev are cleared. Then, the searchers at va and vb
return to ψ4(a) and ψ4(b) respectively (see Figure 3). Note that ψ4(a)
and ψ4(b) have degree at most 2 and only the edges ψ4(a)va and ψ4(b)vb
might have been recontaminated but they are cleared again at the end of
the phase. Hence if h = 2 then Property (4.c) holds for node v, while if
h = 3 then Property (4.a) holds for node v.

a

b c

v

va

vb vc

G�G

(a) (b)

ψ�(a)

ψ�(b) ψ�(c)

Figure 2: Let v ∈ O0 ∩ T . If only one edge, av incident to v is clear (i.e., a ∈ O0 \ T) (a),
then the searcher in Tv is placed at va (b).

Hence, at the end of Phase 0, for every node v ∈ O0 \ T , Property (2)
holds (that is for every occupied node v of degree at most 2 in G exactly one
node: the corresponding node ψ4(v) in G4 is also occupied), and for every
node v ∈ O0 ∩ T and its corresponding triangle Tv, Property (4.a) or (4.b) or
(4.c) holds (that is for every occupied node v of degree 3 in G there is exactly
one occupied node in the corresponding triangle Tv in G4 so that if an edge
vx ∈ E(G) is clear then φ4(vx) ∈ E(G4) is also clear and additionally if at
least two of v’s incident edges are clear in G then all edges in the corresponding
triangle Ev in G4 are also clear). Therefore properties (1), (3) immediately
follow.

Let i ≥ 0 and assume that the properties hold at the end of Phase i. If
Round i is the last one in S, then, as previously mentioned, G4 is clear at the
end of Phase i. Otherwise, we define the next Phase i + 1 and show that the
properties still hold after Phase i+ 1.

Phase i+ 1 is based on the Round i+ 1 of S. There are two cases depending
on whether Round i + 1 consists of sliding a searcher or of a pair of removal-
placement steps.

First, let us assume that Round i+ 1 consists of making a searcher
slide from node u to node v.

10

a

b c

v

va

vb vc

G�G

(a) (b)

ψ�(a)

ψ�(b) ψ�(c)

Figure 3: Let v ∈ O0∩T . If at least two edges, av, bv incident to v are clear (i.e., a, b ∈ O0 \T)
(a), then the searcher in Tv is placed at vc and the searchers at ψ4(a) and ψ4(b) slide to va
and vb respectively and return (b).

1. Suppose that u ∈ T . Then, v ∈ V (G) \ T . By monotonicity of S, uv is
the single contaminated edge incident to u. Therefore, by Property (4.c),
a searcher is at uv in G4 and only uvψ4(v) is contaminated. Moreover,
ψ4(v) is not occupied by Property (2). Therefore, Phase i + 1 of S4
makes the searcher at uv to slide along uvψ4(v) = φ4(uv).

(a) If v is not adjacent to another node (apart from u) of degree 3 then
it is easy to check that all properties are still satisfied after Phase
i+ 1.

(b) If however, v is adjacent to another node w, different than u, of
degree 3, then if w was occupied at the end of Round i (and hence
by Property (4) there is exactly one searcher at w’s corresponding
triangle after Phase i of S4) there are two subcases:

• No edge incident to w was clear after Round i: then the searcher
at w’s corresponding triangle, slides to wv (the vertex of the w’s
triangle that is adjacent to ψ4(v)) and it is easy to see that all
properties are satisfied.

• At least one edge incident to w (different of course than vw) was
clear after Round i: Suppose that at least edge wa was clear.
Then either wv was already occupied and hence Property (4.c)
was true (in that case all properties hold after Phase i + 1), or
node wa was occupied and hence Property (4.b) was true. Then
in Phase i+1, after the sliding of the searcher at ψ4(v) the same
searcher slides to node wv, then the searcher at wa slides to wc
(where c is the remaining adjacent node of w in G), and finally
the searcher at wv slides back to ψ4(v) (see Figure 4).

11

a

c

v

G�G

(a) (b)

ψ�(a)

ψ�(c)u

1

w

ψ�(v)

wv

wa

wc2

3

4

Figure 4: (a) The case when in Round i+ 1 of S a searcher at a node u slides towards a node
v of degree 2 whose other neighbor w has degree 3 and it was already occupied at the end of
Round i and the edge wa was clear. (b) The corresponding Phase i+ 1 of S4; the numbers
declare the ordering of slidings.

Now all properties hold.

2. The case when v ∈ T and u ∈ V (G) \ T is similar: Phase i + 1 of S4
makes the searcher at ψ4(u) slide along ψ4(u)vu. Since v was contam-
inated before (since we consider strategy S that never moves a searcher
to an already clear node), it was unoccupied and all incident edges were
contaminated. Let N(v) = {u, a, c}.
(a) If there were no searchers at v’s adjacent nodes a, c ∈ N(v), where

a, c 6= u at the end of Round i of S, then by Property (2), at the
end of Phase i of S4, nodes ψ4(a), ψ4(b) of G4 are not occupied.
Hence after Phase i+ 1 all properties are still satisfied.

(b) If at least one more (apart from u) adjacent node of v, say a ∈ N(v)
was occupied at the end of Round i of S, then by Property (2), at
the end of Phase i of S4, node ψ4(a) of G4 is also occupied. In
that case after the sliding of the searcher along the edge ψ4(u)vu, the
searcher at ψ4(a) slides along the edge ψ4(a)va, then the searcher
at vu slides along the edge vuvc (where c is the remaining adjacent
node of v in G), and finally the searcher at va slides back to ψ4(a)
(see Figure 5). It can be easily checked that after Phase i + 1 all
properties are still satisfied.

3. Finally, the case when u, v ∈ V (G) \ T can be delt with similarly: Phase
i + 1 of S4 makes the searcher at ψ4(u) slide along ψ4(u)ψ4(v). If v
is not adjacent to a node of degree 3 then it is easy to check that all
properties are still satisfied after Phase i + 1. If however, v is adjacent
to a node w of degree 3, the situation is exactly the same as in case 1.b
above.

12

a

c

v

va

vc

G�G

(a) (b)

ψ�(a)

ψ�(c)u ψ�(u)

vu
1

2

3

4

Figure 5: (a) The case when in Round i+ 1 of S a searcher at a node u of degree at most 2
slides towards a node v of degree 3 whose at least one more neighbor a was already occupied
at the end of Round i. (b) The corresponding Phase i + 1 of S4; the numbers declare the
ordering of slidings.

Now, assume that Round i+1 consists of a pair of removal-placement
steps where a searcher from one node u jumps to another node v.

Before going into the details, let us sketch the sequence of moves that they
will compose Phase i+ 1 of S∆. Let x = ψ4(u) if u /∈ T and x be the occupied
vertex of Tu otherwise. Moreover, let y = ψ4(v) if v /∈ T or y be any vertex
of Tv otherwise. We consider a path (x = v1, · · · , vh = y) in G4 from x to y.
Phase i + 1 of S4 will mimic the jump of the searcher from u to v in S by a
sequence of slidings along the path from x to y in G4 in a way that, all nodes
and edges that were clear before the start of the Phase i+ 1 are clear at the end
of Phase i+ 1: in particular, only controlled recontamination may occur.

Let x1, x2, · · · , xr be the occupied nodes in order in the path. Let us call the
searcher initially occupying xi as the ith searcher. Note that x = x1 and that y
is not occupied. The goal is, for any i < r, to slide the ith searcher until xi+1 and
the rth searcher until y. The first difficulty is to satisfy the exclusivity property,
that is to move the (i + 1)th searcher before the ith searcher arrives at xi+1.
However, such move (when the (i+ 1)th searcher leaves xi+1) may lead to some
recontamination. The second difficulty is then to control the contamination.
For this purpose, we proceed as follows: when it is its turn, the ith searcher
slides until the neighbor preceding xi+1 on the path. Then, when the (i+ 1)th

searcher can move (i.e., when the node succeeding it on the path is free), he
slides along one edge. Finally, the ith searcher is slided to xi+1 and the (i+ 1)th

searchers continues the process until it reaches xi+2.
As a concrete example, let us consider the path (v1, · · · , v9) and assume that

v1, v4, v5 and v6 are occupied. The strategy will first move the searcher from
x1 = v1 to v3, then the searcher at x4 = v6 to v7, the searcher at x3 = v5 at v6,

13

the searcher at x2 = v4 at v5, the first searcher (now at v3 to v4) and finally the
4th searcher (now at v7) until v9.

