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Note on models of polarised intuitionistic logic

Guillaume Munch-Maccagnoni
Team Gallinette, Inria Bretagne Atlantique, Univ. Nantes, LS2N, Nantes, France

Guillaume.Munch-Maccagnoni@Inria.fr
3rd June 2017

Following renewed interest in duploids arising from the exponential comonad of linear
logic (the construction describing polarised intuitionistic translations into linear logic), I
summarise here various remarks:

• about a decomposition of Girard’s “boring” translation as the expression of call-by-
value in call-by-name, dual to how thunks is used to express call-by-name in call-
by-value (object of a talk given in June 2012 at LDP, Marseille, entitled “Runnable
monads in models of the �-calculus”),

• about the coincidence between linear CPS translations and Girard’s translations of
intuitionistic logic into linear logic (object of a remark in my PhD thesis and of a
private communication from Streicher in October 2013),

• about a completeness property of historical models of linear logic in the above context
(object of an untitled note circulated privately around July 2014),

• about a rational reconstruction of these translations with the Linear Call-by-Push-Value
(part of a talk given in March 2016 at IRIF, Paris, entitled “Adjunction models and
polarised calculi for modelling effects and resources”).

1 Runnable monads in models of the �-calculus

Historical models of linear logic satisfy an equalizing property not accounted for by traditional axiomatic
accounts of linear logic models (symmetric monoidal adjunctions, see Melliès, 2009). The following
property holds for the relational model (including generalisations with weights), coherence spaces (both
with set and multiset exponentials), and hypercoherences:
Proposition 1. Let us write V the linear category, ! ∶ V→ V the linear exponential comonad, and
" ∶ !→ 1 the co-unit. Then " is a coequalizer of the pair "!, !" ∶ !!→ !.

As a consequence, Führmann’s completeness property (1999) applies (in the dual) as described next.
This property is best understood via the Curry-Howard correspondence by dualising Führmann’s con-
struction of thunks.
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Every model of linear logic V gives rise to a model of intuitionistic logic in the Kleisli category V!;
the latter is equipped with the dual of a thunk which we call a runnable monad. Thunks express call by
name in call by value (Hatcliff and Danvy, 1997). Dually, the runnable monad expresses call by value
in call by name, and therefore induces a translation of call by value into linear logic, in which context it
coincides with Girard’s “boring translation” (Munch-Maccagnoni, 2013). Such models of intuitionistic
logic in which the order of evaluation matters are polarised.
The polarised structure is depolarised when one of the following equivalent properties are satisifed

(Munch-Maccagnoni, 2014): the evaluation order does not matter (unrestricted �-reduction is satisfied),
the runnable monad is isomorphic to the identity functor, and � ∶ ! → !! is an isomorphism. This
cannot happen, though, if the model of linear logic has an isomorphism !o ⊸ o ≅ o so as to interpret
untyped �-calculus. Indeed, if the model is depolarised, then V! is bi-cartesian closed, and therefore the
impossibility results in Huwig and Poigné (1990) apply.

2 Führmann’s completeness

A runnable monad determines a notion of linearity: Führmann’s thunkability in the dual. Führmann’s
result then states that Proposition 1 is equivalent to the following:
Corollary 2. The subcategory of V! whose morphisms are linear is isomorphic to V, in the category of
categories equipped with a comonad and functors that preserve the co-monad structure.

This justifies in particular the terminology “linear”: it generalizes Girard’s notion of linearity origin-
ating from the historical models of linear logic to more general models of computation. (Specializations
of this theorem to a notion of isomorphisms that preserves the structure of connectives of linear logic
have since been studied by Blute, Cockett, and Seely, 2015.)
The phenomenon is similar to the relationship, among models of classical logic, between response

categories and control categories (Selinger, 2001). Any response category (indirect model) gives rise to
a control category (direct model), and any control category arises from a response category (the category
of linear morphisms) in this way. This relationship between indirect and direct models is a reflection
(Führmann, 1999).

This result has sometimes been used to support the point of view that control categories are “the same”
as response categories. However, the response category arising from a control category is not necessarily
isomorphic to the one that gave rise to the control category (Selinger, 2001). But, the additional property
given by Proposition 1 characterises the reflective full subcategory of indirect models equivalent to the
category of direct models. In other words, in the case of historical models of linear logic giving rise to
polarised intuitionistic logic models, one indeed has an isomorphism between the indirect model and the
direct model (which the syntaxes for linear logic do not necessarily reflect).

2.1 Example in Rel

Let Rel be the category of sets and relations. Following Ehrhard (2012) we write multi-sets m =
[a1,… , an] ∈Mfin and their union additively. The finite multi-set co-monad is written (!, ", �). �-terms
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are interpreted in the Kleisli category Rel!, that is, they are represented by sets f of relations (m, b) ∈ f
with m ∈Mfin(A) and b ∈ B for some sets A,B.
Proposition 3. Rel! has a runnable monad (T , �, �) defined with:

• TA def=Mfin(A);

• Tf def=
{

([m1 +⋯ + mn], [a1,… , an])
|

|

|

n ∈ ℕ and ∀i, (mi, ai) ∈ f
}

;

• �A
def=
{

([[a]], a) ||
|

a ∈ A
}

;

• �A
def= {(m,m) | m ∈Mfin(A)}.

