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ABSTRACT

Abstract

This work deals with interval observer design techniques. In the first

part, the problem of interval observer design is studied for a class

of linear hybrid systems. Several observers are proposed oriented

on different conditions of positivity and stability for estimation error

dynamics. Efficiency of the proposed approach is demonstrated by

computer experiments for academic and bouncing ball systems. Note

that interval observer design techniques for linear hybrid systems

have been developed for the first time in the present work. The second

part is devoted to the interval estimation of sequestred infected ery-

throcytes in plasmodium falciparum malaria patients. An advantage

of the interval approaches in this case is that they give a bound of

the errors at any time, which can be controlled in order to ensure

the positivity of the state estimates of the system. Thus, interval

estimation is very close to the reality in this case and has not been

developed before the present work. An interval observer in order

to estimate the sequestered parasite population is proposed in this

report. Its efficiency is demonstrated by computer simulations.
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INTRODUCTION

Introduction

There are many approaches dealing with the design techniques for

state observers [1, 35, 17]. Frequently, these methods are based on

(partial) linearity of the observed system, since analysis and design

of stability and performance for linear systems are more developed.

If it comes to take into account the presence of a disturbance or

uncertain parameters, then synthesis of a conventional estimator

(whose estimates are converging to the true values of the state) may

be complicated [8, 1]. In such a case the problem of pointwise estima-

tion can be substituted by the interval one, then using input-output

measurements an observer has to estimate the set of admissible val-

ues (interval) for the state at each instant of time [19]. An advantage

of interval observer is that it allows many types of uncertainties to be

taken into account in the system. The interval observer design tech-

niques have been developed for many types of models: continuous-

time [31, 40], discrete-time [8, 32, 11, 33], time-delay [34, 9, 13] and

algebraic-differential [10] ones.

Continuing this line, the problem of design of interval observers for

linear hybrid systems [3, 18] is studied in this report. A hybrid system

is a dynamic system that includes both continuous and discrete event

dynamics [18]. The continuous dynamics are generally represented

by differential equations and the discrete one by switching laws,

which govern discontinuous jumps of continuous states [18]. The

instants of these jumps can be time-dependent or state-dependent

[3, 18]. Some kinds of other systems, like switched or impulsive

ones for instance, can be presented in the hybrid framework. The

main peculiarity of interval observation is that it is necessary to
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INTRODUCTION

ensure positivity of the estimation error dynamics in addition to their

stability. Since two types of dynamics (continuous and discrete) are

present in the hybrid systems, then the conditions of positivity for

these two cases (see [14] for examples) have to be combined, which

leads to variety of the applicability conditions and design structures

proposed in this work. Note that interval observer design techniques

for linear hybrid systems is barely developed.

Furthermore the problem of interval estimation of sequestred

infected erythrocytes in plasmodium falciparum malaria patients is

discussed in this report. Malaria is a disease that causes at least one

million deaths around the world each year, with ninety percent among

African children. Plasmodium falciparum, the most dangerous type

of malaria is caused by the most virulent species of the Plasmodium

parasite [2]. In practice, only the peripheral infected erythrocytes

(young parasites y1 + y2 + ...yk, for some k < n), also called circulating,

can be observed (seen on peripheral blood smears) and the other

ones (sequestered: yk+1, ...yn) are hidden in some organs like brain

and heart, and cannot be observed [2]. An interval observer in order

to estimate the sequestered parasite population is proposed in this

report. An advantage of the interval approaches in this case is that

they give a bound of the errors at any time, which can be controlled in

order to ensure the positivity of the parameters of the system. Thus,

interval estimation is very close to the reality in this case and has not

been developed before the present work.

The outline of the report is as follows. Some basic facts from

the theories of interval estimation and hybrid systems are given in

Chapter 1. In Chapter 2 the main results about hybrid linear systems

are described and proven. In Section 2.4 these results are applied to

some examples of hybrid systems, including a bouncing ball model.

In Chapter 3 the main results about the interval estimation of se-

questred infected erythrocytes in plasmodium falciparum malaria

patients are described and proven. These results are applied using

the measurements of the circulating parasitaemia y1 + y2 provided by

[2] .
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CHAPTER 1. PRELIMINARIES

Chapter 1

Preliminaries

1.1 Introduction

How many fish can your tank safely hold? What fuel capacity should

this train have if it is to carry passengers safely between Lille and

Paris? Questions like these represent problems of estimation. These

quantities must be estimated.

Exact answers are often impossible, difficult or expensive to obtain.

However, approximate answers that are close to the exact answer

may be obtained. Interval observers provide the set of admissible

values (interval) for the state at each instant of time [19]. Some basic

facts from the theories of interval estimation are given in this chapter.

Then, two examples of interval estimation are given.

1.2 Notation

In this work, the real and integer numbers are denoted by R and Z
respectively, R+ = {τ ∈ R : τ ≥ 0} and Z+ = Z ∩ R+, |x| is stated for

the Euclidean norm of a vector x ∈ Rn. For a measurable and locally

essentially bounded input u : R+ → R the symbol ||u||[t0,t1] denotes its

L∞ norm:

||u||[t0,t1) = ess sup
t∈[t0,t1)

|u(t)|,

Master thesis 3
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if t1 = +∞ then we will simply write ||u||. We will denote as L∞ the set

of all inputs u with the property ||u|| <∞. We will denote the sequence

of integers 1, ..., n as 1, n. En×m denotes the matrix with all entries

equal 1 (with dimensions n × m). For a matrix A ∈ Rn×n the vector

of its eigenvalues is denoted as λ(A). The relation P � 0 (P � 0) for

a symmetric matrix P ∈ Rn×n means that it is positive (nonnegative)

definite, the set of such n× n matrices will be denoted by Sn�0.

1.3 Interval analysis

For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n, the relations

x1 ≤ x2 and A1 ≤ A2 are understood elementwise. Given a matrix A ∈
Rm×n, define A+ = max{0, A}, A− = A+ − A (similarly for vectors) and

denote the matrix of absolute values of all elements by |A| = A+ + A−.

Lemma 1. [7] Let x ∈ Rn be a vector variable, x ≤ x ≤ x for some
x, x ∈ Rn, and A ∈ Rm×n be a constant matrix, then

A+x− A−x ≤ Ax ≤ A+x− A−x. (1.1)

1.4 Nonnegative continuous-time linear sys-

tems

A matrix A ∈ Rn×n is called Hurwitz if all its eigenvalues have negative

real parts, it is called Metzler if all its elements outside the main

diagonal are nonnegative, i.e. Ai,j ≥ 0 for 1 ≤ i 6= j ≤ n. Any solution

of the linear system

ẋ = Ax+Bω(t), ω : R+ → Rq
+, (1.2)

y = Cx+Dω(t),

with x ∈ Rn, y ∈ Rp and a Metzler matrix A ∈ Rn×n, is elementwise

nonnegative for all t ≥ 0 provided that x(0) ≥ 0 and B ∈ Rn×q
+ [16, 45].

The output solution y(t) is nonnegative if C ∈ Rp×n
+ and D ∈ Rp×q

+ . Such
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dynamical systems are called cooperative (monotone) or nonnegative

if only initial conditions in Rn
+ are considered [16, 45].

For a Metzler matrix A ∈ Rn×n its stability can be checked verifying

a Linear Programming (LP) problem

ATλ < 0

for some λ ∈ Rn
+ \ {0}.

