Notice d'installation et d'utilisation du four de degazage MBE32 sous CRYSTALXE

Q.GRAVELIER, A.ARNOULT, G.LACOSTE, P.MARCOUL, V.BROSSA, X.DOLLAT

Table des matières

Τa	able d	les matières	1
1	Ir	ntroduction	2
2	D	Description du module dégazage :	3
	2.1	Four de dégazage	
	2.2	Alimentation du four de dégazage	
	2.3	Eurotherm	3
	2.4	Gestion des Eurotherms et contrôle informatique	4
3	Р	Paramétrage et utilisation sous CRYSTALXE	8
	3.1	Mode température :	
	3.2	Mode Bake Out:	9
	3.3	Mode recette:	12
	3.4		12
4	С	Conclusion	

Notice d'installation et d'utilisation du four de degazage MBE32 sous CRYSTAL XE

1 Introduction

Le bâti d'épitaxie par jets moléculaires MBE32, acheté en 1994, est un bâti semi-automatisé de la marque RIBER. Depuis 1985, la zone d'épitaxie par jet moléculaire (EJM) du laboratoire du LAAS-CNRS, contrôle ses bâtis par des versions successives du logiciel JEMO puis JEMO II. Ce logiciel, développé par les équipes du LAAS-CNRS, avait pour visée une supervision du bâti plus spécifique que le logiciel CRYSTAL, proposé par RIBER, à l'époque trop orienté production.

En 2016, le logiciel JEMO II, étant devenu obsolète face à l'évolution du matériel informatique et technique, le contrôle du bâti est passé sous la gestion du logiciel CRYSTAL XE. Un logiciel développé par la société RIBER, qui est à ce jour, plus complet et fonctionnel dans une utilisation de recherche et développement, que sa version antérieure de 1985.

L'évolution du matériel et des techniques a permis la semi-automatisation du dégazage des substrats du réacteur MBE 32.

Le document qui suit vise à constituer de la manière la plus exhaustive possible, une trace de l'ensemble des informations liées à l'automatisation du dégazage des substrats et à expliquer son utilisation sous le logiciel CRYSTAL XE.

2 <u>Description du module dégazage :</u>

2.1 Four de dégazage

Le four de dégazage équipe le module d'introduction des réacteurs MBE 32 et MBE 2300. Il permet la chauffe des substrats sur molybloc, à une température de 385°C, afin de dégazer la surface du substrat avant épitaxie. Ce module sous ultra vide constant, est équipé d'une pompe ionique et de jauges à ionisation Bayard-Alpert.

Le dégazage se fait via un four composé par une résistance chauffante en tantale. En chauffant, la résistance permet le dégazage des substrats, positionnés sur un molybloc maintenu par un bras manipulateur à quelque centimètre de celle ci. La température du substrat est mesurée par un thermocouple de type C (tungstène-rhénium).

Paramètres	Valeurs
Température d'utilisation	~ 340 °C
Courant d'utilisation	9,2 A
Tension d'utilisation	
Pression	5.E ⁻⁷ < P < 5.E ⁻¹⁰

2.2 Alimentation du four de dégazage

Le four dégazage est alimenté par une alimentation *Sodilec* model SDL/G1-HR 36,30, qui délivrent 36V – 30A. Cette alimentation a été câblée afin que les potentiomètres de réglages en puissance soit inactifs lors de l'envoi de commandes informatiques, afin d'éviter une augmentation involontaire des courants. Cette alimentation est régulée par un *Eurotherm 3405*.

L'ensemble des alimentations des réacteurs sont régulées par leurs Eurotherms respectifs, et leurs commandes manuelles ont été déconnectées afin d'éviter une augmentation involontaire des courants. L'alimentation du four est de la même génération que les alimentations du MBE 2300. Le câblage diffères cependant des alimentation du MBE32.

2.3 Eurotherm

Le régulateur de température, utilisé pour le dégazage des substrats dans le module d'introduction des réacteurs RIBER MBE 32 et 2300 est un *Eurotherm* modèle 3504 en version de firmware 1.30. Il contrôle l'alimentation en courant de la résistance chauffante lorsque l'on est en mode contrôle puissance. Et la puissance lorsque l'on est en mode contrôle température.

L'information de température du substrat chauffé est captée par un thermocouple tungstène rhénium sur une prise 2 fiches en sortie de module. Elle entre en analogique sur les ports V+ et V-

de *l'Eurotherm* (cf. Fig. 1.3.a). Cette information est ensuite envoyée à l'ordinateur via la connexion RS-232 formatée suivant le protocole de communication ModBus (*cf.* Fig. 1.3.b). Les informations de chaque cellule sont envoyées en simultané, selon la logique d'adressage :

Module dégas \rightarrow Port RS-232 NI n°x \rightarrow COM n°x (*cf.* Tab. 1.1).

