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Abstract. Advances in surgical simulation and surgical augmented reality have

changed the way surgeons prepare for practice and conduct medical procedures.

Despite considerable interest from surgeons, the use of simulation is still pre-

dominantly confined to pre-operative training of surgical tasks and the lack of

robustness of surgical augmented reality means that it is seldom used for surgical

guidance. In this paper, we present DejaVu, a novel surgical simulation approach

for intra-operative surgical gesture rehearsal. With DejaVu we aim at bridging

the gap between pre-operative surgical simulation and crucial but not yet robust

intra-operative surgical augmented reality. By exploiting intra-operative images

we produce a simulation that faithfully matches the actual procedure without vi-

sual discrepancies and with an underlying physical modelling that performs real-

time deformation of organs and surrounding tissues, surgeons can interact with

the targeted organs through grasping, pulling or cutting to immediately rehearse

their next gesture. We present results on different in vivo surgical procedures and

demonstrate the feasibility of practical use of our system.

Keywords: Computer Assisted Interventions, Surgical Simulation, Virtual Real-

ity, Augmented Reality

1 Introduction and Background

Surgical and interventional procedures usually require years of practice to build dex-

terity and instrument control skills in addition to anatomical and cognitive learning. To

help surgical trainees reach a high degree of reliability and accuracy, medical simula-

tors have been developed and significant progress has been made recently to improve

their accuracy, realism and fidelity. The role of a virtual medical simulator [1] is to

propose a realistic environment where procedures can be conducted and repeated in an

unrestricted manner without any risk or violation of patient safety. While simulators are

mostly used for training purposes [2], the last decades have also seen the use of simula-

tion for procedure planning [3] or intra-operative assistance and guidance [4]. Numer-

ous challenges still remain to transfer simulation technologies into enabling practice of

surgical sub-tasks during the procedure itself.

Simulation for training allows task based learning of gestures and assessment of the

performance of the trainee [1][2], whereas simulation for planning is meant to help clin-

icians in the selection of the optimal therapy by adding valuable information like tumor

evolution, dissection path or risk map [3]. For the latter, patient-specific data is required



describing the organs’ geometry, physiology or tissue characteristics. To transfer plan-

ning simulation to support intra-operative assistance, the pre-operative patient-specific

simulation can be used as an input and evolved during surgery to modify the anatomy

to its current state taking account for physiological motion, resections and insufflation,

in order to enrich the surgeon with information directly during the intervention [4].

Planning and guidance are in a sense combines for such intra-operative use often using

augmented reality techniques. However, while simulation for training is now often inte-

grated in educational curricula, its use for guidance is seldom used in operating rooms.

Numerous challenges remain including: (i) the inter-patient variability of visual tex-

ture and anatomical geometry which challenge computer vision and computer graphics

algorithms; (ii) patient-specific tissue characterization where parameters governing de-

formation are appropriate on a per case basis; and (iii) the lack of ground-truth data such

as intra-operative human scans of minimally invasive surgery to validate performance

and provide quality assurance.

In this paper, we present a new simulation approach, which we call DejaVu, that

permits ”just-in-time” intra-operative simulation for surgical gesture rehearsal (see Fig.

1). This new paradigm gives the possibility for surgeons to directly build a simulation

from intra-operative images and to rehearse their next actions and gestures on a patient

adapted virtual environment. Using the built simulation (following Subsec 2.1), virtual

interaction with organs through grasping, pulling or cutting and virtual navigation in the

endoscopic scene are possible without risks for the patient. Organs deformations and at-

tachments with surrounding tissues are computed using an underlying physical model

(described in Subsec. 2.2) while final composition is generated using actual image lead-

ing to a faithful and realistic visualization (explained in Subsec. 2.3). We present com-

pelling results in Section 3 for different surgical applications and believe this is a new

effort towards bringing computational techniques to the surgeons assistance in the op-

erating theatre.

2 Materials and Methods

2.1 Overview of a DejaVu Simulation

Our approach, illustrated in Figure 1, involves a composition function Ω that enables

surgeons to virtually interact with a pre-built organ model and rehearse surgical ges-

tures. Let I be an image selected by the surgeon from the intra-operative surgical

site and let M be a labeled 3D mesh generated from pre-operative scans that includes

the organ’s surface, internal structures such as vessels or tumors, and any surrounding

anatomical information. The composition Ω permits generation of a new image J that

mimics physical realism in term of tissue response while maintaining visual fidelity.

