
HAL Id: hal-01534785
https://hal.inria.fr/hal-01534785

Submitted on 8 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Model-Driven Multi-Cloud Resource
Management

Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, Philippe Merle

To cite this version:
Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, Philippe Merle. Towards Model-Driven Multi-
Cloud Resource Management. [Research Report] Inria Lille - Nord Europe. 2016. �hal-01534785�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/84966287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01534785
https://hal.archives-ouvertes.fr


Towards Model-Driven Multi-Cloud Resource Management

Fawaz Paraiso Stephanie Challita Yahya Al-Dhuraibi Philippe Merle
University of Lille & Inria Lille - Nord Europe

LIFL UMR CNRS 8022, France
Email: firstname.lastname@inria.fr

Abstract
Multi-Cloud computing has established itself as a paradigm
of choice for acquiring resources from different providers
and get the best of each of them to run their applications.
However, managing resources in Multi-Cloud remains a
challenging task. Several multi-cloud libraries based ap-
proaches include Apache Libcloud, Apache jclouds, δ-
cloud, Daseincloud, fog, and pkgcloud exist in the cloud
market. But these are still low level as Multi-Cloud manage-
ment tasks must always be programmed. Therefore, appli-
cation platforms are need to help developers to succeed. In
this paper we give a model-driven approach for managing
resources of multiple clouds at high level. We illustrate our
proposal by providing a prototype of Multi-Cloud Designer
for managing resource from multiple clouds.

Categories and Subject Descriptors CR-number [subcat-
egory]: third-level

General Terms Systems

Keywords Multi-Cloud, Resource, Resource Management,
Model, Docker

1. Introduction
Nowadays, multi-cloud computing [8] is becoming a reality.
On the one hand, there is a plethora of public cloud providers
such as Amazon EC2, Google Compute Engine, Microsoft
Azure to name a few, and of cloud software stacks like
VMware ESX, OpenStack, CloudStack, OpenNebula, Euca-
lyptus to build private or public clouds. Each cloud platform
provides its own Cloud Resource Management API (CRM-
API) allowing administrators to (de)provision, (re)size and
manage their cloud resources. However these CRM-API are

[Copyright notice will appear here once ’preprint’ option is removed.]

very low level, often incarnated as a networked REST API
only usable by experts, and are heterogeneous limiting in-
teroperability between clouds. In addition a cloud platform
is often equipped with a graphical interface built on top
of the CRM-API and appropriated for manual management
tasks only. On the other hand, using multiple clouds simul-
taneously allows one to optimize operational costs, to deal
with peaks of service requests, to react to cloud failures,
etc. To deal with the heterogeneity of CRM-API, several
multi-cloud libraries exist like Apache Libcloud1, Apache
jclouds2, δ-cloud3, Daseincloud4, fog5, and pkgcloud6. But
these are still low level as multi-cloud management tasks
must always be programmed. Thus, high level abstractions
for managing resources of multiple clouds are required.

In this paper we propose a model-driven approach for
managing resources in Multi-Cloud environments. Our ap-
proach assists users to manage resources from multiple
clouds.

The rest of the paper is organized as follows. In Section 2
we describe our approach. Next, in Section 3 we presents the
result of experiments of managing an application in Multi-
Cloud environments. Then, in Section 4 we discuss some
related work. Finally, Section 5 concludes the paper with
future direction.

2. Multi-Cloud resource management
In this section we present our approach. We begin by giving
an overview of the solution architecture. Then, we present
the Multi-Cloud Designer. Finally we describe how the
Multi-Cloud resources are modeling.

2.1 Architecture overview
As depicted in Figure 1, the architecture presented is divided
into five layers: Multi-Cloud Designer, Multi-Cloud Model-
ing, Models@Run.time, Multi-Cloud, and Virtualization &

1 https://libcloud.apache.org/
2 https://jclouds.apache.org/
3 https://deltacloud.apache.org/
4 http://dasein-cloud.sourceforge.net/
5 http://fog.io/
6 https://github.com/pkgcloud/pkgcloud

1 2016/2/17



Figure 1. Architecture for managing Multi-Cloud resource.

Containerization. A brief description of these layers (from
top to bottom) is provided below:

• Multi-Cloud Designer: this layer gives a graphical tool
for designing, developing, and managing resources from
multiple clouds. This tool interacts with the Multi-Cloud
Modeling layer.