1.5 Nonnegative discrete-time linear sys-

tems

A matrix A ∈ Rn×n is called Schur stable if all its eigenvalues have

absolute value less than one, it is called nonnegative if all its elements

are nonnegative (i.e. A ≥ 0). Any solution of the system

xt+1 = Axt +Bωt, ω : Z+ → Rm
+ , t ∈ Z+

with xt ∈ Rn and nonnegative matrices A ∈ Rn×n
+ and B ∈ Rn×m

+ , is

elementwise nonnegative for all t ∈ Z+ provided that x(0) ≥ 0 [23].

Such a system is called cooperative (monotone) or nonnegative [23].

Lemma 2. [16] A matrix A ∈ Rn×n
+ is Schur stable iff there exists a

diagonal matrix P ∈ Sn�0 such that ATPA− P ≺ 0.

1.6 A non-homogeneous sliding mode dif-

ferentiator

Let ỹ(t) = y(t)+ν(t) be a measured signal, where y : R+ → R is a signal

to be differentiated and ν ∈ L∞ is a bounded measurement noise,
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then a differentiator can be proposed [15]:

ẋ1 = −α
√
|x1 − ỹ(t)|sign(x1 − ỹ(t)) + x2, (1.3)

ẋ2 = −%sign(x1 − ỹ(t))− χsign(x2)− x2,

x1(0) = ỹ(0), x2(0) = 0,

where x1, x2 ∈ R are the state variables of the system (1.3), α, % and χ

are the tuning parameters with α > 0 and % > χ ≥ 0. The variable x1(t)

serves as an estimate of the function y(t) and x2(t) is an estimate of

ẏ(t), i.e. it provides the derivative estimate. Therefore, the system

(1.3) has ỹ(t) as the input and ˆ̇y(t) = x2(t) as the output.

Lemma 3. [15] Let ẏ, ÿ, ν ∈ L∞, then there exist α > 0 and % > χ ≥ 0

such that x1, x2 ∈ L∞ and there exist T0 > 0, c1 > 0 and c2 > 0:

|x2(t)− ẏ(t)| ≤
√
c1||ν||∞ +

√
c2||ν||∞ ∀t ≥ T0.

Estimates on T0 > 0, c1 > 0, c2 > 0 and guidelines for tuning α, %, χ

can also be found in [15].

1.7 Example of interval observer [7]

Consider an LTI continuous-time system:

.
x(t) = Ax(t) + b(t),

y(t) = Cx(t) + v(t), (1.4)

where x(t) ∈ Rn is the state; y(t) ∈ Rp is the output signal available

for measurements; b : R+ → Rn, b ∈ L∞ is the input; v : R+ → Rp,

v ∈ L∞ is the measurement noise; A and C are real matrices of the

corresponding dimensions.

Assume that the state x(t) is bounded, i.e. x ∈ L∞. Assume that

there exist a matrix L ∈ Rn×p, such that the matrix (A−LC) is Hurwitz

and Metzler. Let two functions b, b : R+ → Rn, b, b ∈ L∞ are given such

that b(t) ≤ b(t) ≤ b̄(t) ∀t ∈ R+. Let also two functions d, d : R+ → Rn,
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d, d ∈ L∞ are given such that d(t) ≤ d(t) ≤ d̄(t) ∀t ∈ R+. Assume that

the constant 0 ≤ V ≤ +∞ is given such that ||v|| < V .

Under the introduced assumptions an interval observer equations

for (1.4) take the form:

.
x(t) = (A− LC)x(t) + Ly(t) + b(t)− LV,
.
x(t) = (A− LC)x(t) + Ly(t) + b̄(t) + LV, (1.5)

where x(t) ∈ Rn and x(t) ∈ Rn are respectively the lower and the upper

interval estimates for the state x(t), L = |L|Ep×1 and M = |M |Ep×1.

Then for all t ∈ R+ the estimates x(t) and x(t) given by (1.5) are

bounded and x(t) ≤ x(t) ≤ x̄(t) provided that x(0) ≤ x(0) ≤ x̄(0).

1.8 Example of application of interval esti-

mation

Let’s apply the interval observer of the previous section to an example

of a biochemical oscillator based on negative feedback. It is described

by Brian C. Goodwin’s equations [30]:

.
x1 =

a

1 + xρ2
− αx1 + d(t),

.
x2 = cx1 − αx2,

y = x2,

where we take α = 0.1, c = 1, a = 0.2 sin(t) + 1, ρ = sin(t) + 6, d(t) =

0.001 sin(t), x(t) =

(
x1

x2

)
∈ R2 is the state and y(t) ∈ R is the output

signal available for measurements.

This system can be identified as a system (1.4) with v(t) = 0 where

the matrices A and C are defined as follows:

A =

[
−α 0

c1 −α

]
, C =

[
0 1

]
.
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The signal b(t) is:

b(t) =

[
a

1+xρ2
+ d(t)

0

]
=

[
a

1+yρ
+ d(t)

0

]
.

Thus when y ≥ 1,

d(t) = −0.001,

d(t) = 0.001,

a = −0.2,

a = 0.2,

ρ = 5,

ρ = 7,

b(t) =

[
−δ + a

1+yρ

0

]
,

b(t) =

[
δ + ā

1+yρ

0

]
.

When y ≤ 1,

d(t) = −0.001,

d(t) = 0.001,

a = −0.2,

a = 0.2,

ρ = 5,

ρ = 7,

b(t) =

[
−δ + a

1+yρ

0

]
,

b(t) =

[
δ + ā

1+yρ

0

]
.

Assume that ||x|| < +∞. For L =
[

0 −5
]T

, the matrix A − LC =

Master thesis 8
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Figure 1.1: Results of the simulation for the biochemical oscillator
system

Figure 1.2: Evolution of e(t) for the biochemical oscillator system

[
−0.1 0

1 −5.1

]
is Hurwitz and Metzler. Therefore all conditions are

satisfied and the interval observer (1.5) solves the problem of interval

state estimation. The results of simulation are shown in Fig 1.4,

where the solid lines represent the states xk, k = 1, 2 and the dash

lines are used for the interval estimates xk and xk.

The errors e(t) = x(t)− x(t), e(t) = x(t)− x(t) are shown respectively

in Fig 1.2 and in Fig 1.3.
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Figure 1.3: Evolution of e(t) for the biochemical oscillator system

1.9 Another example of interval observer [7]

Let all the assumptions of the interval observer (1.5) be satisfied

except the fact that there doesn’t exist a matrix L ∈ Rn×p, such that

the matrix (A− LC) is Metzler. There exist a Metzler matrix R such

that λ(A− LC) = λ(R), the pairs (A− LC, e1), (R, e2) are observable for

some ej ∈ R1×n with j = 1, 2. Then for all t ∈ R+ the estimates x(t) and

x(t) are bounded and x(t) ≤ x(t) ≤ x̄(t) provided that x(0) ≤ x(0) ≤ x̄(0),

where

x(t) = S+z(t)− S−z(t),

x(t) = S+z(t)− S−z(t),
.
z(t) = Rz(t) + Fy(t)− FV + (S−1)+b(t)− (S−1)−b(t), (1.6)
.
z(t) = Rz(t) + Fy(t) + FV + (S−1)+b(t)− (S−1)−b(t),

z(0) = (S−1)+x(0)− (S−1)−x(0),

z(0) = (S−1)+x(0)− (S−1)−x(0),

where S = ORO
−1
A−LC(OA−LC and OR are the observability matrices

of the pairs (A − LC, e1), (R, e2) respectively), F = S−1L and F =

(F+ + F−)Ep×1.
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1.10 Example of application of interval es-

timation

Let’s apply the interval observer of the previous section to an example

of a Rössler attractor. It is described by a system of three non-linear

ordinary differential equations originally studied by Otto Rössler

[42, 43, 39, 26, 27, 29, 44]:

.
x1 = −x2 − x3 + d1(t),
.
x2 = x1 + ax2 + d2(t), (1.7)
.
x3 = b+ x3(x1 − c) + d3(t),

y = Cx+ v(t),

where a = 0.2, b = 0.2, c = 5.7, d1(t) = d2(t) = d3(t) = 0.05 sin(t), x(t) = x1

x2

x3

 ∈ R3 is the state, v(t) =

[
0.05 sin(t)

0.05 sin(t)

]
, C =

[
1 0 0

0 0 1

]
and

y(t) ∈ R is the output signal available for measurements.

