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Abstract

High fidelity modeling and simulation of turbulent dispersed two-phase flows is still a major challenge for many applications. Eulerian
approaches are well suited for high performance computations of such flows. Recently, hybrid Eulerian methods that combine the
multi-fluid approach - where the size is discretized - and the moment method were developed. On the one hand, in order to capture
efficiently the size-polydispersion, two size moments were used on each interval of the size discretization (Two Size Moment method).
On the other hand, the Anisotropic Gaussian (AG) velocity closure has been introduced as a relevant model to describe velocity dis-
persion occurring when the particles from the disperse phase have a significant inertia compared to the time scales of the flow, leading
to particle trajectory crossings. The purpose of this contribution is to develop a model able to describe size and velocity dispersion,
coupling the two-size moment Eulerian multi-fluid method and the anisotropic velocity closure. Adapted numerical schemes based on
a relaxation method are provided. This new model (AG-TSM) is then evaluated on various test cases relevant to rocket propulsion and
two-phase combustion.

Keywords: polydisperse spray, two-size moment Multi-Fluid model, moment method, particle trajectory crossing, relaxation scheme

1. Introduction

Two-phase flows constituted of a gaseous phase carrying a
disperse condensed phase play a key role in many industrial and
scientific applications like spray combustion in Diesel engines
or aeronautical combustion chambers or internal flow dynamic
of solid rocket motors where heterogeneous energetic materials
are used. The resulting spray, composed of droplets of various
sizes, can interact with the turbulent gaseous phase. To be able
to predict the dynamic of these droplets, the description of this
size polydispersion is necessary. Moreover, this can lead to tra-
jectory crossings (Particle Trajectory Crossing - PTC), even be-
tween droplets of the same size (homo-PTC) if their inertia is
high enough compared to the carrier flow time scales. Taking
into account these two characteristics at a reasonable cost is a
challenging task.

The spray is here described in a statistical sense using a ki-
netic approach: the Number Density Function (NDF) is consid-
ered and is solution of the Williams-Boltzmann equation [16].
As an alternative to Lagrangian Monte-Carlo methods, which are
usually costly when aiming a good statistical convergence, and
difficult to parallelize, Eulerian methods are developed. The main
issues for this type of methods come 1) from its ability to take
into account both the size and velocity polydispersion induced by
both the large size spectrum and droplet trajectory crossing and
also 2) from the development of adapted numerical schemes al-
lowing to preserve the realizability of the moments (they have to
stay moments of a positive measure).

On the one hand, an efficient hybrid method between the
sectional and moment methods was introduced by Laurent et al.
[10], improving the models developed in [8, 9]. It is able to de-
scribe accurately the size polydispersion in the context of moder-
ately dense evaporating sprays through a discretization along the
droplet size variable, the use of several moments in each size in-
terval called section (two size moments additionally to the veloc-
ity moments of order one) and realizable and accurate numerical
schemes for the transport, evaporation and coalescence. How-
ever, the underlying monokinetic assumption, considering that
droplets of the same size has the same velocity, reaches its lim-
its for inertial particles subject to homo-PTC. On the other hand,
an anisotropic closure, inspired from theory of rarefied gas [11],
were used in a second order velocity moment model, considering
a size monodisperse spray [15]. It is the minimal closure able to
predict PTC through moment methods [12, 13]. Moreover, a new
generation of numerical methods based on relaxation schemes
was developed in [2], which are able to handle these kinds of
equations, and also to cope in a robust manner with the link both
with zones without any velocity polydispersion and with vacuum
area.

These three ingredients are put together here in order to ob-
tain a model describing both size and velocity dispersion and
develop adapted numerical schemes. The contribution is orga-
nized as follows: Section 2 is dedicated to the derivation of this
hybrid model from the Williams-Boltzmann equation. Then, in
Section 3, a realizable numerical strategy is presented for the res-
olution of the corresponding system of equations. Finally, in Sec-
tion 4, the new model is evaluated on a 0D-test case for the order
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of convergence and on a 2D-test case for the capacity to mimic
evaporation and trajectory crossings at the same time.

2. Eulerian modeling of polydisperse sprays

Here, we first give the kinetic model describing a dilute evap-
orating spray and then the derivation of the hybrid method in two
steps: the first one leading to equations on velocity moments at
fixed size, using the anisotropic Gaussian closure, and the sec-
ond step introducing the size discretization and moments on each
section. The properties of the induced model are finally given.