Figure 2.3.b : Schéma de principe de la connexion des Eurotherm 3504 en face arrière et transmission de données vers ordinateur

2.4 Gestion des Eurotherms et contrôle informatique

La transmission d'informations de commandes à l'Eurotherm s'effectue à l'aide de deux logiciels, en fonction de l'action souhaitée.

• Programmation des Eurotherms par ITOOLS

La programmation initiale des Eurotherms se fait à l'aide du logiciel Itools, proposé par Eurotherm (V9.66 installée sur l'ordinateur MBE Composants en Septembre 2016). Le protocole de communication utilise ModBus over RS-232. Par défaut les Eurotherms ont des paramètres de

sécurités et de limitations en températures et en puissances. Pour les modifier il faut : Ouvrir ITOOL \rightarrow Cliquer sur Scrutation \rightarrow cliquer sur OK

			Activer la recherche en tâche de fond	×
			 Détecter tous les Instruments (255 d'abord, puis 1 à 254) Scruter à partir de l'adresse <u>v</u>ers (plage autorisée: 1 à 254) 	 4)
imer	Scrutation	<mark>с</mark> Ајос	 ○ Connexion via le dip CPI ✓ Scruter uniquement les instruments Eurotherm ☐ Terminer la scrutation dès détection d'un appareil 	
			Note: la performance globale est améliorée si la scrutation est stoppée dès que possible. Discovery Pas d'appareil supplémentaire disponible via la protocole Discovery	
			OK Annuler	

Figure 2.4.a: Recherche des Eurotherm par ITools

Le logiciel va ainsi faire une recherche des Eurotherms connectées à l'ordinateur. Chaque Eurotherm s'affiche avec les informations de commandes et de lectures qui leur sont propres. Les données en « lecture/écriture » sont en noires (elles peuvent être modifiées directement). Les données en « lecture seule » sont en bleu. Elles sont verrouillées automatiquement par ITool. S'il faut modifier ces informations, il faut sélectionner l'Eurotherm \rightarrow Cliquer sur « Accès », les données en « lecture seule » vont basculer en « lecture écriture » (à l'exception des données sécurisées). Il est alors possible de modifier ces données. Cliquer sur « Accès » pour reverrouiller les paramètres en « lecture seule ».

- Pour modifier la valeur maximum du set point (SP) (cf. Fig. 2.4.b):

 $Dans \ll LOOP \gg \rightarrow SP \rightarrow cliquer sur \ll Accès \gg \rightarrow modifier \ll Limite échelle haute \gg (RangeHigh)$

- Pour modifier « OP maximale » :

Dans « LOOP » \rightarrow modifier « Limite OP haute de sortie » (OutPutHighLimit) et « Limite externe Haute de sortie » (RemOPH) \rightarrow modifier « Limite haute de puissance » (OutputHighLimit) dans Tune \rightarrow modifier « MultiPID Limite haute de sortie » (OutPutHi) dans PID sur tous les boundary (Si les valeurs sont différentes dans les boundary¹, CRYSTAL XE sélectionnera par défaut la limite en puissance la plus basse, lorsqu'il fonctionnera en mode automatique).

COM1.ID001-3504	⊨ v → v (1ain Setup Tu	🐿 💼 🔤	Diag		
COM3.ID001-3504	re Nom	Description	Adresse	Valeur Connexion de	Г
COM4 ID001-2504	🖊 RangeHigh	Limite Echelle Haute	12	290,00	1.
	RangeLow	Limite Echelle Basse	11	0,00	1
COM5.ID001-3504	SPSelect	Sélection du point de consigi	15	SP1 (0) 💌	
COM6.ID001-3504	🖊 SP1	Consigne 1	24	19,40	_
COM7.ID001-3504	🖊 SP2	Consigne 2	25	0,00	
COM8.ID001-3504	🖊 SPHighLimit	Limite haute de consigne	111	60,00	
	SPLowLimit	Limite basse de consigne	112	0,00	
COMI3/ID001-3504	AltSPSelect	Validation d'une autre consig	276	Non (0) 💌	
	AltSP	Autre Consigne	485	0,00	
🔁 Parcourir 🔍 Rechercher	🖊 Rate	Valeur de la rampe de consig	35	Sans (0) 💌	_
	RateDone	Rampe terminée	277	Oui (1) 💌	_
Comms ^	RateDisable	Validation/dévalidation de la	78	Non (0) -	
> 🦲 Counter	SPTrim	Correction de consigne	27	0,00	_
🔰 🔊 💼 DigAlarm 🖉 🖉	SPT rimHighLimi	Limite haute de correction de	66	0,00	_
🔰 ڬ 🧰 Humidity 📃 🖉	SPTrimLowLimit	Limite basse de correction de	67	0,00	_
P IPMonitor	Manuall rack	Validation d'un Suivi manuel	527	Sans (U) ▼	_
	SPIrack	Validation du suivi de consigi	526	Sans (U) ▼	_
	TrackPV	Valeur PV suivie par le progra		18,80	_
S - Lgc8	TrackSP	Valeur SP suivie par le progra		19,40	
> 🦲 Lin16					
> 😑 Load					
V 🧰 Loop					
Math 2					

