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ABSTRACT
In this paper, we focus on the problem of sound source localization
and we propose a technique that exploits the known and arbitrary
geometry of the microphone array. While most probabilistic tech-
niques presented in the past rely on Gaussian models, we go further
in this direction and detail a method for source localization that is
based on the recently proposed α-stable harmonizable processes.
They include Cauchy and Gaussian as special cases and their
remarkable feature is to allow a simple modeling of impulsive
and real world sounds with few parameters. The approach we
present builds on the classical convolutive mixing model and has
the particularities of requiring going through the data only once,
to also work in the underdetermined case of more sources than
microphones and to allow massively parallelizable implementations
operating in the time-frequency domain. We show that the method
yields interesting performance for acoustic imaging in realistic
simulations.

Index Terms—source localization, acoustic modeling, α-
stable random variables, spectral measure, sketching

I. INTRODUCTION
Over the past few years, many studies have been conducted

on the localization of audio objects, called sources, in an acous-
tic environment. The purpose of this trend of research may for
instance be to recover speech from a noisy [1], [2], [3], [4] or
reverberant [5], [2] environment, while knowing the geometry of
the microphone array. In the scientific community, the incoming
direction of propagating waves originating from a source is called
a direction of arrival (DoA). Its knowledge is useful in a wide
range of applications: sonar [6], [7], wireless communications [8],
or medical imaging [9], [10] to cite a few. For the estimation of
the DoAs, an efficient approach is to consider several candidate
directions and the corresponding wave propagation as given by the
physical model. In practice, this approach makes it possible to build
the propagation operator from all candidate DoAs through the so-
called mixing matrix, encapsulating the physical model. Several
methods were proposed for estimating the DoAs. Among those,
we may mention the celebrated MUSIC algorithm [11], which
assumes that the number of sources is equal to the rank of the signal
subspace and uses its orthogonal subspace called noise subspace
for localization. The ESPRIT algorithm [12] is similar to MUSIC
but exploits further rotational invariance properties for the signal
subspace. Both algorithms achieve good localization, even though
ESPRIT proved to be more robust against noise than MUSIC [13].
Another path of research in the case of audio localization is based
on the Local Gaussian Model introduced in [14]. In this model, the
dependences between the observations at different microphones are
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not modeled deterministically using classical features such as inter-
channel time differences, but rather directly as frequency-dependent
correlations embedded in the so-called spatial covariance matrices.
In this context, the spatial covariance matrices corresponding to
each DoA may be learned beforehand and used afterwards for
localization as in [15].

The aforementioned methods for localization all exploit second-
order statistics for the sources or observation signals, which are
commonly modeled as wide-sense stationary (WSS) processes.
From this perspective, it is common to pick a Gaussian process
model for the signals [16], to be used along with the assumption of
independent sources. Model parameters are then usually estimated
by means of an expectation–maximization (EM) algorithm.

However, several studies pinned down the empirical fact that
the marginal distributions of the signals of interest work poorly in
accordance to the Gaussian model. In other terms, the histogram of
the signals of interest is rarely correctly modeled by a Gaussian or
a mixture of just a few Gaussian distributions. A classical option to
address this problem is to adopt an heteroscedastic Gaussian model,
meaning that we adopt varying mean and covariance parameters.
In audio, this is notably the case of the Local Gaussian Model
(LGM [14]), which operates on the Short Term Fourier Transform
(STFT) and models all its entries as independent and centered
Gaussian with different variances. As shown, e.g. in [17], this
is equivalent to assuming the processes to be locally WSS. This
approach yields good performance at the cost of requiring much
more parameters to estimate than a simpler marginal model. That
said, even when sticking to this local stationarity idea, the Gaussian
model was recently outperformed in the context of single chan-
nel enhancement by its heavy-tailed α-stable generalization [18],
coined in [19] as the α-harmonizable model. This framework en-
compasses the Cauchy (α = 1) and Gaussian (α = 2) special cases
and leads to better filtering performance for the same computational
complexity.