2.1. Kinetic model

The spray can be described by its Number Density Func-
tion (NDF) f(t,x, S,u), where f(t,x, S,u)dxdudS denotes
the average number of droplets (in a statistical sense) at time t, in
a volume of size dx around a space location x, with a velocity in
a du-neighborhood ofu and with a surface in a dS-neighborhood
of S. For the sake of simplicity and for the purpose of this pa-
per, only the simple evaporation d2 law is considered in such a
way that the unsteady heating of the droplets does not need to
be modeled. We refer to [8, 14] for a consideration of heating.
When considering dilute inertial evaporating sprays, the evolu-
tion of this NDF is described by the following Boltzmann-type
equation [16]:

∂tf + ∂x · (u f) + ∂u · (F f)− ∂S(K f) = 0, (1)

where the evaporation rate K is a non-negative constant and the

drag force F is described by the Stokes law F =
ug − u
τp(S)

, with

ug(t,x) the gas velocity, τp(S) =
ρlS

18πµg
≡ AS the relax-

ation time of the droplet velocity, ρl the liquid droplet material
density, assumed constant, and µg(t,x) the gas dynamic viscos-
ity. It would have been too costly to solve this equation directly
through a full discretization. Then, only moments of first orders
are considered.

2.2. Semi-kinetic model: Anisotropic Gaussian (AG) closure

Let us first consider the following velocity moments of order
0, 1 and 2, conditioned by size:

n(t,x, S) =

∫∫
Rd

f(t,x, S,u)du. (2)

n(t,x, S)ud(t,x, S) =

∫∫
Rd

u f(t,x, S,u)du. (3)

n(t,x, S)E(t,x, S) =
1

2

∫∫
Rd

u⊗ u f(t,x, S,u)du, (4)

where d is the dimension of the physical space. The ten-
sor Σ(t,x, S) is also introduced in such a way that E =
1
2

(ud ⊗ ud + Σ). Since the conservation equations on the sec-
ond order moments need information on the third order moments,
these are modeled thanks to the assumption of a multi-variate
Gaussian distribution in velocity [15, 13]:

f(t,x, S,u) = n(t,x, S)GΣ(t,x,S)(u− ud(t,x, S)), (5)

where GΣ(u) is a centered Gaussian density function of covari-
ance matrix Σ. The equations on the moments then read:

∂tn+∂x ·(nud)=∂S(Kn), (6)

∂t(nud)+∂x ·(n(ud ⊗ ud+Σ))=∂S(Knud)+
n

τp
(ug−ud),

∂t(nE)+∂x ·(n(E+Σ)∨ud)=∂S(KnE)+
n

τp
(ug∨ud−2E),

where ∨ denotes the symmetric tensor outer product [11].

2.3. Hybrid model: AG-TSM

We consider the discretization 0 = S0 < · · · < SN = Smax
of the size interval [0, Smax[ and the following size-velocity mo-
ments of the NDF in the section k corresponding to [Sk−1, Sk],
skipping the (t,x) dependence in the notations:(
nk
mk

)
=

∫ Sk

Sk−1

(
1

ρl
6
√
π
S3/2

)
n(S)dS, (7)

mkuk =

∫ Sk

Sk−1

ρl
6
√
π
S3/2n(S)ud(S)dS, (8)

mkEk =

∫ Sk

Sk−1

ρl
6
√
π
S3/2n(S)E(S)dS. (9)

Moreover, Σk is also defined by: Ek = 1
2

(uk ⊗ uk + Σk)
To close the equations on these moments, the NDF is recon-

structed from them. It means that the functions n(S), ud(S) and
Σ(S) from (5) are presumed in each section k: ud(S) and Σ(S)
are assumed to be constant, equal to uk and Σk, and an affine by
part reconstruction κk(S) is used for n(S), which was shown to
be accurate and stable [10]. For this last function, three types of
reconstruction are used, depending of the value of mk/nk. They
are represented in Figure 1. Since two pure size moments, nk and
mk are used in each section, the method is called TSM (two size
moments), whereas it were called OSM (one size moment) when
only mk was used with a constant reconstruction in the section.
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Figure 1: The three types of affine reconstructions.