Proof. This is an instance of Führmann’s construction (1999), seen in the dual. ∎

Definition 4. Amorphism f ∈ Rel!(A,B) is linear if �B ◦Tf = f◦�A (or equivalently f ◦!"A = f◦"!A
in Rel).
Proposition 5. A morphism f ∈ Rel!(A,B) is linear if and only if (m, b) ∈ f ⟹ #m = 1. In
particular " is a coequalizer of the pair "!, !" ∶ !!→ !.

Proof. For any f ∈ Rel!(A,B), the morphisms f ∗ = �B◦Tf and f◦�A in Rel!(TA,B) are defined
with:

f ∗ =
{

([m], a) ||
|

(m, a) ∈ f
}

f◦�B =
{

([[a1],… , [an]], b)
|

|

|

([a1,… , an], b) ∈ f
}

Thus f ∗ = f◦�B if and only if (m, b) ∈ f ⇒ #m = 1. This shows that for any f ∈ Rel(!A,B) such that
f◦"!A = f◦!"A, there exists g ∈ Rel(A,B) such that f = g◦"A, determined uniquely by

(a, b) ∈ g ⟺ ([a], b) ∈ f . ∎

3 The polarised case

The generalisation of Führmann’s result with polarities is provided with duploids arising from adjunc-
tions (Munch-Maccagnoni, 2014). One motivation of duploids is to relax the self-duality of dialogue
categories (Melliès, 2009) so as to account for settings in which negation is not involutive (e.g. Munch-
Maccagnoni, 2013, Section II.2.6). If one is interested in seeing models of intuitionistic logic arise from
ones of linear logic:

1. one can start from the decomposition of response categories into dialogue categories with resource
adjunctions (Melliès, 2009; Melliès and Tabareau, 2010), but now composing with the resource
adjunction on one side only:

M
//

⊥oo V
//

⊥ Vop
oo

(Data: V a distributive dialogue category, M a cartesian category, V
//

⊥ Vop
oo the adjunction of

negation with itself, M //
⊥ Voo a symmetric monoidal adjunction.)

3



2. alternatively, if V above is closed, as is the case for models of linear logic, one can also consider
the duploid arising from the resource adjunction M

//
⊥ Voo alone. (As is well-known in this case

the monad on M is commutative.)
The duploid construction subsumes call-by-value and call-by-name translations. The variety associated
to the adjunctions above describe:

1. for the adjunction M
//

⊥ Vop
oo : CPS translations of “non-linear languages with linear control”

summarised in Hasegawa (2004) (encompassing notably linearly-used continuations by Berdine,
O’Hearn, Reddy, and Thielecke, 2000),

2. for the adjunction M
//

⊥ Voo : polarised translations of intuitionistic logic described by Girard
(1993, 2007); Liang and Miller (2007, 2009),

as we will see in more detail in the next section.
Remark 6. In fact, when V is ∗-autonomous, as in the case of models of linear logic, the duploids
arising from the intuitionistic polarised translation and from the linear CPS are in an obvious equivalence,
because the adjunctions we started with differ up to composition by an adjunction V

//
⊥ Vop
oo which

happens to be an equivalence.
I believe that this remark captures the essence of a note by Streicher (2013) suggesting the coincidence

between Girard’s translations and linear CPS (in call by name and by value), communicated privately
after Munch-Maccagnoni, 2013, Chapter III based on this coincidence an analysis of delimited CPS
translations as polarised translations into linear logic.
Equivalence between duploids is in the sense of the 2-category of duploids, duploid functors, and nat-

ural transformations whose components are linear and thunkable, which provides the appropriate notion.
But in the case where negation is strictly involutive, as is usually the case in syntaxes of linear logic,
then the equivalence is an isomorphism, and one already has an isomorphism between the adjunctions
M

//
⊥ Voo and M

//
⊥ Vop
oo .

3.1 Completeness

The case of the runnable monad mentioned previously corresponds to taking M = V!. Another natural
choice, considered in Ehrhard (2016) is M = V! the category of coalgebras. Either way, it is a general
fact that the monad arising on V! and V! satisfies the equalizing property dual to Proposition 1 (see
e.g. Barr and Wells, 1985, Proposition 3.3.7 in the dual). This property and its dual form the criterion to
generalise Führmann’s completeness to duploids. Thus:
Corollary 7. In the case of historical models of linear logic, the indirect polarised model M //

⊥ Voo is
isomorphic, as an adjunction, to the one between the categories of thunkable and linear morphisms in
its associated duploid.