Picking an α-stable model for modeling time series has the
advantage of better accounting for the impulsivity and noisiness of
real-world signals, and the particular α-harmonizable case further
permits convenient Time-Frequency (TF) processing. Still, the
question of how to handle multichannel signals in this context
remains unclear. Indeed, α-stable distributions have the noticeable
disadvantage of not having finite second-order moments, prohibit-
ing algorithms such as MUSIC or ESPRIT. Some research around
this powerful framework has focused on beamforming under α-
stable noise [20], but this does not translate to the case of α-
stable target sources. More recent studies such as [21] considered
Independent Component Analysis (ICA) for α-stable sources and
successfully applied the method for the processing of heavy-tailed
biomedical data in [22]. This is relevant in our setting because ICA
and localization are related problems [23], [24] in the sense that
estimating a mixing matrix is related to estimating DoAs. However,
the approach in [21] suffers from several intrinsic limitations.
Firstly, it considers sources that are independent and identically



distributed (i.i.d.) in the time domain, which is a poor assumption
in audio. Secondly, it relies on instantaneous mixing scenarios, for
which the mixing matrix boils down to just scalar gains applied
to the sources. While this is sufficient for electric or magnetic
wavelengths, it is not realistic in an acoustic setting where the time
taken by waves propagation is not negligible. Finally, the approach
badly scales to massively multichannel arrays because it requires
uniform gridding of the K-dimensional sphere where K is the
number of microphones. This is prohibitive in the case of a few
dozens or hundreds of microphones.

In this paper, we build on previous work on α-stable multivariate
data [21], [25] but we extend the approaches to deal with those
aforementioned drawbacks while providing exact inference. Firstly,
we pick the α-harmonizable processes instead of i.i.d. α-stable
sources. This has the advantage of accounting for realistic locally
stationary impulsive signals. Secondly, we pick a marginal model
for the sources in the Time-Frequency domain, meaning that each
source is parameterized by only a very limited number of param-
eters, in contrast to the LGM model. The resulting localization
method is not likely to be trapped in local minima for parameters
estimation. Actually, the corresponding optimization problem we
present is convex. Thirdly, we exploit the knowledge of the geom-
etry of the microphone array along with physical assumptions about
sound propagation to allow for exact inference even in massively
multichannel arrays. This comes with a realistic modeling of convo-
lutive mixing scenarios. Very interestingly, the resulting algorithm
is finally of linear complexity: the data needs only to be processed
once through a very simple sketching operation [26] to yield a very
small representation from which the DoAs are estimated.

II. NOTATION, MODEL AND THEORY

II-A. Notation and acoustic model
We consider L possible positions in the 3-dimensional space.

We then assume that each of them is the spatial location of a
source sl. Whenever no real source is actually present at that
location, sl should simply be estimated as 0. Our objective in this
study becomes to estimate the magnitude of all sl, removing the
need of knowing the actual number of active sources. Now, picking
an STFT representation with F frequency bands and T time frames,
the sources are described by a tensor of size F × T × L, with
complex entries. Hence, sl (f, t) is the complex spectrum of the
lthsource at TF-bin (f, t). Likewise, x is the F × T × K tensor
gathering the STFTs of the signals received by K microphones.
x (f, t) denotes the K × 1 complex vector grouping the STFTs of
all received signals at TF bin (f, t). The positions of the K micro-
phones in R3 are assumed known. Classical acoustic propagation
theory leads us to take the mixtures as a linear combination of the
sources weighted by the complex K × 1 steering vectors Al (f),
also called mixing filters [27]:

∀ (f, t) , x (f, t) '
L∑
l=1

Al (f) sl (f, t) . (1)

In the context of the classical near field region assumption [28],
the steering vectors are for instance given by:

∀l, f , k, [Al (f)]k =
1

rkl
exp

(
−iωfrkl

c0

)
, (2)

where rk,l is the euclidean distance between the kthmicrophone
and the lth source, ωf is the angular frequency in frequency band f
and c0 is the sound speed in the air. In the general case, the
steering vectors are provided by any relevant acoustical modeling
of the room or even by actual measurements of the Room Impulse
Responses (RIR). Given this acoustic model, we now turn to the
isotropic α-stable model that we pick for the source signals sl.

II-B. Isotropic α-stable distributions and source model
Let v be a complex random variable and ϕv its characteristic

function (chf.). We say that v follows a symmetric isotropic α-
stable distribution with α ∈ (0, 2], denoted SαSc, if and only if
ϕv has the following form:

∀θ ∈ C, ϕv (θ) , E (exp (i< (θ?v))) = exp (−Υ |θ|α) , (3)

where , denotes a definition, |.| denotes the modulus, ·? denotes
complex conjugation, < (z) is the real part of z ∈ C and Υ ≥ 0 is
a scale parameter that basically characterizes the amplitude of v ∼
SαSc(Υ). This is a useful distribution for modeling impulsive data
in signal processing [29], [30], [31]: the closer the characteristic
exponent α is to 0, the heavier the tail is.