With this presumed NDF, the equations are written:

∂tnk+∂x ·(nkud)=N (k+ 1
2

) −N (k− 1
2

),

∂tmk+∂x ·(mkud)=F (k+ 1
2

) −F (k− 1
2

) −M(k), (10)

∂t(mkuk)+∂x ·(mk(uk ⊗ uk + Σk))=
mk

τk
(ug − uk)

+F (k+ 1
2

)uk+1 −F (k− 1
2

)uk −M(k)uk,

∂t(mkEk)+∂x ·(mk(Ek+Σk)∨uk)=
mk

τk
(ug∨uk−2Ek)

+F (k+ 1
2

)Ek+1 −F (k− 1
2

)Ek −M(k)Ek,

with τk = ASmoyk and

Smoyk =

∫ Sk

Sk−1
S3/2κk(S)dS∫ Sk

Sk−1
S1/2κk(S)dS

, N (k− 1
2

) =K κk(Sk−1), (11)

F (k− 1
2

) =K
S3/2

6
√
π
κk(Sk−1), M(k) =

∫ Sk

Sk−1

S1/2

4
√
π
Kκk(S)dS.

2.4. Model properties

To be moments of a positive NDF, our variables have to sat-
isfy the following constraints: Σk has to be definite positive and

ρl
6
√
π
Sk−1nk<mk<

ρl
6
√
π
Sknk or (nk,mk) = (0, 0). (12)
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The numerical scheme used to solve the equations then shall be
designed in order to intrinsically preserve these realizability con-
ditions and thus provide robustness without a posteriori correc-
tions.

Moreover, the system is hyperbolic thanks to the use of the
anisotropic Gaussian closure [15].

3. Numerical schemes

The scheme designed here benefits from the realizable ones
developed in [10] in the monokinetic context and in [2] in the
monodisperse context. For that, a Strang splitting strategy is used.
The operators corresponding to transport in one side and to evap-
oration and drag in another side are then solved separately and
alternatively with realizable schemes, presented in what follows.

3.1. Evaporation and drag

The operator corresponding to evaporation and drag leads to
one ODE system per spatial cell:

∂tnk=N (k+ 1
2

) −N (k− 1
2

),

∂tmk=F (k+ 1
2

) −F (k− 1
2

) −M(k), (13)

∂t(mkuk)=F (k+ 1
2

)uk+1 −F (k− 1
2

)uk −M(k)uk

+
mk

τk
(ug−uk),

∂t(mkEk)=F (k+ 1
2

)Ek+1 −F (k− 1
2

)Ek −M(k)Ek

+
mk

τk
(ug∨uk−2Ek).

For its resolution, the Quadrature Kinetic Scheme (QKS) devel-
oped in [10] is adapted to take into account the additional vari-
ables. It can be seen as a Gauss quadrature technique to approx-
imate the solution of the kinetic scheme, which uses the analyt-
ical solution at the kinetic level. Practically, three steps are in-
volved: from an approximation nnk , mn

k , mn
ku

n
k and mn

kE
n
k =

1
2
mn
k (unk ⊗ unk + Σn

k ) of the moments at time tn

1) the NDF is reconstructed in each section k, thus defin-
ing the function κnk (S) from the nnk and mn

k . Us-
ing the change of variable R =

√
S, the quadrature

weights (w1, w2) and abscissas
(√

s0
1,
√
s0

2

)
of the mea-

sure 2Rκnk (R2)1]Sk−1+K∆t,Sk[(R
2)dR and the quadrature

weights (w̃1, w̃2) and abscissas
(√
s̃1,
√
s̃2

)
of the measure

2Rκnk+1(R2)1]Sk,Sk+K∆t[(R
2)dR are computed, with analyti-

cal formulas of [7] from the first four moments of such measures.
2) Then, one makes evolve the quadrature point characteristics,
thus defining, for i = 1, 2,

si(t) = s0
i −Kt, s̃i(t) = s̃0

i −Kt,

σi(t) =

(
1− Kt

s0
i

) 2
AK

Σn
k , σ̃i(t) =

(
1− Kt

s̃0
i

) 2
AK

Σn
k+1,

(14)

and solving the following systems, for i = 1, 2, during ∆t: dtvi(t) =
ug(t)− vi(t)
Asi(t)

,

vi(0) = unk .

 dtṽi(t) =
ug(t)− ṽi(t)
As̃i(t)

,

ṽi(0) = unk+1.