This system can be identified as a system (1.4) where the matrices

A and C are defined as follows:

A =

 0 −1 −1

1 a 0

0 0 −c

 .
The signal b(t) is:

b(t) =

 d1(t)

d2(t)

d3(t) + b+ x1x3

 .
Thus,

V =

[
V1

V2

]
=

[
0.05

0.05

]
,

Master thesis 11



CHAPTER 1. PRELIMINARIES

Figure 1.4: Results of the simulation for the Rossler attractor

and

b(t) =

 −0.05

−0.05

−0.05 + b+ y1y2 − V1V2 − V1|y2| − V2|y1|

 ,

b(t) =

 0.05

0.05

0.05 + b+ y1y2 + V1V2 + V1|y2|+ V2|y1|

 .
Assume that ||x|| < +∞. Therefore all conditions are satisfied. Finally,

the matrices

R =

 −2 0 0

0 −0.1 0

0 0 −0.5



S =

 −0.9578 0.4138 0

0.2873 −0.9104 0

0 0 1


satisfy all conditions of the interval observer (1.6) and this one solves

the problem of interval state estimation for the Rössler attractor. The

results of simulation are shown in Fig 1.4, where the solid lines

represent the states xk, k = 1, 3 and the dash lines are used for the

interval estimates xk and xk.

The errors e(t) = x(t)− x(t), e(t) = x(t)− x(t) are shown respectively

in Fig 1.5 and in Fig 1.6.
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Figure 1.5: Evolution of e(t) for the Rossler attractor

Figure 1.6: Evolution of e(t) for the Rossler attractor

1.11 Conclusion

In this part of the report, basic facts from the theories of interval

estimation are given. These tools will be heavily used in the next

chapter treating the interval estimation of hybrid systems.
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CHAPTER 2. INTERVAL OBSERVERS FOR HYBRID LINEAR
SYSTEMS

Chapter 2

Interval Observers for Hybrid
Linear Systems

2.1 Introduction

In this chapter, we focus in particular on the problem of design of

interval observers for linear hybrid systems [3, 18]. A hybrid system

is a dynamic system that includes both continuous and discrete event

dynamics [18]. The main results are described and proven. In Section

2.4 these results are applied to some examples of hybrid systems,

including a bouncing ball model.

2.2 Stability of hybrid systems under ranged

dwell-time

Consider a hybrid (impulsive) linear system

.
x(t) = Ax(t) + b(t) ∀t ∈ [ti, ti+1), i ∈ Z+, (2.1)

x(ti+1) = Gx(t−i+1) + d(ti+1) ∀i ≥ 1,

where x(t) ∈ Rn is the state vector and x(t−i+1) is the left-sided limit

of x(t) for t →ti+1; A,G ∈ Rn×n; b : R+ → Rn, b ∈ L∞ is the input

∀t ∈ [ti, ti+1); d : R+ → Rn, d ∈ L∞ is the input at time instants

Master thesis 14



CHAPTER 2. INTERVAL OBSERVERS FOR HYBRID LINEAR
SYSTEMS

ti+1 ∀i ≥ 1. The sequence of impulse events ti with i ∈ Z+ is assumed

to be positive increment, i.e. Ti = ti+1 − ti > 0 and t0 = 0.

Theorem 1. [4] Consider system (2.1) with ||b|| = ||d|| = 0 and a
ranged dwell-time Ti ∈ [Tmin, Tmax] for all i ∈ Z+, where 0 ≤ Tmin ≤
Tmax < +∞ are given constants. Then it is asymptotically stable pro-
vided that there exists a matrix P ∈ Sn�0 such that for all θ ∈ [Tmin, Tmax]

GTeA
TθPeAθG− P ≺ 0. (2.2)

The proof of the above theorem is based on the fact that in this

case V (x) = xTPx is a Lyapunov function for (2.1) at discrete instants

of time ti. Following [22, 6], robustness with respect to the inputs b

and d can be proven (see the definition of the input-to-state stability

(ISS) given in those works):

Corollary 1. Consider system (2.1) with a ranged dwell-time Ti ∈
[Tmin, Tmax] for all i ∈ Z+, where 0 ≤ Tmin ≤ Tmax < +∞ are given con-
stants. Then it is ISS provided that there exists a matrix P ∈ Sn�0 such
that for all θ ∈ [Tmin, Tmax] the LMI (2.2) is satisfied.

This result implies that (2.1) has bounded solutions for any

bounded inputs b and d if the LMI (2.2) is valid.

2.3 Main results

Consider hybrid system (2.1) with the output signal y(t) ∈ Rp available

for measurements:

y(t) = Cx(t) + v(t),

where v ∈ L∞ is the measurement noise; C ∈ Rp×n. We will need the

following assumptions for (2.1):

Assumption 1. The state x(t) is bounded, i.e. x ∈ L∞, and Ti =

ti+1 − ti ∈ [Tmin, Tmax] for all i ∈ Z+, where 0 ≤ Tmin ≤ Tmax < +∞ are
given constants.

Master thesis 15



CHAPTER 2. INTERVAL OBSERVERS FOR HYBRID LINEAR
SYSTEMS

Assumption 2. There exist matrices L ∈ Rn×p, M ∈ Rn×p, P ∈ Sn�0 such
that:

i) the LMI

(G−MC)Te(A−LC)TθPe(A−LC)θ(G−MC)− P ≺ 0 (2.3)

holds for all θ ∈ [Tmin, Tmax];

ii) the matrix (A− LC) is Metzler;
iii) the matrix (G−MC) is nonnegative.

When the assumption 2.i holds, the quadratic form V (x) = xTPx

is a discrete-time Lyapunov function for the LTI discrete-time system

zi+1 = e(A−LC)θ(G−MC)zi for all θ ∈ [Tmin, Tmax] and i ∈ Z+ by Theorem

1.

Assumption 3. Let
i) two functions b, b : R+ → Rn, b, b ∈ L∞ are given such that

b(t) ≤ b(t) ≤ b̄(t) ∀t ∈ R+;

ii) two functions d, d : R+ → Rn, d, d ∈ L∞ are given such that

d(t) ≤ d(t) ≤ d̄(t) ∀t ∈ R+;

iii) the constant 0 ≤ V ≤ +∞ is given such that ||v|| < V .

Under the introduced assumptions an interval observer equations

for (2.1) take the form ∀i ∈ Z+:

.
x(t) = (A− LC)x(t) + Ly(t) + b(t)

−LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1) +My(ti+1) (2.4)

+d(ti+1)−MV,
.
x(t) = (A− LC)x(t) + Ly(t) + b̄(t)

+LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1) +My(ti+1)

+d(ti+1) +MV,
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where x(t) ∈ Rn and x(t) ∈ Rn are respectively the lower and the upper

interval estimates for the state x(t), L = |L|Ep×1 and M = |M |Ep×1.

Theorem 2. Let assumptions 1–3 be satisfied. Then for all t ∈ R+ the
estimates x(t) and x(t) given by (2.4) are bounded and

x(t) ≤ x(t) ≤ x̄(t) (2.5)

provided that x(0) ≤ x(0) ≤ x̄(0).