In this paper, we assume that each source sl is an α-
harmonizable process [19]. This boils down to taking the random
variables sl (f, t) for all l, f, t as mutually independent, and dis-
tributed according to:

sl (f, t) ∼ SαSc (Υl) . (4)

The scale parameters Υl can be viewed as the amplitudes of
the latent sources and are equal to 0 when there is no source in
the direction considered. As can be seen, the scale parameters Υl

of the source signals are here taken as independent of both time
and frequency. This strongly contrasts with the LGM model [14]
for which they are time and frequency dependent. The fact is that
picking a heavy-tail distribution such as SαSc precisely allows for
such a simple marginal model. Let Υ , [Υ1, . . . ,ΥL]> be the
main L × 1 quantity of interest to estimate, coined in [32] as the
discrete spatial measure (DSM).

II-C. Spatial measure for multichannel α-stable convolutive
mixtures

According to (1) and (4), all vectors x (f, 1) , . . . ,x (f, T ) share
the same distribution for a given frequency f . Moreover, it can be
shown that they are symmetric α−stable random vectors but they
are not isotropic. Let ϕf be the chf. of the distribution of x (f, t)
for any t:

∀θ ∈ CK , ϕf (θ) , E (exp (i<〈θ,x (f, t)〉)) . (5)

where 〈., .〉 is the inner product on CK . It can be uniquely expressed
for α ∈ (0, 2) as [18, p58]:

∀θ ∈ CK , ϕf (θ) = exp

(
−
ˆ
a∈SK

C

|〈θ,a〉|α dΓf (a)

)
, (6)

where SK
C is the complex K-dimensional sphere SK

C ,{
(z1, . . . , zK) ∈ CK ;

∑K
k=1 |zk|

2 = 1
}

, and Γf is called the
spectral measure, and is symmetric in the sense that for any
continuous function ϕ defined on SK

C and for any z ∈ S 1
C ,

we have
´
a∈SK

C
ϕ(a)dΓf (za) =

´
a∈SK

C
ϕ(a)dΓf (a). We now

introduce the quantity:

If (θ) , − ln (ϕf (θ)) , (7)

called the Levy exponent [33] of the distribution of x (f, t).
Combining (6) and (7), we get:

If (θ) =

ˆ
a∈SK

C

|〈θ,a〉|α dΓf (a) . (8)

In this paper, we will exploit the Levy exponent for model
estimation. To do this, it is desirable for computational reasons
to approximate the integral in (8) as a finite sum. In practice, the
sampling of a high dimensional sphere such as SK

C would raise the
tricky issue of the curse of dimensionality. This is basically what



is done in [21] in the real case. To avoid it, the particular approach
we propose in this paper is to exploit the additional information
provided by the physical model (2).

Proposition 1. In our case (1), dΓf (a) is a sum of point masses:

dΓf =

L∑
l=1

Υl‖Al (f) ‖αδal(f), (9)

where ‖.‖ stands for the Hermitian norm and δal(f) denotes the
Dirac measure centered at al (f) , Al (f) /‖Al (f) ‖ and asso-
ciated1 to the equivalence relation a ∼ b⇔ ∃z ∈ S 1

C , a = zb.

Proof: In short, we generalize [18, p70] to the complex case
by substituting (1), (3) and (4) into (5) and by considering the
independence of the sources, which yields:

∀θ ∈ CK , If (θ) = − ln
(∏L

l=1 ϕsl(f,t) (〈Al (f) ,θ〉)
)

=

L∑
l=1

Υl |〈θ,Al (f)〉|α.

(10)
Since the same expression of ϕf (θ) can be obtained by substitut-
ing (9) into (6), and since the spectral measure Γf introduced in
(6) is unique, (10) proves (9).

In this study, for each frequency f , we estimate Υ by exploiting
relation (10) for L values θ1 (f) , . . . ,θL (f) of its operand.
Assuming we have chosen those θl (f), let:

If , [If (θ1 (f)) , . . . , If (θL (f))]> (11)

be the (nonnegative) L × 1 vector gathering the Levy exponents
of the mixture at frequency f for these θl (f) . Defining now the
matrix Ψf of size L× L by:

[Ψf ]l,l′ , |〈θl (f) ,Al′ (f)〉|α , (12)

equation (10) leads to If = ΨfΥ. Since this equality holds for
all f , we can concatenate all If into the FL× 1 vector I and all
Ψf into the known FL× L matrix Ψ. We obtain:

I = ΨΥ, (13)

which is our starting point for estimating Υ. In practice, we pick
θl (f) = Al (f), because this choice proved effective and leads to
a symmetric matrix Ψf . Note however that other options may be
considered.