Figure 2.4.b: Vue des « Tags » des Eurotherms 3504 depuis Itools.

• Supervision et acquisition des Eurotherm par CrystalXE

Le pilotage des Eurotherms est directement prise en charge par le logiciel CrystalXE. La logique de communication de CrystalXE repose sur un « device » branché à une connectique d'entrée. Cette connectique d'entrée est paramétrable dans « Hardware Configuration » puis « com port setup » (*cf.* Fig. *2.4.c*&d).

Le port Com utilisé par le four dégazage est le port 12. Il est paramétré de la manière suivante :

Baud rate : 19200	Data& size : 8
Parity : none	Stop bit : 1

1 Les boundary 1-2 ont été paramétrés sur l'ensemble de la plage d'utilisation de chacune des cellules. Cependant CRYSTAL XE ne considère pas le 1^{er} boundary par défaut.

Com port setup	
Basic Advanced Predefined	
Com type RS232 ▼ (For information only) Com port Baud rate Parity Data size Stop bit COM1(*) ▼ 19200 ▼ None ▼ 8 ▼ 1 ▼ Assign a predifined configuration	COM1 (RS232: 19200,None,8,1) COM10 (RS232:9600,None,8,1) COM11 (RS232:9600,Even,7,1) COM2 (RS232: 19200,None,8,1) COM3 (RS232: 19200,None,8,1) COM4 (RS232: 19200,None,8,1) COM5 (RS232: 19200,None,8,1) COM6 (RS232: 19200,None,8,1) COM7 (RS232: 19200,None,8,1) COM8 (RS232: 19200,None,8,1)
Regulator identifier : 101F Qk Cancel	COMA (K2222: 19200, None, 6, 1)

Figure 2.4.: c) Face avant de la fenêtre de paramétrage du port d'entrée dans CrystalXE d) Paramétrage des ports d'entrée dans CrystalXE

Ce logiciel permet le pilotage des Eurotherms dans une optique de réalisation des recettes d'épitaxie. Les paramètres adressés (*cf.* Tab. 2.4.e) le sont en mode Read ou R/W. Certaines données paramétrées R/W ne pourront jamais dépasser les paramétrages préalablement notés dans ITOOLS.

Exemple : Si OP max de CRYSTAL = 2500 et OP max de ITOOL = 2000 \rightarrow La puissance maximale que pourra commander CRYSTAL sera plafonnée à 2000.

L'adressage de lecture est paramétré via la fenêtre « Tags », en fonction de la version de l'Eurotherm utilisée, accessible lors de la configuration d'un « device » en mode avancé:

686	🖞 Parameters 💷 General 🗟 Tags 🐼 Map 😥 HMI setup 📕 Scripts																		
0	🔾 Move Up 🜔 Move Down 🕞 Insert row 🗙 Delete row 🗌 Addresses in hexa																		
#	Name	R/W	Address	Data type	Quantity	Frequency	ChCount	ChFirst	ChOffset	FxA	FxB	Link Type	Comment	Opt	Min	Max	Default	OnWrite	OnRead
1	MV	Read	22036	float 32 bits	1	1s	2	1	269	1	0	PIDReg	Measured value						
2	CSP	Read	22139	float 32 bits	1	1s	2	1	269	1	0	PIDReg	Current set point						
3	TSP	R/W	22039	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Target set point		MinTSP	MaxTSP			
4	MinTSP	R/W	22145	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Minimum target limit						
5	MaxTSP	R/W	22143	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Maximum target limit				1000		
6	TuneMode	R/W	22054	int 16 bits	1	10s	2	1	1024	1	0	PIDReg	Tuning mode						
7	OP	Read	22170	float 32 bits	1	1s	2	1	269	1	0	PIDReg	Output power						
8	TOP	R/W	22201	float 32 bits	1	1s	2	1	269	1	0	PIDReg	(ManualOutVal)Target output power		MinOP	MaxOP			
9	MinOP	R/W	22168	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Minimum output power limit						
10	MaxOP	R/W	22166	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Maximum output power limit				100		
11	MinOPTune	R/W	22057	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Minimum OP limit when tuning						
12	MaxOPTune	R/W	22055	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Maximum OP limit when tuning				100		
13	P	R/W	22074	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Proportional band				2		
14	I	R/W	22076	int 16 bits	1	10s	2	1	1024	1	0	PIDReg	Integral				2		
15	D	R/W	22078	int 16 bits	1	10s	2	1	1024	1	0	PIDReg	Derivated				2		
16	CBLow	R/W	22084	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Cut back low						
17	CBHigh	R/W	22082	float 32 bits	1	10s	2	1	269	1	0	PIDReg	Cut back High						
18	RegMode	R/W	22038	int 16 bits	1	10s	2	1	1024	1	0	PIDReg	Regulation mode						
19																			

• Pour l'Eurotherm 3504 V1.21, la tableau d'adressage est le suivant :

Tableau 2.4.e : Adressage des tags de contrôle et de relecture des Eurotherm 3504 v1.21 dans CrystalXE

3 Paramétrage et utilisation sous CRYSTALXE

Le *four de dégazage* a été simulé dans *CRYSTALXE* comme étant une chambre indépendante. Il peut être piloté dans l'onglet System view, soit en mode BakeOut, soit en mode température.

3.1 Mode température :

Le mode température s'apparente au contrôle des cellules (cf. Fig. 3.1.a.).

Figure 2.1.a affichage du mode température

• <u>En réglage Automatique</u>, l'utilisateur peut paramétrer une rampe en température, en définissant la consigne de température cible (Target SP *cf.* Fig. 3.1.b) ainsi que la rampe de chauffe (Slope *cf.* Fig. 3.1.c.).

BakeOut1 temperature	AUTO - Controller settings
AUTO - Controller settings Setpoint Measure Min SP Max SP	Setpoint Measure Min SP Max SP
19.12 19.11 0 450 Current TSP Target SP Offset	19.12 19.10 0 450
1912 1912 0	Current TSP Target SP Offset
Off 19.12	19.12 19.12 0
Clear E ←	Slope
7 8 9 Auto	Off Linear 🗢 10 °C/min
MANUAL - 4 5 6 Max OP	
Current TOP 1 2 3 32 %	
0 %	Regulation mode Auto
Off	
Enter Lancel	

Figure 3.1.b) Réglage du target set point en Automatique .c) valeur de la rampe Slope

• <u>En réglage Manuel</u>, l'utilisateur peut paramétrer une rampe en puissance, en définissant la consigne du pourcentage de puissance cible (Target OP *cf.* Fig. 3.1.d.) ainsi que la rampe

Current TSP 27.38 Off	Target SP 40.00 Linear 😂	10	Slope °C/min	Offset 0	
	ţ	Regula	ation mod	e Manual	
MANUAL - P	ower sett	ings (%)		
OP _	OP	_		Max OP	
0	.00 %			32 %	
Current TOP	Target OP	1			
	· ~	1			
Off			0		
	Clear	Е			
	7	8	9		
	4	5	6		
	1	2	3		
	0				
	U		+/-		
	Enter		Cancel		
Setup Inspe	ect]				
All events Critic	als and w	arning	s Comr	nunication User ev	ents
17/03/2017 15 17/03/2017 15	:39:01: (3	303) E	egas: [E	otherm_3504_v121	_1] Communicati
17/03/2017 15	25.44. (1	302) r	enas: (Fi	otherm 3504 v121	1] No answer to

de chauffe (Slope)

Figure 3.1.d Réglage du target set point en Manuel

Attention, lorsque vous validez la valeur Target OP ou Target SP voulue, la consigne se déclenche automatiquement !

3.2 Mode Bake Out:

Le mode BakeOut permet de contrôler le *four de dégazage*, en activant ou désactivant des « blocs » de contrôle près programmé.

Figure 3.2.a affichage du mode BakeOut

La sélection des blocs se fait via l'onglet SETUP. Cet onglet ouvre la page figure 3.2.a.