Proof. The equation (2.1) can be rewritten as follows:

.
x(t) = (A− LC)x(t) + L[y(t)− v(t)]

+b(t) ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1) +M [y(ti+1)− v(ti+1)]

+d(ti+1).

Then the dynamics of the errors e(t) = x(t)−x(t), e(t) = x(t)−x(t) obey

the equations for all i ∈ Z+:

.
e(t) = (A− LC)e(t) + g1(t) ∀t ∈ [ti, ti+1),

e(ti+1) = (G−MC)e(t−i+1) + g2(ti+1), (2.6)
.
e(t) = (A− LC)e(t) + g1(t) ∀t ∈ [ti, ti+1),

e(ti+1) = (G−MC)e(t−i+1) + g2(ti+1),

where

g1(t) = [LV − Lv(t)] + [b(t)− b(t)],

g2(ti+1) = [MV −Mv(ti+1)] + [d(ti+1)− d(ti+1)],

g1(t) = [LV + Lv(t)] + [b(t)− b(t)],

g2(ti+1) = [MV +Mv(ti+1)] + [d(ti+1)− d(ti+1)].

According to Assumption 3 we have g1, g1, g2, g2 ∈ L∞; g1(t) ≥ 0, g1(t) ≥ 0

∀t ∈ [ti; ti+1) and g2(ti+1) ≥ 0, g2(ti+1) ≥ 0 ∀i ≥ 1. When Assumption

2.i holds, the system (2.6) with ranged dwell-time Ti ∈ [Tmin, Tmax]
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(Assumption 1) is asymptotically stable for gk = gk = 0, k = 1, 2

and it has bounded state variables for bounded gk, gk (see Corollary

1). Therefore the variables e(t) and e(t) are bounded for the dwell-

time Tk ∈ [Tmin, Tmax]. We continue assuming the boundedness of the

estimates x̄(t) and x(t), which follows boundedness of x claimed in

Assumption 1. From assumptions 2.ii and 2.iii we conclude that

e(t) ≥ 0 and e(t) ≥ 0 (g1, g1, g2, g2 have the same property and e(0) ≥ 0

and e(0) ≥ 0 by conditions, then the result follows combining the

theories presented in subsections 1.4 and 1.5). That implies the

required order relation x(t) ≤ x(t) ≤ x̄(t) is satisfied for all t ∈ R+.

The imposed requirement, that the matrices A− LC and G−MC

are Metzler and nonnegative respectively, is rather restrictive. In

order to relax assumptions 2.ii and 2.iii, let us suggest the following.

Assumption 4. There exist a Metzler matrix R, a matrix T ∈ Rn×n
+ and

a matrix P ∈ Sn�0 such that the LMI

T TeR
TθPeRθT − P ≺ 0 (2.7)

is satisfied for all θ ∈ [Tmin, Tmax].

There exist a matrix L ∈ Rn×p and a matrix M ∈ Rn×p such that
λ(A − LC) = λ(R), λ(G − MC) = λ(T ), the pairs (A − LC, e1), (R, e2),
(G−MC, e3), (T, e4) are observable for some ej ∈ R1×n with j = 1, 4.

When Assumption 4 holds, the quadratic form V (x) = xTPx is a

Lyapunov function for linear discrete-time system zi+1 = eRθTzi for all

θ ∈ [Tmin, Tmax] and i ∈ Z+ by Theorem 1. In addition, comparing with

assumptions 2.ii and 2.iii, in Assumption 4 it is proposed that the ma-

trices A−LC and G−MC are similar to given Metzler and nonnegative

matrices R and T respectively [40], with differing similarity trans-

formation matrices S1 ∈ Rn×n and S2 ∈ Rn×n (i.e. S−1
1 (A − LC)S1 = R

and S−1
2 (G−MC)S2 = T ). The key idea of the following design of an

interval observer is how to combine these different transformations

of coordinate S1 and S2 (denote S = (S−1
1 S2)−1), without introducing

an auxiliary restriction.
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Theorem 3. Let assumptions 1, 3 and 4 be satisfied. Then for all
t ∈ R+ the estimates x(t) and x̄(t) are bounded and

x(t) ≤ x(t) ≤ x̄(t)

provided that x(0) ≤ x(0) ≤ x̄(0), where for all i ∈ Z+:

x(t) = S+
1 z1(t)− S−1 z1(t),

x̄(t) = S+
1 z1(t)− S−1 z1(t),

ż1(t) = Rz1(t) + F 1y(t)− F1V + (S−1
1 )+b(t)

−(S−1
1 )−b(t) ∀t ∈ [ti, ti+1),

z2(t−i+1) = S+z1(t−i+1)− S−z1(t−i+1),

z2(ti+1) = Tz2(t−i+1) + F 2y(ti+1)− F2V

+(S−1
2 )+d(ti+1)− (S−1

2 )−d(ti+1),

z1(ti+1) = (S−1)+z2(ti+1)− (S−1)+z2(ti+1), (2.8)
.
z1(t) = Rz1(t) + F 1y(t) + F1V + (S−1

1 )+b(t)

−(S−1
1 )−b(t) ∀t ∈ [ti, ti+1),

z2(t−i+1) = S+z1(t−i+1)− S−z1(t−i+1),

z2(ti+1) = Tz2(t−i+1) + F 2y(ti+1) + F2V

+(S−1
2 )+d(ti+1)− (S−1

2 )−d(ti+1),

z1(ti+1) = (S−1)+z2(ti+1)− (S−1)+z2(ti+1),

z1(0) = (S−1
1 )+x(0)− (S−1

1 )−x(0),

z1(0) = (S−1
1 )+x(0)− (S−1

1 )−x(0),

z2(0) = (S−1
2 )+x(0)− (S−1

2 )−x(0),

z1(0) = (S−1
2 )+x(0)− (S−1

2 )−x(0),

where F1 = S−1
1 L, F1 = |F1|Ep×1, F2 = S−1

2 M and F2 = |F2|Ep×1.

Proof. Consider the system (2.1) in the new coordinates z1 = S−1
1 x,
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z2 = S−1
2 x, z1 = S−1z2 :

.
z1(t) = Rz1(t) + F 1[y(t)− v(t)]

+S−1
1 b(t) ∀t ∈ [ti, ti+1),

z2(ti+1) = Tz2(t−i+1) + F 2[y(ti+1)− v(ti+1)]

+S−1
2 d(ti+1),

y(t) = CS1z1(t) + v(t) ∀t ∈ [ti, ti+1),

y(ti+1) = CS2z2(ti+1) + v(ti+1),

z2(ti+1) = (S+ − S−)z1(ti+1).