In what follows, we formalize this process and prove its correctness.
Let u ∈ Ri ∩ Oi be the node from which a searcher is removed at Round

i+ 1 by S and let v ∈ V \Ci be the node at which this searcher is placed then.

Either u ∈ V (G) \ T and x = ψ4(u) ∈ O4i ∩ R
4
i by Properties (1) and (2),

or u ∈ T and all nodes in Tu are in R4i by Properties (3) and (4.a), and one
searcher is at some node x ∈ Tu by Property (4). Let y = ψ4(v) if v /∈ T and
let y be any node in Tv otherwise. Note that since v /∈ Ci, either Property (2)
(if y = ψ4(v)) or Property (4) (if y ∈ Tv) guarantees that y is not occupied.

Let P4 = (x = v1, · · · , vh = y) be any shortest path from x to y in G4. Let
P be a corresponding path in G. Note that, since u ∈ Ri and v /∈ Ci, there is
some w ∈ P \ {u, v} that is occupied. Hence, by Property (2) or (4) (depending
whether w ∈ T or not), there exists a vertex of P4 \ {x, y} which is occupied.
Let x = x1, · · · , xr be the set of occupied vertices of P4 at the end of Phase
i. That is, {x1, · · · , xr} = O4i ∩ V (P4). For any 1 ≤ j ≤ r, let us denote the
searcher at xj by γj .

Description of the strategy during Phase i + 1: During Phase i + 1, for any
1 ≤ j < r, the searcher γj will slide along P4 from xj (its position before
Phase i+ 1) to its final destination xj+1 (its position at the end of Phase i+ 1).
Moreover, the searcher γr will slide along P4 from xr to y. The ordering of the
moves is defined as follows. At each step, let 1 ≤ j∗ ≤ r be the smallest integer
such that the searcher γj∗ is not yet at its final destination (i.e., it does not
occupy xj∗+1 if j∗ < r, and it does not occupy y if j∗ = r) and its neighbor on
P4 toward its final destination is not occupied. Then, at this step, the searcher
γj∗ slides to its neighbor on P4 toward its final destination. Note that this
sequence of sliding moves is exclusive.

Once the r searchers have reached their final destination, the occupied ver-
tices of G4 are X = {y}∪O4i \ {x}. Since Oi+1 = {v}∪Oi \ {u}, by definition
of y and since Property (2) was satisfied before Phase i + 1, Property (2) is
clearly satisfied after Phase i + 1. Moreover, for any vertex w ∈ X ∩ T , there
is exactly one searcher in Tw. In the case when y ∈ Tv, there may be a last
step: the searcher γr (now occupying y) may move to another vertex y′ of Tv
to ensure that Property (4) is satisfied for vertex v. We postpone the formal
description of this last move to the end of the proof. First, we aim at proving
that the other properties still hold at the end of Phase i+ 1.

To prove all the properties, we will first prove that all nodes and edges that
were clear before the start of the Phase i+ 1 are clear at the end of Phase i+ 1.
It is clearly true before the Phase starts. Let us assume by induction on the
number of steps that it is still the case after the first s ≥ 0 sliding steps of Phase
i + 1. Let us assume that the (s + 1)th step consists in sliding a searcher from
some node w to some node r (w and r are nodes of P4). There are four cases
to be considered. Let us start with the first two easy cases.

1. First, assume that w ∈ Ri. By the assumption, all edges incident to w

14

are still clear after Step s. Hence, sliding the searcher from w to r cannot
cause any recontamination and, after Step s+ 1, all nodes and edges that
were clear before the start of the Phase i+ 1 are still clear.

2. The same reasoning holds if all edges incident to w were contaminated at
the end of Phase i.

Hence, we are left with the cases when, at the end of Phase i, at least
one edge incident to w was contaminated and at least one edge incident to w
was clear. Note that this implies that w was occupied at the end of Phase i.
Precisely, w ∈ O4i \ R

4
i . In particular, w 6= x and w = xj for some 1 < j ≤ r,

the considered searcher is γj . By definition of the strategy during Phase i+ 1,
this means that the node z preceding w on P4 (i.e., z is the neighbor of w closer
to x on P4) is also occupied before Step s+ 1 (by searcher γj−1) and that Step
s + 2 will be the sliding of the searcher γj−1 at z along the edge zw. In what
follows, we show that some edges may be recontaminated when the searcher γj
at w slides to r, but that they will be cleared again during the next step, after
the sliding of the searcher γj−1 from z to w.

3. if w has degree 2 (i.e., N(w) = {z, r}), then after the sliding of the searcher
γj from w to r, the searcher γj−1 at z slides to w. Because w has degree
2, no edge could have been recontaminated after the sliding from w to r.

4. if w has three neighbors: z, r ∈ P4 and s. Let ` ∈ V (G) be the vertex
such that w ∈ T`. Note that, since P4 is a shortest path, at most two
nodes in T` belong to P4. There are two cases to be considered depending
on which of the edges incident to w are contaminated and which vertices
belong to T`.

4a. if T` = {w, r, s}. By Property (4), none of r and s are occupied.
Then, the searcher γj at w slides to r, the searcher γj−1 at z slides
to w (see Figure 6(a)). During this process, only zw could belong to

E4i and it may be recontaminated but it is clear again after the slide
along zw.

4b. if T` = {w, z, s}, then after the sliding of the searcher γj from w to
r, the searcher γj−1 at z goes to w (see Figure 6(b)). Now, only edge

wr could belong to E4i and it may be recontaminated but it is clear
again after the sliding along zw.

To sum up, by above paragraphs (Cases 3 and 4), when the searcher γj
(for some 1 < j ≤ r) slides from xj to its neighbor on P4 toward y, some
recontamination may occur. In such a case, the next move is executed by
searcher γj−1, sliding from some node z, the neighbor of xj on P4 that is
closest to x, to xj . After this latter move, the edges recontaminated by the
move of searcher γj are all cleared again.

If z /∈ Oi \Ri, by Cases 1 or 2, the sliding of searcher γj−1 does not induce
any recontamination. Then after Step s+ 2, all nodes and edges that were clear
before the start of the Phase i+ 1 are clear after Step s+ 2.

Otherwise, let (µ, vj−α, vj−α+1, · · · , vj) (α ≥ 1) be the unique (inclusion-
maximal) subpath of P4 such that, for all 0 ≤ a ≤ α, vj−a = xj−a ∈ Oi \ Ri

15

G4

(a)

z

w r

s

z w
r

s

P
P P

P12

1

2

(b)

G4

Figure 6: A searcher at node z needs to move along path P towards node w which is also
occupied. The numbers in each case declare the ordering of slidings.

and µ /∈ Oi\Ri. It can be easily checked that such a subpath exists by definition
of the strategy during Phase i+ 1 and because x /∈ Oi \Ri.

In that case, the steps s+1 to s+α consist sequentially in sliding the searcher
γj−a from vj−a = xj−a to vj−a+1 (vj+1 = r), for a = 0 to a = α. Finally, Step
s + α + 1 consists in sliding the searcher γj−α−1 from µ to vj−α = xj−α. As
shown in cases 3 and 4, if the sliding of a searcher recontaminates some edges,
the sliding of the next searcher clears again these edges. Finally, the last move
(of searcher γj−α−1 from µ to vj−α) does not induce any recontamination since
µ /∈ Oi \ Ri (Cases 1 or 2). Hence, after step s + α + 1, all nodes and edges
that were clear before the start of the Phase i+ 1 are clear. Therefore, we can
proceed inductively from step s+ α+ 1.