3) Finally, the new values of the moments are given by:

nn+1
k =

2∑
i=1

wi +

2∑
i=1

w̃i,

mn+1
k =

ρl
6
√
π

(
2∑
i=1

wisi(∆t)
3
2 +

2∑
i=1

w̃is̃i(∆t)
3
2

)
,

mn+1
k un+1

k =
ρl

6
√
π

(
2∑
i=1

wisi(∆t)
3
2 vi(∆t)

+

2∑
i=1

w̃is̃i(∆t)
3
2 ṽi(∆t)

)
,

mn+1
k En+1

k =
ρl

12
√
π

(
2∑
i=1

wisi(∆t)
3
2 [vi(∆t)⊗vi(∆t)+σi(∆t)]

+

2∑
i=1

w̃is̃i(∆t)
3
2 (ṽi(∆t)⊗ ṽi(∆t)+σ̃i(∆t))

)
.

Let us remark that for a constant gas velocity, an analytical solu-
tion can be given for vi(t) and ṽi(t).

The obtained moment set is then necessarily realizable, as
soon as the evaporation CFL-like number maxk

K∆t
Sk−Sk−1

is
smaller than one.

3.2. Transport

The transport operator reads:

∂t(mkµk)+∂x ·(mkµkud)= 0,

∂tmk+∂x ·(mkud)= 0, (15)
∂t(mkuk)+∂x ·(mk(uk ⊗ uk + Σk))= 0,

∂t(mkEk)+∂x ·(mk(Ek+Σk)∨uk)= 0,

where we introduced µk = nk
mk

which has to live in]
6
√
π

ρlS
3/2
k

, 6
√
π

ρlS
3/2
k−1

[
. This condition will be ensured if the max-

imum principle on this variable is preserved by the numerical
scheme.

First, a method of line is used, solving alternatively the oper-
ators corresponding to each direction. Here we only describe the
scheme corresponding to the first direction, which is an adapta-
tion to the anisotropic model of the scheme developed in [2]. A
pressure relaxation scheme is used: only the nonlinearity associ-
ated to the pressure tensor is relaxed. Similarly to [1, 3, 4, 5], we
introduce the following non linear first order system with singular
perturbation:

∂t(mkµk)+∂1(mkµkuk,1)= 0,

∂tmk+∂1(mkuk,1)= 0,

∂t(mkuk,1)+∂1(mku
2
k,1 + Π11)= 0,

∂t(mkuk,2)+∂1(mkuk,1uk,2 + Π12)= 0, (16)
∂t(mkEk,11)+∂1(mkEk,11uk,1+Π11uk,1)= 0,

∂t(mkEk,12)+∂1

(
mkEk,12uk,1+

1

2
(Π12uk,1+Π11uk,2)

)
= 0,

∂t(mkEk,22)+∂1(mkEk,22uk,1+Π12uk,2)= 0,

∂tΠ + uk,1∂1Π +
a2

mk
∂1uk,1 = λ(mkΣk −Π),

where the parameter λ is supposed to go to infinity, in such a way
that the relaxation pressure Π tends to mkΣk, at least formally.
For the stability of the relaxation procedure, the parameter a is
chosen such that a > mk

√
3Σk,11. The system admits the fol-

lowing three eigenvalues: uk,1±a/mk with a second-order mul-
tiplicity and uk,1, with a sixth-order multiplicity. These eigenval-
ues are associated with linearly degenerate characteristic fields.

The proposed numerical procedure is made in two steps
[1, 2, 3, 4, 5]: first, the convective part of the pressure relaxation
model (i.e. (16) for λ = 0) is solved using a Godunov method
based on the exact Riemann solution, which can be explicitly
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solved here, similarly to what is done in [2]. Then, the right-
hand side of (16) is solved in the asymptotic regime λ → ∞,
meaning that Π is set to be equal to mkΣk. Let us remark that,
like in [2], the parameter a is taken nonconstant, advected at the
velocity uk,1. The choice for this parameter is the same here, us-
ing c =

√
3Σk,11 for the sound speed, uk,1 for the velocity and

mkΣk,11 for the pressure (still only considering the first direc-
tion). The obtained numerical scheme is realizable.

