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A nonlinear domain decomposition method to

couple compositional gas liquid Darcy and free

gas flows

Nabil Birgle∗ Roland Masson∗ Laurent Trenty†

Abstract: A domain decomposition algorithm is proposed to couple at the interface a gas

liquid compositional Darcy flow and a compositional free gas flow. At each time step, our

algorithm solves iteratively the nonlinear system coupling the compositional Darcy flow in

the porous medium, the RANS gas flow in the free flow domain, and the convection diffusion

of the species in the free flow domain. In order to speed up the convergence of the algorithm,

the transmission conditions at the interface are replaced by Robin boundary conditions.

Each Robin coefficient is obtained from a diagonal approximation of the Dirichlet to

Neumann operator related to a scalar simplified model in the neighbouring subdomain. The

efficiency of our domain decomposition algorithm is assessed in the case of the modelling of

the mass exchanges at the interface between the geological formation and the ventilation

galleries of geological radioactive waste disposal.

Keywords: Drying model, coupling algorithm, nonlinear domain decomposition method,

compositional gas liquid Darcy flow, free gas flow.

1 Formulation of the coupled model

Let us denote by Ωpm the porous medium domain, by Ωff the free flow domain and by Γ =

∂Ωpm ∩ ∂Ωff the interface. Let P = {g, ℓ} denote the set of gas and liquid phases assumed

to be both defined by a mixture of components i ∈ C among which the water component

denoted by w which can vaporize in the gas phase, and a set of gaseous components j ∈

C \{w} which can dissolve in the liquid phase. The model is assumed to be isothermal with

a fixed temperature T .

1.1 Compositional Darcy flow in the porous medium Ωpm

Following [1], the liquid gas Darcy flow formulation uses the gas pressure pg, the liquid

pressure pℓ, and the component fugacities f = (fi)i∈C as primary unknowns. In this

formulation, following [2], the component molar fractions cα = (cαi )i∈C of each phase α ∈ P

are the functions cα(pα, f) defined by inversion of the equations fαi (c
α, pα) = fi, i ∈ C,

where fαi is the fugacity of the component i in the phase α. In addition, for α ∈ P, the

phase pressure pα is extended in the absence of the phase in such a way that the closure law
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2 1 Formulation of the coupled model

∑

i∈C
cαi (p

α, f) = 1 is always imposed (see [1]). The phase molar and mass densities, as well

as the phase viscosities functions are denoted in the following by respectively ζα(pα, cα),

ρα(pα, cα), µα(pα, cα) for α ∈ P. Finally, we define the liquid saturation as the function

sℓ(x, pg−pℓ) defined by the inverse of the monotone graph extension of the capillary pressure

function, and we set sg(x, .) = 1− sℓ(x, .).

Let us define the two-phase Darcy velocities uα =
−kα

r

µα K(∇ pα − ραg) where kαr (x, s
α)

is the phase relative permeability, K(x) the porous medium permeability tensor, and g the

gravitational acceleration vector. Let us also introduce, for each component i ∈ C, the total

number of mole per unit pore volume ni =
∑

α∈P
sαζαcαi and the component molar flow

rate vi =
∑

α∈P
ζαcαi u

α. The model in Ωpm accounts for the mole conservation of each

component i ∈ C coupled with the sum to 1 of the molar fractions for each phase α ∈ P:

φ∂tni +∇·vi = 0, i ∈ C, on Ωpm × (0, tf),
∑

i

cαi = 1, α ∈ P, on Ωpm × (0, tf),
(1)

where φ(x) is the porous medium porosity and (0, tf) the simulation time interval.

1.2 Flow and transport model in the free flow domain Ωff

The primary unknowns in the free flow domain are defined by the gas pressure p, the gas

molar fractions c = (ci)i∈C , and the gas velocity u. The flow is described by a Reynolds

Averaged Navier-Stokes (RANS) model and assumed to be quasi-stationary at the time

scale of the porous medium. Let us first define the uncoupled mean turbulent flow as the

solution (u0, p0) of the following RANS model given the initial gas molar fractions c0:

∇·(ρg(p0, c0)u0 ⊗ u0 − µ0
t (∇u0 +∇t u0)) +∇ p0 = ρg(p0, c0)g, in Ωff ,

∇·(ζg(p0, c0)u0) = 0, in Ωff ,

u0 = 0, on Γ,

(2)

where the turbulent viscosity µ0
t (x) is obtained using an algebraic turbulent model or a

more advanced k− ǫ model [3]. This turbulent flow is responsible for a turbulent diffusivity

denoted by d0t (x) typically depending on the turbulent viscosity, on the gas Fickian diffusion

and on the Schmidt number. Assuming that the velocity perturbation induced by the

coupling is small compared to the flow velocity, the turbulent viscosity µ0
t and diffusivity

d0t are used for the coupled model. Thus, the primary unknowns u, p, c in the free flow

domain satisfy the following system of equations

∇·(ρg(p, c)u⊗ u− µ0
t (∇u+∇t u)) +∇ p = ρg(p, c)g, on Ωff × (0, tf),

∇·(ζg(p, c)u) = 0, on Ωff × (0, tf),

∇·wi = 0, i ∈ C, on Ωff × (0, tf),

(3)

with the component molar flow rate wi = ζg(p, c)(ciu− d0t ∇ ci).