By above paragraphs, Phase i + 1 first moves the searchers from O4i to

{y} ∪ O4i \ {x} in such a way that all nodes (R4i) and edges (E4i) that were
clear before the start of the Phase i + 1 are still clear. Moreover, the strategy
implies that Property (2) holds after Phase i+ 1.

Note that Ei+1 = Ei ∪X where X is a subset of edges incident to v. More-
over, for every edge ve ∈ X, e ∈ Oi \ {u, v} (since Round i consists in placing a
searcher that was in u at vertex v).

To conclude the proof, it only remains to prove that the image of the edges
of X in G4 are clear (this will finish to prove Properties (1) and (3) and that
Property (4) holds for v). This is obvious if v /∈ T (i.e., has degree 2). If v ∈ T ,
as mentioned above, this may require some more move from the searcher at y.
In the latter case, let {a, b, c} be the neighbors of v in G.

• if X = ∅, then all properties already hold and we are done.

• if X consists of exactly one edge (say X = {av}), then, in G, there is
a searcher at a that has degree 2. Since Property (2) holds, there is a
searcher at ψ∆(a) in G4. In this case, the searcher at y ∈ Tv goes to va
and all properties hold. In particular, the edge ψ∆(a)va is clear and then
Properties (1) and (3) are satisfied and Property (4) holds for vertex v.

16

• otherwise, i.e., if X consists of at least two edges (say X ⊇ {av, bv}),
the searcher at y ∈ Tv goes to vc, then the searcher at ψ4(a) goes to
va (such searcher exists by Property (2)), the searcher at ψ4(b) goes to
vb (idem), and then the searcher at va (resp. at vb) goes back to ψ4(a)
(resp., ψ4(b)). Hence, all properties hold after Phase i+ 1.

�

Lemma 2. For any planar graph G with maximum degree 3 and no two adja-
cent nodes with degree exactly 3, s(G) ≤ xs(G4).

Proof: Let S4 be an exclusive search strategy using k searchers for G4. Then
we can transform S4 to a mixed strategy S using k searchers for G as follows.
Let I4 ⊆ V (G4) be the set of the k nodes that are initially occupied in S4.
Let I = {v ∈ V (G) | (v ∈ T and Tv ∩ I4 6= ∅) or (v /∈ T and ψ4(v) ∈ I4}, that
is I is the set of nodes of G that correspond to a node in I4.
S starts by placing one searcher at each node in I. Moreover, for any v ∈

T ∩ I, if two (resp., three) nodes in Tv are initially occupied by S4, i.e., if
|Tv ∩ I4| = 2 (resp., if |Tv ∩ I4| = 3), then two (resp., three) searchers are
placed at v by S.

Recall that F1 is the set of edges of G4 that correspond to edges in G. That
is F1 is the set of edges of G4 which are not edges of a triangle. Now, for each
move done by S4, if this move consists of sliding a searcher along an edge of a
triangle (i.e., an edge in E(G4)\F1), S does nothing. Otherwise, if S4 slides a
searcher along an edge e ∈ F1, then S slides a searcher along the corresponding
edge φ−1

4 (e).
Such a strategy S is a mixed strategy that clears G using k searchers. �
From Theorems 1 and 2, we get:

Corollary 1. The problem of computing the exclusive search number is NP-
hard in the class of planar graphs with maximum degree 3.

3. Exclusive Graph Searching in star-like graphs

In this section, we study the complexity of computing the exclusive search
number in star-like graphs. Surprisingly, our results are somehow “orthogonal”
to the ones concerning pathwidth in this class of graphs.

A connected graph G = (V,E) is a star-like graph if E can be covered by
maximal cliques C0, C1, · · · , Cr such that, for any i, j ≤ r with i 6= j, Ci ∩Cj ⊆
C0. Said differently, a graph is a star-like graph if it is chordal and its clique-tree
is a star [Gus93]. A graph is k-star-like if ci = |Ci \ C0| ≤ k for any 1 ≤ i ≤ r.
C0 is called the central clique and any node in V \ C0 is called peripheral.

We start with two simple claims. The first one is straightforward and its
proof is omitted.

17

Claim 1. Let G be any graph and v ∈ V (G). If there is an exclusive strategy
for G, using xs(G) searchers, such that v is occupied during the whole strategy,
then xs(G \ {v}) = xs(G)− 1.

Recall that an exclusive strategy is a sequence of steps, each of which consists
in sliding a searcher along an edge to an unoccupied node.

Claim 2. Let G be a graph containing a clique C as a subgraph. Let S be an
exclusive strategy and s be any step of S such that for any step s′ before s, at
most |C| − 2 nodes of C are occupied after step s′. Then, just before step s,
there is a contaminated edge e ∈ E(C) with both ends unoccupied.

Moreover, just after the first step where |C| − 1 searchers are in C, all edges
incident to the unoccupied node are contaminated.

Proof: Assume that at most |C| − 2 searchers are initially placed on the nodes
of C. Let us say u and v ∈ C are not occupied. Then uv is contaminated. Now,
consider any step where some edge uv ∈ E(C) is contaminated and u and v are
not occupied. Consider any sliding move along edge xy ∈ E(G) (a searcher goes
from x to y) after which at most |C| − 2 searchers are in C.

• If xy ∈ E(C), w.l.o.g., y 6= v (note that x /∈ {u, v}). Then, after the move,
xv ∈ E(C) is contaminated and its ends are not occupied.

• If y /∈ V (C), clearly after the move, uv ∈ E(C) is still contaminated and
its ends are not occupied.

• If xy /∈ E(C) and y ∈ C, then, before the move, there were at least three
nodes u, v and z that are not occupied in C. Since uv is contaminated,
uz and vz are contaminated too. W.l.o.g., assume y /∈ {u, v}. Then, after
the move, uv ∈ E(C) is still contaminated and its ends are not occupied.

To prove the last statement, it is sufficient to note that, while an edge uv ∈ E(C)
is contaminated and there is no searcher at u nor v, all edges incident to u and
v are contaminated. �

3.1. Star-like graphs: When Exclusive Graph Searching is easier than Pathwidth

In [Gus93], Gustedt proved that computing the pathwidth of star-like graphs
is NP-hard. A simple look at his reduction shows that he actually proved that
computing the pathwidth is NP-hard in the class of star-like graphs where the
peripheral cliques have at least 2 peripheral nodes, i.e., |Ci \ C0| ≥ 2 for all
0 < i ≤ r.

We first observe that Exclusive Graph Searching is not monotone in those
star-like graphs.

Lemma 3. Exclusive Graph Searching is not monotone in star-like graphs,
where the peripheral cliques have at least 2 peripheral nodes.

18

Proof: Let G be the star-like graph formed by two peripheral cliques which are
triangles and one edge (the central clique) connecting them. It is easy to see
that xs(G) = 2 < mxs(G) = 3. �

We will prove that the monotone exclusive search number can be computed
in polynomial-time in this class of graphs.

Theorem 3. Let G be a star-like graph with cliques (C0, · · · , Cr) such that
|Ci \ C0| > 1 for all 0 < i ≤ r, that is each non central clique has at least two
peripheral nodes.

1. Either there is an edge {u, v} ∈ E(C0) that does not belong to any periph-
eral clique, and mxs(G) = |V (G)| − r − 1,

2. or mxs(G) = |V (G)| − r.