4. Result

4.1. Verification on a homogeneous test case

A fictive case is designed for the verification of the evap-
oration and drag scheme. A homogeneous test case is then
considered, then skipping the x dependence: a polydisperse
spray is considered with an initial 2D anisotropic Gaussian ve-
locity distribution depending on size. It experiences drag and
evaporation. The gas velocity is assumed constant: ug,1 =
4m.s−1 in the first direction and ug,2 = 2m.s−1 in the
second one. The drag force is characterized by the coeffi-
cient 1/A = 9.680385.10−7 m2.s−1, the evaporation rate
is K = 1.99.10−7 m2.s−1 and the liquid density is ρl =
634.239 kg.m−3. Finally, the initial distribution is defined for
a size S from 0 to Smax = 11310µm2 (corresponding to a radius
equal to 30µm) in such a way that for s ∈ [0, 1]:

f0(sSmax, u) = Φ(s)GΣ(s) (u− u(s)) , (17)

with GΣ the centered Gaussian density function of covariance
matrix Σ. The spray mean velocity is an increasing function
of the surface equal to the gas velocity at S = 0 (non-inertial
droplets):

u(s)− ug = ψ(s) δu, ψ(s) = s(2− s), (18)

with δu1 = 1m.s−1, δu2 = 2m.s−1. In the same way, the
covariance matrix components depend on size and are zero at
S = 0:

Σ(s) = σ0Aψ(s), A =

(
1 0
0 2

)
, (19)

with σ0 = 1m2.s−2. Finally, the normalized initial size distri-
bution is given by the following regular function (see Fig. 2):

Φ(s)=φ0 (1+8s) (1−s)2 exp

(
0.001

(
1− 1

(1− s)2

))
. (20)

0.0 0.2 0.4 0.6 0.8 1.0
s = S/Smax

0.0

0.5

1.0

1.5

Φ
(s

)

Figure 2: Initial normalized size distribution.

The analytical solution of this homogeneous problem reads:

f(t, S, u) =

(
1+

Kt

S

) 2
AK

Φ

(
S+Kt

Smax

)
(21)

G
Σ
(

S+Kt
Smax

)
(
ug+(u−ug)

(
1+

Kt

S

) 1
AK

−u
(
S+Kt

Smax

))
,

which is still a Gaussian distribution in velocity, in such a way
that the model can capture it. Let us remark that even if there is
no correlation between the velocities in the two directions, such
kind of correlation appears globally for the spray due to its size
polydispersion and size-dependent velocity distributions.

Thus, the size discretization and the numerical scheme for
evaporation and drag are verified in this case compatible with the
Gaussian assumption for the velocity. Simulations are done with
the TSM and OSM models from t = 0 to t = tmax = 0.06 s.
Three kinds of discretizations are considered, with 3, 10 and
100 equidistributed sections and the evaporation CFL like num-
ber is fixed to 0.2. The maximum values of the errors on the
global variables

∑
k n

n
k ,
∑
km

n
k ,
∑
km

n
ku

n
k ,
∑
km

n
kE

n
k are

presented in table 1, normalized respectively by
∑
k n

0
k,
∑
km

0
k,∑

km
0
k‖ug‖, 1

2

∑
km

0
k‖ug‖2.

Table 1: Normalized maximum values of the errors on the global
variables as a function of the number of sections N in the homo-
geneous test case for the TSM model and compared to the OSM
model for N = 100.
N

∑
k n

n
k

∑
km

n
k ‖

∑
km

n
ku

n
k‖ ‖

∑
km

n
kE

n
k‖

3 9.1.10−3 2.5.10−3 3.1.10−3 7.4.10−3

10 8.1.10−4 1.2.10−4 1.3.10−3 3.4.10−3

100 1.3.10−5 2.0.10−7 1.4.10−4 3.4.10−4

OSM model
100 7.3.10−3 3.2.10−3 2.5.10−3 2.2.10−3

Table 1 exhibits a convergence with a first order of accuracy
for the velocity and the energy due to the constant reconstruction
of the mean velocity and the variance in the section, whereas the
order of accuracy is higher for the moments of order zero in the
velocity [10]. However, the simulations are very accurate: with
only 3 sections, the error of the TSM model is of the order of the
OSM model with 100 sections. Reducing the number of sections
is of paramount importance when going towards real cases that
require very large computing grids as the CPU time scales with
the number of sections for both transport and evaporation-drag
steps. Moreover, for high evaporation rate, small size sections
may limit the time step due to the CFL-like condition (see sec-
tion 3.1). In the present case, for the same level of accuracy, the
TSM model is found 780 faster than the OSM if the evaporation
CFL limits the time step and 40 times faster if the transport CFL
is limiting.