1.3 Transmission conditions at the interface Γ

At the interface Γ between the free-flow domain and the porous medium, the coupling

conditions are those stated in [4, 3, 5] where we have replaced the Beaver Joseph condition

by the simpler no slip condition due to the low permeability of the porous medium in our

application. They state the gas molar fraction and molar normal flux continuity, the gas
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liquid thermodynamical equilibrium, the no slip condition, and the normal component of

the normal stress continuity as follows:

c
g
i = ci, on Γ× (0, tf),

vi · npm +wi · nff = 0, on Γ× (0, tf),
∑

i

cαi = 1, on Γ× (0, tf),

(

ρgu⊗ u− µ0
t (∇u+∇t u)

)

nff · nff + p = pg, on Γ× (0, tf),

u ∧ nff = 0, on Γ× (0, tf),

(4)

with i ∈ C, α ∈ P, and where npm and nff are the unit normal vectors at the interface Γ

oriented outward from the porous medium domain and the free flow domain respectively.

2 Domain decomposition algorithm

The coupled model (1)-(3)-(4) is integrated in time using an Euler implicit scheme which

leads to solve at each time step a fully coupled nonlinear system. This nonlinear system

is solved using a domain decomposition algorithm detailed below. This approach has two

advantages. Firstly it allows to use different codes for the porous medium and the free flow

problems. Secondly, it reduces the complexity of the nonlinear and linear systems which

results in a better efficiency compared with a monolithic Newton algorithm solving the fully

coupled system [4, 3].

In the following, the time step count n is omitted for the sake of clarity and the

component total number of mole in the porous medium at the previous time step is denoted

by nn−1
i . The domain decomposition count is denoted by the superscript k. As usual, the

algorithm is initialized by the previous time step solution. The algorithm solves iteratively,

until convergence to the fully coupled solution, the compositional gas liquid flow in the

porous medium with Robin type transmission conditions, the RANS model in the free flow

domain and the convection diffusion equations in the free flow domain with Robin type

transmission conditions.

2.1 Porous medium flow with Robin boundary conditions on Γ

Compute the phase pressures pα,k, α ∈ P, the fugacity vector fk in the porous medium Ωpm

and a normal velocity correction denoted by δk
u

at the interface Γ and oriented outward to

the free flow domain, such that

φ

∆tn
(nki − nn−1

i ) +∇·vk
i = 0, in Ωpm,

∑

i

c
α,k
i = 1, in Ωpm,

βpmc
g,k
i − vk

i · npm − c
g,k
i ζg,kpmδ

k
u
= βpmc

k−1
i −wk−1

i · npm, on Γ,

pg,k = pk−1 + (ρgffu⊗ u− µ0
t (∇u+∇t u))k−1nff · nff , on Γ,

∑

i

c
α,k
i = 1, on Γ.

(5)

with i ∈ C, α ∈ P and ζg,kpm = ζg(pg,k, cg,k). Note that the additional unknown δk
u

accounts

for the correction of the normal gas velocity uk−1 · nff at the interface induced by the

coupling with the porous medium.
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2.2 RANS flow with Dirichlet boundary condition on Γ

Compute the pressure pk and the gas velocity uk such that

∇·(ρg,kff uk ⊗ uk − µ0
t (∇uk +∇t uk)) +∇ pk = ρ

g,k
ff g, in Ωff ,

∇·(ζg,kff uk) = 0, in Ωff ,

ζ
g,k
ff uk = ζ

g,k−1
ff uk−1 + ζg,kpmδ

k
u
nff , on Γ,

(6)

with ζg,kff = ζg(pk, ck−1) and ρg,kff = ρg(pk, ck−1).

2.3 Convection diffusion equations with Robin boundary

conditions on Γ

Compute ck such that for all i ∈ C

∇·wk
i = 0, in Ωff ,

βffc
k
i −wk

i · nff = βffc
g,k
i − vk

i · nff , on Γ,
(7)

with wk
i = ζ

g,k
ff (cki u

k − d0t ∇ cki ).