Proof: We first show that mxs(G) ≤ |V (G)|−r. Indeed, consider the following
strategy: place a searcher at each node of the graph except one peripheral node
wi per clique Ci, 0 < i ≤ r. In particular, all nodes of C0 are occupied. Then,
sequentially for i = 1 to r, slide a searcher from one occupied peripheral node
of Ci to wi. There is at least one such node, since each non-central clique has
at least two peripheral nodes. All nodes of a non-central clique Ci are only
connected to nodes of C0 (which are occupied) and to nodes of Ci. Moreover,
the only contaminated edge incident to any occupied node u of Ci\C0 is (u,wi).
Hence, after sliding a searcher from u to wi, the clique Ci is clear.

Now suppose that there is an edge (u, v) ∈ E(C0) as defined in case 1.
Consider the following strategy: place a searcher at each node of the graph
except nodes v and one peripheral node wi per clique Ci, 0 < i ≤ r. In
particular, all nodes of C0 \ {v} are occupied. W.l.o.g., let i ≤ r and {0 < j ≤
r | u ∈ Cj} = {1, · · · , i}. Note that v /∈ Cj for all j ≤ i, i.e., v is not adjacent to
any node in Cj \C0. Then, sequentially for j = 1 to i, slide a searcher from one
occupied peripheral node of Cj to wj . Then, slide the searcher at u, to v. Finally
(if i < r), sequentially for j = i + 1 to r, slide a searcher from one occupied
peripheral node of Cj to wj . Hence, in Case 1, mxs(G) ≤ |V (G)| − r − 1.

We now show that mxs(G) ≥ |V (G)| − r − 1. Let us consider a monotone
strategy using k searchers.

• First, let us assume that, initially, there are two nodes u, v ∈ Ci \C0 that
are not occupied, for some 0 < i ≤ r. It is easy to check (see previous
claim) that immediately after the first time that u or v is occupied, the
edge by which the searcher arrives at u or v will be recontaminated. Hence,
in a monotone strategy, initially all except at most one peripheral nodes
per clique must be occupied.

Let {v1, · · · , vx} be the nodes of C0 that are not initially occupied. By the
previous remark, the number of searchers k must be at least |V (G)| − r− x (all
nodes are occupied except at most one peripheral node per clique and the x
unoccupied nodes in C0).

• If x = 1, we already have k ≥ |V (G)| − r − 1.

19

• Otherwise, suppose x ≥ 2. Assume w.l.o.g., that the nodes {v1, · · · , vx}
appear in the sequence in the order they are occupied by the strategy, i.e.,
vi is occupied before vj for any i < j ≤ x. We make the following remarks:

– Until vx−1 is occupied, no searcher occupying a node u of C0 can
move, since in that case u would be recontaminated by vx. Therefore,
for any 1 ≤ i < x, when vi is occupied, it is by a searcher sliding
from some node yi ∈ Ci \ C0 for some 1 ≤ i ≤ r.

– Moreover, for any 1 ≤ i < x, all nodes of Ci (the clique containing
yi) must be initially occupied. Indeed, for the sake of contradiction,
suppose that there is a node w ∈ Ci that is not occupied initially.
Then, before vi is occupied, no searcher can slide from u ∈ Ci to
w since otherwise, u would be recontaminated by vi. Moreover, as
stated above, no searcher can leave its node in C0 while vi is con-
taminated. Hence, no searcher can reach w before vi being occupied.
However, if a searcher slides from yi to vi, and w is still unoccu-
pied and contaminated, then yi would be recontaminated by w, a
contradiction.

– Finally, for any 1 ≤ i < j < x, Ci 6= Cj (i.e., vi, vj could not belong
to the same peripheral clique). Indeed, otherwise, when a searcher
slides along {yi, vi} to occupy vi, yi would be recontaminated by vj .

All together, the above remarks imply that if x ≥ 2 nodes are initially
unoccupied in C0, then at least x − 1 peripheral cliques must have all
their nodes occupied initially. Moreover, since there can be at most one
peripheral node that is initially unoccupied per peripheral clique, there
can be at most r − x + 1 peripheral nodes that are initially unoccupied.
Since there are x unoccupied nodes in C0, in total there are at most r+ 1
nodes that can be initially unoccupied and k ≥ |V (G)| − r − 1.

Finally, let us show that, if mxs(G) = |V (G)| − r − 1, then there is an edge
(u, v) ∈ E(C0) where (u, v) /∈ E(Ci), i > 0. For the sake of contradiction, let
us assume that, for each u, v ∈ C0, there is 0 < i ≤ r with u, v ∈ Ci. Let us
consider a monotone strategy using |V (G)| − r − 1 searchers.

As explained before, at most one peripheral node per clique can be initially
unoccupied. Therefore, there is at least one node in C0 that is initially unoccu-
pied. Let v be the last node of C0 to be occupied during the strategy. Consider
the configuration just before the step when v is occupied.

• We claim that all nodes of C0 except v are occupied. Indeed, we already
proved that while at least two nodes of C0 are not occupied, no searcher
occupying a node in C0 can move. Moreover, once all nodes of C0 except
v are occupied, if a searcher at some node in C0 moves, it must slide to v
since otherwise there would be some recontamination from v.

• Moreover, at most one peripheral node per clique can be unoccupied.
Indeed, for the sake of contradiction, assume that there is 0 < j ≤ r

20

and x, y ∈ Cj \ C0 that are unoccupied. Since initially, at most one node
of Cj \ C0 was unoccupied, there must be a step, before v is occupied,
such that: x is unoccupied and a searcher goes from y to a node z ∈ C0.
However, this would mean that during this step, v recontaminates y via z
and x, a contradiction.

Therefore, just before v is occupied, there are exactly |C0| − 1 searchers occu-
pying the nodes of C0 and, for all 0 < i ≤ r, at most one node of Ci \ C0 is
unoccupied. Since the number of searchers is |V (G)| − r − 1, this implies that
there is exactly one unoccupied node in Ci \ C0, for each 0 < i ≤ r.

Now, consider the searcher that slides from some node u to occupy v. If
u ∈ Ci \C0, since there is an unoccupied node w ∈ Ci \C0, this would imply the
recontamination of u via w (which is adjacent to v). Hence, u must be in C0.
However, by the hypothesis, there is 0 < i ≤ r with u, v ∈ Ci, and, moreover,
there is an unoccupied node w ∈ Ci \C0. Again, u would be recontaminated by
v via w. A contradiction. �

Corollary 2. The monotone exclusive search number can be computed in poly-
nomial time in the class of star-like graphs where each peripheral clique has at
least 2 peripheral nodes.

3.2. Split graphs: When Exclusive Graph Searching is harder than Pathwidth

We now focus on 1-star-like graphs, also called split graphs. In other words,
a connected graph G = (V,E) is a split graph if V can be partitioned into C
and I where C induces a clique and I is an independent set.

In [Gus93], Gustedt proved that Pathwidth can be computed in polynomial-
time in the class of k-star-like graphs, for any fixed k. Hence, the pathwidth
of split graphs is polynomially computable. In this section, we will prove that
Monotone Exclusive Graph Searching is NP-complete in split graphs.

To prove this, we first show that we can restrict our attention to monotone
exclusive search strategies with particular structure. More precisely, we prove
that, for any split graph G and for any k ≥ mxs(G), there is a monotone
exclusive search strategy clearing G and using at most k searchers that proceeds
as we describe below. Such a strategy is called simple and we say that the split
graph G is k-structured.

1. Initially, the searchers are placed at selected distinct nodes.

2. Then, some searchers occupying peripheral nodes of G, sequentially slide
to the central clique C until all nodes of C (possibly except one) are
occupied.

3. If one node v of C is unoccupied, then a searcher slides along an edge of
C toward v.

4. Finally, some searchers occupying the central clique sequentially slide to
the remaining contaminated peripheral nodes.

21

3.2.1. Structure of exclusive strategies in split graphs.

We now formally define when a split graph is k-structured and therefore it
admits a simple monotone exclusive strategy using at most k searchers. Figure 7
illustrates this definition and the corresponding notations.