We refer the reader to Munch-Maccagnoni (2014) for the details of notions and constructions. This
motivates, I believe, the study of linear logic via their associated Call-by-Push-Value model.
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4 Models of Call-by-Push-Value arising from linear logic

The notion of Call-by-Push-Valuemodel (Levy, 2005) coincides with that of (indirect) polarised intuition-
istic logic LJ�p model (Curien, Fiore, and Munch-Maccagnoni, 2016), so that one can interpret polarised
intuitionistic logic into any CBPV model, not just ones arising from linear logic. We now recall how the
previous polarised intuitionistic situations give rise to CBPV models following general considerations.
We use the notions and results from Curien, Fiore, and Munch-Maccagnoni, 2016 where more detail can
be found.

• Any dialogue category (Melliès, 2009) with distributive structure Vgives rise to a Linear CBPV
model _V //

⊥ _Vop
oo .

• If in addition V is closed, in other words is a distributive SMCC, then it gives rise to a Linear
CBPV model _V //

⊥ _Voo .
• Any symmetric monoidal adjunction M L //

⊥ VMoo , such as for M = V! for Seely categories and
M = V! for linear categories—in which cases M is cartesian—(Bierman, 1995; Melliès, 2009),
enriches into an adjunction _M //

⊥ L⋆_Voo (where L⋆ denotes precomposition of presheaves with
L).

• Any ILL�p model (M //
⊥ Voo ,_V //

⊥ _Soo ) (a symmetric monoidal adjunction over a Linear CBPV
adjunction where M is cartesian) gives rise to a CBPV model _M //

⊥ L⋆_Soo by composing the
image of the LCBPV adjunction by L⋆ with the previous one.

Therefore we have recipes for CBPV models:
1. for any distributive dialogue category with a cartesian resource modality, as the adjunction

_M //

⊥ L⋆_Vop
oo

given by the bijections
M(Γ × P ,M(Q0 ⊸ ⊥)) ≅ V(LΓ⊗Q0, LP ⊸ ⊥)

natural in Γ, P ∈M and in Q0 ∈ V,
2. for any SMCC with a cartesian resource modality, as the adjunction

_M //

⊥ L⋆_Voo

given by the bijections
M(Γ × P ,MN) ≅ V(LΓ⊗LP ,N)

natural in Γ, P ∈M and inN ∈ V,
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which therefore enrich the adjunctions in Section 3 using the fact that the left adjointL is strongmonoidal.
As previously, they differ by the composition of an adjunction L⋆_V //

⊥ L⋆_Vop
oo which, when the closed

structure of V is ∗-autonomous, is an equivalence.
More specifically, one has:
1. CBPV models

_V!
↑
//

⊥ F⋆!_Vop

↓
oo

where:
↓N = Nop ⊸ ⊥ ↑P = (!P ⊸ ⊥)op

and where powers are given with:
P ⇾N = (!P ⊗Nop)op

Call-by-value and call-by-name sequents and arrows are therefore found as follows:
P(Γ+ ⊗ P ,Q) ≅_Vop

!Γ(↑P , ↑Q) = V(!Γ⊗ (!Q ⊸ ⊥), (!P ⊸ ⊥))
P →CBV Q = ↓(P ⇾ ↑Q) = (!P ⊗ (!Q ⊸ ⊥)) ⊸ ⊥

N(Γ⊝ &N,M) ≅_Vop
!↓Γ(↑↓N,M) = V(!(Γop ⊸ ⊥)⊗Mop, !(Nop ⊸ ⊥) ⊸ ⊥)

N →CBN M = ↓N ⇾M = (!(Nop ⊸ ⊥)⊗Mop)op

where we have written ⋅op the formal dual for legibility.
2. CBPV models

_V!
↑
//

⊥ U⋆_V
↓
oo

where
↓N = !N ↑P = P

and where powers are given with:
P ⇾N = P ⊸ N

Call-by-value and call-by-name sequents and arrows are therefore found as follows:
P(Γ+ ⊗ P ,Q) ≅ _VΓ(↑P , ↑Q) = V(Γ⊗ P ,Q)

P →CBV Q = ↓(P ⇾ ↑Q) = !(P ⊸ Q)
N(Γ⊝ &N,M) ≅ _V↓Γ(↑↓N,M) = V(!Γ⊗ !N,M)

N →CBN M = ↓N ⇾M = !N ⊸M
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3. CBPV models
_V!

↑
//

⊥ F⋆! _V
↓
oo

where
↓N = N ↑P = !P

and where powers are given with:
P ⇾N = !P ⊸ N

Call-by-value and call-by-name sequents and arrows are therefore found as follows:
P(Γ+ ⊗ P ,Q) ≅ _V!Γ(↑P , ↑Q) = V(!Γ⊗ !P , !Q)

P →CBV Q = ↓(P ⇾ ↑Q) = !P ⊸ !Q
N(Γ⊝ &N,M) ≅ _V!↓Γ(↑↓N,M) = V(!Γ⊗ !N,M)

N →CBN M = ↓N ⇾M = !N ⊸M

As one can see, one finds back CPS of non-linear languages with linear control (Hasegawa, 2004), and
two formulations of the translations of call-by-value and call-by-name intuitionistic logic into linear logic
(Girard, 1987). Generalising the consideration of the Kleisli categories P and N to that of the duploid
arising from the adjunction accounts for the more general polarised translation in Girard (2007, 12.B.1).
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