III. PARAMETER ESTIMATION
We now present a way to estimate Υ using (13). This method

is divided into two steps: firstly, we estimate I from the data and
secondly, we estimate Υ based on the knowledge of this estimate,
the knowledge of Ψ and the equality I = ΨΥ.

III-A. Estimation of I: empirical levy exponent
The classical empirical characteristic function (ECF) of the

observations x (f, 1) , . . . ,x (f, T ), denoted ϕ̃f , is defined as [34]:

∀θ ∈ CK , ϕ̃f (θ) =
1

T

T∑
t=1

exp (i<〈θ,x (f, t)〉) . (14)

It would be logical to apply (14) to estimate If as Ĩf =
− ln (ϕ̃f (θ)). However, taking the logarithm of (14) may raise

1In other words, for any continuous function ϕ defined on SK
C ,´

a∈SK
C
ϕ(a)δal(f)(a) =

´
z∈S 1

C
ϕ(z al(f))

dz
2π

.

an issue because ϕ̃f could be complex-valued numerically. Fortu-
nately, in the symmetric α-stable case, we can address this issue
in the following way:

Proposition 2. In the SαSc case, we can define an unbiased
estimator of the chf. as:

∀θ ∈ CK , ϕ̂f (θ) =

∣∣∣∣∣ 1

T

T∑
t=1

exp

(
i
<〈θ,x (f, t)〉

21/α

)∣∣∣∣∣
2

. (15)

Proof: From the α-stability assumption, we have
that the two sets of observations: {x (f, t)}t and{(

2−1/α
)

(x (f, t1)− x (f, t2))
}
t1,t2

share the same probability

distribution. Replacing the first one by the second one in (14), and
factorizing the result, we finally get (15).

Since ϕ̂f (θ) is nonnegative, we can define the empirical Levy
exponent: Îf (θ) = − ln ϕ̂f (θ).

The strategy we adopt is simply to compute the empirical Levy
exponent Îf (θ) of the data for all θl (f) = Al (f) . As in
section II-A, we put all those LF estimates together and note
them Î . Following (13), they obey:

Î ≈ ΨΥ. (16)

It is fundamental to note here that the estimate Î of the Levy
exponent is obtained after only one pass over the data through a
very simple procedure (15). Parameter estimation is then achieved
from this compressed LF×1 vector Î only, through Î ≈ ΨΥ̂, and
not using the much larger F × T ×K observation dataset x. We
see we have here an example of the sketching framework recently
discussed in [26], that naturally arises when considering α-stable
random variables. This fact means that the proposed estimation pro-
cedure is not only of linear complexity, it is massively parallelizable
over both time and frequency.

III-B. Estimation of Υ with nonnegative optimization
Our objective is the estimation of the nonnegative quantity Υ, so

that (16) is verified. A natural idea for this purpose is to estimate it
so as to minimize the discrepancies between the left and right-hand
sides of (16), by picking:

Υ̂← arg min
Υ≥0

∑
f,l

dβ
(
Î | ΨΥ

)
(17)

where dβ is any data-fit cost function such as the
β−divergence [35]: dβ(x|y) = 1

β(β−1)
(xβ + (β − 1)yβ −

βxyβ−1) ∀x > 0, y > 0, β ∈ R\ {0, 1}. To solve this
optimization problem, we note that all quantities involved in (17)
are nonnegative, so that it is natural to adopt a now-classical
multiplicative update strategy as in nonnegative matrix factorization
(NMF, [36]) and to iterate the following update:

Υ̂← Υ̂ ·
G−

(
Υ̂
)

G+

(
Υ̂
) , (18)

where a·b and a
b

stand for element-wise multiplication and division
of a and b, respectively. G−

(
Υ̂
)

and G+

(
Υ̂
)

are obtained by
the following calculation:

∇Υ̂dβ
(
Î|ΨΥ̂

)
= Ψ>

((
ΨΥ̂

)β−1
)

︸ ︷︷ ︸
G+

(
Υ̂
)

−Ψ>
((

ΨΥ̂
)β−2

· Î
)

︸ ︷︷ ︸
G−

(
Υ̂
)

.