Setup BakeOut1	
Step 1- Warming Ramp	
Enable this step Ramp 🗘	irity
Slope 25 deg/min	
Temp 340.0 deg	
Pressure threshold 0.00E+0 Torr	-
Church 2, 200 min Danna	
Step 2 - 360 min begas	
Enable this step	
Terrs 240.0 day Time 200 min	
Pressure threshold U.UUE+0 Torr	
Step 3 - 720 min Degas	
Enable this step Stage 🗘	
Temp 340.0 deg Time 720 min	
Pressure threshold 0.00E+0 Torr	
Step 4 - Cooling Ramp	
Enable this step	
Slope 25 deg/min	
Pressure threshold 0.00E+0 Torr	
Parameters	
Pressure tolerance factor 5	
Write information in console	
Start Stop	
Close	
Setup	

Figure 3.2.b : Onglet SETUP mode Bake Out

Chacun des blocs peut être paramétré de deux façon :

- <u>Ramp</u>, une consigne cible sera alors visée en suivant la rampe en température définie par le Slope. Quand la consigne est atteinte le bloc s'arrête.
- <u>Stage</u>, une consigne cible est fixée et tenue durant un temps défini dans Time. Quand le temps est écoulé, le bloc s'arrête.

En cochant et décochant *Enable this step* l'utilisateur active ou désactive les différents blocs. Les blocs STEP 1 et STEP 4 sont utilisés pour monter et descendre en températures le *four de dégazage*. Les blocs STEP 2 et STEP 3 servent à dégazer le substrat sur une durée définie.

Les blocs utiles sont sélectionnés, il suffit de cliquer sur *Start (cf figure 3.2.c),* pour dégazer le substrat sur molybloc. Le bloc actif s'affiche alors en orange dans la page BakeOut.

Il est possible de suivre l'évolution du dégazage en partie haute de la page BakeOut (cf figure 3.2.d).

	-
Start	Stop

Figure 2.2.c Bouton déclencheur de la procédure de dégazage

BakeOuti temperature	
RUN Current step	NNING
1	
Temperature	Pressure
19.1 °C	0E+0
Step 1 - Warming Ram	p
- E	nable this step
Slope 25	deg/min
Temp 340.0 deg	
Pressure threshold 0.0	
Pressure uneshold 0.0	
Step 2 - 360 min Degas	s
🖌 E	nable this step
Temp 340.0 deg Ti	ime <mark>360 min</mark>
Pressure threshold 0.0	0E+0 Torr
Step 4. Cooling Down	
Step 4 - Cooling Ramp	nable this step
2	anabio ano ocop

Figure 3.2.d Bouton déclencheur de la procédure de dégazage

En cas de problèmes, il possible, à tout moment, d'arrêter la procédure en cliquant sur le bouton *Stop* dans *SETUP* (*cf figure 3.2.e*).

Figure 3.2.e Bouton d'arrêt forcé de la procédure de dégazage

Les étapes vont s'enchaîner jusqu'à la dernière jusqu'au dernier bloc activé. C'est pourquoi il est important de ne pas désactiver le bloc STEP 4 afin que le four termine sont protocole par une remise en température ambiante.

3.3 Mode recette:

3.4

Le *four de dégazag*e peut être utilisé, tout comme les réacteurs, en recette. La recette permet de paramétrer les variations en puissance et en température du four, sur des périodes souhaitées. Les recettes peuvent être sauvegardées et chargées au besoins. Une recette type est sauvegardé sous le nom « module dégaz ». Il réalise une montée en température progressive, un dégazage de 3 heures et une descente en température progressive.

Detach	
Recipe name	
Load a recipe Stop III Pause Skip layer Total time:: Layer count:	D
- Current layer	
Number : -1 Remaining time: Layer time: Pause time:	
Overall status	
Start time: Elapsed time : Total pause time:	
Layer Date / Time Description	

4 Conclusion

L'évolution constant des méthodes et des outils de travail à notre disposition nous permet aujourd'hui d'optimiser des équipements tels que le *four de dégazage* des réacteurs d'épitaxie 32 et 2300 du LAAS-CNRS. La semi-automatisation de ces réacteurs et de leurs modules connectés permettra, étape après étape, d'améliorer les protocoles de travail existant.

La notice installation et d'utilisation du *four dégazage* MBE 32 sous *CrystalXE*, a pour objectif de récapituler l'ensemble des informations liées à l'automatisation du dégazage des substrats et d'expliquer son utilisation sous le logiciel *CRYSTALXE*.

Il pourra par conséquent être utilisé par les équipes en charges de la maintenance de l'équipement, aussi bien que par toutes personnes qui souhaiteraient être formées à l'utilisation du four.