The pre-operative 3D mesh M allows us to build a physical model incorporating

the tissue properties and biomechanical behavior. This physical model is characterized

by a geometry M and a stiffness matrix K that computes physical properties such

tissue elasticity, damping or viscosity. In general, organs are attached to their surround-

ings by ligaments or stiff muscles. These attachments are defined in the 3D mesh, pre-

operatively as a set of fixed nodes, and lead to the binary label vector q, where q(j) = 1
means the jth node is attached and q(j) = 0 means the jth node can be freely displaced.
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Fig. 1: Schematic illustration of DejaVu Simulation. (a) preoperative model is built from

tomographic images; (b) material law, tissue properties and attachments, constitute the

physical model; (c) an intra-operative image is selected; (d) 3D/2D registration is per-

formed between the physical model in (b) and the selected frame in (c); (e) appearance

and illumination are estimated corresponding to specular and diffuse components and

light position; (f) the final composition is build to enable surgical gesture rehearsal.

Intra-operatively, a 3D/2D registration is manually performed because producing J
involves projecting the physical model onto the image. The registration computes the

rotation matrix R and the translation vector t that relates the 3D model in world coor-

dinates to its 2D projection in pixel coordinates. This rigid transformation is performed

by the surgeon or an assistant in the operating room. Once aligned, organ appearance

and scene illumination are estimated through an inverse rendering approach that esti-

mates specular and diffuse reflection parameters and light source position. We denote Θ

the set of parameters needed to produce a realistic rendering. Putting the entire process

together, we can write the composition function as

J = Ω(R,t)(I,M,K,q,Θ) (1)

The output image J represents an instance of a DejaVu simulation. In practice, a se-

quence of images is generated since a simulation implies surgeons manipulations and

thus soft-tissue response and scene dynamics. Moreover, the final composition is re-

trieved back to surgeon’s view where surgeon can virtually explore the scene, in 3D and

rehearse through various interactions and visualization modes.

2.2 Organ Physical Behavior and Dynamics

To allow in situ simulation of gestures with our final composition that is displayed in the

surgeon’s view, our framework allows deformable model interaction. Various types of

tissues can be modeled by augmenting parameters in the framework providing a range

of behaviors from quasi-rigid for organs like kidneys or the uterus to hyper-elasticity for

organs such as the liver [5]. The common computational pipeline is designed for spatial

discretization, force/displacement computation and time discretization. Without loss of

generality, we use the Finite Element Method to discretize partial differential equations

of solid continuum mechanics [6]. This discretization is computed on a volumetric mesh

with a finite number of degrees of freedom. This volume representation is composed of

polyhedral elements and is built from a voxelization of the pre-operative 3D mesh M.

Organ deformation is specified by its stress-strain relationship, which is linearized

so that nodal forces f can be computed from nodal displacement as: f(x + δx) =



K(x)δx where x is a vector containing the actual position of the volume nodes, and

δx their displacements. Given the relation between the position and the corresponding

forces, ambient dynamics is included to capture transient events and tissue response to

external event following Newton’s second law to express organ motion as: M · v̇ =
g(x,v) + P, where M is the mass matrix of the organ, v represents the velocities

and v̇ the accelerations of the volume nodes, g(x,v) sums up forces that are related

to the position or velocities of the volumes nodes and P gathers external forces (such

as gravity, abdominal pressure or surgical tools). This equation is often solved using

time-stepping techniques [7] where time is discretized in a sequence of fixed time-steps

h = tf − ti, where ti, tf are respectively, the time at the beginning and end of the step.

The evaluation of this integration can be conducted according to various numerical

schemes, however, implicit Euler is often used as it provides increased stability when

dealing with large time-steps. By letting δx = h · vf and δv = vf − vi we obtain the

linear system of equations:

(M− h
∂g

∂v
− h2 ∂g

∂x
)

︸ ︷︷ ︸

Organ’s mass, damping and stiffness

δv = h2 ∂g

∂x
vi − h(gi + pf )

︸ ︷︷ ︸

Instrument interactions

+ hH(x)
T
λ

︸ ︷︷ ︸

Organ’s ligaments

(2)

where gi and pi are g(x,v) and P(t) at time ti. The term HTλ represents boundary

conditions on the organ, i.e. how it is attached to its surroundings. They are modeled by

enforcing some nodes of the volumetric mesh to have a null displacement following the

predefined vector q. H is a matrix containing the constraint directions (how the nodes

are constrained) while λ is a vector of Lagrange multipliers containing the constraint

force intensities and is an unknown.