The dynamics of the errors e1(t) = z1(t) − z1(t), e1(t) = z1(t) − z1(t),

e2(t) = z2(t)− z2(t), e2(t) = z2(t)− z2(t) obey the equations for all i ∈ Z+:

ė1(t) = Re1(t) + g1(t) ∀t ∈ [ti, ti+1),

e2(t−i+1) = S+e1(t−i+1) + S−e1(t−i+1),

e2(ti+1) = Te2(t−i+1) + g2(ti+1), (2.9)

e1(ti+1) = (S−1)+e2(ti+1) + (S−1)−e2(ti+1),
.
e1(t) = Re1(t) + g1(t) ∀t ∈ [ti, ti+1),

e2(t−i+1) = S+e1(t−i+1) + S−e1(t−i+1),

e2(ti+1) = Te2(t−i+1) + g2(ti+1),

e1(ti+1) = (S−1)+e2(ti+1) + (S−1)−e2(ti+1),

where

g1(t) = [F1V − F 1v(t)] + [(S−1
1 )b(t)

−(S−1
1 )+b(t) + (S−1

1 )−b(t)],

g2(ti+1) = [F2V − F 2v(ti+1)] + [(S−1
2 )d(ti+1)

−(S−1
2 )+d(ti+1) + (S−1

2 )−d(ti+1)],

g1(t) = [F1V + F 1v(t)] + [(S−1
1 )+b(t)

−(S−1
1 )−b(t)− (S−1

1 )b(t)],

g2(ti+1) = [F2V + F 2v(ti+1)] + [(S−1
2 )+d(ti+1)

−(S−1
2 )−d(ti+1)− (S−1

2 )d(ti+1)].
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According to Assumption 3 we have g1, g1, g2, g2 ∈ L∞, g1(t) ≥ 0, g1(t) ≥ 0

∀t ∈ [ti, ti+1) and g2(ti+1) ≥ 0, g2(ti+1) ≥ 0 ∀i ≥ 1. The matrix R is Metzler,

the matrix T is nonnegative and these two matrices verify the LMI

(2.7) when Assumption 4 is satisfied. Therefore, the system (2.9)

with ranged dwell-time Ti ∈ [Tmin, Tmax] is asymptotically stable for

gk = gk = 0, k = 1, 2 and it has bounded state variables for bounded

gk, gk (see Corollary 1), then the variables e1(t), e1(t), e2(t) and e2(t)

are bounded. Next, from Assumption 1 (z(t) and x(t) are bounded),

we obtain boundedness of the estimates z1(t), z1(t), z2(t), z2(t) and,

hence, boundedness of x̄(t), x(t). From the structure of the interval

observer (2.8) and Assumption 4, since the matrix R is Metzler and

the matrix T is nonnegative, we conclude that e1(t) ≥ 0, e1(t) ≥ 0,

e2(t) ≥ 0 and e2(t) ≥ 0 (g1, g1, g2, g2 have the same property, e1(0) ≥ 0,

e1(0) ≥ 0, e2(0) ≥ 0 and e2(0) ≥ 0 by construction, and the result

follows combining the theories presented in subsections 1.4 and 1.5).

Thus, from the definitions of errors we conclude that for all i ∈ Z+:

z1(t) ≤ z1(t) ≤ z1(t) ∀t ∈ [ti, ti+1),

z2(ti+1) ≤ z2(ti+1) ≤ z2(ti+1) ∀i ≥ 1,

which imply the relations of Theorem 3.

There is another possibility for an interval observer construction

avoiding the restrictions of Assumption 2, but with more conservative

stability conditions. To this end, consider the following assumption.

Assumption 5. There exist a matrix L ∈ Rn×p, a matrix M ∈ Rn×p and
a matrix P ∈ Sn�0 such that the LMI

JTeU
TθPeUθJ − P ≺ 0 (2.10)

is satisfied for all θ ∈ [Tmin, Tmax] and U =

[
D0 D1

D1 D0

]
, J =

[
(G−MC)p (G−MC)n

(G−MC)p (G−MC)n

]
for A−LC = D0−D1 where D0 is Metzler and D1, (G−MC)p, (G−MC)n ∈
Rn×n

+ .

Comparing with Assumption 4, here by construction the matrices
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U and J are Metzler and nonnegative respectively, i.e. these matrices

can always be constructed satisfying these properties for any A− LC
and G−MC (a possible but not unique choice is (G−MC)p = (G−MC)+

and (G − MC)n = (G − MC)−, for example), then there is no need

in transformations of coordinates S1 and S2. However, the main

restriction is on the stability of such U and J, and the conditions

of stability are formulated by LMI (2.10) following Theorem 1. The

following result can be proven.

Theorem 4. Let assumptions 1, 3 and 5 be satisfied. Then for all
t ∈ R+ the estimates x(t) and x̄(t) are bounded and

x(t) ≤ x(t) ≤ x̄(t)

provided that x(0) ≤ x(0) ≤ x̄(0), where for all i ∈ Z+:

.
x(t) = D0x(t)−D1x(t) + Ly(t) + b(t)

−LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)px(t−i+1)− (G−MC)nx(t−i+1)

+My(ti+1) + d(ti+1)−MV, (2.11)
.
x(t) = D0x(t)−D1x(t) + Ly(t) + b(t)

+LV ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)px(t−i+1)− (G−MC)nx(t−i+1)

+My(ti+1) + d(ti+1) +MV,

where L = |L|Ep×1 and M = |M |Ep×1.

Proof. The equation (2.1) can be rewritten as follows for all i ∈ Z+:

.
x(t) = (A− LC)x(t) + L[y(t)− v(t)]

+b(t) ∀t ∈ [ti, ti+1),

x(ti+1) = (G−MC)x(t−i+1)

+M [y(ti+1)− v(ti+1)] + d(ti+1).

Then the dynamics of the errors e(t) = x(t)−x(t), e(t) = x(t)−x(t) obey
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the equations:

.
e(t) = D0e(t) +D1e(t) + g1(t) ∀t ∈ [ti, ti+1),

e(ti+1) = (G−MC)pe(t
−
i+1) (2.12)

+(G−MC)ne(t
−
i+1) + g2(ti+1),

.
e(t) = D0e(t) +D1e(t) + g1(t) ∀t ∈ [ti, ti+1),

e(ti+1) = (G−MC)pe(t
−
i+1)

+(G−MC)ne(t
−
i+1) + g2(ti+1),

where

g1(t) = [LV − Lv(t)] + [b(t)− b(t)],

g2(ti+1) = [MV −Mv(ti+1)] + [d(ti+1)− d(ti+1)],

g1(t) = [LV + Lv(t)] + [b(t)− b(t)],

g2(ti+1) = [MV +Mv(ti+1)] + [d(ti+1)− d(ti+1)].

According to Assumption 3 we have g1, g1, g2, g2 ∈ L∞, g1(t) ≥ 0, g1(t) ≥ 0

∀t ∈ [ti, ti+1) and g2(ti+1) ≥ 0, g2(ti+1) ≥ 0 ∀i ≥ 1. If Assumption 5 is

satisfied, then system (2.12) with ranged dwell-time Ti ∈ [Tmin, Tmax]

is asymptotically stable for gk = gk = 0, k = 1, 2 and it has bounded

state variables for bounded gk, gk (from Corollary 1). Therefore the

variables e(t) and e(t) are bounded, and the estimates x̄(t), x(t) inherit

the same property due to Assumption 1. From the interval observer

(2.11) structure and Assumption 5, since the matrix U is Metzler and

the matrix J is nonnegative (D0 is Metzler and D1, (G −MC)p, (G −
MC)n ∈ Rn×n

+ ), we obtain that e(t) ≥ 0 and e(t) ≥ 0 (g1, g1, g2, g2 have the

same property, e(0) ≥ 0 and e(0) ≥ 0 by construction, and the result

follows combining the theories presented in subsections 1.4 and 1.5).

Consequently, the required order relation x(t) ≤ x(t) ≤ x̄(t) is satisfied

for all t ∈ R+.

The results of theorems 3 and 4 can be combined, i.e. only one

transformation S1 or S2 can be used together with the decomposition

from Assumption 5.
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2.4 Examples

In this section, we present three examples. The first and the third

examples are academic hybrid linear systems and the second one is

a bouncing ball.

