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Abstract – Consider two materials with permittivities/diffusivities of opposite sign, and sepa-
rated by an interface with a corner. Then, when solving the classic (local) models derived from
electromagnetics theory, strong singularities may appear. For instance the scalar problem may
be ill-posed inH1. To address this difficulty, we study here a nonlocal model for scalar problems
with sign-changing coefficients. Numerical results indicate that the proposed nonlocal model
has some key advantages over the local one.

I. INTRODUCTION

In electromagnetism, one can model materials that exhibit (almost) real-valued and strictly negative electric
permittivity and/or magnetic permeability, within given frequency ranges. These so-called metamaterials, or left-
handed materials, raise unusual questions. Among others, proving the existence of electromagnetic fields, and
computing them, is a challenging issue for a problem set in a domain Ω ⊂ Rn (n = 2, 3) divided into a classical
dielectric material and a metamaterial, when the frequency is in the above mentioned frequency range (see for in-
stance [11, 12]). The main issue is that the problem is ill-posed on some situations (see § II.), and as a consequence
its numerical solution is unstable. To adress this difficulty, we propose to reformulate/transform the problem by
using a nonlocal framework (§ III.), and then to study the numerical approximation of the nonlocal problem (§ IV.).
Another approach would be to add a small, fixed imaginary part to the sign-changing coefficient that appears in
the principal part of the PDE, in regions where it takes negative values [8].

II. MODEL PROBLEM

Let us consider a problem in a two-dimensional domain, set in the time-harmonic regime with pulsation ω >
0. Then, the transmission problems in the transverse magnetic (TM) and transverse electric (TE) modes can be
reduced to scalar problems like

div(σ∇u) + ω2ςu = f in Ω,

with a source term f , and (σ, ς) equal to (ε−1, µ) or (µ−1, ε), where ε is the electric permeability, µ is the magnetic
permeability, plus boundary conditions. The study of Maxwell’s equation with sign-changing coefficients has been
carried out in [3]–[4]–[7]. In particular, in [4], by resorting to the T -coercivity approach, it was shown that electric
and magnetic Maxwell transmission problems are well-posed as soon as the associated three-dimensional scalar
problems are well-posed. Thus, we focus on a model scalar problem.
Consider a partition Ω = Ω1 ∪ Ω2, with Ω1 ∩ Ω2 = ∅ and Σ = ∂Ω1 ∩ ∂Ω2 the interface. We study a problem
in which there is a dielectric material in Ω1 and an idealized metamaterial in Ω2. Namely, let σk ∈ L∞(Ωk)
(k = 1, 2) be real-valued functions satisfying σ1 ≥ c1 > 0 a.e. in Ω1 and σ2 ≤ c2 < 0 a.e. in Ω2, where ck
(k = 1, 2) are constant numbers. Define the sign-changing σ ∈ L∞(Ω) by σ

∣∣
Ωk

= σk, and consider ς ∈ L∞(Ω).
We complement the PDE with a homogeneous Dirichlet boundary condition and assume that the right hand side
function f belongs to L2(Ω). Thus, we look for solutions in the function space H1

0 (Ω), which is equipped with the
usual energy-norm ‖v‖H1

0 (Ω) := (
∫

Ω
|∇v|2dx)1/2. Due to the compactness of the embedding H1

0 (Ω) ⊂ L2(Ω), it
is enough to consider the principal part of the PDE, Au = −div(σ∇u), and we are led to analyze mathematically
the problem:

find u ∈ H1
0 (Ω) such that − div(σ∇u) = f in Ω. (1)
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Above, the differential operators, namely the divergence and gradient operators, are local. Hence (1) may be called
a local problem [10]. In variational form, it writes:

find u ∈ H1
0 (Ω) s.t. ∀v ∈ H1

0 (Ω),

∫
Ω

σ(x)∇u(x) · ∇v(x) dx =

∫
Ω

fv dx. (2)

When σ1 and σ2 are constants, Costabel and Stephan [9] proved that, if the interface Σ is of class C2, then the
operator A is Fredholm if and only if the contrast κσ = σ2/σ1 is different from −1. In general situations and
independently of the geometry of Σ, problem (1) is of Fredholm type if and only if the contrast lies outside some
interval Ic, called the critical interval, which always contains the value −1.

The range of the critical interval depends on the interface. For example, Bonnet-Ben Dhia, Dauge and Ram-
dani [6] analyzed the effect of corners: they proved that in a square minus square geometry it holds that Ic =
[−3,−1/3]. Furthermore, the solution exhibits strong singularities at these regions when the contrast approaches
the critical interval. The influence of corners at the interface between the two materials for problem (1) set in a
particular geometry (with one corner of particular aperture) has been mathematically clarified in [5]. In such case,
if the contrast lies inside the critical interval, Fredholm property is lost because of the existence of two strongly os-
cillating singularities at the corner, responsible for the ill-posedness in the classical framework. These singularities
can be interpreted as waves propagating towards or outwards the corner. Then selecting the outgoing singularity
by means of a limiting absorption principle allows to recover Fredholmness of the problem. A numerical method
using Perfectly Matched Layers near the corner has then been derived, which gives satisfactory results [2].