The domain decomposition algorithm is iterated until the following stopping criterion

at the interface Γ is satisfied for a given tolerance ǫ:

∑

i∈C
‖cg,ki − cki ‖

∑

i∈C
‖cki ‖

+

∑

i∈C
‖(vk

i −wk
i ) · nff‖

∑

i∈C
‖wk

i · nff‖
+

‖δk
u
‖

‖uk · nff‖
< ε. (8)

2.4 Computation of the Robin coefficients βpm and βff

To speedup the convergence of the domain decomposition method, the Robin coefficients

βpm and βff of each subdomain must approximate the Dirichlet to Neumann (DtN) operator

of the neighbouring subdomain problem [6]. For this purpose, a simplified scalar model is

defined in each subdomain and a low frequency diagonal approximation of its DtN operator

is built.

To compute βpm, the convection diffusion equation in (3) is approximated by using the

uncoupled velocity u0 from (2) and by neglecting the variations of the gas molar density. We

end up with a linear operator Lffc = ζg(p0, c0)∇·(cu0 − d0t∇c) independent on i ∈ C. Thus

for a molar fraction cΓ on Γ, we define DtNff(cΓ) = w·nff where w = ζg(p0, c0)(cu0−d0t ∇ c)

and c is solution of the convection diffusion equation ∇·w = 0 in Ωff with Dirichlet condition

c = cΓ on Γ. To account efficiently for the convection diffusion boundary layer and the

tangential convection, the following low frequency diagonal approximation of the DtNff

operator

βpm = DtNff(1Γ)−DtNff(0Γ)

is used rather than a classical order 0 Taylor approximation.

To compute βff , the gas liquid porous medium flow is approximated by the Richards

equation. Let us define c̄ℓi = 1 for i = w and c̄ℓi = 0 for i ∈ C \ {w}, and let p̄g

be a constant reference pressure in the free flow domain typically corresponding to the

outflow pressure. From these, the state laws are approximated by ζ̄ℓ(pℓ) = ζℓ(pℓ, c̄ℓ),

µ̄ℓ(pℓ) = µℓ(pℓ, c̄ℓ) and ρ̄ℓ(pℓ) = ρℓ(pℓ, c̄ℓ) and the water molar fraction in the gas

is given by c̄gw(p
ℓ) = cgw(p̄

g, f ℓ(c̄ℓ, pℓ)). Let us set nℓ(x, pℓ) = ζ̄ℓ(pℓ)sℓ(x, p̄g − pℓ) and
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Figure 1 – Computational domain.

M ℓ(x, pℓ) = ζ̄ℓ(pℓ)
µ̄ℓ(pℓ)

kℓr(x, s
ℓ(x, p̄g − pℓ)). The Richards model with prescribed water molar

fraction cw at Γ is defined as follows after time integration using the implicit Euler scheme:

φ

∆tn
(nℓ − nℓ,n−1) +∇·vℓ = 0, in Ωpm,

c̄gw(p
ℓ) = cw, on Γ,

(9)

where nℓ,n−1(x) = nℓ(x, pℓ,n−1) and vℓ = −M ℓK(∇pℓ− ρ̄ℓg). At each point of the interface

Γ the equation (9) is linearized with respect to pℓ and its coefficients are freezed leading to

Lpmδp
ℓ = ηδpℓ+∇·(−κ∇δpℓ+ψδpℓ) with the Dirichlet boundary condition δpℓ = δcw

∂
pℓ

c̄
g
w

on

Γ. The freezed coefficients are defined by η = φ
∆tn

∂pℓnℓ, κ =M ℓK and ψ = −∂pℓM ℓK∇pℓ+

∂pℓ(M ℓρ̄ℓ)Kg. The Robin coefficient is obtained using the following DtN order 0 Taylor

approximation [6]:

βff =
1

2∂pℓ c̄
g
w

(

ψ · nff +
√

(ψ · nff)2 + 4ηκnff · nff

)

.

3 Numerical experiment

This test case is a simplified two dimensional setting defined with Andra [5] to simulate the

mass exchanges occurring within deep geological radioactive waste disposal at the interface

between a geological formation and a ventilation excavated gallery.