2.4.1 Academic hybrid linear system

Consider the following system:

.
x(t) = Ax(t) + b(t) ∀t ∈ [0, 5) ∪ (5, 10) ∪ (10,+∞),

x(t) = Gx(t−) + d(t) ∀t ∈ {5, 10},

y(t) = Cx(t) + v(t),

where the matrices A, C and G are defined as follows [4]:

A =

[
−1 0

1 −2

]
, C =

[
0 1

]
, G =

[
2 1

1 3

]
,

and x(t) ∈ R2, y(t) ∈ R are the state and the output respectively. The

signals b(t), d(t) and v(t) are:

b(t) =

[
β sin(t)

β sin(t)

]
, d(t) =

[
δ sin(t)

δ sin(t)

]
, v(t) = V sin(t),

where β = 0.1, δ = 0.3 and V = 0.03 are known parameters. Thus,

b(t) =

[
−β
−β

]
, b(t) =

[
β

β

]
,

d(t) =

[
−δ
−δ

]
, d(t) =

[
δ

δ

]
.

Assumption 3 is then satisfied. Assume that ||x|| < +∞ and As-

sumption 1 is valid. Assumption 2.ii is verified for L =
[

0 1
]T

: the

matrix A−LC =

[
−1 0

1 −3

]
is Metzler. Assumption 2.iii is verified for
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Figure 2.1: Results of the simulation for the academic linear impulsive system

M =
[

1 2.8
]T

: the matrix G −MC =

[
2 0

1 0.2

]
is nonnegative but

not Schur stable. By applying Matlab YALMIP toolbox [28] to solve the

LMI (2.3), we found that Assumption 2.i holds for all θ ∈ [0.6580,+∞) .

Then the dynamics of the errors e(t) = x(t)−x(t), e(t) = x(t)−x(t) with

ranged dwell-time θ ∈ [0.6580,+∞) are ISS. Therefore all conditions

of Theorem 2 are satisfied and the interval observer (2.4) solves the

problem of interval state estimation. The results of simulation are

shown in Fig 2.1, where the solid lines represent the states xk, k = 1, 2

and the dash lines are used for the interval estimates xk and xk.

2.4.2 Bouncing ball

Consider the case of vertical motion of a ball under gravity with a

constant acceleration g. The dynamics are given by

.
p(t) = v(t);

.
v(t) = −g,

where p(t) ∈ R+ is the position of the ball and v(t) ∈ R is its velocity,

which is assumed to be downward. Upon hitting the ground at instant

of time t′ ≥ 0 with p(t′) = 0, we instantly set v(t′) to -ρv(t′−), where

ρ ∈ [0, 1] is the coefficient of restitution. In general, this model can be
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presented in the form of system (2.1):

x(t) = [p(t) v(t)]T,
.
x(t) = Ax(t) + b(t) when x1(t) 6= 0,

x(t) = Gx(t−) + d(t) when x1(t) = 0,

y(t) = Cx(t),

where A =

[
0 1

0 0

]
, C =

[
1 0

]
, G =

[
1 0

0 −ρ

]
; x(t) ∈ R2, y(t) ∈ R are

respectively the state and the output; the signals b(t) and d(t) model

some additional perturbing forces applied to the ball:

b(t) =

[
β sin(t)

−g + β sin(t)

]
, d(t) =

[
δ sin(t)

δ sin(t)

]
,

where β = 0.5 and δ = 0.5 are known parameters. Thus,

b(t) =

[
−β
−g − β

]
, b(t) =

[
β

−g + β

]
,

d(t) =

[
−δ
−δ

]
, d(t) =

[
δ

δ

]

and Assumption 3 is then satisfied. Assume that ||x|| < +∞ (Assump-

tion 1 is valid). Verifying the LMI (2.7) with Matlab YALMIP toolbox

[28], we found that Assumption 4 holds for all ranged dwell-time

Tk > 0. Therefore, all conditions of Theorem 3 are satisfied. Finally,

the matrices

R =

[
−2 0

0 −1

]
, S1 =

[
−0.7071 −0.4472

−0.7071 −0.8944

]
,

T =

[
−0.8 0

0 0.9

]
, S2 =

[
0 0.9594

1 0.2822

]

satisfy all conditions of Theorem 3 and the interval observer (2.8)

solves the problem of interval state estimation for bouncing ball. The

results of simulation are shown in Fig 2.2, where the solid lines
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Figure 2.2: Results of the simulation for the bouncing ball model

represent the states xk, k = 1, 2 and the dash lines are used for the

interval estimates xk and xk.

Remark 1. In the example of the bouncing ball considered in this

work, the measurement noise is equal to zero. This means the times

of the jumps in the state are well estimated as the output signal

is supposed to be perfect (without noise). In the real case, there is

always a measurement noise in the output signal: the jumps times

in the state are not known and need to be estimated. It introduces a

time-delay in the estimated jumping time and causes some additional

error in the state estimation.

2.4.3 Academic linear impulsive system

Consider the following system:

.
x(t) = Ax(t) + b(t) ∀t ∈ [0, 5) ∪ (5, 10) ∪ (10,+∞),

x(t) = Gx(t−) + d(t) ∀t ∈ {5, 10},

y(t) = Cx(t),

where the matrices A, C and G are defined as follows:

A =

[
−2 0

−4 −3

]
, C =

[
0 1

]
, G =

[
2 0

1 −0.2

]
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and x(t) ∈ R2, y(t) ∈ R are respectively the state and the output. The

signals b(t) and d(t) are:

b(t) =

[
β sin(2t) cos(t)

β sin(2t) cos(t)

]
, d(t) =

[
0.2 + δ sin(t)

0.2 + δ sin(t)

]

with known β = 0.1 and δ = 0.1. Thus,

b(t) =

[
−β
−β

]
, b(t) =

[
β

β

]
,

d(t) =

[
−δ + 0.2

−δ + 0.2

]
, d(t) =

[
δ + 0.2

δ + 0.2

]
.

Assumption 3 is then satisfied. Assume that ||x|| < +∞ and Assump-

tion 1 is valid. There is no observer gain L such that the matrix

A − LC is Metzler. For L =
[

0 −2
]T

and A − LC =

[
−2 0

−4 −1

]
, we

choose

D0 =

[
−1.5 0

0 −1

]
, D1 =

[
0.5 0

4 0

]
,

then D0 is Metzler and D1 ∈ Rn×n
+ . For M =

[
−1 2.8

]T
and G−MC =[

2 1

1 −3

]
, we choose:

(G−MC)p =

[
2.5 1

1 0

]
, (G−MC)n =

[
0.5 0

0 3

]
.

(G−MC)p ∈ Rn×n
+ and (G−MC)n ∈ Rn×n

+ . Note that the matrix G−MC

is negative and is not Schur stable . By applying Matlab YALMIP

toolbox [28] to solve the LMI (2.10), we found that Assumption 5

holds for all Tk ∈ (2.7579,+∞). Therefore, all conditions of Theorem

4 are satisfied and the interval observer (2.11) solves the problem

of interval state estimation. The results of simulation are shown in

Fig 2.3, where the solid lines represent the states xk, k = 1, 2 and the

dash lines are used for the interval estimates xk and xk.
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Figure 2.3: Results of the simulation for the academic linear impulsive system

2.5 Conclusion

A long this chapter, interval observers are proposed for different kinds

of hybrid linear systems. The efficiency of these techniques is shown

on examples of computer simulation for two academic systems and

a bouncing ball. The problem of interval estimation of sequestred

infected erythrocytes in plasmodium falciparum malaria patients will

be discussed in the next chapter.
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Chapter 3

Interval estimation of
sequestred infected
erythrocytes in plasmodium
falciparum malaria patients

3.1 Introduction

Malaria is a disease that causes at least one million deaths around

the world each year, with ninety percents among African children,

and it is spreed by the Plasmodium parasite. The most dangerous

type of malaria is summoned by the most virulent species called

Plasmodium falciparum. Sequestration is one of the characteristics

of Plasmodium falciparum, which is related with the Plasmodium life

cycle. The cycle begins when a parasite enters the human body

through the bite of an infected mosquito, after which it migrates to

the liver and starts to multiply within. The free forms resulting from

this multiplication (called merozoites) are able to invade the red blood

cells (erythrocytes). The infected erythrocytes are matured during

the erythrocytic cycle. At roughly the middle stage of trophozoite

development (in 24 hours), molecules on the surface of infected

erythrocytes can link to receptors of endothelial cells. This bind has
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the effect of holding infected erythrocytes within vessels of organs

(such as the brain), where they remain until the rupture of the

erythrocyte and the release of merozoites. This period of attachment

is called sequestration and during it, the infected erythrocytes are

not detectable in the blood flow, they are “sequestered”. Also it is

widely accepted that antimalarial drugs act preferentially on different

stages of parasite development [21, 20].