(19)



The algorithm box below summarizes this approach.

Algorithm 1 Estimation of the spatial measure Υ̂

1) Input
• Number L of possible positions.
• Steering vectors Al(f) as in (2) or directly using RIR.
• STFTs x of the mixture, of size F × T ×K.
• Number of iterations.
• Parameters α and divergence to be used.

2) Sketching:
for all f , compute Îf (Al (f)) = − ln ϕ̂f (Al (f)) us-
ing (15)

3) Parameter estimation
• Compute Ψf according to (12) with θl (f) = Al (f).
• Compute Υ̂ by iterating over (18).

IV. EVALUATION

In this section, we investigate the performance of the proposed
method with room impulse responses RIRs2, simulating a room of
dimensions 5× 4× 3 m with 0.4 s of reverberation time [37]. The
sources are taken as voice samples from the CMU3 dataset with
sample rates of 16 kHz and distributed randomly on a 5×4 plane,
1.5 m above the floor. The candidate locations for analysis are
positioned on a grid of 10 cm step size, corresponding to L = 2091,
and 5 cm shifted with respect to the true sources’ locations to ensure
realistic experiments. Then, the observations x (f, t) are obtained
by propagating the sources the RIR (2). The excerpts considered
last 15 seconds (T = 391) and we use only the F = 128 frequency
bands corresponding to the interval [1000, 3000] Hz.

We pick α = 1.2 after [19], and we set the beta divergence
parameter to β = 0 (Itakura-Saito divergence). We run 70 iterations
of the NMF algorithm in step 3) of Algorithm 1.

The baseline method we use here for comparison is the steered
response power (SRP, [38]). It consists in backpropagating the
observations towards the sources locations using the steering
vectors Al (f). Basically, it computes simple inner products be-
tween x (f, t) and Al (f). We define the SRP measure B̂ ,[
B̂1, . . . , B̂L

]>
as:

∀l, B̂l =
1

FT

∑
f,t

|A?
l (f)x (f, t)| . (20)

To compare the performance of both approaches, we first define
the ground truth as the support of the true DSM Υ, that is: 1 in
the active directions and 0 otherwise, followed by a smoothing
using a Gaussian kernel with a 10cm length-scale. We compute a
total number of 200 simulations, i.e. 20 independent trials for each
case of J = 1, . . . , 4 sources and K = 3, 4, 10, 20, 30 randomly
positioned microphones.

We first note in Fig. 1 that the score obtained with SRP is much
lower than the correlation obtained with the proposed method. After
investigation, it turns out that this bad performance is mostly due
to the fact that much of the energy of the SRP is spread out across
many directions. We highlight that a large number of microphones
delivers better results (' 65% for K = 30 and ' 21% for K = 3).

2https://www.audiolabs-erlangen.de/fau/professor/habets/software/
rir-generator

3Carnegie Mellon University dataset : http://www.festvox.org/cmu_faf/
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Fig. 1. Scores of correlations with ground truth. Black whiskers
depicted the deviations.

Still, a very interesting feature of the proposed approach is that
it yields a DoA heatmap (the DSM) that is intrinsically very sparse,
contrarily to SRP, as can be seen with a typical example shown on
Fig. 2.
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Fig. 2. Localization heatmap with the spatial measure Υ̂ (top) and
the SRP B̂ (bottom) for 30 microphones and 4 sources.

V. CONCLUSION
In this paper, we proposed an α-stable multivariate probabilistic

model for multichannel audio recordings and we have shown that it
leads to the concept of the discrete spatial measure (DSM), which is
directly related to the directions of arrivals of the sources. Exploit-
ing acoustics, we have proposed a method to estimate the DSM,
that requires going through the data only once and that is of linear
complexity, making it possible to process streams of massively
multichannel audio. We have shown that the method considerably
outperforms classical beamforming approaches in terms of acoustic
imaging and showed its interest in blindly imaging virtual sources
and thus the shape of the room through the exploitation of the
echoes.

This study would now benefit from more challenging experi-
ments where the method would be compared with more robust
algorithms as CLEAN and RELAX. Another step into the α-stable
theory would be to augment the model with elliptically contoured
distributions, permitting the introduction of some uncertainty on
the steering vectors.
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