Let G = (V,E) be a split graph with V = C ∪ I. We say that G is k-
structured if there exist three sets (possibly empty) E1, E2, F ⊆ E with the
following properties:

1. E1 = {x1u1, · · · , xrur} with X = {x1, · · · , xr} ⊆ I and ui ∈ C for each
i ≤ r,
and N(xi) ∩ {ui+1, · · · , ur} = ∅ for all 1 ≤ i < r;

2. E2 = {y1v1, · · · , yrvs} with Y = {y1, · · · , ys} ⊆ I and vi ∈ C for each
i ≤ s,
and N(yi) ∩ {v1, · · · , vi−1} = ∅ for all 1 < i ≤ s;

3. X ∩ Y = ∅;
4. |F | ≤ 1 and, if F = {uv}, then u, v ∈ C and u is not adjacent to nodes in
Y and v is not adjacent to nodes in X;

5. and finally, |V | − |F | − |X| − |Y | = |C| − |F |+ |I \ (X ∪ Y)| ≤ k.

X YC

xr

x3

x2

x1

ur

u3

u2

u1

v1

v2

v3

vs

y1

y2

y3

ys
uv

F

E1 E2

Figure 7: Illustration of a k-structured split graph. C is a clique and I = V \ C induces an
independent set. To improve the readability of the edges between C and I, we only draw the
ones that are constrained: red edges (E1) and blue edges (E2) must exist and dotted edges
cannot exist. Note that edges (ui, xj) or (yi, vj) may also exist if j > i, but have not been
drawn. Note also that nodes of I \ (X ∪ Y) may exist but have not been represented here.

Lemma 4. Let G be a split graph. G is k-structured iff mxs(G) ≤ k.

Proof: First, let us assume that G is k-structured. We define the following
monotone strategy using |C|−|F |+ |I \(X∪Y)| searchers. First, place searchers
at each node in I\(X∪Y) (they will never move), in X and in C\{v, u1, · · · , ur}
(if v is not defined, i.e., if F = ∅, then we do not consider it). Then, for i = 1
to r, slide the searcher at xi, to ui. Then, if F 6= ∅, slide the searcher at u, to
v. Finally, for i = 1 to s, slide the searcher at vi to yi. It is easy to see that this
strategy is exclusive and clears G in a monotone way. Hence, mxs(G) ≤ k.

22

For the opposite direction, let S be a monotone exclusive strategy for G
using k searchers. We will show that there is a monotone exclusive strategy
with a particular shape.

We first prove that, while at most |C| − 2 nodes of C are occupied, the only
possible move is to slide a searcher from I to C. Notice that, by Claim 2 above,
at least one edge of C, say uv ∈ E(C), is contaminated with both its ends not
occupied. If S slides a searcher from a node x ∈ C to a node y, then the edge xy
would be immediately recontaminated because of uv. Hence, the only possible
action is to move a searcher occupying a node in I to a node in C.

Let {x1u1, · · · , xrur} be the edges crossed by searchers until |C| − 1 nodes
of C are occupied. By the previous paragraph, xi ∈ I and ui ∈ C for all i ≤ r
and, moreover, they are pairwise distinct since the strategy is exclusive. Finally,
when a searcher moves along xiui, all nodes in N(xi) \ ui are occupied since
otherwise there would be recontamination due to the contaminated edge of C.
Hence, N(xi) ∩ {ui+1, · · · , ur} = ∅.

After the move along xrur, there is a single node v ∈ C which is unoccupied
and, by Claim 2, all its incident edges are contaminated. The next step of S
cannot be to slide a searcher from C to I since in that case there would be some
recontamination due to v. Hence, there are two cases. Either the next step of
S is to move a searcher from xr+1 ∈ I to ur+1 ∈ C, in which case we have
a set {x1u1, · · · , xrur, xr+1ur+1} which satisfies the desired properties (for the
same arguments as in previous paragraph). Or S slides a searcher along an edge
uv ∈ E(C) in which case v should not be adjacent to any node xi (since in that
case some node xi would have been recontaminated). In the latter case, we set
F = {uv} (otherwise let F = ∅).

Let Y = {y1, · · · , ys} be the remaining unoccupied nodes in I \ X in the
order in which they are occupied by S. At this step of S, the contaminated
edges of G are exactly the edges incident to some node in Y (in particular, all
edges in E(C) are clear). Therefore, if F = {uv}, N(u) ∩ Y = ∅ since in that
case, edges incident to u would have been recontaminated by nodes in Y .

Now, let i ≤ s and consider the first step when S occupies yi by sliding a
searcher from a node in C, call it vi, to yi. Since all edges incident to some node
in {yi+1, · · · , ys} are still contaminated, we have that vi should not be adjacent
to any of these nodes (since in that case there would be some recontamination).
Hence, N(yi) ∩ {v1, · · · , vi−1} = ∅ for all 1 < i ≤ s.

Thus, G is k-structured, with k = |C| − |F |+ |I \ (X ∪ Y)|. �
Hence the following lemma holds:

Lemma 5. For any split graph G and any k ≥ mxs(G), there is a simple
strategy that clears G using at most k searchers.

3.2.2. Maximum Augmenting Cover is NP-hard.

In order to prove the NP-completeness of the monotone exclusive graph
searching in split graphs, we define a new problem, called Maximum Augmenting
Cover (MAC), related to Set-Cover problem. We prove that MAC is NP-hard

23

and then reduce it to monotone Exclusive Graph Searching in split graphs. Let
us briefly discuss the MAC problem and how it is related to simple strategies.

Intuitively, in order to minimize the number of searchers capable of clear-
ing a split graph, we need to maximize the number of searchers moved dur-
ing Phases 2 and 4 of a simple strategy. Let us consider Phase 2 of a simple
strategy. It consists of some r steps, in each of which a searcher slides from
some peripheral node xi ∈ I to some node ui ∈ C in the central clique. Let
(x1, u1), (x2, u2), . . . , (xr, ur) be the sequence of slidings. Notice that, since the
strategy is exclusive (at most one searcher per node), the nodes in {xi, ui | i ≤ r}
are pairwise distinct. Moreover, since the strategy is monotone, it is not possible
to have uj ∈ N(xi) for j > i. Indeed, otherwise, xi would be recontaminated
by uj when the searcher slides along (xi, ui). Altogether, Phase 2 somehow
defines a sequence of subsets (N(xi))i≤r such that N(xi) \

⋃
j<iN(xj) 6= ∅ for

any i > 1. Moreover, it is desirable to have such a sequence as long as possible.
This led us to define the following problem, which, we think, is interesting by
itself.

Let S = (S1, · · · , Sr) be a sequence of subsets of some ground set A. For any
1 ≤ i ≤ r, let si = |

⋃
1≤j≤i Sj |. We say that S is augmenting if the sequence

(si)1≤i≤r is strictly increasing.

Problem 1. Maximum Augmenting Cover (MAC).

Input: A family S = {S1, · · · , Sr} of subsets of a set A and a k ∈ N.

Question: Does there exist an augmenting sequence of length ≥ k in S?

We prove that MAC is NP-hard by showing a reduction from MIN-SAT. An
instance of MIN-SAT in the boolean variables {v1, · · · , vn} is composed of a
collection of clauses {C1, · · · , Cm} in Conjunctive Normal Form. The goal is to
decide what is the minimum number of clauses satisfied by a truth assignment
of the boolean variables. MIN-SAT is known to be NP-hard [AZ05].

Theorem 4. MAC is NP-complete.

Proof: Clearly, the problem is in NP. Let us show it is NP-hard.
Let Φ = ∧1≤j≤mCj be an instance of MIN-SAT, i.e., a boolean formula

on variables {v1, · · · , vn} in Conjunctive Normal Form. From Φ, we define an
instance (A,F) of MAC as follows. First, let α and β be two integers such that
α > βm+ 1 and β > n.