In practice, to know the stage of infection for a patient, the total

parasite concentration
∑n

i=1 yi in the bloodstream is needed, where yi
represent population of parasites of certain age, from the youngest

y1 till the oldest yn, n < 1 determines the grid of age differentiation.

However, only the peripheral infected erythrocytes, i.e. the young

parasites y1 + y2 + ...yk for some k < n, also called circulating, can

be observed (seen on peripheral blood smears) and the other ones

(sequestered yk+1, ...yn) are hidden in some organs like brain and heart,

and cannot be observed. There is no clinical method of measuring

the sequestered infected cells directly.

That is why the estimation of sequestered parasite population

has been a challenge for the biologist and modeler, with many au-

thors having studied this problem [21, 20, 37, 2]. In this work an

interval observer is designed in order to estimate the admissible

interval for sequestered parasite population. In the presence of un-

certainty, which has an important impact in this application, design

of a conventional estimator, converging to the ideal value of the state,

cannot be realized. In this case an interval estimation becomes more

feasible: an observer can be constructed that, using input-output

information, evaluates the set of admissible values (interval) for the

state at each instant of time. The interval length is proportional to

the size of the model uncertainty (it has to be minimized by tuning

the observer parameters). There are several approaches to design

interval/set-membership estimators [24, 25, 38]. This section is de-

voted to interval observers, which form a subclass of set-membership

estimators and whose design is based on the monotone systems

theory [38, 36, 41, 40, 7].
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3.2 Estimation of the hidden parasitized ery-

throcytes

The exact number of stages of parasitized erythrocytes is generally

unknown but one can distinguish five main stages by simple mor-

phology: young ring, old ring, trophozoite, early schizont and nally

late schizont [2]. Thus one can assume that the parasitized ery-

throcytes population within the host is divided in 5 different stages:

y1; y2; y3; y4; y5. The two first stages correspond to the concentration

of free circulating parasitized erythrocytes and the three last stages

stand for the sequestered ones. The healthy cells x are produced by a

constant recruitment Λ from the thymus and they become infected by

an effective contact with a merozoite m. At the late stage of infected

cells, the erythrocyte ruptures and releases r merozoites.

It is assumed that the circulating parasitaemia, i.e: y1 + y2 can

be measured and the aim of this work is to find an estimate of the

sequestered parasitaemia, y3 + y4 + y5. To describe the dynamics of

the parasitized erythrocytes, we use the following system [2]:

.
z(t) = A(t)z(t) + Eβ(t)x(t)m(t) + e1Λ(t) ∀t ≥ 0,

Y (t) = Cz(t) + v(t), (3.1)

where z = (x, y1, . . . , y5,m)T ∈ R7
+ is the state vector and Y ∈ R+ is the

measured output, v ∈ L∞ is the measurement noise, ||v||∞ ≤ V for

some known V > 0; y1 and y2 correspond to the concentrations of

free circulating parasitized erythrocytes and y3, y4, y5 correspond to

the sequestered ones; x is the concentration of healthy cells, and

m is the concentration of merozoites; Λ(t) ∈ R+, Λ ∈ L∞ represents

recruitment of the healthy red blood cells (RBC) and β(t) ∈ R+, β ∈ L∞
is the rate of infection of RBC by merozoites. The variables β(t) and

Λ(t) serve as exogenous uncertain inputs in (3.1). The time-varying
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matrix A and constant matrices C,E, e1 are defined as follows:

C = [ 0 1 1 0 0 0 0 ],

E = [ −1 1 0 0 0 0 −1 ]T,

e1 = [ 1 0 0 0 0 0 0 ]T,

A =



−µx 0 0

0 −µ1 − γ1 0

0 γ1 −µ2 − γ2

0 0 γ2

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−µ3 − γ3 0 0 0

γ3 −µ4 − γ4 0 0

0 γ4 −µ5 − γ5 0

0 0 rγ5 −µm


,

where µx > 0 is the natural death rate of healthy cells; µi > 0 is the

natural death rate of ith stage of infected cells, γi > 0 is the transition

rate from ith stage to (i+1)th stage of infected cells, i = 1, . . . , 5; r > 0 is

the number of merozoites released by the late stage of infected cells,

µm > 0 is the natural death rate of merozoites.

For different patients the values of the parameters µx, µi, γi, r and

µx are different and they are varying with time for a patient, that is

why we assume that

A ≤ A(t) ≤ A

for some known A,A ∈ R7×7 and the instant value of A(t) is unavail-

able. Similarly for the healthy RBC recruitment Λ(t), the values

Λ,Λ ∈ R+ are given such that

Λ ≤ Λ(t) ≤ Λ ∀t ≥ 0.

It is assumed that for β(t) there is no confidence interval.

We suppose that Y = y1 + y2 + v(t), i.e. the circulating Plasmodium
can be measured with a noise v, while it is required to estimate the

sequestered one Z = y3 + y4 + y5.

Master thesis 33



CHAPTER 3. INTERVAL ESTIMATION OF SEQUESTRED INFECTED
ERYTHROCYTES IN PLASMODIUM FALCIPARUM MALARIA

PATIENTS

3.3 Interval observer design

We define w(t) = β(t)x(t)m(t) as a new unmeasurable variable, which

can be considered as a new uncertain input for (3.1). Following [2]

and using the equation (3.1), we can find:

w = ((CE)TCE)−1(CE)T(
.

Y − CAz − Ce1Λ)

where Ẏ is the derivative of the output. Using Lemma 3 and differ-

entiator (1.3), an estimate ˆ̇Y of Ẏ can be calculated such that for all

t ≥ 0:

Ẏ (t) = ˆ̇Y (t) + v′(t),

where ||v′||∞ < V ′ for some known V ′ > 0.

Note that CE = 1, let 0 ≤ z(t) ≤ z(t) ≤ z(t) for all t ≥ 0 and some

z, z ∈ R7, then using Lemma 1 we obtain the following relations for all

t ≥ 0:

w(t) ≤ w(t) ≤ w(t),

where w = ˆ̇Y − V ′ − Ce1Λ− (CA)+z + (CA)−z and w = ˆ̇Y + V ′ − Ce1Λ−
(CA)+z + (CA)−z.

Following [5] equations of an interval observer for (3.1) take the

form:

.

ζ(t) = Aζ(t) + e1Λ + E+w(t)

−E−w(t) + L(Y (t)− Cζ(t))− |L|V,
.

ζ(t) = Aζ(t) + e1Λ + E+w(t) (3.2)

−E−w(t) + L(Y (t)− Cζ(t)) + |L|V,

z(t) = max{0, ζ(t)},

z(t) = max{0, ζ(t)},

where z ∈ R7 and z ∈ R7 are respectively the lower and the upper

interval estimates for the state z; ζ, ζ ∈ R7 is the state of (3.2). The

following restrictions are imposed on (3.2):

Assumption 6. There exist matrices L ∈ R7×1, L ∈ R7×1 such that the
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matrices (A− LC) and (A− LC) are Metzler.