• Multi-Cloud Modeling: is the model defined that allows
users to represent different kinds of resources at levels of
Hypervisor, public Cloud, and Container.

• Models@Run.time: based on the Multi-Cloud Modeling
layer, the Models@Run.time provides the execution of
these models with runtime capability.

• Multi-Cloud: this layer represents the target cloud envi-
ronments where the resources are provisioned, and man-
aged.

• Virtualization & Containerization: relies on hypervisor-
based and container-based virtualization solutions that
are used by cloud providers infrastructure.

2.2 Multi-Cloud Designer
The Multi-Cloud Designer tool in Figure 1 offers a struc-
tured approach and intuitive graphical interface to users for
designing, deploying and managing resources across multi-
ple clouds. This tool abstracts management of Multi-Cloud
resources at high level. It provides an explicit way to man-
age resources. Using our Multi-Cloud Designer, users can
design and manage resources from multiple clouds. These
resources are provided by public clouds, hypervisor and con-
tainers. This tool represents all the concepts of Multi-Cloud
resources defined in the underline model. Then, users can
design a Virtual Machine (VM) and application containers
by interacting with the target model.

2 2016/2/17



Figure 2. Multi-Cloud Docker Designer.

2.3 Multi-Cloud Modeling
Our metamodel for OCCI, named OCCIware [9] META-
MODEL, is based on the Eclipse Modeling Framework
(EMF) [10]. In the OCCIware project7, we promote to use
models as high level abstractions for managing multi-cloud
resources.

As shown in Figure 1, our model-driven approach is
based on a precise metamodel [6] of Open Cloud Com-
puting Interface (OCCI), an OGF’s specification defining
an open interface for managing any kind of cloud com-
puting resources (IaaS, PaaS, and SaaS). This metamodel
is encoded with EMF. Cloud infrastructure resources, aka
compute, network and storage, are abstracted by our Infras-
tructure model. The Infrastructure model is extended to
manage specific aspects of Hypervisors, Cloud platforms/s-
tacks, and Containers. Together, these three models allow
to model resources of multiple clouds simultaneously and
seamlessly.

2.4 Models at Run.time
The execution of the models relies on what we called con-
nectors. The connectors provide the connection between
models and running systems. Basically, connectors take a
source model defined by a metamodel and project it into the
running systems. Conversely, connectors monitor and intro-
spect the running systems and transform them into the target

7 http://www.occiware.org/

models. As shown in Figure 1 we have three connectors: Hy-
pervisor, Cloud, and Docker. The Cloud connector is spe-
cific to Cloud model, it performs the interactions between
the model and the public clouds. The Hypervisor connector
is specific to Hypervisor model, and the Docker connector is
specific to container model.

The connectors are based on the following principles:

• Transformation: the connectors provide expressive model
transformation techniques based on design patterns,
which facilitate the specification of translations between
the models and running systems.

• Introspection: to introspect the running system, the con-
nectors employ Model-Driven Engineering (MDE) tech-
niques, which handle the introspection and analysis of the
system at higher level of models. Using MDE techniques,
different models describing certain constraints are de-
rived and maintained at runtime.

• Synchronisation: the connectors provide incremental
synchronization between a running system and models.
To detect model modifications, the connectors rely on a
notification mechanism that reports when source model
element has been changed. To synchronize the changes
of model with the running system, the connectors check
if model elements are still consistent by navigating ef-
ficiently between the source model and running system
model using the correspondence model.

3 2016/2/17



3. Experimental setup
For our experiments, we implemented8 a prototype of Hy-
pervisor Designer, Cloud Designer, and Docker Designer
as a set of plugins for Eclipse Integrated Development En-
vironment (IDE) respectively for Hypervisor, Cloud, and
Docker models. Our Multi-Cloud Designer can be down-
loaded here9.

In this work, we are going to illustrate only Docker De-
signer. A screenshot of the current Docker Designer is de-
picted by Figure 2. Frame (a) in Figure 2 shows the Eclipse
Model Explorer used to navigate through a Docker projects
containing a Docker Model. Frame (b) in Figure 2 gives a
perspective or a global view of the modeled containers. Ob-
viously, this view can be adjusted to provide the most opti-
mal perspective. Frame (c) displays the design area that pro-
vides a graphical representation of Docker Model. Frame (c)
displays the design area that provides a graphical represen-
tation of Docker Model. As shown in Frame (c), the model
elements are green or red. The green color of machine or
container elements shows the started state of containers and
host machines. The red color shows the stopped state of con-
tainers and the host machine. Frame (d) in Figure 2 contains
the Eclipse properties editor for visualizing and modifying
attributes of a selected modeling element.