2.3 Organ Appearance and Scene Illumination

Visually realistic simulation requires knowledge of the organ’s diffuse and specular

reflection scene’s illumination. Inspired by [8], we use a simplified Torrence-Sparrow

reflection model that defines the specular reflection of an object’s surface point as

Jc(i) =
[kd,c, cos θi

r2
+

ks,c

r2 cos θr
exp

[−α2

2σ2

]]

with c ∈ {r, g, b} (3)

where J (i) is the ith image pixel value, θi the angle between the light source direction

and the surface normal, θr is the angle between the viewing direction and the surface

normal, α is the angle between the surface normal and the intersection of the view-

ing direction and the light source direction. r represents the distance between the light

source and the object surface point, kd and ks are coefficients for the diffuse and spec-

ular reflection components respectively and include light source intensity, and σ is the

surface roughness.

We want to estimate Θ that consists of the specular reflection properties (ks,σ),

diffuse reflection kd and light source position r from image I and the registered 3D

mesh M. To do so, we start by directly calculating θr, α and θi using our inputs. First,

the angle θr can be obtained using the registered geometry M and camera position

obtained from 3D/2D registration, then assuming a unique light source and a convex
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Fig. 2: Appearance and Illumination: using input image I (a) diffuse image ID (b) in-

painted image IB (c) and the mesh M, the optimization scheme start by estimating light

source position (d) then diffuse reflection (e) then specular reflection and roughness (f).

organ, light source direction can be estimated by back-projecting image specular peaks

on geometry normals which permits to estimate α and θi. We use the method by Tan et

al. [9] to obtain the specular regions, simultaneously we generate the diffuse (specular-

free) image ID.

Assuming a Lambertian material with constant albedo, we follow a diffuse-based

constraints scheme (cf Figure 2) to first estimate r knowing kd then we refine for (ks, σ)
to finally solve for (r, kd, ks, σ) minimizing the squared error as

argmin
r,kd,ks,σ

∑

i∈χ

τi

(

I(i)−
[kd cos θi

r2
+

ks

r2 cos θr
exp

[−α2

2σ2

]])2

(4)

where Ii the image pixel value of i and τi is a compensation factor used to avoid image

compensation when computing the residual error. The domain χ represents the region

of interest for the optimization scheme, where the diffuse image ID is used to estimate

light position and diffuse reflection where the original image I will be used for specular

reflection estimation. Finally, once appearance and illumination have been estimated we

use a ray-tracing technique to render the final pixels on a background image IB . This

image is generated using inpainting technique [10] following the contour generated

from the 3D/2D registration and is at the same time used to compensate revealed parts

issued while manipulating the organ.

3 Results

We present results obtained from four in-vivo surgical data shown in Figure 3. These in-

clude eye surgery for the treatment of retinal pathologies, hepatic laparosocopic surgery

with tumor location and resection, kidney laparoscopic surgery for partial nephrectomy

and uterine surgery for localization of uterine fibroids in laparosurgery. Pre-operative

3D meshes were obtained using ITK-SNAP (www.itksnap.org) for segmentation of to-

mographic images. Volumetric meshes were generated using CGal (www.cgal.org) and

the subsequent physical model for allowing deformable simulation was computed using

the Sofa framework (www.sofa-framework.org). To present DejaVu simulation capabil-

ities, we select an intra-operative image from each video where we assume no instru-

ment is present, to avoid occlusions and ease the registration and the appearance illumi-

nation estimation, in addition to the presence of specular regions that permit the direct



Fig. 3: DejaVu simulation results obtained on in-vivo surgical data. From top to bottom:

eye surgery, kidney surgery, liver surgery and uterine surgery. First column shows input

intra-operative image with the registered pre-operative 3D mesh, second and third col-

umn show final composition with instruments interactions and last column show a 3D

view of the simulation. [Scene dynamics is better seen in the additional material]

calculation of light source direction. However, surgical tools can also be easily detected

and removed from the image using image inpainting, while the absence of specular

blobs can be compensated with a good initialization of light source direction. The av-

erage time needed to perform the alignment is 34 seconds. The physical simulation has

various parameters to be determined, depending on organ’s material and characteristics:

the mass m, Young’s modulus E for stiffness, Poisson ratio ν for compressibility and

number of polyhedral elements. For users not accustomed to using physical engines,

pre-defined parameters are set according to the organ size and units and can be changed

during simulation. We set the time-step h = 0.01 to be able to capture transient event

while being computationally efficient. All simulations runs at interactive frame-rate at

a minimum of 19 fps. To enable tissue manipulation by surgeons through the compos-

ite function Ω, virtual surgical instruments are added to the simulation. Surgeons can

manipulate the organ in a 3D non-restricted manner: they can naturally translate and

rotate the organ and the camera, perform non-rigid manipulation as stretching, torsion

and compression. The framework also enables tissue/rigid contacts like grasping and



pulling and topological changes such as cutting. Moreover, bi-directional mapping is

considered where the motion of the organ surface is propagated to internal structures

while mechanical responses of the latter are accumulated to the whole mechanical sys-

tem. Each of the surgical cases illustrated in Figure 3 depicts a surgical event or gesture