The ground set A consists of the following αn+ βm elements. For each 1 ≤
j ≤ m, let Kj = {c1j , · · · , c

β
j } be a set of β elements corresponding to clause Cj .

For each 1 ≤ i ≤ n, let Xi = {x1
i , · · · , xαi } be a set of α elements corresponding

to variable vi. Let us define sets K =
⋃

1≤j≤mKj , X =
⋃

1≤i≤nXi and A =
X ∪K.

For each 1 ≤ j ≤ m and 1 ≤ b ≤ β, let Scbj = {cbj} ∪X.

For each 1 ≤ i ≤ n, let Ji be the set of the elements cbj (1 ≤ b ≤ β) such

that Variable vi appears positively in Clause Cj . Similarly, let J̄i be the set of

24

the elements cbj (1 ≤ b ≤ β) such that Variable vi appears negatively in Clause
Cj .

For every 1 ≤ i ≤ n and 1 ≤ a ≤ α, let Svai = {xai }∪Ji and Sv̄ai = {xai }∪ J̄i.
Finally, let F = {Scbj | 1 ≤ j ≤ m, 1 ≤ b ≤ β} ∪ {Svai , Sv̄ai | 1 ≤ i ≤ n, 1 ≤

a ≤ α}.

Claim 3. If there is a truth assignment to {v1, · · · , vn} that satisfies at most k
clauses of Φ then there is an augmenting sequence S of (A,F) of length at least
` = αn+ (m− k)β.

W.l.o.g., let us assume that there is r ≤ n such that assigning 1 to {v1, · · · , vr}
and 0 to {vr+1, · · · , vn} does not satisfy clauses C1, · · · , Cm−k in Φ.

Let us consider the sequence S = (S′1, · · · , S′`) = (Sv1
1 , · · · , Svα1 , Sv1

2 ,
· · · , Svα2 , · · · , Sv1

r , · · · , Svαr , Sv̄1
r+1, · · · , Sv̄αr+1, · · · , Sv̄1

n, · · · , Sv̄αn ,
Sc11, · · · , Sc

β
1 , · · · , Sc1m−k, · · · , Sc

β
m−k).

For every j = αi + a, 0 ≤ i < n and 1 ≤ a ≤ α, xai+1 ∈ S′j \
⋃
p<j S

′
p.

Moreover, for every j = αn + βj + b, 0 ≤ j < m − k and 1 ≤ b ≤ β, cbj+1 ∈
S′j \

⋃
p<j S

′
p. Hence, S is an augmenting sequence.

Claim 4. If there is an augmenting sequence S = (S′1, · · · , S′`) of (A,F) of
length ` ≥ αn+ (m− k)β, then there is a truth assignment to {v1, · · · , vn} that
satisfies at most k clauses of Φ.

Let S be an augmenting sequence of a maximum length. We first prove that we
can restrict our attention to sequences S with a particular form.

• Let r ≤ ` be the smallest integer such that S′r = Scbj for some b ≤ β and

j ≤ m. We first show that we may assume that, for any r′ ≥ r, S′r′ = Scb
′

j′

for some b′ ≤ β and j′ ≤ m (i.e., S′r′ /∈ {Svai , Sv̄ai | 1 ≤ i ≤ n, 1 ≤ a ≤ α}).
Indeed, suppose that there is r′ > r such that S′r′ ∈ {Svai , Sv̄ai } for some
1 ≤ i ≤ n, 1 ≤ a ≤ α. Since X ⊆ S′r and S is an augmenting sequence,
there must be cb

′

j′ (for some b′ ≤ β and j′ ≤ m, (b′, j′) 6= (b, j)) such

that cb
′

j′ ∈ S′r′ \
⋃
p<r′ S

′
p. Hence, replacing S′r by Scb

′

j′ in S (note that

Scb
′

j′ cannot be already in S) leads to another augmenting sequence with
length at least `.

From now on, let us assume that S satisfies this property, i.e., there is
r ≤ ` such that S′r′ = Scb

′

j′ for some b′ ≤ β and j′ ≤ m if and only if
r′ ≥ r. In particular, note that `− r ≤ βm.

• We then prove that, for every 1 ≤ i ≤ n, there is a ≤ α such that Svai or
Sv̄ai belongs to S. Suppose this is not the case. Then xai /∈

⋃
p<r S

′
p for

any a ≤ α. Therefore, T = (S′1, · · · , S′r−1, Sv
1
i , · · · , Svαi) is an augmenting

sequence of length α + r − 1. Since r ≥ ` − βm, we get that |T | ≥
`+ α− βm− 1. Since α > βm+ 1, we get that T is a longer augmenting
sequence, contradicting the maximality of S.

25

• We now prove that, for any 1 ≤ i ≤ n, we may assume that either Zi =
{Svai | 1 ≤ a ≤ α} or Z̄i = {Sv̄ai | 1 ≤ a ≤ α} is a subset of S. Moreover,
if Zi (resp., Z̄i) is a subset of S, then S contains at most one element in
Z̄i (resp., in Zi).

Let 1 ≤ i ≤ n and let D be the first element of S in {Svai , Sv̄ai | 1 ≤ a ≤ α}
(the existence of D was proved in the previous paragraph). If D ∈ Zi, we
prove that we may assume that Zi ⊆ S (by a similar proof, if D ∈ Z̄i then
we may assume that Z̄i ⊆ S). Indeed, assume that there is a ≤ α and
Svai /∈ S. There are two cases to be considered.

– If Sv̄ai ∈ S, simply consider the sequence obtained from S by replac-
ing Sv̄ai with Svai . It is easy to show that it is still augmenting and
with the same length as before.

– Otherwise, it holds that either (S′1, · · · , S′r−1, Sv
a
i , S

′
r, · · · , S′`) or

(S′1, · · · , S′r−1, Sv
a
i , S

′
r+1, · · · , S′`)

is an augmenting sequence as it can be easily checked (the second
case happens if xai was the only new element of S′r. This cannot
happen to S′r+1 since S′r contains X).

We now prove the second statement of this item, that is, if Zi ⊆ S then
|S ∩ Z̄i| ≤ 1 (the other case can be proved in a similar way). By previous
paragraph, we may assume that the first element of S in Zi ∪ Z̄i is in Zi.
For the sake of contradiction, let us assume that |S ∩ Z̄i| > 1. Let S′u be
the first element of Zi appearing in S and let S′v and S′w be the first two
elements of Z̄i that appear in S. In particular, u < v < w. W.l.o.g., let
S′w = Sv̄1

i . Since S′w \ S′v = {x1
i } and S is augmenting, x1

i /∈
⋃
p<w S

′
p.

Hence, Sv1
i /∈ {S′1, · · · , S′w}. However, because Sv1

i \ S′u = {x1
i }, we get

that Sv1
i ⊆

⋃
p≤w S

′
p. Therefore, Sv1

i cannot belong to S (otherwise S
would not be augmenting) which contradicts the fact that Zi ⊆ S.

• Finally, we prove that, for any j ≤ m, if there is b ≤ β such that Scbj
belongs to S then Scb

′

j belongs to S for any b′ ≤ β.

Notice that the first statement of previous item implies that

X =
⋃

1≤i≤n
Xi ⊆

⋃
p<r

S′p

Hence, if Scbj = {cbj} ∪ X belongs to S, it means that cbj /∈
⋃
p<r S

′
p. By

construction, it implies that cb
′

j /∈
⋃
p<r S

′
p for any b′ ≤ β. Therefore, if

Scb
′

j /∈ S for some b′ ≤ β, it implies that cb
′

j /∈
⋃
p≤` S

′
p. Therefore, we

could add Scb
′

j at the end of S, contradicting the maximality of S.