4.2. 2D Taylor-Green vortices

A numerical test is proposed to mimic the basic elements of
the phenomena occurring in a real turbulent spray: droplets are
put into motion by vortices, inducing trajectory crossings, while
they are also evaporating. Figure 3.a shows the velocity field
ug = (u, v) of the carrier phase corresponding to the four contra-
rotating Taylor-Green vortices used in the following numerical
test, depending on the position x = (X,Y ):{

u(Lx,Ly) = u0 sin(2πx) cos(2πy)
v(Lx,Ly) = −u0 cos(2πx) sin(2πy)

where L is the length and width of the domain and u0 the maxi-
mum value of the velocity.

The initial spray velocity and energy is uniformly zero. The
initial density distribution is provided by a cardinal sinus function
while the initial size distribution is the same as in section 4.1. A
key parameter of this test case is the Stokes number St, which
corresponds to the non-dimensional drag relaxation time: St =
τp/τg with τg = L/u0. From [6], we know that there exists a
critical value Stc = 1/8π for which particles with St ≥ Stc
are ejected from their original vortices. In the present case, we
set St (Smax) = 32Stc, such that droplets larger than Smax/32
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will be ejected and will generate trajectory crossings. The cor-
responding drag force coefficient is 1/A = π/4Smax/τg =
8.88285.10−9 m2.s−1, since we chose τg = 1s. With the given
evaporation rate K = 1.99.10−7 m2.s−1, around half of the ini-
tial mass is evaporated during a simulation time t = 1s. The
resulting size distribution at this time ensures that most droplets
have a size S such that St(S) > Stc so their trajectories will
cross.

Figure 3: Carrier phase velocity field (Taylor-Green periodic vortices)
and initial density contours.

In order to highlight the effect of the modeling approach, the
TSM model with the anisotropic Gaussian (AG) velocity closure
described in section 3 and noted AG-TSM is compared to two
simpler models: the TSM model with a monokinetic velocity clo-
sure noted MK-TSM and the single section OSM model with the
anisotropic Gaussian closure noted AG-mono, mono standing for
monodisperse. Figure 4 shows the results for these three mod-
els at three successive instants. At t = 0.5, the MK-TSM and
AG-TSM models give very similar results because there is no
pressure effects so the AG-TSM model tends to the MK model.
When droplet spots start to meet on the y = 0 line (t ≥ 0.75),
significant differences appear. With MK-TSM, all the mass is
concentrated in a δ-shock on the meeting line. On the contrary,
with AG-TSM, the creation of a velocity dispersion Σ22, corre-
sponding to a pression induced by the convergence of the two
spots, prevents mass from accumulating on the centerline. The
resulting distribution at t = 1.1 suggests a pattern corresponding
to the two spots crossing whereas the solution for MK-TSM is
clearly non-physical. As expected, the crossing pattern is also re-
covered by the AG-mono model but the solution clearly diverges
from the 5-section AG-TSM as soon as the simulation starts. In-
deed, the monodisperse description induces a different behavior
in terms of total mass evaporation rate and drag acceleration. In
the present case, it mainly results in a significant overestimation
of the mass density compared to the AG-TSM model.

5. Conclusion

We proposed a hybrid model between sectional and moment
methods, called AG-TSM. For each section of the size discretiza-
tion, it combines a second order velocity moment method (with
the anisotropic Gaussian closure) with the use of two pure size
moments (with the affine by part reconstruction of the size NDF).
To solve the corresponding system of equations with accuracy
and robustness, a realizable numerical scheme was designed. The
resulting method proved to be able to capture evaporation and
drag with only a few sections. Compared to the single-size mo-

ment method, the same level of accuracy is achieved with the AG-
TSM method using 40 or 800 times less CPU time, depending
on whether transport or evaporation limits the time step, respec-
tively. Moreover, the 2D Taylor-Green test case shows the impor-
tance of taking into account both the size and velocity dispersions
to capture the fundamental phenomena of turbulent evaporating
sprays.

The next step will be to evaluate in detail this promising
model, as well as its extension to coalescence and break-up in
order to tackle solid propulsion configurations. A second order
realizable scheme for the transport will also be developed to in-
crease the accuracy of the spatial resolution.
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