Assumption 6 fixes the main conditions to satisfy for positivity of

the error dynamics (due to the structure of A this condition is always

satisfied for L = L = 0).

Theorem 5. Let Assumption 6 be satisfied. Then for all t ∈ R+ the
estimates z(t) and z(t) given by (3.2) yield the relations:

0 ≤ z(t) ≤ z(t) ≤ z̄(t) ∀t ≥ 0, (3.3)

provided that 0 ≤ z(0) ≤ z(0) ≤ z̄(0). If in addition, there exists a
diagonal matrix P ∈ R14 and γ > 0 such that

ATP + PA+ P (γ−2I14 + FF T)P + 2I14 � 0

for

A =

[
(A− LC) 0

0 (A− LC)

]
,

F =

[
E+(CA)− + E−(CA)+ −E+(CA)+ − E−(CA)−

−E+(CA)+ − E−(CA)− E+(CA)− + E−(CA)+

]
,

then z, z̄ ∈ L7
∞ (ζ, ζ̄ ∈ L7

∞ and the transfer function

[
e1Λ + LY (t)− |L|V
e1Λ + LY (t) + |L|V,

]
→[

ζ

ζ̄

]
has L∞ gain less than γ).

Proof. Note that z(t) ≥ 0 for all t ≥ 0 and z(t) is also bounded [2]. The

equation (3.1) can be rewritten as follows:

.
z = (A′ − LC)z + (A(t)− A′)z + Ew + e1Λ + LY − Lv

for some A′ ∈ R7×7 (A or A) and L ∈ R7×1 (L or L), then the dynamics

of the errors e(t) = z(t)− ζ(t), e(t) = ζ(t)− z(t) obey the equations:

.
e(t) = (A− LC)e(t) + g(t),
.
e(t) = (A− LC)e(t) + g(t), (3.4)
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where

g = (A(t)− A)z + Ew − E+w + E−w + Lv + |L|V,

g = (A− A(t))z + E+w − E−w − Ew − Lv + |L|V.

Under the introduced conditions, it can be inferred from Lemma 1

that g(t) ≥ 0, g(t) ≥ 0 ∀t ≥ 0. From Assumption 6, we conclude that

e(t) ≥ 0 and e(t) ≥ 0 (g, g have the same property and e(0) ≥ 0 and

e(0) ≥ 0 by conditions). That implies that the order relation ζ(t) ≤
z(t) ≤ ζ̄(t) is satisfied for all t ≥ 0, then (3.3) is true by construction of

z, z and due to nonnegativity of z.

In order to prove boundedness, let us define:

ζ = [ζT ζ
T
]T, ε = [εT εT]T,

ε = Ce1(E−Λ− E+Λ) + e1Λ + E ˆ̇Y − |E|V ′

+LY − |L|V,

ε = Ce1(E−Λ− E+Λ) + e1Λ + E ˆ̇Y + |E|V ′

+LY + |L|V,

then dynamics of interval observer takes the form:

ζ̇ = Aζ + F max{0, ζ}+ ε,

where the matrices A and F are defined in the theorem formulation

and ε ∈ L14
∞ by construction. Consider a Lyapunov function V (ζ) =

ζTPζ, then

V̇ = ζT(ATP + PA)ζ + 2ζTP [F max{0, ζ}+ ε]

≤ ζT[ATP + PA+ P (γ−2I14 + FF T)P + I14]ζ

+γ2εTε

≤ −ζTζ + γ2εTε

and the needed stability conclusion follows.

The obtained interval estimates z, z are nonnegative as the state
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z is. Note that the presented approach can be easily extended to

higher/lower order models of parasitized erythrocytes (when age

partition of erythrocytes has more/less than 5 levels as in (3.1)).

Remark 2. In order to solve the matrix inequality introduced in Theo-

rem 5 the following series of LMIs with respect to P can be used (it is

obtained by application of the Schur complement):

γ−2I14 + FF T � 0,[ (
γ−2I14 + FF T

)−1
P

P −ATP − PA− 2I14

]
� 0.

3.4 Simulation of the interval observer

For a patient without fever, i.e. at 37◦C, the parameters of the matrix

A have the following constant values [2],:

γ1 = 1.96, γ2 = 3.78, γ3 = 2.85, γ4 = 1.76, γ5 = 3.26;

µ1 = 0, µ2 = 1.86, µ3 = 0, µ4 = 0.1, µ5 = 0;

µx =
1

120
, r = 16, µm = 72.

Assume that admissible deviations of these parameters from the nom-

inal values given above are σ%, then we can calculate the matrices A

and A. The nominal value of healthy RBC recruitment is Λ0 = 5×106

120

cellsµl−1day−1 (the unit of volume is micro-liter (µl) and the unit of

time is day) with admissible deviations ±20%, i.e.

0.8Λ0 = Λ ≤ Λ(t) ≤ Λ = 1.2Λ0 ∀t ≥ 0.

For simulations we selected:

Λ(t) = Λ0(1 + 0.2 sin(3t)),

β(t) = 10−6(1 + 0.5 sin(2t))emod2(t,2.5+0.5 sin(0.5t)),

v(t) = V sin(25t), V = 10,

A(t) = sin2(t)A+ cos2(t)A.
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Figure 3.1: The results of interval estimation for sequestered parasites

Let z(0) = 1
3
z̄(0) = [500 100 150 50 50 50 50]T. For differentiator (1.3),

α = 103, % = 3α and χ = 0.25α, then V ′ = 30V and

L =
(

1− σ

100

)
[0 0 γ1 0 0 0 0]T,

L =
(

1 +
σ

100

)
[0 0 γ1 0 0 0 0]T

have been selected. Assumption 6 holds for these choices of L and L

and all conditions of Theorem 5 are satisfied. The results of interval

estimation of sequestered Plasmodium Z(t) are shown in Fig. 3.1 for

σ = 5 and σ = 15. As we can conclude, the dynamics uncertainty σ

influences seriously on the estimation accuracy.

3.5 Conclusion

An interval observer is proposed in this chapter in order to estimate

the sequestered parasite population from the measured circulating

parasites. The efficiency of this technique is shown using the mea-

surements of the circulating parasitaemia y1 + y2 provided by [2].
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Conclusion

First and foremost, interval state estimation for hybrid linear sys-

tems has been considered in this report. The goal of the proposed

approaches is to take into account the presence of disturbance or

uncertain parameters during the synthesis of these interval observers.

Two main techniques have been proposed. The first one is based

on a static transformation of coordinates, which connects a linear

hybrid system with its nonnegative representation when the system

is asymptotically stable with a ranged dwell-time. The second tech-

nique uses a representation of hybrid system in a nonnegative form.

The boundedness of the estimation error (ISS property) and the ob-

server stability can be checked using LMIs. The efficiency of these

techniques is shown on examples of computer simulation for two

academic systems and a bouncing ball. A future work can focus on

nonlinear hybrid systems with parameter uncertainties, and control

design based on interval estimates as in [12].

To finish, the design of an interval observer in order to estimate

the sequestered parasite population from the measured circulating

parasites has been presented in this report. It is assumed that almost

all parameters and inputs of the model are uncertain (just intervals

of admissible values are given) and the measurements are obtained

with a noise. Despite of that the proposed observer demonstrates a

reasonable accuracy of interval estimation, which is confirmed by

numerical experiments. Further investigations can focus on sampled-

time kind of measurements for the estimation of the sequestered

parasite population.
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