We are now ready to prove the claim. We have just proved that we may assume
that: for any 1 ≤ i ≤ n, either all elements in Zi and at most one element in Z̄i

26

belong to S, or all elements in Z̄i and at most one element in Zi belong to S; for
any 1 ≤ j ≤ m, either all elements in {Scbj | 1 ≤ b ≤ β} belong to S or none. Let

Q be the set of integers j ≤ m such that all elements of {Scbj | 1 ≤ b ≤ β} belong
to S. We have ` = αn + β|Q| + q with q ≤ n. Moreover, ` ≥ αn + (m − k)β.
Hence, since β > n, we get that |Q| ≥ (m− k).

To conclude, it is sufficient to consider the following truth assignment to the
variables. For any 1 ≤ i ≤ n, assign 1 to variable vi if all elements of Zi belong
to S and 0 otherwise. For any j ∈ Q, the clause Cj is not satisfied by such an
assignment. Indeed, for the sake of contradiction, let us assume Cj is satisfied
by such an assignment. Suppose that Cj contains a positive occurence of some
variable vi with value 1 (the case when Cj contains the negation of a variable
vi assigned to 0 is similar). Then, it means that all elements of Zi appear in S.
In particular, it implies that, for any b ≤ β, cbj ∈

⋃
p<r S

′
p. This implies that,

for any b ≤ β, Scbj cannot belong to S, contradicting the fact that j ∈ Q. �
We are now ready to prove the following theorem:

Theorem 5. Monotone Exclusive Graph Searching is NP-complete in split graphs.

Proof: By monotonicity, the problem is clearly in NP. Let us prove it is NP-
hard. Let (A = {a1, · · · , an},S = {S1, · · · , Sm}) be an instance of MAC. We
build a split graph G as follows. Start with a clique K with vertex-set V =
{v1, · · · , vn} plus two independent sets S = {s1, · · · , sm} and U = {u1, · · · , um}.
For any i ≤ n, j ≤ m such that ai ∈ Sj , add edges {vi, sj} and {vi, uj}.

Claim 5. If (A,S) admits an augmenting sequence of length k, then there is a
monotone exclusive search strategy for G with mxs(G) ≤ n+ 2m− 2k.

Let (S1, · · · , Sk) be an augmenting sequence. For any 1 ≤ j ≤ k, let aj ∈
Sj \

⋃
`<j S` and let vj be the corresponding node of V (in particular, vj is not

adjacent to any node in {s1, · · · , sj−1}). We consider the following strategy.
Initially, place a searcher at any node in V (G) \ {s1, · · · , sk, v1, · · · , vk}. For i
from 1 to k, the searcher at ui slides to vi. Finally, for j decreasing from k to
1, the searcher at vj slides to sj . This is a monotone exclusive search strategy
using n+ 2m− 2k searchers to clear G.

Claim 6. If mxs(G) ≤ n+2m−2k, then (A,S) admits an augmenting sequence
of length k.

Let k be the maximum integer such that mxs(G) ≤ n + 2m − 2k. Then,
mxs(G) ∈ {n+ 2m− 2k, n+ 2m− 2k − 1}.

By our characterization of monotone exclusive strategies for split graphs,
there are two disjoint sets X,Y ⊆ S ∪ U and, possibly, an edge e ∈ E(K)
such that there is a strategy using mxs(G) searchers that proceeds as follows:
Initially all nodes apart from |X| or |X|+ 1 nodes of K and all nodes of Y are
occupied. Sequentially, the searchers at the nodes of X slide to |X| unoccupied
nodes of K; then a searcher slides along e (if e exists); finally |Y | searchers
occupying the nodes of K sequentially slide from their positions to occupy the
nodes in Y .

27

Hence, mxs(G) ∈ {n + 2m − |X| − |Y |, n + 2m − |X| − |Y | − 1}. W.l.o.g.,
let us assume that |X| ≥ |Y |. We get that |X| ≥ k. It remains to prove that
we may assume that X ⊆ S. We first show that if ui ∈ X, then si /∈ X. By
the construction it holds that ui and si have the same neighbours. If they are
connected only to one node vj then searchers from ui and si cannot move to vj
(due to the the exclusivity property). If ui and si are connected to more than
one nodes, then searchers from ui and si cannot move preserving monotonicity.
Therefore it must hold that if ui ∈ X, then si /∈ X. Then, we can modify
the strategy by setting X ← X ∪ {si} \ {ui}. Moreover, if si ∈ Y , we set
Y ← Y ∪ {ui} \ {si}.

The property of X (from our characterization and the monotonicity of the
strategy), implies that X corresponds to an augmenting sequence of length k
for (A,S). �

We end this section by making the following conjecture:

Conjecture 1. Exclusive Graph Searching is monotone in split graphs.

4. Exclusive Graph Searching in Cographs

In this section, we study the complexity of computing the exclusive search
number in the class of cographs.

A graph is a cograph if and only if it is P4-free, that is, if it does not contain
a P4 (path with 4 nodes) as an induced subgraph. A graph is trivial if it is a
single node. In a graph, any connected component consisting of a single node
is also called trivial. It is well known that a graph G = (V,E) is a cograph if
and only if:

• G is trivial, or

• there are two non empty cographs G1 = (V1, E1) and G2 = (V2, E2) such
that G = G1 ∪ G2 is the disjoint union of G1 and G2, i.e., V = V1 ∪ V2

and E = E1 ∪ E2, or

• there are two non empty cographs G1 = (V1, E1) and G2 = (V2, E2) such
that G = G1 ⊗ G2 is the “product” of G1 and G2, i.e., V = V1 ∪ V2 and
E = E1 ∪ E2 ∪ {uv | u ∈ V1, v ∈ V2}.

Moreover, such a decomposition can be computed in linear time [CPS85].
Notice that by the definition of Exclusive Graph Searching, the (monotone)

exclusive search number of a graph equals the sum of the (monotone) exclusive
search numbers of its connected components. Therefore, to obtain a linear
time algorithm for computing the exclusive search number of a cograph, it is
sufficient to compute xs(G1 ⊗G2) from xs(G1) and xs(G2) in linear time. For
this purpose, for any graph G, we define G′ as follows: (1) if G is connected
or has no trivial component, then G′ = G, otherwise (2) if G is not connected
and has a unique trivial component {v}, then G′ = G \ v, otherwise (3) if G
is not connected and has at least two trivial components {v} and {w}, then
G′ = G \ {v, w}. That is, G′ is G minus 2 of its trivial components. We prove:

28

Lemma 6. Let G = G1 ⊗G2 with G1 and G2 two cographs. It holds that:

mxs(G) = xs(G) = min{xs(G′1) + |V (G2)|, xs(G′2) + |V (G1)|}

Proof: We first show that xs(G) ≤ xs(G′1)+|V (G2)| by describing a strategy. If
G′1 = G1, simply place |V (G2)| searchers on the nodes of V (G2) (these searchers
will never move) and use the remaining xs(G1) searchers to clear the remaining
graph (independently from G2). Otherwise, let v be a trivial component of G1

and w be another trivial component of G1 (if w exists). The strategy first places
searchers at |V (G2)| − 1 nodes of G2 and at v. The searcher at v then moves
to the unoccupied node of G2. Then, xs(G′1) searchers are used to clear G′1.
Finally, if w exists, one searcher at some node of G2 moves to w.

By symmetry, xs(G) ≤ xs(G′2) + |V (G1)| and therefore,

xs(G) ≤ min{xs(G′1) + |V (G2)|;xs(G′2) + |V (G1)|}

It remains to prove that xs(G) ≥ min{xs(G′1) + |V (G2)|;xs(G′2) + |V (G1)|}.
Let us consider any exclusive strategy S for G that uses xs(G) searchers and
with minimum number of steps.

Consider the first move of S to be the sliding of a searcher from some node
u to some node v. After this step, the node u must not be recontaminated
since in that case we could have shorten the strategy by removing the first move
(the searcher at u would rather have started at v). Let i ∈ {1, 2} such that
u ∈ V (Gi) and let j ∈ {1, 2} \ {i}. There are two cases to be considered:

• Either v ∈ V (Gi). In this case, all nodes of V (Gj) must be initially
occupied since otherwise u would have been recontaminated.