Table 1: Appearance and illumination parameters.
light position (mm) r diffuse reflection ks specular reflection kd roughness σ

Eye (-0.043, 0.23, 76.65) (0.27, 0.29, 0.30) (0.87, 0.91, 0.95) 0.041

Kidney (0.13, -0.45, 72.17) (0.89, 0.99, 0.99) (0.99, 0.97, 0.95) 0.007

Uterus (0, 0, 87.77) (1, 1, 1) (1, 1, 1) 0

Liver (-0.18, -0.001, 85.43) (0.12, 0.11, 0.12) (0.94, 0.93, 0.90) 0.035

where the organ needs specific modeling due to the nature of the anatomy. The results

of the appearance and illumination estimation step are reported in table 1. With the eye

experiment, the surgeon is asked to place trocars around the cornea through the con-

junctiva to reach the retina located behind the conjunctiva. Tissue deformation due to

the contact of the trocar with the conjunctiva is modeled as a sphere-shaped model com-

posed of 3600 tetrahedral P1 elements derived from the sclera geometry and attached

with stiff muscles to permit both rotation and elastic deformation. We used a linear co-

rotated elastic model characterized by E = 150 kPa and ν = 0.45 while mass is set to

m = 0.007 kg. The kidney is modeled following a linear elastic model due to its rela-

tively low elasticity and is built on 4219 tetrahedral P1 elements with elastic parameters

Ep = 250 kPa and νp = 0.40 and a mass m = 0.115 kg. Its vascular network represents

the main source of heterogeneity and is mapped with the parenchyma and considered

stiffer Ev = 3200 kPa and νv = 0.45. Moreover, its suspended through its veins that

represent the main ligaments. On the other hand, the liver is modeled as a hyper-elastic

material following a Saint Venant-Kirchhoff model where its parenchyma is character-

ized by Ep = 27 kPa and νp = 0.40. The volume is composed of 3391 tetrahedral P1

elements, and it’s mass is set to 1.2 kg. Similar to the kidney, hepatic and portal veins

are added to the global mechanical systems and add heterogeneity and anisotropy. The

vascular networks was parameterized with Ev = 0.62 mPa and νv = 0.45. The lig-

aments are, however, more difficult to set since surrounding tissues can impact liver

response depending on the intra-operative setup (abdominal pressure). Since specular

regions were not accurately detected, light direction and position were manually ini-

tialized with r = (0, 0, 100) directed towards the organ. The results obtained in table

1 can therfore be translated as a pure texture-mapping. Finally, the uterus is modeled

as a quasi-rigid organ with small linear elasticity, restricted to small deformations and

rotations around its attachments, and includes myomas visually mapped with the vol-

ume with the physical parameters: E = 400 kPa, ν = 0.35, m = 0.08 kg and built on a

volume of 550 tetrahedral P1 elements. Pulling and grasping are modeled by generating

external forces after tool/tissue contact detection while cutting is based on re-meshing

techniques.

4 Discussion and Conclusion

This paper has presented the DejaVu Simulation, a novel physics-based simulation

approach for just-in-time surgical gesture rehearsal. We showed that it is possible to



obtain realistic simulation by merging intra-operative image and pre-operative tissue

modeling. Our preliminary findings suggest it may be possible provide surgical assis-

tance using computational physical models at the time of intervention. While we have

demonstarted feasibility, there are limitation that need further development, such as the

registration component in our framework, which needs to be able to deal with large

deformation as seen in laparoscopic liver surgery from insuflation pressure. Including

organ silhouettes or anatomical landmarks and integrating the surgeon efficiently in the

pipeline can help constrain such complex registration. An additional challenge is to

provide simulation with appropriate model parameters, where we could exploit tissue

vibrations to estimate the organ’s mass and stiffness to obtain patient-specific realistic

physical behavior. Our work can also be extended to multiple-view images using stere-

oscopy or moving scope techniques will permit the modeling of the surrounding tissues

and improving the appearance estimation thanks to an enriched organ texture. A user

study conducted on experienced and unexperienced surgeons is obviously needed to

reveal the full potential of the method while exhibiting new needs and benefits. While

significant development do remain and need further work, we believe the presented

framework is a promising, new step towards assistive surgical simulation in the modern

operating room.
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