The computational domain shown in Fig. 1 is a rectangle of length l = 100 m and

height hpm = 15 m, split horizontally into the free flow domain Ωff = (0, l) × (0, hff) of

height hff = 5 m and the porous medium Ωpm = (0, l)×(hff , hpm). The temperature is fixed

to T = 303 K both in the porous medium and the free flow domains. The gas and liquid

phases are a mixture of air (a) and water (w) components. The liquid and gas properties are

defined by ζℓ = 55555 mol.m−3, µℓ = 10−3 Pa. s, µg = 1.851 · 10−5 Pa. s, ζg = pg(RT )−1,

ρα = ζα
∑

i∈C
cαi m

i, α ∈ P with the molar masses mw = 18 · 10−3 kg.mol−1 and ma =

29 · 10−3 kg.mol−1. The fugacities are defined in the liquid phase by the Raoult-Kelvin’s

law for the water component and the Henry’s law for the air which leads by inversion

to cℓw(p
ℓ, f) = fw

psat

e
psat−pℓ

ζℓRT , cℓa(p
ℓ, f) = fa

Ha , where psat = 4138 Pa at T = 303 K and

Ha = 3.33 · 109 Pa. The gas fugacities are defined by the Dalton’s law for an ideal mixture

of perfect gas leading to cgi (p
g, f) = fi

pg .

The porous medium contains two rocktypes: a concrete layer located in Ωcc = ( l
2 , l) ×

(hff , hcc) with hcc = 6 m and the Callovo Oxfordian clay elsewhere in Ωcox = Ωpm \ Ωcc.
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Figure 2 – Evaporation rate at the interface in l. d−1.m−1 (left) and gas volume in the

porous medium in m3 (right).

The liquid saturation and the relative permeabilities are given by the Van Genuchten laws

as in [5] with parameters set to nr = 1.54, mr = 1− 1
nr

, pr = 2 · 106 Pa, sℓr = 0.01, sgr = 0

for the concrete rocktype and to nr = 1.49, mr = 1− 1
nr

, pr = 15 · 106 Pa, sℓr = 0.4, sgr = 0

for the Cox rocktype. The porosity is set to φ = 0.3 (resp. φ = 0.15) and the permeability

is isotropic and set to K = 10−18 m2 (resp. K = 5 · 10−20 m2) in the concrete rocktype

(resp. Cox rocktype).

The liquid pressure, the liquid saturation and the water mole fraction are set both at

the initial time and at the top of the porous medium Γup = (0, l)× {hpm} to pℓ,0 = pℓup =

4·106 Pa, sℓ,0 = sℓup = 1 and cℓ,0w = cℓw,up = 1 respectively. In the free flow domain, the mean

uncoupled turbulent velocity profile u0(y) is obtained using the Prandtl algebraic turbulent

model [5] which defines the turbulent viscosity µ0
t . The turbulent diffusion d0t = dg+

µ0

t
−µg

ρgSc

is

deduced using the gas Fickian diffusion dg = 2·10−5 m. s−1 and the Schmidt number Sc = 1.

At the output interface Γout = {l}× (0, hff), the pressure pout = 105 Pa is the atmospheric

pressure which also corresponds to the pressure p̄g used to compute the Robin coefficient

βn
ff . The velocity at the input boundary Γin = {0} × (0, hff) is defined by the velocity

profile u0(y) and is such that uin = −|Γin|
−1

∫

Γin

u0(y) · nff = 0.5 m. s−1. The input water

molar fraction cw,in corresponds to a relative humidity Hr =
poutcw,in

psat

= 0.5. Homogeneous

Neumann boundary conditions are used at the others boundaries of the domain.

Following [5], a Cartesian mesh of size 100 × 242 refined at interface Γ is used. The

Darcy problem in (5) and the convection diffusion equation in (7) are solved using a two

point flux approximation method given in [7] with additional face unknowns at the interface

Γ. The RANS problem in (6) is solved using a staggered Marker And Cell scheme given

in [8]. An implicit Euler scheme is used in time with a time step ∆tn = (1.2)n−1 s which

varies exponentially up to reach the final simulation time tf = 200 years, which corresponds

roughly to the time of ventilation of the storage and is large enough to reach the stationary

state.

Fig. 2 shows the evaporation rate in the gallery and the gas volume in the porous medium

as a function of time. A drop of the evaporation rate occurs at t ≃ 1 day when the interface

is not longer saturated with water. Fig. 3 exhibits the Robin coefficients obtained for this

test case. The dependence on time of βff is crucial to obtain the convergence of the algorithm

and corresponds roughly to a Dirichlet condition before the drop of the evaporation rate
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Figure 3 – Value of the Robin coefficient βpm along the interface Γ (left) and mean value

β̄n
ff = |Γ|−1

∫

Γ
βff(x, t

n) dx as a function of time (right).

and to a Neumann boundary condition after the drop of the evaporation rate. It has been

checked that for a stopping criterion ǫ = 10−6 in (8), the domain decomposition algorithm

converges in an average of 3.9 iterations per time step. In practice, one or two iterations

are enough to obtain the same solution as the fully coupled algorithm.
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