III. NONLOCAL MODEL PROBLEM

We propose a method to shrink the critical interval for the contrast whenever the interface Σ has corners, without
having to cope with the singularities there. Mathematically, the ill-posedness of problem (1) means that the usual
energy-norm is not adequate to measure the behavior of the solution near the interface. To address this difficulty,
we choose to utilize norms able to capture the phenomena near the interface by means of introducing a nonlocal
interaction model for the materials. Namely, we use the function space H̃s(Ω) = {v ∈ Hs(Ω) s.t. ṽ ∈ Hs(Rn)}
where ṽ is the continuation of v by 0 to Rn \ Ω, for some exponent 0 < s < 1, equipped with the norm

‖v‖
H̃s(Ω)

=

∫
Rn×Rn

|ṽ(x)− ṽ(y)|2

|x− y|n+2s
dydx.

In essence, these norms are nonlocal. The nonlocal counterpart of the variational formulation (2) writes

find u ∈ H̃s(Ω) s.t. ∀v ∈ H̃s(Ω),

∫
Rn×Rn

σ(x, y)
(ũ(x)− ũ(y))(ṽ(x)− ṽ(y))

|x− y|n+2s
dydx =

∫
Ω

fv dx. (3)

Assuming that σ1 and σ2 are constants, we propose to use

σ(x, y) =


σ1 if x ∈ Ω1, y ∈ Ω1 ∪ Ωc,

σ2 if x ∈ Ω2, y ∈ Ω2 ∪ Ωc,
1
2 (σ1 + σ2) if x ∈ Ω1, y ∈ Ω2.

(4)

These nonlocal norms are weaker than the usual energy-norm involved in the analysis of (2). So when considering
(3), we are expanding the domain of the operator associated to the problem, while reducing its range. Hence, in
this nonlocal framework, we expect that the operator remains of Fredholm type for a wider range of contrasts.
The exponent s accounts for the nonlocality of the problem: using an appropriate scaling, in the limit s → 1 one
recovers the local problem (1) almost everywhere.

IV. NUMERICAL EXPERIMENTS

We use a conforming Finite Element Method to discretize the nonlocal problem (3), cf. [1]. The computations
are carried out for two sample geometries:

Symmetric geometry: Ω = (−1, 1)× (0, 1), Ω1 = (−1, 0)× (0, 1), Ω2 = (0, 1)2 ;

Square minus square geometry: Ω = (−1, 1)× (0, 2), Ω1 = int(Ω \ Ω2), Ω2 = (0, 1)2.
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In Ω1, we fix σ1 = 1, while σ2 belongs to (−∞, 0). The right-hand side f is equal to 1 over Ω. In principle, the
nonlocality exponent s may span (0, 1). Figure 1 displays some of the outputs of these simulations.
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Fig. 1: Computational results for the nonlocal problem (3). First result: numerical solution for the symmetric
geometry, with s = 0.999 and σ2 = −0.999. Other results: numerical solutions for the square minus square
geometry, with s = 0.7. From left to right, σ2 is taken equal to {−0.5,−0.9,−0.99}.

In the symmetric geometry, we are considering s close to 1, so that the nonlocal problem approaches the local
one, and for the latter the critical interval reduces to Ic = {−1}. Regarding the problem set in the square minus
square geometry, we checked that the solution is numerically stable for σ2 = −0.5, namely that it does not depend
significantly on the meshize. Observe that for the corresponding local problem, this value lies within the critical
interval. So, it seems that the nonlocal model shrinks the critical interval for the contrast. Increasing the value of
|σ2| leads to larger amplitudes, as can be seen in the rightmost two figures.

V. CONCLUSION

For interface problems between dielectrics and metamaterials, it appears that nonlocal models may help derive
acceptable numerical solutions, even when their local counterparts fail. The next step will be the numerical analysis
of the nonlocal method, based on the T -coercivity theory.

REFERENCES

[1] G. Acosta, F.M. Bersetche and J.-P. Borthagaray, “A short FEM implementation for a 2D homogeneous Dirichlet problem
of a fractional Laplacian,” Computers and Mathematics with Applications (to appear).

[2] A.-S. Bonnet-Ben Dhia, C. Carvalho, L. Chesnel and P. Ciarlet Jr., “On the use of perfectly matched layers at corners for
scattering problems with sign-changing coefficients,” Journal of Computational Physics, vol. 322, pp. 224-247, 2016.

[3] A.-S. Bonnet-Ben Dhia, L. Chesnel and P. Ciarlet Jr., “Two-dimensional Maxwell’s equations with sign-changing coeffi-
cients,” Applied Numerical Mathematics, vol. 79, pp. 29-41, 2014.

[4] A.-S. Bonnet-Ben Dhia, L. Chesnel and P. Ciarlet Jr., “T -coercivity for the Maxwell problem with sign-changing coeffi-
cients,” Communications in Partial Differential Equations, vol. 39, pp. 1007-1031, 2014.

[5] A.-S. Bonnet-Ben Dhia, L. Chesnel and X. Claeys, “Radiation condition for a non-smooth interface between a dielectric
and a metamaterial,” Mathematical Models and Methods in Applied Sciences, vol. 23, pp. 1629-1662, 2013.

[6] A.-S. Bonnet-Ben Dhia, M. Dauge and K. Ramdani, “Analyse spectrale et singularités d’un problème de transmission non
coercif,” Comptes-Rendus de l’Académie des Sciences, Série I - Mathématiques, vol. 328, pp. 717-720, 1999.
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