• or v ∈ V (Gj). In that case, all nodes of V (Gj) \ {v} must be initially
occupied and we may assume that u is an isolated node of V (Gi).

since otherwise u would have been recontaminated. Moreover,

Indeed, if some node in V (Gj)\{v} is not occupied, then u is immediately
recontaminated and it would exists a shorter strategy. Moreover, if u is not
isolated in Gi, we prove that there is another strategy (without increasing
the number of searchers nor the number of steps) such that all nodes in
Gj are initially occupied. Let Cu be the connected component of Gi that
contains u. Then, all nodes of Cu that are adjacent to u must be initially
occupied since otherwise u is recontaminated. Let x ∈ V (Cu) be such a
neighbor of u (it exists since u is not isolated). We could modify S as
follows: instead of occupying initially the node x, occupy the node v and
replace the first move of S by the sliding of the searcher at u to x. It is
easy to check that the strategy can continue as S (and that we have not
increased the number of searchers).

Therefore, after the first step, all nodes of V (Gj) are occupied.
We claim that, while at least two nodes of V (Gi) are contaminated, no

searcher occupying a node in V (Gj) can move. Indeed, otherwise let x, y ∈

29

V (Gi) that are contaminated and assume that a searcher leaves z ∈ V (Gj).
Then, z is contaminated by x or y and all unoccupied nodes of V (Gj) are
contaminated (because of x or y) and all unoccupied nodes of V (Gi) are con-
taminated because of z. Therefore, there is a shorter strategy which clears the
graph starting from this configuration (the only clear nodes are the occupied
ones).

Let v ∈ V (Gi) be the last node of Gi to be occupied. By previous paragraph,
just before a searcher slides to v, all other nodes of G are clear. If v is not
an isolated node of Gi, then, just before being occupied, all its neighbors are
occupied (since otherwise v would have recontaminated one of its neighbors).
Therefore, we may assume that the last move of S is to move a searcher from
one neighbor of v in Gi to v, while all nodes in V (Gj) are occupied.

To summarize, we have shown that there is an optimal exclusive search
strategy S for G that satisfies the following properties. There is i ∈ {1, 2} (let
j ∈ {1, 2}\{i}) such that either all nodes of V (Gj) are initially occupied, or the
first move of S is to slide a searcher from a node u ∈ V (Gi) (isolated in Gi) to
the single node of V (Gj) that is initially unoccupied. Then, all nodes of V (Gj)
remain occupied either until the end, or until the last step. In the latter case,
the last step of S consists in moving a searcher from some node in V (Gj) to a
node v that is isolated in Gi.

Therefore, for any connected component C of Gi (except the isolated nodes
u and v if they exist), the number of searchers in C remains constant during
the whole strategy. Hence, for each such a component C, there must be at least
xs(C) searchers used by S in C during the whole strategy.

All together, we get that xs(G) ≥ min{xs(G′1)+ |V (G2)|;xs(G′2)+ |V (G1)|}.
It is easy to conclude by induction on the number of vertices that mxs(G) =

xs(G) (the case when a cograph is obtained by disjoint union is trivial). �
Since xs(G′i) can easily be deduced from xs(Gi), Theorem 6 simply follows

by a dynamic programming algorithm.

Theorem 6. Exclusive Graph Searching is monotone in cographs and the ex-
clusive search number of cographs can be computed in linear-time.

5. Conclusion

We have shown that there are classes of graphs where the complexities of
Exclusive Graph Searching and Pathwidth are different. An interesting open
question is whether there exist classes of bounded degree graphs where Exclusive
Graph Searching is polynomially computable while Pathwidth is NP-hard. In
such a case, computing Exclusive Graph Searching would be a way to approxi-
mate the pathwidth [BBN13]. The question of the parameterized complexity of
Exclusive Graph Searching is also interesting (note it is not closed under taking
minors [BBN13]). Finally, does the problem of computing the exclusive search
number of an arbitrary graph belong to NP?

30

References

[AZ05] A. Avidor and U. Zwick. Approximating min 2-sat and min 3-sat.
Theory Comput. Syst., 38(3):329–345, 2005.

[BBN13] L. Blin, J. Burman, and N. Nisse. Exclusive graph searching. In 21st
European Symposium on Algorithms (ESA), volume 8125 of LNCS,
pages 181–192. Springer, 2013.

[BFF+12] Lali Barrière, Paola Flocchini, Fedor V. Fomin, Pierre Fraigniaud,
Nicolas Nisse, Nicola Santoro, and Dimitrios M. Thilikos. Connected
graph searching. Information and Computation, 219:1–16, 2012.

[BM93] H.L. Bodlaender and R.H. Möhring. The pathwidth and treewidth
of cographs. SIAM J. Discrete Math., 6(2):181–188, 1993.

[Bre67] Richard L. Breish. An intuitive approach to speleotopology. South-
western Cavers, 6:72–78, 1967.

[BS91] D. Bienstock and P.D. Seymour. Monotonicity in graph searching.
J. Algorithms, 12(2):239–245, 1991.

[CHM12] D. Coudert, F. Huc, and D. Mazauric. A distributed algorithm for
computing the node search number in trees. Algorithmica, 63(1-
2):158–190, 2012.

[CPS85] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition
algorithm for cographs. SIAM J. Comput., 14(4):926–934, 1985.

[DKL87] N. Deo, M.S. Krishnamoorthy, and M.A. Langston. Exact and
approximate solutions for the gate matrix layout problem. IEEE
Trans. on CAD of Integrated Circuits and Systems, 6(1):79–84,
1987.

[FHM10] F.V. Fomin, P. Heggernes, and R. Mihai. Mixed search number and
linear-width of interval and split graphs. Networks, 56(3):207–214,
2010.

[FT08] F.V. Fomin and D.M. Thilikos. An annotated bibliography on guar-
anteed graph searching. Theor. Comput. Sci., 399(3):236–245, 2008.

[GHM12] P.A. Golovach, P. Heggernes, and R. Mihai. Edge search number of
cographs. Discrete Applied Mathematics, 160(6):734–743, 2012.

[Gus93] J. Gustedt. On the pathwidth of chordal graphs. Discrete Applied
Mathematics, 45(3):233–248, 1993.

[HM08] P. Heggernes and R. Mihai. Mixed search number of permutation
graphs. In 2nd Int. Workshop on Frontiers in Algorithmics (FAW),
volume 5059 of LNCS, pages 196–207. Springer, 2008.

31

[KP86] L.M. Kirousis and C.H. Papadimitriou. Searching and pebbling.
Theoretical Computer Science, 47(2):205–218, 1986.

[MHG+88] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C.H.
Papadimitriou. The complexity of searching a graph. J. ACM,
35(1):18–44, 1988.

[MS88] B. Monien and I. H. Sudborough. Min cut is np-complete for edge
weighted trees. Theor. Comput. Sci., 58:209–229, 1988.

[Par78] T.D. Parsons. Pursuit-evasion in a graph. In Theory and applica-
tions of graphs (Proc. Internat. Conf., Western Mich. Univ., Kala-
mazoo, Mich., 1976), pages 426–441. Lecture Notes in Math., Vol.
642. Springer, 1978.

[PTK+00] S.-L. Peng, C. Y. Tang, M.-T. Ko, C.-W. Ho, and T.-S. Hsu.
Graph searching on some subclasses of chordal graphs. Algorith-
mica, 27(3):395–426, 2000.

[RS83] N. Robertson and P.D. Seymour. Graph minors. i. excluding a forest.
J. Comb. Theory, Ser. B, 35(1):39–61, 1983.

[Sko03] K. Skodinis. Construction of linear tree-layouts which are optimal
with respect to vertex separation in linear time. J. Alg., 47(1):40–59,
2003.

32