The Hypervisor, Cloud and Docker connectors are imple-
mented using Libvirt [3], Apache jclouds [1] and Docker [5]
respectively.

4. Related work
Libraries based approaches like Apache Libcloud, Apache
jclouds, δ-cloud, Daseincloud, fog, and pkgcloud remain on
the code-level, which makes redesign difficult and error-
prone. Authors in [4] propose a Multi-Cloud management
platform that locates between Cloud users and Cloud sites
and provides unified Cloud services from the SOA perspec-
tive. However, they achieve the unified management of mul-
tiple Clouds at code-level which is not flexible to meet per-
sonalized requirements. The authors in [2] propose a model-
based framework called CLOUDMF to manage multiple
Clouds. Their work are on a higher level, but both lack the
support of interCloud network connection.

5. Conclusion
We propose a novel model-driven approach for managing
resources of multiple clouds. Through model construction,
and model transformation, multiple Clouds resources can
be managed in a unified and personalized manner. Our
approach encompasses a precise metamodel of OCCI and
models for managing hypervisors, cloud platforms/stacks,
and containers. In our approach, we also guarantee the syn-
chronization between the customized model, and the target

8 https://github.com/occiware/ecore
9 http://www.obeo.fr/download/occiware/

Multi-Cloud environments. Moreover, the models@runtime
environment facilitates reasoning about dynamic adaptation
of running systems [7] by providing an abstract representa-
tion of the system causally connected to the running system.

As for the future work, we plan to leverage for supporting
autonomic Multi-Cloud resource management through reuse
of model at runtime.

Acknowledgments
This work is supported by OCCIware (www.occiware.org)
research and development project funded by French Pro-
gramme d’Investissements d’Avenir (PAI).

References
[1] Apache jclouds. The Java Multi-Cloud Toolkit. Website

https://jclouds.apache.org/, February 2016.

[2] N. Ferry, F. Chauvel, A. Rossini, B. Morin, and A. Solberg.
Managing multi-cloud systems with cloudmf. In Proceedings
of the Second Nordic Symposium on Cloud Computing &#38;
Internet Technologies, NordiCloud ’13, pages 38–45, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2307-9. .
URL http://doi.acm.org/10.1145/2513534.2513542.

[3] R. Hat. libvirt: The virtualization api. , http://libvirt.org,
2012.

[4] T. Liu, Y. Katsuno, K. Sun, Y. Li, T. Kushida, Y. Chen, and
M. Itakura. Multi cloud management for unified cloud ser-
vices across cloud sites. In Cloud Computing and Intelli-
gence Systems (CCIS), 2011 IEEE International Conference
on, pages 164–169, Sept 2011. .

[5] D. Merkel. Docker: Lightweight linux containers for con-
sistent development and deployment. Linux J., 2014(239),
Mar. 2014. ISSN 1075-3583. URL http://dl.acm.org/

citation.cfm?id=2600239.2600241.

[6] P. Merle, O. Barais, J. Parpaillon, N. Plouzeau, and S. Tata.
A Precise Metamodel for Open Cloud Computing Interface.
In Cloud Computing (CLOUD), 2015 IEEE 8th International
Conference on, pages 852–859. IEEE, 2015.

[7] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Sol-
berg. Models@ run.time to support dynamic adaptation. Com-
puter, 42(10):44–51, Oct. 2009. ISSN 0018-9162. . URL
http://dx.doi.org/10.1109/MC.2009.327.

[8] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier.
A Federated Multi-Cloud PaaS Infrastructure. In 5th IEEE
International Conference on Cloud Computing, pages 392
– 399, hawaii, United States, June 2012. . URL https:

//hal.inria.fr/hal-00694700.

[9] J. Parpaillon, P. Merle, O. Barais, M. Dutoo, and F. Paraiso.
OCCIware-A Formal and Tooled Framework for Managing
Everything as a Service. In Projects Showcase@ STAF’15,
volume 1400, pages 18–25, 2015.

[10] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

4 2016/2/17


